766369631e140f62ec7cd9b7f71402da82cae4d7
[oota-llvm.git] / lib / Target / NVPTX / NVPTXISelLowering.cpp
1 //
2 //                     The LLVM Compiler Infrastructure
3 //
4 // This file is distributed under the University of Illinois Open Source
5 // License. See LICENSE.TXT for details.
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that NVPTX uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "NVPTXISelLowering.h"
15 #include "NVPTX.h"
16 #include "NVPTXTargetMachine.h"
17 #include "NVPTXTargetObjectFile.h"
18 #include "NVPTXUtilities.h"
19 #include "llvm/CodeGen/Analysis.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/GlobalValue.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/MC/MCSectionELF.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <sstream>
39
40 #undef DEBUG_TYPE
41 #define DEBUG_TYPE "nvptx-lower"
42
43 using namespace llvm;
44
45 static unsigned int uniqueCallSite = 0;
46
47 static cl::opt<bool> sched4reg(
48     "nvptx-sched4reg",
49     cl::desc("NVPTX Specific: schedule for register pressue"), cl::init(false));
50
51 static cl::opt<unsigned>
52 FMAContractLevelOpt("nvptx-fma-level", cl::ZeroOrMore, cl::Hidden,
53                     cl::desc("NVPTX Specific: FMA contraction (0: don't do it"
54                              " 1: do it  2: do it aggressively"),
55                     cl::init(2));
56
57 static bool IsPTXVectorType(MVT VT) {
58   switch (VT.SimpleTy) {
59   default:
60     return false;
61   case MVT::v2i1:
62   case MVT::v4i1:
63   case MVT::v2i8:
64   case MVT::v4i8:
65   case MVT::v2i16:
66   case MVT::v4i16:
67   case MVT::v2i32:
68   case MVT::v4i32:
69   case MVT::v2i64:
70   case MVT::v2f32:
71   case MVT::v4f32:
72   case MVT::v2f64:
73     return true;
74   }
75 }
76
77 /// ComputePTXValueVTs - For the given Type \p Ty, returns the set of primitive
78 /// EVTs that compose it.  Unlike ComputeValueVTs, this will break apart vectors
79 /// into their primitive components.
80 /// NOTE: This is a band-aid for code that expects ComputeValueVTs to return the
81 /// same number of types as the Ins/Outs arrays in LowerFormalArguments,
82 /// LowerCall, and LowerReturn.
83 static void ComputePTXValueVTs(const TargetLowering &TLI, const DataLayout &DL,
84                                Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
85                                SmallVectorImpl<uint64_t> *Offsets = nullptr,
86                                uint64_t StartingOffset = 0) {
87   SmallVector<EVT, 16> TempVTs;
88   SmallVector<uint64_t, 16> TempOffsets;
89
90   ComputeValueVTs(TLI, DL, Ty, TempVTs, &TempOffsets, StartingOffset);
91   for (unsigned i = 0, e = TempVTs.size(); i != e; ++i) {
92     EVT VT = TempVTs[i];
93     uint64_t Off = TempOffsets[i];
94     if (VT.isVector())
95       for (unsigned j = 0, je = VT.getVectorNumElements(); j != je; ++j) {
96         ValueVTs.push_back(VT.getVectorElementType());
97         if (Offsets)
98           Offsets->push_back(Off+j*VT.getVectorElementType().getStoreSize());
99       }
100     else {
101       ValueVTs.push_back(VT);
102       if (Offsets)
103         Offsets->push_back(Off);
104     }
105   }
106 }
107
108 // NVPTXTargetLowering Constructor.
109 NVPTXTargetLowering::NVPTXTargetLowering(const NVPTXTargetMachine &TM,
110                                          const NVPTXSubtarget &STI)
111     : TargetLowering(TM), nvTM(&TM), STI(STI) {
112
113   // always lower memset, memcpy, and memmove intrinsics to load/store
114   // instructions, rather
115   // then generating calls to memset, mempcy or memmove.
116   MaxStoresPerMemset = (unsigned) 0xFFFFFFFF;
117   MaxStoresPerMemcpy = (unsigned) 0xFFFFFFFF;
118   MaxStoresPerMemmove = (unsigned) 0xFFFFFFFF;
119
120   setBooleanContents(ZeroOrNegativeOneBooleanContent);
121   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
122
123   // Jump is Expensive. Don't create extra control flow for 'and', 'or'
124   // condition branches.
125   setJumpIsExpensive(true);
126
127   // Wide divides are _very_ slow. Try to reduce the width of the divide if
128   // possible.
129   addBypassSlowDiv(64, 32);
130
131   // By default, use the Source scheduling
132   if (sched4reg)
133     setSchedulingPreference(Sched::RegPressure);
134   else
135     setSchedulingPreference(Sched::Source);
136
137   addRegisterClass(MVT::i1, &NVPTX::Int1RegsRegClass);
138   addRegisterClass(MVT::i16, &NVPTX::Int16RegsRegClass);
139   addRegisterClass(MVT::i32, &NVPTX::Int32RegsRegClass);
140   addRegisterClass(MVT::i64, &NVPTX::Int64RegsRegClass);
141   addRegisterClass(MVT::f32, &NVPTX::Float32RegsRegClass);
142   addRegisterClass(MVT::f64, &NVPTX::Float64RegsRegClass);
143
144   // Operations not directly supported by NVPTX.
145   setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
146   setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
147   setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
148   setOperationAction(ISD::SELECT_CC, MVT::i8, Expand);
149   setOperationAction(ISD::SELECT_CC, MVT::i16, Expand);
150   setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
151   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
152   setOperationAction(ISD::BR_CC, MVT::f32, Expand);
153   setOperationAction(ISD::BR_CC, MVT::f64, Expand);
154   setOperationAction(ISD::BR_CC, MVT::i1, Expand);
155   setOperationAction(ISD::BR_CC, MVT::i8, Expand);
156   setOperationAction(ISD::BR_CC, MVT::i16, Expand);
157   setOperationAction(ISD::BR_CC, MVT::i32, Expand);
158   setOperationAction(ISD::BR_CC, MVT::i64, Expand);
159   // Some SIGN_EXTEND_INREG can be done using cvt instruction.
160   // For others we will expand to a SHL/SRA pair.
161   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i64, Legal);
162   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
163   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
164   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
165   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
166
167   setOperationAction(ISD::SHL_PARTS, MVT::i32  , Custom);
168   setOperationAction(ISD::SRA_PARTS, MVT::i32  , Custom);
169   setOperationAction(ISD::SRL_PARTS, MVT::i32  , Custom);
170   setOperationAction(ISD::SHL_PARTS, MVT::i64  , Custom);
171   setOperationAction(ISD::SRA_PARTS, MVT::i64  , Custom);
172   setOperationAction(ISD::SRL_PARTS, MVT::i64  , Custom);
173
174   if (STI.hasROT64()) {
175     setOperationAction(ISD::ROTL, MVT::i64, Legal);
176     setOperationAction(ISD::ROTR, MVT::i64, Legal);
177   } else {
178     setOperationAction(ISD::ROTL, MVT::i64, Expand);
179     setOperationAction(ISD::ROTR, MVT::i64, Expand);
180   }
181   if (STI.hasROT32()) {
182     setOperationAction(ISD::ROTL, MVT::i32, Legal);
183     setOperationAction(ISD::ROTR, MVT::i32, Legal);
184   } else {
185     setOperationAction(ISD::ROTL, MVT::i32, Expand);
186     setOperationAction(ISD::ROTR, MVT::i32, Expand);
187   }
188
189   setOperationAction(ISD::ROTL, MVT::i16, Expand);
190   setOperationAction(ISD::ROTR, MVT::i16, Expand);
191   setOperationAction(ISD::ROTL, MVT::i8, Expand);
192   setOperationAction(ISD::ROTR, MVT::i8, Expand);
193   setOperationAction(ISD::BSWAP, MVT::i16, Expand);
194   setOperationAction(ISD::BSWAP, MVT::i32, Expand);
195   setOperationAction(ISD::BSWAP, MVT::i64, Expand);
196
197   // Indirect branch is not supported.
198   // This also disables Jump Table creation.
199   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
200   setOperationAction(ISD::BRIND, MVT::Other, Expand);
201
202   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
203   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
204
205   // We want to legalize constant related memmove and memcopy
206   // intrinsics.
207   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
208
209   // Turn FP extload into load/fextend
210   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
211   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
212   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
213   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
214   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
215   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
216   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
217   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
218   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
219   // Turn FP truncstore into trunc + store.
220   // FIXME: vector types should also be expanded
221   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
222   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
223   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
224
225   // PTX does not support load / store predicate registers
226   setOperationAction(ISD::LOAD, MVT::i1, Custom);
227   setOperationAction(ISD::STORE, MVT::i1, Custom);
228
229   for (MVT VT : MVT::integer_valuetypes()) {
230     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
231     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
232     setTruncStoreAction(VT, MVT::i1, Expand);
233   }
234
235   // This is legal in NVPTX
236   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
237   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
238
239   // TRAP can be lowered to PTX trap
240   setOperationAction(ISD::TRAP, MVT::Other, Legal);
241
242   setOperationAction(ISD::ADDC, MVT::i64, Expand);
243   setOperationAction(ISD::ADDE, MVT::i64, Expand);
244
245   // Register custom handling for vector loads/stores
246   for (MVT VT : MVT::vector_valuetypes()) {
247     if (IsPTXVectorType(VT)) {
248       setOperationAction(ISD::LOAD, VT, Custom);
249       setOperationAction(ISD::STORE, VT, Custom);
250       setOperationAction(ISD::INTRINSIC_W_CHAIN, VT, Custom);
251     }
252   }
253
254   // Custom handling for i8 intrinsics
255   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
256
257   setOperationAction(ISD::CTLZ, MVT::i16, Legal);
258   setOperationAction(ISD::CTLZ, MVT::i32, Legal);
259   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
260   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Legal);
261   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Legal);
262   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Legal);
263   setOperationAction(ISD::CTTZ, MVT::i16, Expand);
264   setOperationAction(ISD::CTTZ, MVT::i32, Expand);
265   setOperationAction(ISD::CTTZ, MVT::i64, Expand);
266   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Expand);
267   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
268   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
269   setOperationAction(ISD::CTPOP, MVT::i16, Legal);
270   setOperationAction(ISD::CTPOP, MVT::i32, Legal);
271   setOperationAction(ISD::CTPOP, MVT::i64, Legal);
272
273   // PTX does not directly support SELP of i1, so promote to i32 first
274   setOperationAction(ISD::SELECT, MVT::i1, Custom);
275
276   // We have some custom DAG combine patterns for these nodes
277   setTargetDAGCombine(ISD::ADD);
278   setTargetDAGCombine(ISD::AND);
279   setTargetDAGCombine(ISD::FADD);
280   setTargetDAGCombine(ISD::MUL);
281   setTargetDAGCombine(ISD::SHL);
282   setTargetDAGCombine(ISD::SELECT);
283
284   // Now deduce the information based on the above mentioned
285   // actions
286   computeRegisterProperties(STI.getRegisterInfo());
287 }
288
289 const char *NVPTXTargetLowering::getTargetNodeName(unsigned Opcode) const {
290   switch ((NVPTXISD::NodeType)Opcode) {
291   case NVPTXISD::FIRST_NUMBER:
292     break;
293   case NVPTXISD::CALL:
294     return "NVPTXISD::CALL";
295   case NVPTXISD::RET_FLAG:
296     return "NVPTXISD::RET_FLAG";
297   case NVPTXISD::LOAD_PARAM:
298     return "NVPTXISD::LOAD_PARAM";
299   case NVPTXISD::Wrapper:
300     return "NVPTXISD::Wrapper";
301   case NVPTXISD::DeclareParam:
302     return "NVPTXISD::DeclareParam";
303   case NVPTXISD::DeclareScalarParam:
304     return "NVPTXISD::DeclareScalarParam";
305   case NVPTXISD::DeclareRet:
306     return "NVPTXISD::DeclareRet";
307   case NVPTXISD::DeclareScalarRet:
308     return "NVPTXISD::DeclareScalarRet";
309   case NVPTXISD::DeclareRetParam:
310     return "NVPTXISD::DeclareRetParam";
311   case NVPTXISD::PrintCall:
312     return "NVPTXISD::PrintCall";
313   case NVPTXISD::PrintCallUni:
314     return "NVPTXISD::PrintCallUni";
315   case NVPTXISD::LoadParam:
316     return "NVPTXISD::LoadParam";
317   case NVPTXISD::LoadParamV2:
318     return "NVPTXISD::LoadParamV2";
319   case NVPTXISD::LoadParamV4:
320     return "NVPTXISD::LoadParamV4";
321   case NVPTXISD::StoreParam:
322     return "NVPTXISD::StoreParam";
323   case NVPTXISD::StoreParamV2:
324     return "NVPTXISD::StoreParamV2";
325   case NVPTXISD::StoreParamV4:
326     return "NVPTXISD::StoreParamV4";
327   case NVPTXISD::StoreParamS32:
328     return "NVPTXISD::StoreParamS32";
329   case NVPTXISD::StoreParamU32:
330     return "NVPTXISD::StoreParamU32";
331   case NVPTXISD::CallArgBegin:
332     return "NVPTXISD::CallArgBegin";
333   case NVPTXISD::CallArg:
334     return "NVPTXISD::CallArg";
335   case NVPTXISD::LastCallArg:
336     return "NVPTXISD::LastCallArg";
337   case NVPTXISD::CallArgEnd:
338     return "NVPTXISD::CallArgEnd";
339   case NVPTXISD::CallVoid:
340     return "NVPTXISD::CallVoid";
341   case NVPTXISD::CallVal:
342     return "NVPTXISD::CallVal";
343   case NVPTXISD::CallSymbol:
344     return "NVPTXISD::CallSymbol";
345   case NVPTXISD::Prototype:
346     return "NVPTXISD::Prototype";
347   case NVPTXISD::MoveParam:
348     return "NVPTXISD::MoveParam";
349   case NVPTXISD::StoreRetval:
350     return "NVPTXISD::StoreRetval";
351   case NVPTXISD::StoreRetvalV2:
352     return "NVPTXISD::StoreRetvalV2";
353   case NVPTXISD::StoreRetvalV4:
354     return "NVPTXISD::StoreRetvalV4";
355   case NVPTXISD::PseudoUseParam:
356     return "NVPTXISD::PseudoUseParam";
357   case NVPTXISD::RETURN:
358     return "NVPTXISD::RETURN";
359   case NVPTXISD::CallSeqBegin:
360     return "NVPTXISD::CallSeqBegin";
361   case NVPTXISD::CallSeqEnd:
362     return "NVPTXISD::CallSeqEnd";
363   case NVPTXISD::CallPrototype:
364     return "NVPTXISD::CallPrototype";
365   case NVPTXISD::LoadV2:
366     return "NVPTXISD::LoadV2";
367   case NVPTXISD::LoadV4:
368     return "NVPTXISD::LoadV4";
369   case NVPTXISD::LDGV2:
370     return "NVPTXISD::LDGV2";
371   case NVPTXISD::LDGV4:
372     return "NVPTXISD::LDGV4";
373   case NVPTXISD::LDUV2:
374     return "NVPTXISD::LDUV2";
375   case NVPTXISD::LDUV4:
376     return "NVPTXISD::LDUV4";
377   case NVPTXISD::StoreV2:
378     return "NVPTXISD::StoreV2";
379   case NVPTXISD::StoreV4:
380     return "NVPTXISD::StoreV4";
381   case NVPTXISD::FUN_SHFL_CLAMP:
382     return "NVPTXISD::FUN_SHFL_CLAMP";
383   case NVPTXISD::FUN_SHFR_CLAMP:
384     return "NVPTXISD::FUN_SHFR_CLAMP";
385   case NVPTXISD::IMAD:
386     return "NVPTXISD::IMAD";
387   case NVPTXISD::Dummy:
388     return "NVPTXISD::Dummy";
389   case NVPTXISD::MUL_WIDE_SIGNED:
390     return "NVPTXISD::MUL_WIDE_SIGNED";
391   case NVPTXISD::MUL_WIDE_UNSIGNED:
392     return "NVPTXISD::MUL_WIDE_UNSIGNED";
393   case NVPTXISD::Tex1DFloatS32:        return "NVPTXISD::Tex1DFloatS32";
394   case NVPTXISD::Tex1DFloatFloat:      return "NVPTXISD::Tex1DFloatFloat";
395   case NVPTXISD::Tex1DFloatFloatLevel:
396     return "NVPTXISD::Tex1DFloatFloatLevel";
397   case NVPTXISD::Tex1DFloatFloatGrad:
398     return "NVPTXISD::Tex1DFloatFloatGrad";
399   case NVPTXISD::Tex1DS32S32:          return "NVPTXISD::Tex1DS32S32";
400   case NVPTXISD::Tex1DS32Float:        return "NVPTXISD::Tex1DS32Float";
401   case NVPTXISD::Tex1DS32FloatLevel:
402     return "NVPTXISD::Tex1DS32FloatLevel";
403   case NVPTXISD::Tex1DS32FloatGrad:
404     return "NVPTXISD::Tex1DS32FloatGrad";
405   case NVPTXISD::Tex1DU32S32:          return "NVPTXISD::Tex1DU32S32";
406   case NVPTXISD::Tex1DU32Float:        return "NVPTXISD::Tex1DU32Float";
407   case NVPTXISD::Tex1DU32FloatLevel:
408     return "NVPTXISD::Tex1DU32FloatLevel";
409   case NVPTXISD::Tex1DU32FloatGrad:
410     return "NVPTXISD::Tex1DU32FloatGrad";
411   case NVPTXISD::Tex1DArrayFloatS32:   return "NVPTXISD::Tex1DArrayFloatS32";
412   case NVPTXISD::Tex1DArrayFloatFloat: return "NVPTXISD::Tex1DArrayFloatFloat";
413   case NVPTXISD::Tex1DArrayFloatFloatLevel:
414     return "NVPTXISD::Tex1DArrayFloatFloatLevel";
415   case NVPTXISD::Tex1DArrayFloatFloatGrad:
416     return "NVPTXISD::Tex1DArrayFloatFloatGrad";
417   case NVPTXISD::Tex1DArrayS32S32:     return "NVPTXISD::Tex1DArrayS32S32";
418   case NVPTXISD::Tex1DArrayS32Float:   return "NVPTXISD::Tex1DArrayS32Float";
419   case NVPTXISD::Tex1DArrayS32FloatLevel:
420     return "NVPTXISD::Tex1DArrayS32FloatLevel";
421   case NVPTXISD::Tex1DArrayS32FloatGrad:
422     return "NVPTXISD::Tex1DArrayS32FloatGrad";
423   case NVPTXISD::Tex1DArrayU32S32:     return "NVPTXISD::Tex1DArrayU32S32";
424   case NVPTXISD::Tex1DArrayU32Float:   return "NVPTXISD::Tex1DArrayU32Float";
425   case NVPTXISD::Tex1DArrayU32FloatLevel:
426     return "NVPTXISD::Tex1DArrayU32FloatLevel";
427   case NVPTXISD::Tex1DArrayU32FloatGrad:
428     return "NVPTXISD::Tex1DArrayU32FloatGrad";
429   case NVPTXISD::Tex2DFloatS32:        return "NVPTXISD::Tex2DFloatS32";
430   case NVPTXISD::Tex2DFloatFloat:      return "NVPTXISD::Tex2DFloatFloat";
431   case NVPTXISD::Tex2DFloatFloatLevel:
432     return "NVPTXISD::Tex2DFloatFloatLevel";
433   case NVPTXISD::Tex2DFloatFloatGrad:
434     return "NVPTXISD::Tex2DFloatFloatGrad";
435   case NVPTXISD::Tex2DS32S32:          return "NVPTXISD::Tex2DS32S32";
436   case NVPTXISD::Tex2DS32Float:        return "NVPTXISD::Tex2DS32Float";
437   case NVPTXISD::Tex2DS32FloatLevel:
438     return "NVPTXISD::Tex2DS32FloatLevel";
439   case NVPTXISD::Tex2DS32FloatGrad:
440     return "NVPTXISD::Tex2DS32FloatGrad";
441   case NVPTXISD::Tex2DU32S32:          return "NVPTXISD::Tex2DU32S32";
442   case NVPTXISD::Tex2DU32Float:        return "NVPTXISD::Tex2DU32Float";
443   case NVPTXISD::Tex2DU32FloatLevel:
444     return "NVPTXISD::Tex2DU32FloatLevel";
445   case NVPTXISD::Tex2DU32FloatGrad:
446     return "NVPTXISD::Tex2DU32FloatGrad";
447   case NVPTXISD::Tex2DArrayFloatS32:   return "NVPTXISD::Tex2DArrayFloatS32";
448   case NVPTXISD::Tex2DArrayFloatFloat: return "NVPTXISD::Tex2DArrayFloatFloat";
449   case NVPTXISD::Tex2DArrayFloatFloatLevel:
450     return "NVPTXISD::Tex2DArrayFloatFloatLevel";
451   case NVPTXISD::Tex2DArrayFloatFloatGrad:
452     return "NVPTXISD::Tex2DArrayFloatFloatGrad";
453   case NVPTXISD::Tex2DArrayS32S32:     return "NVPTXISD::Tex2DArrayS32S32";
454   case NVPTXISD::Tex2DArrayS32Float:   return "NVPTXISD::Tex2DArrayS32Float";
455   case NVPTXISD::Tex2DArrayS32FloatLevel:
456     return "NVPTXISD::Tex2DArrayS32FloatLevel";
457   case NVPTXISD::Tex2DArrayS32FloatGrad:
458     return "NVPTXISD::Tex2DArrayS32FloatGrad";
459   case NVPTXISD::Tex2DArrayU32S32:     return "NVPTXISD::Tex2DArrayU32S32";
460   case NVPTXISD::Tex2DArrayU32Float:   return "NVPTXISD::Tex2DArrayU32Float";
461   case NVPTXISD::Tex2DArrayU32FloatLevel:
462     return "NVPTXISD::Tex2DArrayU32FloatLevel";
463   case NVPTXISD::Tex2DArrayU32FloatGrad:
464     return "NVPTXISD::Tex2DArrayU32FloatGrad";
465   case NVPTXISD::Tex3DFloatS32:        return "NVPTXISD::Tex3DFloatS32";
466   case NVPTXISD::Tex3DFloatFloat:      return "NVPTXISD::Tex3DFloatFloat";
467   case NVPTXISD::Tex3DFloatFloatLevel:
468     return "NVPTXISD::Tex3DFloatFloatLevel";
469   case NVPTXISD::Tex3DFloatFloatGrad:
470     return "NVPTXISD::Tex3DFloatFloatGrad";
471   case NVPTXISD::Tex3DS32S32:          return "NVPTXISD::Tex3DS32S32";
472   case NVPTXISD::Tex3DS32Float:        return "NVPTXISD::Tex3DS32Float";
473   case NVPTXISD::Tex3DS32FloatLevel:
474     return "NVPTXISD::Tex3DS32FloatLevel";
475   case NVPTXISD::Tex3DS32FloatGrad:
476     return "NVPTXISD::Tex3DS32FloatGrad";
477   case NVPTXISD::Tex3DU32S32:          return "NVPTXISD::Tex3DU32S32";
478   case NVPTXISD::Tex3DU32Float:        return "NVPTXISD::Tex3DU32Float";
479   case NVPTXISD::Tex3DU32FloatLevel:
480     return "NVPTXISD::Tex3DU32FloatLevel";
481   case NVPTXISD::Tex3DU32FloatGrad:
482     return "NVPTXISD::Tex3DU32FloatGrad";
483   case NVPTXISD::TexCubeFloatFloat:      return "NVPTXISD::TexCubeFloatFloat";
484   case NVPTXISD::TexCubeFloatFloatLevel:
485     return "NVPTXISD::TexCubeFloatFloatLevel";
486   case NVPTXISD::TexCubeS32Float:        return "NVPTXISD::TexCubeS32Float";
487   case NVPTXISD::TexCubeS32FloatLevel:
488     return "NVPTXISD::TexCubeS32FloatLevel";
489   case NVPTXISD::TexCubeU32Float:        return "NVPTXISD::TexCubeU32Float";
490   case NVPTXISD::TexCubeU32FloatLevel:
491     return "NVPTXISD::TexCubeU32FloatLevel";
492   case NVPTXISD::TexCubeArrayFloatFloat:
493     return "NVPTXISD::TexCubeArrayFloatFloat";
494   case NVPTXISD::TexCubeArrayFloatFloatLevel:
495     return "NVPTXISD::TexCubeArrayFloatFloatLevel";
496   case NVPTXISD::TexCubeArrayS32Float:
497     return "NVPTXISD::TexCubeArrayS32Float";
498   case NVPTXISD::TexCubeArrayS32FloatLevel:
499     return "NVPTXISD::TexCubeArrayS32FloatLevel";
500   case NVPTXISD::TexCubeArrayU32Float:
501     return "NVPTXISD::TexCubeArrayU32Float";
502   case NVPTXISD::TexCubeArrayU32FloatLevel:
503     return "NVPTXISD::TexCubeArrayU32FloatLevel";
504   case NVPTXISD::Tld4R2DFloatFloat:
505     return "NVPTXISD::Tld4R2DFloatFloat";
506   case NVPTXISD::Tld4G2DFloatFloat:
507     return "NVPTXISD::Tld4G2DFloatFloat";
508   case NVPTXISD::Tld4B2DFloatFloat:
509     return "NVPTXISD::Tld4B2DFloatFloat";
510   case NVPTXISD::Tld4A2DFloatFloat:
511     return "NVPTXISD::Tld4A2DFloatFloat";
512   case NVPTXISD::Tld4R2DS64Float:
513     return "NVPTXISD::Tld4R2DS64Float";
514   case NVPTXISD::Tld4G2DS64Float:
515     return "NVPTXISD::Tld4G2DS64Float";
516   case NVPTXISD::Tld4B2DS64Float:
517     return "NVPTXISD::Tld4B2DS64Float";
518   case NVPTXISD::Tld4A2DS64Float:
519     return "NVPTXISD::Tld4A2DS64Float";
520   case NVPTXISD::Tld4R2DU64Float:
521     return "NVPTXISD::Tld4R2DU64Float";
522   case NVPTXISD::Tld4G2DU64Float:
523     return "NVPTXISD::Tld4G2DU64Float";
524   case NVPTXISD::Tld4B2DU64Float:
525     return "NVPTXISD::Tld4B2DU64Float";
526   case NVPTXISD::Tld4A2DU64Float:
527     return "NVPTXISD::Tld4A2DU64Float";
528
529   case NVPTXISD::TexUnified1DFloatS32:
530     return "NVPTXISD::TexUnified1DFloatS32";
531   case NVPTXISD::TexUnified1DFloatFloat:
532     return "NVPTXISD::TexUnified1DFloatFloat";
533   case NVPTXISD::TexUnified1DFloatFloatLevel:
534     return "NVPTXISD::TexUnified1DFloatFloatLevel";
535   case NVPTXISD::TexUnified1DFloatFloatGrad:
536     return "NVPTXISD::TexUnified1DFloatFloatGrad";
537   case NVPTXISD::TexUnified1DS32S32:
538     return "NVPTXISD::TexUnified1DS32S32";
539   case NVPTXISD::TexUnified1DS32Float:
540     return "NVPTXISD::TexUnified1DS32Float";
541   case NVPTXISD::TexUnified1DS32FloatLevel:
542     return "NVPTXISD::TexUnified1DS32FloatLevel";
543   case NVPTXISD::TexUnified1DS32FloatGrad:
544     return "NVPTXISD::TexUnified1DS32FloatGrad";
545   case NVPTXISD::TexUnified1DU32S32:
546     return "NVPTXISD::TexUnified1DU32S32";
547   case NVPTXISD::TexUnified1DU32Float:
548     return "NVPTXISD::TexUnified1DU32Float";
549   case NVPTXISD::TexUnified1DU32FloatLevel:
550     return "NVPTXISD::TexUnified1DU32FloatLevel";
551   case NVPTXISD::TexUnified1DU32FloatGrad:
552     return "NVPTXISD::TexUnified1DU32FloatGrad";
553   case NVPTXISD::TexUnified1DArrayFloatS32:
554     return "NVPTXISD::TexUnified1DArrayFloatS32";
555   case NVPTXISD::TexUnified1DArrayFloatFloat:
556     return "NVPTXISD::TexUnified1DArrayFloatFloat";
557   case NVPTXISD::TexUnified1DArrayFloatFloatLevel:
558     return "NVPTXISD::TexUnified1DArrayFloatFloatLevel";
559   case NVPTXISD::TexUnified1DArrayFloatFloatGrad:
560     return "NVPTXISD::TexUnified1DArrayFloatFloatGrad";
561   case NVPTXISD::TexUnified1DArrayS32S32:
562     return "NVPTXISD::TexUnified1DArrayS32S32";
563   case NVPTXISD::TexUnified1DArrayS32Float:
564     return "NVPTXISD::TexUnified1DArrayS32Float";
565   case NVPTXISD::TexUnified1DArrayS32FloatLevel:
566     return "NVPTXISD::TexUnified1DArrayS32FloatLevel";
567   case NVPTXISD::TexUnified1DArrayS32FloatGrad:
568     return "NVPTXISD::TexUnified1DArrayS32FloatGrad";
569   case NVPTXISD::TexUnified1DArrayU32S32:
570     return "NVPTXISD::TexUnified1DArrayU32S32";
571   case NVPTXISD::TexUnified1DArrayU32Float:
572     return "NVPTXISD::TexUnified1DArrayU32Float";
573   case NVPTXISD::TexUnified1DArrayU32FloatLevel:
574     return "NVPTXISD::TexUnified1DArrayU32FloatLevel";
575   case NVPTXISD::TexUnified1DArrayU32FloatGrad:
576     return "NVPTXISD::TexUnified1DArrayU32FloatGrad";
577   case NVPTXISD::TexUnified2DFloatS32:
578     return "NVPTXISD::TexUnified2DFloatS32";
579   case NVPTXISD::TexUnified2DFloatFloat:
580     return "NVPTXISD::TexUnified2DFloatFloat";
581   case NVPTXISD::TexUnified2DFloatFloatLevel:
582     return "NVPTXISD::TexUnified2DFloatFloatLevel";
583   case NVPTXISD::TexUnified2DFloatFloatGrad:
584     return "NVPTXISD::TexUnified2DFloatFloatGrad";
585   case NVPTXISD::TexUnified2DS32S32:
586     return "NVPTXISD::TexUnified2DS32S32";
587   case NVPTXISD::TexUnified2DS32Float:
588     return "NVPTXISD::TexUnified2DS32Float";
589   case NVPTXISD::TexUnified2DS32FloatLevel:
590     return "NVPTXISD::TexUnified2DS32FloatLevel";
591   case NVPTXISD::TexUnified2DS32FloatGrad:
592     return "NVPTXISD::TexUnified2DS32FloatGrad";
593   case NVPTXISD::TexUnified2DU32S32:
594     return "NVPTXISD::TexUnified2DU32S32";
595   case NVPTXISD::TexUnified2DU32Float:
596     return "NVPTXISD::TexUnified2DU32Float";
597   case NVPTXISD::TexUnified2DU32FloatLevel:
598     return "NVPTXISD::TexUnified2DU32FloatLevel";
599   case NVPTXISD::TexUnified2DU32FloatGrad:
600     return "NVPTXISD::TexUnified2DU32FloatGrad";
601   case NVPTXISD::TexUnified2DArrayFloatS32:
602     return "NVPTXISD::TexUnified2DArrayFloatS32";
603   case NVPTXISD::TexUnified2DArrayFloatFloat:
604     return "NVPTXISD::TexUnified2DArrayFloatFloat";
605   case NVPTXISD::TexUnified2DArrayFloatFloatLevel:
606     return "NVPTXISD::TexUnified2DArrayFloatFloatLevel";
607   case NVPTXISD::TexUnified2DArrayFloatFloatGrad:
608     return "NVPTXISD::TexUnified2DArrayFloatFloatGrad";
609   case NVPTXISD::TexUnified2DArrayS32S32:
610     return "NVPTXISD::TexUnified2DArrayS32S32";
611   case NVPTXISD::TexUnified2DArrayS32Float:
612     return "NVPTXISD::TexUnified2DArrayS32Float";
613   case NVPTXISD::TexUnified2DArrayS32FloatLevel:
614     return "NVPTXISD::TexUnified2DArrayS32FloatLevel";
615   case NVPTXISD::TexUnified2DArrayS32FloatGrad:
616     return "NVPTXISD::TexUnified2DArrayS32FloatGrad";
617   case NVPTXISD::TexUnified2DArrayU32S32:
618     return "NVPTXISD::TexUnified2DArrayU32S32";
619   case NVPTXISD::TexUnified2DArrayU32Float:
620     return "NVPTXISD::TexUnified2DArrayU32Float";
621   case NVPTXISD::TexUnified2DArrayU32FloatLevel:
622     return "NVPTXISD::TexUnified2DArrayU32FloatLevel";
623   case NVPTXISD::TexUnified2DArrayU32FloatGrad:
624     return "NVPTXISD::TexUnified2DArrayU32FloatGrad";
625   case NVPTXISD::TexUnified3DFloatS32:
626     return "NVPTXISD::TexUnified3DFloatS32";
627   case NVPTXISD::TexUnified3DFloatFloat:
628     return "NVPTXISD::TexUnified3DFloatFloat";
629   case NVPTXISD::TexUnified3DFloatFloatLevel:
630     return "NVPTXISD::TexUnified3DFloatFloatLevel";
631   case NVPTXISD::TexUnified3DFloatFloatGrad:
632     return "NVPTXISD::TexUnified3DFloatFloatGrad";
633   case NVPTXISD::TexUnified3DS32S32:
634     return "NVPTXISD::TexUnified3DS32S32";
635   case NVPTXISD::TexUnified3DS32Float:
636     return "NVPTXISD::TexUnified3DS32Float";
637   case NVPTXISD::TexUnified3DS32FloatLevel:
638     return "NVPTXISD::TexUnified3DS32FloatLevel";
639   case NVPTXISD::TexUnified3DS32FloatGrad:
640     return "NVPTXISD::TexUnified3DS32FloatGrad";
641   case NVPTXISD::TexUnified3DU32S32:
642     return "NVPTXISD::TexUnified3DU32S32";
643   case NVPTXISD::TexUnified3DU32Float:
644     return "NVPTXISD::TexUnified3DU32Float";
645   case NVPTXISD::TexUnified3DU32FloatLevel:
646     return "NVPTXISD::TexUnified3DU32FloatLevel";
647   case NVPTXISD::TexUnified3DU32FloatGrad:
648     return "NVPTXISD::TexUnified3DU32FloatGrad";
649   case NVPTXISD::TexUnifiedCubeFloatFloat:
650     return "NVPTXISD::TexUnifiedCubeFloatFloat";
651   case NVPTXISD::TexUnifiedCubeFloatFloatLevel:
652     return "NVPTXISD::TexUnifiedCubeFloatFloatLevel";
653   case NVPTXISD::TexUnifiedCubeS32Float:
654     return "NVPTXISD::TexUnifiedCubeS32Float";
655   case NVPTXISD::TexUnifiedCubeS32FloatLevel:
656     return "NVPTXISD::TexUnifiedCubeS32FloatLevel";
657   case NVPTXISD::TexUnifiedCubeU32Float:
658     return "NVPTXISD::TexUnifiedCubeU32Float";
659   case NVPTXISD::TexUnifiedCubeU32FloatLevel:
660     return "NVPTXISD::TexUnifiedCubeU32FloatLevel";
661   case NVPTXISD::TexUnifiedCubeArrayFloatFloat:
662     return "NVPTXISD::TexUnifiedCubeArrayFloatFloat";
663   case NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel:
664     return "NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel";
665   case NVPTXISD::TexUnifiedCubeArrayS32Float:
666     return "NVPTXISD::TexUnifiedCubeArrayS32Float";
667   case NVPTXISD::TexUnifiedCubeArrayS32FloatLevel:
668     return "NVPTXISD::TexUnifiedCubeArrayS32FloatLevel";
669   case NVPTXISD::TexUnifiedCubeArrayU32Float:
670     return "NVPTXISD::TexUnifiedCubeArrayU32Float";
671   case NVPTXISD::TexUnifiedCubeArrayU32FloatLevel:
672     return "NVPTXISD::TexUnifiedCubeArrayU32FloatLevel";
673   case NVPTXISD::Tld4UnifiedR2DFloatFloat:
674     return "NVPTXISD::Tld4UnifiedR2DFloatFloat";
675   case NVPTXISD::Tld4UnifiedG2DFloatFloat:
676     return "NVPTXISD::Tld4UnifiedG2DFloatFloat";
677   case NVPTXISD::Tld4UnifiedB2DFloatFloat:
678     return "NVPTXISD::Tld4UnifiedB2DFloatFloat";
679   case NVPTXISD::Tld4UnifiedA2DFloatFloat:
680     return "NVPTXISD::Tld4UnifiedA2DFloatFloat";
681   case NVPTXISD::Tld4UnifiedR2DS64Float:
682     return "NVPTXISD::Tld4UnifiedR2DS64Float";
683   case NVPTXISD::Tld4UnifiedG2DS64Float:
684     return "NVPTXISD::Tld4UnifiedG2DS64Float";
685   case NVPTXISD::Tld4UnifiedB2DS64Float:
686     return "NVPTXISD::Tld4UnifiedB2DS64Float";
687   case NVPTXISD::Tld4UnifiedA2DS64Float:
688     return "NVPTXISD::Tld4UnifiedA2DS64Float";
689   case NVPTXISD::Tld4UnifiedR2DU64Float:
690     return "NVPTXISD::Tld4UnifiedR2DU64Float";
691   case NVPTXISD::Tld4UnifiedG2DU64Float:
692     return "NVPTXISD::Tld4UnifiedG2DU64Float";
693   case NVPTXISD::Tld4UnifiedB2DU64Float:
694     return "NVPTXISD::Tld4UnifiedB2DU64Float";
695   case NVPTXISD::Tld4UnifiedA2DU64Float:
696     return "NVPTXISD::Tld4UnifiedA2DU64Float";
697
698   case NVPTXISD::Suld1DI8Clamp:          return "NVPTXISD::Suld1DI8Clamp";
699   case NVPTXISD::Suld1DI16Clamp:         return "NVPTXISD::Suld1DI16Clamp";
700   case NVPTXISD::Suld1DI32Clamp:         return "NVPTXISD::Suld1DI32Clamp";
701   case NVPTXISD::Suld1DI64Clamp:         return "NVPTXISD::Suld1DI64Clamp";
702   case NVPTXISD::Suld1DV2I8Clamp:        return "NVPTXISD::Suld1DV2I8Clamp";
703   case NVPTXISD::Suld1DV2I16Clamp:       return "NVPTXISD::Suld1DV2I16Clamp";
704   case NVPTXISD::Suld1DV2I32Clamp:       return "NVPTXISD::Suld1DV2I32Clamp";
705   case NVPTXISD::Suld1DV2I64Clamp:       return "NVPTXISD::Suld1DV2I64Clamp";
706   case NVPTXISD::Suld1DV4I8Clamp:        return "NVPTXISD::Suld1DV4I8Clamp";
707   case NVPTXISD::Suld1DV4I16Clamp:       return "NVPTXISD::Suld1DV4I16Clamp";
708   case NVPTXISD::Suld1DV4I32Clamp:       return "NVPTXISD::Suld1DV4I32Clamp";
709
710   case NVPTXISD::Suld1DArrayI8Clamp:   return "NVPTXISD::Suld1DArrayI8Clamp";
711   case NVPTXISD::Suld1DArrayI16Clamp:  return "NVPTXISD::Suld1DArrayI16Clamp";
712   case NVPTXISD::Suld1DArrayI32Clamp:  return "NVPTXISD::Suld1DArrayI32Clamp";
713   case NVPTXISD::Suld1DArrayI64Clamp:  return "NVPTXISD::Suld1DArrayI64Clamp";
714   case NVPTXISD::Suld1DArrayV2I8Clamp: return "NVPTXISD::Suld1DArrayV2I8Clamp";
715   case NVPTXISD::Suld1DArrayV2I16Clamp:return "NVPTXISD::Suld1DArrayV2I16Clamp";
716   case NVPTXISD::Suld1DArrayV2I32Clamp:return "NVPTXISD::Suld1DArrayV2I32Clamp";
717   case NVPTXISD::Suld1DArrayV2I64Clamp:return "NVPTXISD::Suld1DArrayV2I64Clamp";
718   case NVPTXISD::Suld1DArrayV4I8Clamp: return "NVPTXISD::Suld1DArrayV4I8Clamp";
719   case NVPTXISD::Suld1DArrayV4I16Clamp:return "NVPTXISD::Suld1DArrayV4I16Clamp";
720   case NVPTXISD::Suld1DArrayV4I32Clamp:return "NVPTXISD::Suld1DArrayV4I32Clamp";
721
722   case NVPTXISD::Suld2DI8Clamp:          return "NVPTXISD::Suld2DI8Clamp";
723   case NVPTXISD::Suld2DI16Clamp:         return "NVPTXISD::Suld2DI16Clamp";
724   case NVPTXISD::Suld2DI32Clamp:         return "NVPTXISD::Suld2DI32Clamp";
725   case NVPTXISD::Suld2DI64Clamp:         return "NVPTXISD::Suld2DI64Clamp";
726   case NVPTXISD::Suld2DV2I8Clamp:        return "NVPTXISD::Suld2DV2I8Clamp";
727   case NVPTXISD::Suld2DV2I16Clamp:       return "NVPTXISD::Suld2DV2I16Clamp";
728   case NVPTXISD::Suld2DV2I32Clamp:       return "NVPTXISD::Suld2DV2I32Clamp";
729   case NVPTXISD::Suld2DV2I64Clamp:       return "NVPTXISD::Suld2DV2I64Clamp";
730   case NVPTXISD::Suld2DV4I8Clamp:        return "NVPTXISD::Suld2DV4I8Clamp";
731   case NVPTXISD::Suld2DV4I16Clamp:       return "NVPTXISD::Suld2DV4I16Clamp";
732   case NVPTXISD::Suld2DV4I32Clamp:       return "NVPTXISD::Suld2DV4I32Clamp";
733
734   case NVPTXISD::Suld2DArrayI8Clamp:   return "NVPTXISD::Suld2DArrayI8Clamp";
735   case NVPTXISD::Suld2DArrayI16Clamp:  return "NVPTXISD::Suld2DArrayI16Clamp";
736   case NVPTXISD::Suld2DArrayI32Clamp:  return "NVPTXISD::Suld2DArrayI32Clamp";
737   case NVPTXISD::Suld2DArrayI64Clamp:  return "NVPTXISD::Suld2DArrayI64Clamp";
738   case NVPTXISD::Suld2DArrayV2I8Clamp: return "NVPTXISD::Suld2DArrayV2I8Clamp";
739   case NVPTXISD::Suld2DArrayV2I16Clamp:return "NVPTXISD::Suld2DArrayV2I16Clamp";
740   case NVPTXISD::Suld2DArrayV2I32Clamp:return "NVPTXISD::Suld2DArrayV2I32Clamp";
741   case NVPTXISD::Suld2DArrayV2I64Clamp:return "NVPTXISD::Suld2DArrayV2I64Clamp";
742   case NVPTXISD::Suld2DArrayV4I8Clamp: return "NVPTXISD::Suld2DArrayV4I8Clamp";
743   case NVPTXISD::Suld2DArrayV4I16Clamp:return "NVPTXISD::Suld2DArrayV4I16Clamp";
744   case NVPTXISD::Suld2DArrayV4I32Clamp:return "NVPTXISD::Suld2DArrayV4I32Clamp";
745
746   case NVPTXISD::Suld3DI8Clamp:          return "NVPTXISD::Suld3DI8Clamp";
747   case NVPTXISD::Suld3DI16Clamp:         return "NVPTXISD::Suld3DI16Clamp";
748   case NVPTXISD::Suld3DI32Clamp:         return "NVPTXISD::Suld3DI32Clamp";
749   case NVPTXISD::Suld3DI64Clamp:         return "NVPTXISD::Suld3DI64Clamp";
750   case NVPTXISD::Suld3DV2I8Clamp:        return "NVPTXISD::Suld3DV2I8Clamp";
751   case NVPTXISD::Suld3DV2I16Clamp:       return "NVPTXISD::Suld3DV2I16Clamp";
752   case NVPTXISD::Suld3DV2I32Clamp:       return "NVPTXISD::Suld3DV2I32Clamp";
753   case NVPTXISD::Suld3DV2I64Clamp:       return "NVPTXISD::Suld3DV2I64Clamp";
754   case NVPTXISD::Suld3DV4I8Clamp:        return "NVPTXISD::Suld3DV4I8Clamp";
755   case NVPTXISD::Suld3DV4I16Clamp:       return "NVPTXISD::Suld3DV4I16Clamp";
756   case NVPTXISD::Suld3DV4I32Clamp:       return "NVPTXISD::Suld3DV4I32Clamp";
757
758   case NVPTXISD::Suld1DI8Trap:          return "NVPTXISD::Suld1DI8Trap";
759   case NVPTXISD::Suld1DI16Trap:         return "NVPTXISD::Suld1DI16Trap";
760   case NVPTXISD::Suld1DI32Trap:         return "NVPTXISD::Suld1DI32Trap";
761   case NVPTXISD::Suld1DI64Trap:         return "NVPTXISD::Suld1DI64Trap";
762   case NVPTXISD::Suld1DV2I8Trap:        return "NVPTXISD::Suld1DV2I8Trap";
763   case NVPTXISD::Suld1DV2I16Trap:       return "NVPTXISD::Suld1DV2I16Trap";
764   case NVPTXISD::Suld1DV2I32Trap:       return "NVPTXISD::Suld1DV2I32Trap";
765   case NVPTXISD::Suld1DV2I64Trap:       return "NVPTXISD::Suld1DV2I64Trap";
766   case NVPTXISD::Suld1DV4I8Trap:        return "NVPTXISD::Suld1DV4I8Trap";
767   case NVPTXISD::Suld1DV4I16Trap:       return "NVPTXISD::Suld1DV4I16Trap";
768   case NVPTXISD::Suld1DV4I32Trap:       return "NVPTXISD::Suld1DV4I32Trap";
769
770   case NVPTXISD::Suld1DArrayI8Trap:     return "NVPTXISD::Suld1DArrayI8Trap";
771   case NVPTXISD::Suld1DArrayI16Trap:    return "NVPTXISD::Suld1DArrayI16Trap";
772   case NVPTXISD::Suld1DArrayI32Trap:    return "NVPTXISD::Suld1DArrayI32Trap";
773   case NVPTXISD::Suld1DArrayI64Trap:    return "NVPTXISD::Suld1DArrayI64Trap";
774   case NVPTXISD::Suld1DArrayV2I8Trap:   return "NVPTXISD::Suld1DArrayV2I8Trap";
775   case NVPTXISD::Suld1DArrayV2I16Trap:  return "NVPTXISD::Suld1DArrayV2I16Trap";
776   case NVPTXISD::Suld1DArrayV2I32Trap:  return "NVPTXISD::Suld1DArrayV2I32Trap";
777   case NVPTXISD::Suld1DArrayV2I64Trap:  return "NVPTXISD::Suld1DArrayV2I64Trap";
778   case NVPTXISD::Suld1DArrayV4I8Trap:   return "NVPTXISD::Suld1DArrayV4I8Trap";
779   case NVPTXISD::Suld1DArrayV4I16Trap:  return "NVPTXISD::Suld1DArrayV4I16Trap";
780   case NVPTXISD::Suld1DArrayV4I32Trap:  return "NVPTXISD::Suld1DArrayV4I32Trap";
781
782   case NVPTXISD::Suld2DI8Trap:          return "NVPTXISD::Suld2DI8Trap";
783   case NVPTXISD::Suld2DI16Trap:         return "NVPTXISD::Suld2DI16Trap";
784   case NVPTXISD::Suld2DI32Trap:         return "NVPTXISD::Suld2DI32Trap";
785   case NVPTXISD::Suld2DI64Trap:         return "NVPTXISD::Suld2DI64Trap";
786   case NVPTXISD::Suld2DV2I8Trap:        return "NVPTXISD::Suld2DV2I8Trap";
787   case NVPTXISD::Suld2DV2I16Trap:       return "NVPTXISD::Suld2DV2I16Trap";
788   case NVPTXISD::Suld2DV2I32Trap:       return "NVPTXISD::Suld2DV2I32Trap";
789   case NVPTXISD::Suld2DV2I64Trap:       return "NVPTXISD::Suld2DV2I64Trap";
790   case NVPTXISD::Suld2DV4I8Trap:        return "NVPTXISD::Suld2DV4I8Trap";
791   case NVPTXISD::Suld2DV4I16Trap:       return "NVPTXISD::Suld2DV4I16Trap";
792   case NVPTXISD::Suld2DV4I32Trap:       return "NVPTXISD::Suld2DV4I32Trap";
793
794   case NVPTXISD::Suld2DArrayI8Trap:     return "NVPTXISD::Suld2DArrayI8Trap";
795   case NVPTXISD::Suld2DArrayI16Trap:    return "NVPTXISD::Suld2DArrayI16Trap";
796   case NVPTXISD::Suld2DArrayI32Trap:    return "NVPTXISD::Suld2DArrayI32Trap";
797   case NVPTXISD::Suld2DArrayI64Trap:    return "NVPTXISD::Suld2DArrayI64Trap";
798   case NVPTXISD::Suld2DArrayV2I8Trap:   return "NVPTXISD::Suld2DArrayV2I8Trap";
799   case NVPTXISD::Suld2DArrayV2I16Trap:  return "NVPTXISD::Suld2DArrayV2I16Trap";
800   case NVPTXISD::Suld2DArrayV2I32Trap:  return "NVPTXISD::Suld2DArrayV2I32Trap";
801   case NVPTXISD::Suld2DArrayV2I64Trap:  return "NVPTXISD::Suld2DArrayV2I64Trap";
802   case NVPTXISD::Suld2DArrayV4I8Trap:   return "NVPTXISD::Suld2DArrayV4I8Trap";
803   case NVPTXISD::Suld2DArrayV4I16Trap:  return "NVPTXISD::Suld2DArrayV4I16Trap";
804   case NVPTXISD::Suld2DArrayV4I32Trap:  return "NVPTXISD::Suld2DArrayV4I32Trap";
805
806   case NVPTXISD::Suld3DI8Trap:          return "NVPTXISD::Suld3DI8Trap";
807   case NVPTXISD::Suld3DI16Trap:         return "NVPTXISD::Suld3DI16Trap";
808   case NVPTXISD::Suld3DI32Trap:         return "NVPTXISD::Suld3DI32Trap";
809   case NVPTXISD::Suld3DI64Trap:         return "NVPTXISD::Suld3DI64Trap";
810   case NVPTXISD::Suld3DV2I8Trap:        return "NVPTXISD::Suld3DV2I8Trap";
811   case NVPTXISD::Suld3DV2I16Trap:       return "NVPTXISD::Suld3DV2I16Trap";
812   case NVPTXISD::Suld3DV2I32Trap:       return "NVPTXISD::Suld3DV2I32Trap";
813   case NVPTXISD::Suld3DV2I64Trap:       return "NVPTXISD::Suld3DV2I64Trap";
814   case NVPTXISD::Suld3DV4I8Trap:        return "NVPTXISD::Suld3DV4I8Trap";
815   case NVPTXISD::Suld3DV4I16Trap:       return "NVPTXISD::Suld3DV4I16Trap";
816   case NVPTXISD::Suld3DV4I32Trap:       return "NVPTXISD::Suld3DV4I32Trap";
817
818   case NVPTXISD::Suld1DI8Zero:          return "NVPTXISD::Suld1DI8Zero";
819   case NVPTXISD::Suld1DI16Zero:         return "NVPTXISD::Suld1DI16Zero";
820   case NVPTXISD::Suld1DI32Zero:         return "NVPTXISD::Suld1DI32Zero";
821   case NVPTXISD::Suld1DI64Zero:         return "NVPTXISD::Suld1DI64Zero";
822   case NVPTXISD::Suld1DV2I8Zero:        return "NVPTXISD::Suld1DV2I8Zero";
823   case NVPTXISD::Suld1DV2I16Zero:       return "NVPTXISD::Suld1DV2I16Zero";
824   case NVPTXISD::Suld1DV2I32Zero:       return "NVPTXISD::Suld1DV2I32Zero";
825   case NVPTXISD::Suld1DV2I64Zero:       return "NVPTXISD::Suld1DV2I64Zero";
826   case NVPTXISD::Suld1DV4I8Zero:        return "NVPTXISD::Suld1DV4I8Zero";
827   case NVPTXISD::Suld1DV4I16Zero:       return "NVPTXISD::Suld1DV4I16Zero";
828   case NVPTXISD::Suld1DV4I32Zero:       return "NVPTXISD::Suld1DV4I32Zero";
829
830   case NVPTXISD::Suld1DArrayI8Zero:     return "NVPTXISD::Suld1DArrayI8Zero";
831   case NVPTXISD::Suld1DArrayI16Zero:    return "NVPTXISD::Suld1DArrayI16Zero";
832   case NVPTXISD::Suld1DArrayI32Zero:    return "NVPTXISD::Suld1DArrayI32Zero";
833   case NVPTXISD::Suld1DArrayI64Zero:    return "NVPTXISD::Suld1DArrayI64Zero";
834   case NVPTXISD::Suld1DArrayV2I8Zero:   return "NVPTXISD::Suld1DArrayV2I8Zero";
835   case NVPTXISD::Suld1DArrayV2I16Zero:  return "NVPTXISD::Suld1DArrayV2I16Zero";
836   case NVPTXISD::Suld1DArrayV2I32Zero:  return "NVPTXISD::Suld1DArrayV2I32Zero";
837   case NVPTXISD::Suld1DArrayV2I64Zero:  return "NVPTXISD::Suld1DArrayV2I64Zero";
838   case NVPTXISD::Suld1DArrayV4I8Zero:   return "NVPTXISD::Suld1DArrayV4I8Zero";
839   case NVPTXISD::Suld1DArrayV4I16Zero:  return "NVPTXISD::Suld1DArrayV4I16Zero";
840   case NVPTXISD::Suld1DArrayV4I32Zero:  return "NVPTXISD::Suld1DArrayV4I32Zero";
841
842   case NVPTXISD::Suld2DI8Zero:          return "NVPTXISD::Suld2DI8Zero";
843   case NVPTXISD::Suld2DI16Zero:         return "NVPTXISD::Suld2DI16Zero";
844   case NVPTXISD::Suld2DI32Zero:         return "NVPTXISD::Suld2DI32Zero";
845   case NVPTXISD::Suld2DI64Zero:         return "NVPTXISD::Suld2DI64Zero";
846   case NVPTXISD::Suld2DV2I8Zero:        return "NVPTXISD::Suld2DV2I8Zero";
847   case NVPTXISD::Suld2DV2I16Zero:       return "NVPTXISD::Suld2DV2I16Zero";
848   case NVPTXISD::Suld2DV2I32Zero:       return "NVPTXISD::Suld2DV2I32Zero";
849   case NVPTXISD::Suld2DV2I64Zero:       return "NVPTXISD::Suld2DV2I64Zero";
850   case NVPTXISD::Suld2DV4I8Zero:        return "NVPTXISD::Suld2DV4I8Zero";
851   case NVPTXISD::Suld2DV4I16Zero:       return "NVPTXISD::Suld2DV4I16Zero";
852   case NVPTXISD::Suld2DV4I32Zero:       return "NVPTXISD::Suld2DV4I32Zero";
853
854   case NVPTXISD::Suld2DArrayI8Zero:     return "NVPTXISD::Suld2DArrayI8Zero";
855   case NVPTXISD::Suld2DArrayI16Zero:    return "NVPTXISD::Suld2DArrayI16Zero";
856   case NVPTXISD::Suld2DArrayI32Zero:    return "NVPTXISD::Suld2DArrayI32Zero";
857   case NVPTXISD::Suld2DArrayI64Zero:    return "NVPTXISD::Suld2DArrayI64Zero";
858   case NVPTXISD::Suld2DArrayV2I8Zero:   return "NVPTXISD::Suld2DArrayV2I8Zero";
859   case NVPTXISD::Suld2DArrayV2I16Zero:  return "NVPTXISD::Suld2DArrayV2I16Zero";
860   case NVPTXISD::Suld2DArrayV2I32Zero:  return "NVPTXISD::Suld2DArrayV2I32Zero";
861   case NVPTXISD::Suld2DArrayV2I64Zero:  return "NVPTXISD::Suld2DArrayV2I64Zero";
862   case NVPTXISD::Suld2DArrayV4I8Zero:   return "NVPTXISD::Suld2DArrayV4I8Zero";
863   case NVPTXISD::Suld2DArrayV4I16Zero:  return "NVPTXISD::Suld2DArrayV4I16Zero";
864   case NVPTXISD::Suld2DArrayV4I32Zero:  return "NVPTXISD::Suld2DArrayV4I32Zero";
865
866   case NVPTXISD::Suld3DI8Zero:          return "NVPTXISD::Suld3DI8Zero";
867   case NVPTXISD::Suld3DI16Zero:         return "NVPTXISD::Suld3DI16Zero";
868   case NVPTXISD::Suld3DI32Zero:         return "NVPTXISD::Suld3DI32Zero";
869   case NVPTXISD::Suld3DI64Zero:         return "NVPTXISD::Suld3DI64Zero";
870   case NVPTXISD::Suld3DV2I8Zero:        return "NVPTXISD::Suld3DV2I8Zero";
871   case NVPTXISD::Suld3DV2I16Zero:       return "NVPTXISD::Suld3DV2I16Zero";
872   case NVPTXISD::Suld3DV2I32Zero:       return "NVPTXISD::Suld3DV2I32Zero";
873   case NVPTXISD::Suld3DV2I64Zero:       return "NVPTXISD::Suld3DV2I64Zero";
874   case NVPTXISD::Suld3DV4I8Zero:        return "NVPTXISD::Suld3DV4I8Zero";
875   case NVPTXISD::Suld3DV4I16Zero:       return "NVPTXISD::Suld3DV4I16Zero";
876   case NVPTXISD::Suld3DV4I32Zero:       return "NVPTXISD::Suld3DV4I32Zero";
877   }
878   return nullptr;
879 }
880
881 TargetLoweringBase::LegalizeTypeAction
882 NVPTXTargetLowering::getPreferredVectorAction(EVT VT) const {
883   if (VT.getVectorNumElements() != 1 && VT.getScalarType() == MVT::i1)
884     return TypeSplitVector;
885
886   return TargetLoweringBase::getPreferredVectorAction(VT);
887 }
888
889 SDValue
890 NVPTXTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
891   SDLoc dl(Op);
892   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
893   auto PtrVT = getPointerTy(DAG.getDataLayout());
894   Op = DAG.getTargetGlobalAddress(GV, dl, PtrVT);
895   return DAG.getNode(NVPTXISD::Wrapper, dl, PtrVT, Op);
896 }
897
898 std::string NVPTXTargetLowering::getPrototype(
899     const DataLayout &DL, Type *retTy, const ArgListTy &Args,
900     const SmallVectorImpl<ISD::OutputArg> &Outs, unsigned retAlignment,
901     const ImmutableCallSite *CS) const {
902   auto PtrVT = getPointerTy(DL);
903
904   bool isABI = (STI.getSmVersion() >= 20);
905   assert(isABI && "Non-ABI compilation is not supported");
906   if (!isABI)
907     return "";
908
909   std::stringstream O;
910   O << "prototype_" << uniqueCallSite << " : .callprototype ";
911
912   if (retTy->getTypeID() == Type::VoidTyID) {
913     O << "()";
914   } else {
915     O << "(";
916     if (retTy->isFloatingPointTy() || retTy->isIntegerTy()) {
917       unsigned size = 0;
918       if (auto *ITy = dyn_cast<IntegerType>(retTy)) {
919         size = ITy->getBitWidth();
920         if (size < 32)
921           size = 32;
922       } else {
923         assert(retTy->isFloatingPointTy() &&
924                "Floating point type expected here");
925         size = retTy->getPrimitiveSizeInBits();
926       }
927
928       O << ".param .b" << size << " _";
929     } else if (isa<PointerType>(retTy)) {
930       O << ".param .b" << PtrVT.getSizeInBits() << " _";
931     } else if ((retTy->getTypeID() == Type::StructTyID) ||
932                isa<VectorType>(retTy)) {
933       auto &DL = CS->getCalledFunction()->getParent()->getDataLayout();
934       O << ".param .align " << retAlignment << " .b8 _["
935         << DL.getTypeAllocSize(retTy) << "]";
936     } else {
937       llvm_unreachable("Unknown return type");
938     }
939     O << ") ";
940   }
941   O << "_ (";
942
943   bool first = true;
944
945   unsigned OIdx = 0;
946   for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
947     Type *Ty = Args[i].Ty;
948     if (!first) {
949       O << ", ";
950     }
951     first = false;
952
953     if (!Outs[OIdx].Flags.isByVal()) {
954       if (Ty->isAggregateType() || Ty->isVectorTy()) {
955         unsigned align = 0;
956         const CallInst *CallI = cast<CallInst>(CS->getInstruction());
957         // +1 because index 0 is reserved for return type alignment
958         if (!llvm::getAlign(*CallI, i + 1, align))
959           align = DL.getABITypeAlignment(Ty);
960         unsigned sz = DL.getTypeAllocSize(Ty);
961         O << ".param .align " << align << " .b8 ";
962         O << "_";
963         O << "[" << sz << "]";
964         // update the index for Outs
965         SmallVector<EVT, 16> vtparts;
966         ComputeValueVTs(*this, DL, Ty, vtparts);
967         if (unsigned len = vtparts.size())
968           OIdx += len - 1;
969         continue;
970       }
971        // i8 types in IR will be i16 types in SDAG
972       assert((getValueType(DL, Ty) == Outs[OIdx].VT ||
973               (getValueType(DL, Ty) == MVT::i8 && Outs[OIdx].VT == MVT::i16)) &&
974              "type mismatch between callee prototype and arguments");
975       // scalar type
976       unsigned sz = 0;
977       if (isa<IntegerType>(Ty)) {
978         sz = cast<IntegerType>(Ty)->getBitWidth();
979         if (sz < 32)
980           sz = 32;
981       } else if (isa<PointerType>(Ty))
982         sz = PtrVT.getSizeInBits();
983       else
984         sz = Ty->getPrimitiveSizeInBits();
985       O << ".param .b" << sz << " ";
986       O << "_";
987       continue;
988     }
989     auto *PTy = dyn_cast<PointerType>(Ty);
990     assert(PTy && "Param with byval attribute should be a pointer type");
991     Type *ETy = PTy->getElementType();
992
993     unsigned align = Outs[OIdx].Flags.getByValAlign();
994     unsigned sz = DL.getTypeAllocSize(ETy);
995     O << ".param .align " << align << " .b8 ";
996     O << "_";
997     O << "[" << sz << "]";
998   }
999   O << ");";
1000   return O.str();
1001 }
1002
1003 unsigned
1004 NVPTXTargetLowering::getArgumentAlignment(SDValue Callee,
1005                                           const ImmutableCallSite *CS,
1006                                           Type *Ty,
1007                                           unsigned Idx) const {
1008   unsigned Align = 0;
1009   const Value *DirectCallee = CS->getCalledFunction();
1010
1011   if (!DirectCallee) {
1012     // We don't have a direct function symbol, but that may be because of
1013     // constant cast instructions in the call.
1014     const Instruction *CalleeI = CS->getInstruction();
1015     assert(CalleeI && "Call target is not a function or derived value?");
1016
1017     // With bitcast'd call targets, the instruction will be the call
1018     if (isa<CallInst>(CalleeI)) {
1019       // Check if we have call alignment metadata
1020       if (llvm::getAlign(*cast<CallInst>(CalleeI), Idx, Align))
1021         return Align;
1022
1023       const Value *CalleeV = cast<CallInst>(CalleeI)->getCalledValue();
1024       // Ignore any bitcast instructions
1025       while(isa<ConstantExpr>(CalleeV)) {
1026         const ConstantExpr *CE = cast<ConstantExpr>(CalleeV);
1027         if (!CE->isCast())
1028           break;
1029         // Look through the bitcast
1030         CalleeV = cast<ConstantExpr>(CalleeV)->getOperand(0);
1031       }
1032
1033       // We have now looked past all of the bitcasts.  Do we finally have a
1034       // Function?
1035       if (isa<Function>(CalleeV))
1036         DirectCallee = CalleeV;
1037     }
1038   }
1039
1040   // Check for function alignment information if we found that the
1041   // ultimate target is a Function
1042   if (DirectCallee)
1043     if (llvm::getAlign(*cast<Function>(DirectCallee), Idx, Align))
1044       return Align;
1045
1046   // Call is indirect or alignment information is not available, fall back to
1047   // the ABI type alignment
1048   auto &DL = CS->getCaller()->getParent()->getDataLayout();
1049   return DL.getABITypeAlignment(Ty);
1050 }
1051
1052 SDValue NVPTXTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1053                                        SmallVectorImpl<SDValue> &InVals) const {
1054   SelectionDAG &DAG = CLI.DAG;
1055   SDLoc dl = CLI.DL;
1056   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1057   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1058   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1059   SDValue Chain = CLI.Chain;
1060   SDValue Callee = CLI.Callee;
1061   bool &isTailCall = CLI.IsTailCall;
1062   ArgListTy &Args = CLI.getArgs();
1063   Type *retTy = CLI.RetTy;
1064   ImmutableCallSite *CS = CLI.CS;
1065
1066   bool isABI = (STI.getSmVersion() >= 20);
1067   assert(isABI && "Non-ABI compilation is not supported");
1068   if (!isABI)
1069     return Chain;
1070   MachineFunction &MF = DAG.getMachineFunction();
1071   const Function *F = MF.getFunction();
1072   auto &DL = MF.getDataLayout();
1073
1074   SDValue tempChain = Chain;
1075   Chain = DAG.getCALLSEQ_START(Chain,
1076                                DAG.getIntPtrConstant(uniqueCallSite, dl, true),
1077                                dl);
1078   SDValue InFlag = Chain.getValue(1);
1079
1080   unsigned paramCount = 0;
1081   // Args.size() and Outs.size() need not match.
1082   // Outs.size() will be larger
1083   //   * if there is an aggregate argument with multiple fields (each field
1084   //     showing up separately in Outs)
1085   //   * if there is a vector argument with more than typical vector-length
1086   //     elements (generally if more than 4) where each vector element is
1087   //     individually present in Outs.
1088   // So a different index should be used for indexing into Outs/OutVals.
1089   // See similar issue in LowerFormalArguments.
1090   unsigned OIdx = 0;
1091   // Declare the .params or .reg need to pass values
1092   // to the function
1093   for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
1094     EVT VT = Outs[OIdx].VT;
1095     Type *Ty = Args[i].Ty;
1096
1097     if (!Outs[OIdx].Flags.isByVal()) {
1098       if (Ty->isAggregateType()) {
1099         // aggregate
1100         SmallVector<EVT, 16> vtparts;
1101         SmallVector<uint64_t, 16> Offsets;
1102         ComputePTXValueVTs(*this, DAG.getDataLayout(), Ty, vtparts, &Offsets,
1103                            0);
1104
1105         unsigned align = getArgumentAlignment(Callee, CS, Ty, paramCount + 1);
1106         // declare .param .align <align> .b8 .param<n>[<size>];
1107         unsigned sz = DL.getTypeAllocSize(Ty);
1108         SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1109         SDValue DeclareParamOps[] = { Chain, DAG.getConstant(align, dl,
1110                                                              MVT::i32),
1111                                       DAG.getConstant(paramCount, dl, MVT::i32),
1112                                       DAG.getConstant(sz, dl, MVT::i32),
1113                                       InFlag };
1114         Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
1115                             DeclareParamOps);
1116         InFlag = Chain.getValue(1);
1117         for (unsigned j = 0, je = vtparts.size(); j != je; ++j) {
1118           EVT elemtype = vtparts[j];
1119           unsigned ArgAlign = GreatestCommonDivisor64(align, Offsets[j]);
1120           if (elemtype.isInteger() && (sz < 8))
1121             sz = 8;
1122           SDValue StVal = OutVals[OIdx];
1123           if (elemtype.getSizeInBits() < 16) {
1124             StVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, StVal);
1125           }
1126           SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1127           SDValue CopyParamOps[] = { Chain,
1128                                      DAG.getConstant(paramCount, dl, MVT::i32),
1129                                      DAG.getConstant(Offsets[j], dl, MVT::i32),
1130                                      StVal, InFlag };
1131           Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreParam, dl,
1132                                           CopyParamVTs, CopyParamOps,
1133                                           elemtype, MachinePointerInfo(),
1134                                           ArgAlign);
1135           InFlag = Chain.getValue(1);
1136           ++OIdx;
1137         }
1138         if (vtparts.size() > 0)
1139           --OIdx;
1140         ++paramCount;
1141         continue;
1142       }
1143       if (Ty->isVectorTy()) {
1144         EVT ObjectVT = getValueType(DL, Ty);
1145         unsigned align = getArgumentAlignment(Callee, CS, Ty, paramCount + 1);
1146         // declare .param .align <align> .b8 .param<n>[<size>];
1147         unsigned sz = DL.getTypeAllocSize(Ty);
1148         SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1149         SDValue DeclareParamOps[] = { Chain,
1150                                       DAG.getConstant(align, dl, MVT::i32),
1151                                       DAG.getConstant(paramCount, dl, MVT::i32),
1152                                       DAG.getConstant(sz, dl, MVT::i32),
1153                                       InFlag };
1154         Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
1155                             DeclareParamOps);
1156         InFlag = Chain.getValue(1);
1157         unsigned NumElts = ObjectVT.getVectorNumElements();
1158         EVT EltVT = ObjectVT.getVectorElementType();
1159         EVT MemVT = EltVT;
1160         bool NeedExtend = false;
1161         if (EltVT.getSizeInBits() < 16) {
1162           NeedExtend = true;
1163           EltVT = MVT::i16;
1164         }
1165
1166         // V1 store
1167         if (NumElts == 1) {
1168           SDValue Elt = OutVals[OIdx++];
1169           if (NeedExtend)
1170             Elt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Elt);
1171
1172           SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1173           SDValue CopyParamOps[] = { Chain,
1174                                      DAG.getConstant(paramCount, dl, MVT::i32),
1175                                      DAG.getConstant(0, dl, MVT::i32), Elt,
1176                                      InFlag };
1177           Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreParam, dl,
1178                                           CopyParamVTs, CopyParamOps,
1179                                           MemVT, MachinePointerInfo());
1180           InFlag = Chain.getValue(1);
1181         } else if (NumElts == 2) {
1182           SDValue Elt0 = OutVals[OIdx++];
1183           SDValue Elt1 = OutVals[OIdx++];
1184           if (NeedExtend) {
1185             Elt0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Elt0);
1186             Elt1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Elt1);
1187           }
1188
1189           SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1190           SDValue CopyParamOps[] = { Chain,
1191                                      DAG.getConstant(paramCount, dl, MVT::i32),
1192                                      DAG.getConstant(0, dl, MVT::i32), Elt0,
1193                                      Elt1, InFlag };
1194           Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreParamV2, dl,
1195                                           CopyParamVTs, CopyParamOps,
1196                                           MemVT, MachinePointerInfo());
1197           InFlag = Chain.getValue(1);
1198         } else {
1199           unsigned curOffset = 0;
1200           // V4 stores
1201           // We have at least 4 elements (<3 x Ty> expands to 4 elements) and
1202           // the
1203           // vector will be expanded to a power of 2 elements, so we know we can
1204           // always round up to the next multiple of 4 when creating the vector
1205           // stores.
1206           // e.g.  4 elem => 1 st.v4
1207           //       6 elem => 2 st.v4
1208           //       8 elem => 2 st.v4
1209           //      11 elem => 3 st.v4
1210           unsigned VecSize = 4;
1211           if (EltVT.getSizeInBits() == 64)
1212             VecSize = 2;
1213
1214           // This is potentially only part of a vector, so assume all elements
1215           // are packed together.
1216           unsigned PerStoreOffset = MemVT.getStoreSizeInBits() / 8 * VecSize;
1217
1218           for (unsigned i = 0; i < NumElts; i += VecSize) {
1219             // Get values
1220             SDValue StoreVal;
1221             SmallVector<SDValue, 8> Ops;
1222             Ops.push_back(Chain);
1223             Ops.push_back(DAG.getConstant(paramCount, dl, MVT::i32));
1224             Ops.push_back(DAG.getConstant(curOffset, dl, MVT::i32));
1225
1226             unsigned Opc = NVPTXISD::StoreParamV2;
1227
1228             StoreVal = OutVals[OIdx++];
1229             if (NeedExtend)
1230               StoreVal = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal);
1231             Ops.push_back(StoreVal);
1232
1233             if (i + 1 < NumElts) {
1234               StoreVal = OutVals[OIdx++];
1235               if (NeedExtend)
1236                 StoreVal =
1237                     DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal);
1238             } else {
1239               StoreVal = DAG.getUNDEF(EltVT);
1240             }
1241             Ops.push_back(StoreVal);
1242
1243             if (VecSize == 4) {
1244               Opc = NVPTXISD::StoreParamV4;
1245               if (i + 2 < NumElts) {
1246                 StoreVal = OutVals[OIdx++];
1247                 if (NeedExtend)
1248                   StoreVal =
1249                       DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal);
1250               } else {
1251                 StoreVal = DAG.getUNDEF(EltVT);
1252               }
1253               Ops.push_back(StoreVal);
1254
1255               if (i + 3 < NumElts) {
1256                 StoreVal = OutVals[OIdx++];
1257                 if (NeedExtend)
1258                   StoreVal =
1259                       DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal);
1260               } else {
1261                 StoreVal = DAG.getUNDEF(EltVT);
1262               }
1263               Ops.push_back(StoreVal);
1264             }
1265
1266             Ops.push_back(InFlag);
1267
1268             SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1269             Chain = DAG.getMemIntrinsicNode(Opc, dl, CopyParamVTs, Ops,
1270                                             MemVT, MachinePointerInfo());
1271             InFlag = Chain.getValue(1);
1272             curOffset += PerStoreOffset;
1273           }
1274         }
1275         ++paramCount;
1276         --OIdx;
1277         continue;
1278       }
1279       // Plain scalar
1280       // for ABI,    declare .param .b<size> .param<n>;
1281       unsigned sz = VT.getSizeInBits();
1282       bool needExtend = false;
1283       if (VT.isInteger()) {
1284         if (sz < 16)
1285           needExtend = true;
1286         if (sz < 32)
1287           sz = 32;
1288       }
1289       SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1290       SDValue DeclareParamOps[] = { Chain,
1291                                     DAG.getConstant(paramCount, dl, MVT::i32),
1292                                     DAG.getConstant(sz, dl, MVT::i32),
1293                                     DAG.getConstant(0, dl, MVT::i32), InFlag };
1294       Chain = DAG.getNode(NVPTXISD::DeclareScalarParam, dl, DeclareParamVTs,
1295                           DeclareParamOps);
1296       InFlag = Chain.getValue(1);
1297       SDValue OutV = OutVals[OIdx];
1298       if (needExtend) {
1299         // zext/sext i1 to i16
1300         unsigned opc = ISD::ZERO_EXTEND;
1301         if (Outs[OIdx].Flags.isSExt())
1302           opc = ISD::SIGN_EXTEND;
1303         OutV = DAG.getNode(opc, dl, MVT::i16, OutV);
1304       }
1305       SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1306       SDValue CopyParamOps[] = { Chain,
1307                                  DAG.getConstant(paramCount, dl, MVT::i32),
1308                                  DAG.getConstant(0, dl, MVT::i32), OutV,
1309                                  InFlag };
1310
1311       unsigned opcode = NVPTXISD::StoreParam;
1312       if (Outs[OIdx].Flags.isZExt())
1313         opcode = NVPTXISD::StoreParamU32;
1314       else if (Outs[OIdx].Flags.isSExt())
1315         opcode = NVPTXISD::StoreParamS32;
1316       Chain = DAG.getMemIntrinsicNode(opcode, dl, CopyParamVTs, CopyParamOps,
1317                                       VT, MachinePointerInfo());
1318
1319       InFlag = Chain.getValue(1);
1320       ++paramCount;
1321       continue;
1322     }
1323     // struct or vector
1324     SmallVector<EVT, 16> vtparts;
1325     SmallVector<uint64_t, 16> Offsets;
1326     auto *PTy = dyn_cast<PointerType>(Args[i].Ty);
1327     assert(PTy && "Type of a byval parameter should be pointer");
1328     ComputePTXValueVTs(*this, DAG.getDataLayout(), PTy->getElementType(),
1329                        vtparts, &Offsets, 0);
1330
1331     // declare .param .align <align> .b8 .param<n>[<size>];
1332     unsigned sz = Outs[OIdx].Flags.getByValSize();
1333     SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1334     unsigned ArgAlign = Outs[OIdx].Flags.getByValAlign();
1335     // The ByValAlign in the Outs[OIdx].Flags is alway set at this point,
1336     // so we don't need to worry about natural alignment or not.
1337     // See TargetLowering::LowerCallTo().
1338     SDValue DeclareParamOps[] = {
1339       Chain, DAG.getConstant(Outs[OIdx].Flags.getByValAlign(), dl, MVT::i32),
1340       DAG.getConstant(paramCount, dl, MVT::i32),
1341       DAG.getConstant(sz, dl, MVT::i32), InFlag
1342     };
1343     Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
1344                         DeclareParamOps);
1345     InFlag = Chain.getValue(1);
1346     for (unsigned j = 0, je = vtparts.size(); j != je; ++j) {
1347       EVT elemtype = vtparts[j];
1348       int curOffset = Offsets[j];
1349       unsigned PartAlign = GreatestCommonDivisor64(ArgAlign, curOffset);
1350       auto PtrVT = getPointerTy(DAG.getDataLayout());
1351       SDValue srcAddr = DAG.getNode(ISD::ADD, dl, PtrVT, OutVals[OIdx],
1352                                     DAG.getConstant(curOffset, dl, PtrVT));
1353       SDValue theVal = DAG.getLoad(elemtype, dl, tempChain, srcAddr,
1354                                    MachinePointerInfo(), false, false, false,
1355                                    PartAlign);
1356       if (elemtype.getSizeInBits() < 16) {
1357         theVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, theVal);
1358       }
1359       SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1360       SDValue CopyParamOps[] = { Chain,
1361                                  DAG.getConstant(paramCount, dl, MVT::i32),
1362                                  DAG.getConstant(curOffset, dl, MVT::i32),
1363                                  theVal, InFlag };
1364       Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreParam, dl, CopyParamVTs,
1365                                       CopyParamOps, elemtype,
1366                                       MachinePointerInfo());
1367
1368       InFlag = Chain.getValue(1);
1369     }
1370     ++paramCount;
1371   }
1372
1373   GlobalAddressSDNode *Func = dyn_cast<GlobalAddressSDNode>(Callee.getNode());
1374   unsigned retAlignment = 0;
1375
1376   // Handle Result
1377   if (Ins.size() > 0) {
1378     SmallVector<EVT, 16> resvtparts;
1379     ComputeValueVTs(*this, DL, retTy, resvtparts);
1380
1381     // Declare
1382     //  .param .align 16 .b8 retval0[<size-in-bytes>], or
1383     //  .param .b<size-in-bits> retval0
1384     unsigned resultsz = DL.getTypeAllocSizeInBits(retTy);
1385     // Emit ".param .b<size-in-bits> retval0" instead of byte arrays only for
1386     // these three types to match the logic in
1387     // NVPTXAsmPrinter::printReturnValStr and NVPTXTargetLowering::getPrototype.
1388     // Plus, this behavior is consistent with nvcc's.
1389     if (retTy->isFloatingPointTy() || retTy->isIntegerTy() ||
1390         retTy->isPointerTy()) {
1391       // Scalar needs to be at least 32bit wide
1392       if (resultsz < 32)
1393         resultsz = 32;
1394       SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1395       SDValue DeclareRetOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32),
1396                                   DAG.getConstant(resultsz, dl, MVT::i32),
1397                                   DAG.getConstant(0, dl, MVT::i32), InFlag };
1398       Chain = DAG.getNode(NVPTXISD::DeclareRet, dl, DeclareRetVTs,
1399                           DeclareRetOps);
1400       InFlag = Chain.getValue(1);
1401     } else {
1402       retAlignment = getArgumentAlignment(Callee, CS, retTy, 0);
1403       SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1404       SDValue DeclareRetOps[] = { Chain,
1405                                   DAG.getConstant(retAlignment, dl, MVT::i32),
1406                                   DAG.getConstant(resultsz / 8, dl, MVT::i32),
1407                                   DAG.getConstant(0, dl, MVT::i32), InFlag };
1408       Chain = DAG.getNode(NVPTXISD::DeclareRetParam, dl, DeclareRetVTs,
1409                           DeclareRetOps);
1410       InFlag = Chain.getValue(1);
1411     }
1412   }
1413
1414   if (!Func) {
1415     // This is indirect function call case : PTX requires a prototype of the
1416     // form
1417     // proto_0 : .callprototype(.param .b32 _) _ (.param .b32 _);
1418     // to be emitted, and the label has to used as the last arg of call
1419     // instruction.
1420     // The prototype is embedded in a string and put as the operand for a
1421     // CallPrototype SDNode which will print out to the value of the string.
1422     SDVTList ProtoVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1423     std::string Proto =
1424         getPrototype(DAG.getDataLayout(), retTy, Args, Outs, retAlignment, CS);
1425     const char *ProtoStr =
1426       nvTM->getManagedStrPool()->getManagedString(Proto.c_str())->c_str();
1427     SDValue ProtoOps[] = {
1428       Chain, DAG.getTargetExternalSymbol(ProtoStr, MVT::i32), InFlag,
1429     };
1430     Chain = DAG.getNode(NVPTXISD::CallPrototype, dl, ProtoVTs, ProtoOps);
1431     InFlag = Chain.getValue(1);
1432   }
1433   // Op to just print "call"
1434   SDVTList PrintCallVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1435   SDValue PrintCallOps[] = {
1436     Chain, DAG.getConstant((Ins.size() == 0) ? 0 : 1, dl, MVT::i32), InFlag
1437   };
1438   Chain = DAG.getNode(Func ? (NVPTXISD::PrintCallUni) : (NVPTXISD::PrintCall),
1439                       dl, PrintCallVTs, PrintCallOps);
1440   InFlag = Chain.getValue(1);
1441
1442   // Ops to print out the function name
1443   SDVTList CallVoidVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1444   SDValue CallVoidOps[] = { Chain, Callee, InFlag };
1445   Chain = DAG.getNode(NVPTXISD::CallVoid, dl, CallVoidVTs, CallVoidOps);
1446   InFlag = Chain.getValue(1);
1447
1448   // Ops to print out the param list
1449   SDVTList CallArgBeginVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1450   SDValue CallArgBeginOps[] = { Chain, InFlag };
1451   Chain = DAG.getNode(NVPTXISD::CallArgBegin, dl, CallArgBeginVTs,
1452                       CallArgBeginOps);
1453   InFlag = Chain.getValue(1);
1454
1455   for (unsigned i = 0, e = paramCount; i != e; ++i) {
1456     unsigned opcode;
1457     if (i == (e - 1))
1458       opcode = NVPTXISD::LastCallArg;
1459     else
1460       opcode = NVPTXISD::CallArg;
1461     SDVTList CallArgVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1462     SDValue CallArgOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32),
1463                              DAG.getConstant(i, dl, MVT::i32), InFlag };
1464     Chain = DAG.getNode(opcode, dl, CallArgVTs, CallArgOps);
1465     InFlag = Chain.getValue(1);
1466   }
1467   SDVTList CallArgEndVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1468   SDValue CallArgEndOps[] = { Chain,
1469                               DAG.getConstant(Func ? 1 : 0, dl, MVT::i32),
1470                               InFlag };
1471   Chain = DAG.getNode(NVPTXISD::CallArgEnd, dl, CallArgEndVTs, CallArgEndOps);
1472   InFlag = Chain.getValue(1);
1473
1474   if (!Func) {
1475     SDVTList PrototypeVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1476     SDValue PrototypeOps[] = { Chain,
1477                                DAG.getConstant(uniqueCallSite, dl, MVT::i32),
1478                                InFlag };
1479     Chain = DAG.getNode(NVPTXISD::Prototype, dl, PrototypeVTs, PrototypeOps);
1480     InFlag = Chain.getValue(1);
1481   }
1482
1483   // Generate loads from param memory/moves from registers for result
1484   if (Ins.size() > 0) {
1485     if (retTy && retTy->isVectorTy()) {
1486       EVT ObjectVT = getValueType(DL, retTy);
1487       unsigned NumElts = ObjectVT.getVectorNumElements();
1488       EVT EltVT = ObjectVT.getVectorElementType();
1489       assert(STI.getTargetLowering()->getNumRegisters(F->getContext(),
1490                                                       ObjectVT) == NumElts &&
1491              "Vector was not scalarized");
1492       unsigned sz = EltVT.getSizeInBits();
1493       bool needTruncate = sz < 8;
1494
1495       if (NumElts == 1) {
1496         // Just a simple load
1497         SmallVector<EVT, 4> LoadRetVTs;
1498         if (EltVT == MVT::i1 || EltVT == MVT::i8) {
1499           // If loading i1/i8 result, generate
1500           //   load.b8 i16
1501           //   if i1
1502           //   trunc i16 to i1
1503           LoadRetVTs.push_back(MVT::i16);
1504         } else
1505           LoadRetVTs.push_back(EltVT);
1506         LoadRetVTs.push_back(MVT::Other);
1507         LoadRetVTs.push_back(MVT::Glue);
1508         SDValue LoadRetOps[] = {Chain, DAG.getConstant(1, dl, MVT::i32),
1509                                 DAG.getConstant(0, dl, MVT::i32), InFlag};
1510         SDValue retval = DAG.getMemIntrinsicNode(
1511             NVPTXISD::LoadParam, dl,
1512             DAG.getVTList(LoadRetVTs), LoadRetOps, EltVT, MachinePointerInfo());
1513         Chain = retval.getValue(1);
1514         InFlag = retval.getValue(2);
1515         SDValue Ret0 = retval;
1516         if (needTruncate)
1517           Ret0 = DAG.getNode(ISD::TRUNCATE, dl, EltVT, Ret0);
1518         InVals.push_back(Ret0);
1519       } else if (NumElts == 2) {
1520         // LoadV2
1521         SmallVector<EVT, 4> LoadRetVTs;
1522         if (EltVT == MVT::i1 || EltVT == MVT::i8) {
1523           // If loading i1/i8 result, generate
1524           //   load.b8 i16
1525           //   if i1
1526           //   trunc i16 to i1
1527           LoadRetVTs.push_back(MVT::i16);
1528           LoadRetVTs.push_back(MVT::i16);
1529         } else {
1530           LoadRetVTs.push_back(EltVT);
1531           LoadRetVTs.push_back(EltVT);
1532         }
1533         LoadRetVTs.push_back(MVT::Other);
1534         LoadRetVTs.push_back(MVT::Glue);
1535         SDValue LoadRetOps[] = {Chain, DAG.getConstant(1, dl, MVT::i32),
1536                                 DAG.getConstant(0, dl, MVT::i32), InFlag};
1537         SDValue retval = DAG.getMemIntrinsicNode(
1538             NVPTXISD::LoadParamV2, dl,
1539             DAG.getVTList(LoadRetVTs), LoadRetOps, EltVT, MachinePointerInfo());
1540         Chain = retval.getValue(2);
1541         InFlag = retval.getValue(3);
1542         SDValue Ret0 = retval.getValue(0);
1543         SDValue Ret1 = retval.getValue(1);
1544         if (needTruncate) {
1545           Ret0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ret0);
1546           InVals.push_back(Ret0);
1547           Ret1 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ret1);
1548           InVals.push_back(Ret1);
1549         } else {
1550           InVals.push_back(Ret0);
1551           InVals.push_back(Ret1);
1552         }
1553       } else {
1554         // Split into N LoadV4
1555         unsigned Ofst = 0;
1556         unsigned VecSize = 4;
1557         unsigned Opc = NVPTXISD::LoadParamV4;
1558         if (EltVT.getSizeInBits() == 64) {
1559           VecSize = 2;
1560           Opc = NVPTXISD::LoadParamV2;
1561         }
1562         EVT VecVT = EVT::getVectorVT(F->getContext(), EltVT, VecSize);
1563         for (unsigned i = 0; i < NumElts; i += VecSize) {
1564           SmallVector<EVT, 8> LoadRetVTs;
1565           if (EltVT == MVT::i1 || EltVT == MVT::i8) {
1566             // If loading i1/i8 result, generate
1567             //   load.b8 i16
1568             //   if i1
1569             //   trunc i16 to i1
1570             for (unsigned j = 0; j < VecSize; ++j)
1571               LoadRetVTs.push_back(MVT::i16);
1572           } else {
1573             for (unsigned j = 0; j < VecSize; ++j)
1574               LoadRetVTs.push_back(EltVT);
1575           }
1576           LoadRetVTs.push_back(MVT::Other);
1577           LoadRetVTs.push_back(MVT::Glue);
1578           SDValue LoadRetOps[] = {Chain, DAG.getConstant(1, dl, MVT::i32),
1579                                   DAG.getConstant(Ofst, dl, MVT::i32), InFlag};
1580           SDValue retval = DAG.getMemIntrinsicNode(
1581               Opc, dl, DAG.getVTList(LoadRetVTs),
1582               LoadRetOps, EltVT, MachinePointerInfo());
1583           if (VecSize == 2) {
1584             Chain = retval.getValue(2);
1585             InFlag = retval.getValue(3);
1586           } else {
1587             Chain = retval.getValue(4);
1588             InFlag = retval.getValue(5);
1589           }
1590
1591           for (unsigned j = 0; j < VecSize; ++j) {
1592             if (i + j >= NumElts)
1593               break;
1594             SDValue Elt = retval.getValue(j);
1595             if (needTruncate)
1596               Elt = DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt);
1597             InVals.push_back(Elt);
1598           }
1599           Ofst += DL.getTypeAllocSize(VecVT.getTypeForEVT(F->getContext()));
1600         }
1601       }
1602     } else {
1603       SmallVector<EVT, 16> VTs;
1604       SmallVector<uint64_t, 16> Offsets;
1605       ComputePTXValueVTs(*this, DAG.getDataLayout(), retTy, VTs, &Offsets, 0);
1606       assert(VTs.size() == Ins.size() && "Bad value decomposition");
1607       unsigned RetAlign = getArgumentAlignment(Callee, CS, retTy, 0);
1608       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
1609         unsigned sz = VTs[i].getSizeInBits();
1610         unsigned AlignI = GreatestCommonDivisor64(RetAlign, Offsets[i]);
1611         bool needTruncate = sz < 8;
1612         if (VTs[i].isInteger() && (sz < 8))
1613           sz = 8;
1614
1615         SmallVector<EVT, 4> LoadRetVTs;
1616         EVT TheLoadType = VTs[i];
1617         if (retTy->isIntegerTy() && DL.getTypeAllocSizeInBits(retTy) < 32) {
1618           // This is for integer types only, and specifically not for
1619           // aggregates.
1620           LoadRetVTs.push_back(MVT::i32);
1621           TheLoadType = MVT::i32;
1622         } else if (sz < 16) {
1623           // If loading i1/i8 result, generate
1624           //   load i8 (-> i16)
1625           //   trunc i16 to i1/i8
1626           LoadRetVTs.push_back(MVT::i16);
1627         } else
1628           LoadRetVTs.push_back(Ins[i].VT);
1629         LoadRetVTs.push_back(MVT::Other);
1630         LoadRetVTs.push_back(MVT::Glue);
1631
1632         SDValue LoadRetOps[] = {Chain, DAG.getConstant(1, dl, MVT::i32),
1633                                 DAG.getConstant(Offsets[i], dl, MVT::i32),
1634                                 InFlag};
1635         SDValue retval = DAG.getMemIntrinsicNode(
1636             NVPTXISD::LoadParam, dl,
1637             DAG.getVTList(LoadRetVTs), LoadRetOps,
1638             TheLoadType, MachinePointerInfo(), AlignI);
1639         Chain = retval.getValue(1);
1640         InFlag = retval.getValue(2);
1641         SDValue Ret0 = retval.getValue(0);
1642         if (needTruncate)
1643           Ret0 = DAG.getNode(ISD::TRUNCATE, dl, Ins[i].VT, Ret0);
1644         InVals.push_back(Ret0);
1645       }
1646     }
1647   }
1648
1649   Chain = DAG.getCALLSEQ_END(Chain,
1650                              DAG.getIntPtrConstant(uniqueCallSite, dl, true),
1651                              DAG.getIntPtrConstant(uniqueCallSite + 1, dl,
1652                                                    true),
1653                              InFlag, dl);
1654   uniqueCallSite++;
1655
1656   // set isTailCall to false for now, until we figure out how to express
1657   // tail call optimization in PTX
1658   isTailCall = false;
1659   return Chain;
1660 }
1661
1662 // By default CONCAT_VECTORS is lowered by ExpandVectorBuildThroughStack()
1663 // (see LegalizeDAG.cpp). This is slow and uses local memory.
1664 // We use extract/insert/build vector just as what LegalizeOp() does in llvm 2.5
1665 SDValue
1666 NVPTXTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
1667   SDNode *Node = Op.getNode();
1668   SDLoc dl(Node);
1669   SmallVector<SDValue, 8> Ops;
1670   unsigned NumOperands = Node->getNumOperands();
1671   for (unsigned i = 0; i < NumOperands; ++i) {
1672     SDValue SubOp = Node->getOperand(i);
1673     EVT VVT = SubOp.getNode()->getValueType(0);
1674     EVT EltVT = VVT.getVectorElementType();
1675     unsigned NumSubElem = VVT.getVectorNumElements();
1676     for (unsigned j = 0; j < NumSubElem; ++j) {
1677       Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp,
1678                                 DAG.getIntPtrConstant(j, dl)));
1679     }
1680   }
1681   return DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0), Ops);
1682 }
1683
1684 /// LowerShiftRightParts - Lower SRL_PARTS, SRA_PARTS, which
1685 /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
1686 ///    amount, or
1687 /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
1688 ///    amount.
1689 SDValue NVPTXTargetLowering::LowerShiftRightParts(SDValue Op,
1690                                                   SelectionDAG &DAG) const {
1691   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
1692   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
1693
1694   EVT VT = Op.getValueType();
1695   unsigned VTBits = VT.getSizeInBits();
1696   SDLoc dl(Op);
1697   SDValue ShOpLo = Op.getOperand(0);
1698   SDValue ShOpHi = Op.getOperand(1);
1699   SDValue ShAmt  = Op.getOperand(2);
1700   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
1701
1702   if (VTBits == 32 && STI.getSmVersion() >= 35) {
1703
1704     // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
1705     // {dHi, dLo} = {aHi, aLo} >> Amt
1706     //   dHi = aHi >> Amt
1707     //   dLo = shf.r.clamp aLo, aHi, Amt
1708
1709     SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
1710     SDValue Lo = DAG.getNode(NVPTXISD::FUN_SHFR_CLAMP, dl, VT, ShOpLo, ShOpHi,
1711                              ShAmt);
1712
1713     SDValue Ops[2] = { Lo, Hi };
1714     return DAG.getMergeValues(Ops, dl);
1715   }
1716   else {
1717
1718     // {dHi, dLo} = {aHi, aLo} >> Amt
1719     // - if (Amt>=size) then
1720     //      dLo = aHi >> (Amt-size)
1721     //      dHi = aHi >> Amt (this is either all 0 or all 1)
1722     //   else
1723     //      dLo = (aLo >>logic Amt) | (aHi << (size-Amt))
1724     //      dHi = aHi >> Amt
1725
1726     SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
1727                                    DAG.getConstant(VTBits, dl, MVT::i32),
1728                                    ShAmt);
1729     SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
1730     SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
1731                                      DAG.getConstant(VTBits, dl, MVT::i32));
1732     SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
1733     SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
1734     SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
1735
1736     SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
1737                                DAG.getConstant(VTBits, dl, MVT::i32),
1738                                ISD::SETGE);
1739     SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
1740     SDValue Lo = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
1741
1742     SDValue Ops[2] = { Lo, Hi };
1743     return DAG.getMergeValues(Ops, dl);
1744   }
1745 }
1746
1747 /// LowerShiftLeftParts - Lower SHL_PARTS, which
1748 /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
1749 ///    amount, or
1750 /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
1751 ///    amount.
1752 SDValue NVPTXTargetLowering::LowerShiftLeftParts(SDValue Op,
1753                                                  SelectionDAG &DAG) const {
1754   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
1755   assert(Op.getOpcode() == ISD::SHL_PARTS);
1756
1757   EVT VT = Op.getValueType();
1758   unsigned VTBits = VT.getSizeInBits();
1759   SDLoc dl(Op);
1760   SDValue ShOpLo = Op.getOperand(0);
1761   SDValue ShOpHi = Op.getOperand(1);
1762   SDValue ShAmt  = Op.getOperand(2);
1763
1764   if (VTBits == 32 && STI.getSmVersion() >= 35) {
1765
1766     // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
1767     // {dHi, dLo} = {aHi, aLo} << Amt
1768     //   dHi = shf.l.clamp aLo, aHi, Amt
1769     //   dLo = aLo << Amt
1770
1771     SDValue Hi = DAG.getNode(NVPTXISD::FUN_SHFL_CLAMP, dl, VT, ShOpLo, ShOpHi,
1772                              ShAmt);
1773     SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
1774
1775     SDValue Ops[2] = { Lo, Hi };
1776     return DAG.getMergeValues(Ops, dl);
1777   }
1778   else {
1779
1780     // {dHi, dLo} = {aHi, aLo} << Amt
1781     // - if (Amt>=size) then
1782     //      dLo = aLo << Amt (all 0)
1783     //      dLo = aLo << (Amt-size)
1784     //   else
1785     //      dLo = aLo << Amt
1786     //      dHi = (aHi << Amt) | (aLo >> (size-Amt))
1787
1788     SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
1789                                    DAG.getConstant(VTBits, dl, MVT::i32),
1790                                    ShAmt);
1791     SDValue Tmp1 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
1792     SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
1793                                      DAG.getConstant(VTBits, dl, MVT::i32));
1794     SDValue Tmp2 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
1795     SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
1796     SDValue TrueVal = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
1797
1798     SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
1799                                DAG.getConstant(VTBits, dl, MVT::i32),
1800                                ISD::SETGE);
1801     SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
1802     SDValue Hi = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
1803
1804     SDValue Ops[2] = { Lo, Hi };
1805     return DAG.getMergeValues(Ops, dl);
1806   }
1807 }
1808
1809 SDValue
1810 NVPTXTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
1811   switch (Op.getOpcode()) {
1812   case ISD::RETURNADDR:
1813     return SDValue();
1814   case ISD::FRAMEADDR:
1815     return SDValue();
1816   case ISD::GlobalAddress:
1817     return LowerGlobalAddress(Op, DAG);
1818   case ISD::INTRINSIC_W_CHAIN:
1819     return Op;
1820   case ISD::BUILD_VECTOR:
1821   case ISD::EXTRACT_SUBVECTOR:
1822     return Op;
1823   case ISD::CONCAT_VECTORS:
1824     return LowerCONCAT_VECTORS(Op, DAG);
1825   case ISD::STORE:
1826     return LowerSTORE(Op, DAG);
1827   case ISD::LOAD:
1828     return LowerLOAD(Op, DAG);
1829   case ISD::SHL_PARTS:
1830     return LowerShiftLeftParts(Op, DAG);
1831   case ISD::SRA_PARTS:
1832   case ISD::SRL_PARTS:
1833     return LowerShiftRightParts(Op, DAG);
1834   case ISD::SELECT:
1835     return LowerSelect(Op, DAG);
1836   default:
1837     llvm_unreachable("Custom lowering not defined for operation");
1838   }
1839 }
1840
1841 SDValue NVPTXTargetLowering::LowerSelect(SDValue Op, SelectionDAG &DAG) const {
1842   SDValue Op0 = Op->getOperand(0);
1843   SDValue Op1 = Op->getOperand(1);
1844   SDValue Op2 = Op->getOperand(2);
1845   SDLoc DL(Op.getNode());
1846
1847   assert(Op.getValueType() == MVT::i1 && "Custom lowering enabled only for i1");
1848
1849   Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op1);
1850   Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op2);
1851   SDValue Select = DAG.getNode(ISD::SELECT, DL, MVT::i32, Op0, Op1, Op2);
1852   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Select);
1853
1854   return Trunc;
1855 }
1856
1857 SDValue NVPTXTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1858   if (Op.getValueType() == MVT::i1)
1859     return LowerLOADi1(Op, DAG);
1860   else
1861     return SDValue();
1862 }
1863
1864 // v = ld i1* addr
1865 //   =>
1866 // v1 = ld i8* addr (-> i16)
1867 // v = trunc i16 to i1
1868 SDValue NVPTXTargetLowering::LowerLOADi1(SDValue Op, SelectionDAG &DAG) const {
1869   SDNode *Node = Op.getNode();
1870   LoadSDNode *LD = cast<LoadSDNode>(Node);
1871   SDLoc dl(Node);
1872   assert(LD->getExtensionType() == ISD::NON_EXTLOAD);
1873   assert(Node->getValueType(0) == MVT::i1 &&
1874          "Custom lowering for i1 load only");
1875   SDValue newLD =
1876       DAG.getLoad(MVT::i16, dl, LD->getChain(), LD->getBasePtr(),
1877                   LD->getPointerInfo(), LD->isVolatile(), LD->isNonTemporal(),
1878                   LD->isInvariant(), LD->getAlignment());
1879   SDValue result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, newLD);
1880   // The legalizer (the caller) is expecting two values from the legalized
1881   // load, so we build a MergeValues node for it. See ExpandUnalignedLoad()
1882   // in LegalizeDAG.cpp which also uses MergeValues.
1883   SDValue Ops[] = { result, LD->getChain() };
1884   return DAG.getMergeValues(Ops, dl);
1885 }
1886
1887 SDValue NVPTXTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1888   EVT ValVT = Op.getOperand(1).getValueType();
1889   if (ValVT == MVT::i1)
1890     return LowerSTOREi1(Op, DAG);
1891   else if (ValVT.isVector())
1892     return LowerSTOREVector(Op, DAG);
1893   else
1894     return SDValue();
1895 }
1896
1897 SDValue
1898 NVPTXTargetLowering::LowerSTOREVector(SDValue Op, SelectionDAG &DAG) const {
1899   SDNode *N = Op.getNode();
1900   SDValue Val = N->getOperand(1);
1901   SDLoc DL(N);
1902   EVT ValVT = Val.getValueType();
1903
1904   if (ValVT.isVector()) {
1905     // We only handle "native" vector sizes for now, e.g. <4 x double> is not
1906     // legal.  We can (and should) split that into 2 stores of <2 x double> here
1907     // but I'm leaving that as a TODO for now.
1908     if (!ValVT.isSimple())
1909       return SDValue();
1910     switch (ValVT.getSimpleVT().SimpleTy) {
1911     default:
1912       return SDValue();
1913     case MVT::v2i8:
1914     case MVT::v2i16:
1915     case MVT::v2i32:
1916     case MVT::v2i64:
1917     case MVT::v2f32:
1918     case MVT::v2f64:
1919     case MVT::v4i8:
1920     case MVT::v4i16:
1921     case MVT::v4i32:
1922     case MVT::v4f32:
1923       // This is a "native" vector type
1924       break;
1925     }
1926
1927     MemSDNode *MemSD = cast<MemSDNode>(N);
1928     const DataLayout &TD = DAG.getDataLayout();
1929
1930     unsigned Align = MemSD->getAlignment();
1931     unsigned PrefAlign =
1932         TD.getPrefTypeAlignment(ValVT.getTypeForEVT(*DAG.getContext()));
1933     if (Align < PrefAlign) {
1934       // This store is not sufficiently aligned, so bail out and let this vector
1935       // store be scalarized.  Note that we may still be able to emit smaller
1936       // vector stores.  For example, if we are storing a <4 x float> with an
1937       // alignment of 8, this check will fail but the legalizer will try again
1938       // with 2 x <2 x float>, which will succeed with an alignment of 8.
1939       return SDValue();
1940     }
1941
1942     unsigned Opcode = 0;
1943     EVT EltVT = ValVT.getVectorElementType();
1944     unsigned NumElts = ValVT.getVectorNumElements();
1945
1946     // Since StoreV2 is a target node, we cannot rely on DAG type legalization.
1947     // Therefore, we must ensure the type is legal.  For i1 and i8, we set the
1948     // stored type to i16 and propagate the "real" type as the memory type.
1949     bool NeedExt = false;
1950     if (EltVT.getSizeInBits() < 16)
1951       NeedExt = true;
1952
1953     switch (NumElts) {
1954     default:
1955       return SDValue();
1956     case 2:
1957       Opcode = NVPTXISD::StoreV2;
1958       break;
1959     case 4: {
1960       Opcode = NVPTXISD::StoreV4;
1961       break;
1962     }
1963     }
1964
1965     SmallVector<SDValue, 8> Ops;
1966
1967     // First is the chain
1968     Ops.push_back(N->getOperand(0));
1969
1970     // Then the split values
1971     for (unsigned i = 0; i < NumElts; ++i) {
1972       SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val,
1973                                    DAG.getIntPtrConstant(i, DL));
1974       if (NeedExt)
1975         ExtVal = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i16, ExtVal);
1976       Ops.push_back(ExtVal);
1977     }
1978
1979     // Then any remaining arguments
1980     Ops.append(N->op_begin() + 2, N->op_end());
1981
1982     SDValue NewSt = DAG.getMemIntrinsicNode(
1983         Opcode, DL, DAG.getVTList(MVT::Other), Ops,
1984         MemSD->getMemoryVT(), MemSD->getMemOperand());
1985
1986     //return DCI.CombineTo(N, NewSt, true);
1987     return NewSt;
1988   }
1989
1990   return SDValue();
1991 }
1992
1993 // st i1 v, addr
1994 //    =>
1995 // v1 = zxt v to i16
1996 // st.u8 i16, addr
1997 SDValue NVPTXTargetLowering::LowerSTOREi1(SDValue Op, SelectionDAG &DAG) const {
1998   SDNode *Node = Op.getNode();
1999   SDLoc dl(Node);
2000   StoreSDNode *ST = cast<StoreSDNode>(Node);
2001   SDValue Tmp1 = ST->getChain();
2002   SDValue Tmp2 = ST->getBasePtr();
2003   SDValue Tmp3 = ST->getValue();
2004   assert(Tmp3.getValueType() == MVT::i1 && "Custom lowering for i1 store only");
2005   unsigned Alignment = ST->getAlignment();
2006   bool isVolatile = ST->isVolatile();
2007   bool isNonTemporal = ST->isNonTemporal();
2008   Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Tmp3);
2009   SDValue Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2,
2010                                      ST->getPointerInfo(), MVT::i8, isNonTemporal,
2011                                      isVolatile, Alignment);
2012   return Result;
2013 }
2014
2015 SDValue
2016 NVPTXTargetLowering::getParamSymbol(SelectionDAG &DAG, int idx, EVT v) const {
2017   std::string ParamSym;
2018   raw_string_ostream ParamStr(ParamSym);
2019
2020   ParamStr << DAG.getMachineFunction().getName() << "_param_" << idx;
2021   ParamStr.flush();
2022
2023   std::string *SavedStr =
2024     nvTM->getManagedStrPool()->getManagedString(ParamSym.c_str());
2025   return DAG.getTargetExternalSymbol(SavedStr->c_str(), v);
2026 }
2027
2028 // Check to see if the kernel argument is image*_t or sampler_t
2029
2030 bool llvm::isImageOrSamplerVal(const Value *arg, const Module *context) {
2031   static const char *const specialTypes[] = { "struct._image2d_t",
2032                                               "struct._image3d_t",
2033                                               "struct._sampler_t" };
2034
2035   Type *Ty = arg->getType();
2036   auto *PTy = dyn_cast<PointerType>(Ty);
2037
2038   if (!PTy)
2039     return false;
2040
2041   if (!context)
2042     return false;
2043
2044   auto *STy = dyn_cast<StructType>(PTy->getElementType());
2045   const std::string TypeName = STy && !STy->isLiteral() ? STy->getName() : "";
2046
2047   return std::find(std::begin(specialTypes), std::end(specialTypes),
2048                    TypeName) != std::end(specialTypes);
2049 }
2050
2051 SDValue NVPTXTargetLowering::LowerFormalArguments(
2052     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2053     const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc dl, SelectionDAG &DAG,
2054     SmallVectorImpl<SDValue> &InVals) const {
2055   MachineFunction &MF = DAG.getMachineFunction();
2056   const DataLayout &DL = DAG.getDataLayout();
2057   auto PtrVT = getPointerTy(DAG.getDataLayout());
2058
2059   const Function *F = MF.getFunction();
2060   const AttributeSet &PAL = F->getAttributes();
2061   const TargetLowering *TLI = STI.getTargetLowering();
2062
2063   SDValue Root = DAG.getRoot();
2064   std::vector<SDValue> OutChains;
2065
2066   bool isKernel = llvm::isKernelFunction(*F);
2067   bool isABI = (STI.getSmVersion() >= 20);
2068   assert(isABI && "Non-ABI compilation is not supported");
2069   if (!isABI)
2070     return Chain;
2071
2072   std::vector<Type *> argTypes;
2073   std::vector<const Argument *> theArgs;
2074   for (const Argument &I : F->args()) {
2075     theArgs.push_back(&I);
2076     argTypes.push_back(I.getType());
2077   }
2078   // argTypes.size() (or theArgs.size()) and Ins.size() need not match.
2079   // Ins.size() will be larger
2080   //   * if there is an aggregate argument with multiple fields (each field
2081   //     showing up separately in Ins)
2082   //   * if there is a vector argument with more than typical vector-length
2083   //     elements (generally if more than 4) where each vector element is
2084   //     individually present in Ins.
2085   // So a different index should be used for indexing into Ins.
2086   // See similar issue in LowerCall.
2087   unsigned InsIdx = 0;
2088
2089   int idx = 0;
2090   for (unsigned i = 0, e = theArgs.size(); i != e; ++i, ++idx, ++InsIdx) {
2091     Type *Ty = argTypes[i];
2092
2093     // If the kernel argument is image*_t or sampler_t, convert it to
2094     // a i32 constant holding the parameter position. This can later
2095     // matched in the AsmPrinter to output the correct mangled name.
2096     if (isImageOrSamplerVal(
2097             theArgs[i],
2098             (theArgs[i]->getParent() ? theArgs[i]->getParent()->getParent()
2099                                      : nullptr))) {
2100       assert(isKernel && "Only kernels can have image/sampler params");
2101       InVals.push_back(DAG.getConstant(i + 1, dl, MVT::i32));
2102       continue;
2103     }
2104
2105     if (theArgs[i]->use_empty()) {
2106       // argument is dead
2107       if (Ty->isAggregateType()) {
2108         SmallVector<EVT, 16> vtparts;
2109
2110         ComputePTXValueVTs(*this, DAG.getDataLayout(), Ty, vtparts);
2111         assert(vtparts.size() > 0 && "empty aggregate type not expected");
2112         for (unsigned parti = 0, parte = vtparts.size(); parti != parte;
2113              ++parti) {
2114           InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2115           ++InsIdx;
2116         }
2117         if (vtparts.size() > 0)
2118           --InsIdx;
2119         continue;
2120       }
2121       if (Ty->isVectorTy()) {
2122         EVT ObjectVT = getValueType(DL, Ty);
2123         unsigned NumRegs = TLI->getNumRegisters(F->getContext(), ObjectVT);
2124         for (unsigned parti = 0; parti < NumRegs; ++parti) {
2125           InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2126           ++InsIdx;
2127         }
2128         if (NumRegs > 0)
2129           --InsIdx;
2130         continue;
2131       }
2132       InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2133       continue;
2134     }
2135
2136     // In the following cases, assign a node order of "idx+1"
2137     // to newly created nodes. The SDNodes for params have to
2138     // appear in the same order as their order of appearance
2139     // in the original function. "idx+1" holds that order.
2140     if (!PAL.hasAttribute(i + 1, Attribute::ByVal)) {
2141       if (Ty->isAggregateType()) {
2142         SmallVector<EVT, 16> vtparts;
2143         SmallVector<uint64_t, 16> offsets;
2144
2145         // NOTE: Here, we lose the ability to issue vector loads for vectors
2146         // that are a part of a struct.  This should be investigated in the
2147         // future.
2148         ComputePTXValueVTs(*this, DAG.getDataLayout(), Ty, vtparts, &offsets,
2149                            0);
2150         assert(vtparts.size() > 0 && "empty aggregate type not expected");
2151         bool aggregateIsPacked = false;
2152         if (StructType *STy = llvm::dyn_cast<StructType>(Ty))
2153           aggregateIsPacked = STy->isPacked();
2154
2155         SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
2156         for (unsigned parti = 0, parte = vtparts.size(); parti != parte;
2157              ++parti) {
2158           EVT partVT = vtparts[parti];
2159           Value *srcValue = Constant::getNullValue(
2160               PointerType::get(partVT.getTypeForEVT(F->getContext()),
2161                                llvm::ADDRESS_SPACE_PARAM));
2162           SDValue srcAddr =
2163               DAG.getNode(ISD::ADD, dl, PtrVT, Arg,
2164                           DAG.getConstant(offsets[parti], dl, PtrVT));
2165           unsigned partAlign = aggregateIsPacked
2166                                    ? 1
2167                                    : DL.getABITypeAlignment(
2168                                          partVT.getTypeForEVT(F->getContext()));
2169           SDValue p;
2170           if (Ins[InsIdx].VT.getSizeInBits() > partVT.getSizeInBits()) {
2171             ISD::LoadExtType ExtOp = Ins[InsIdx].Flags.isSExt() ? 
2172                                      ISD::SEXTLOAD : ISD::ZEXTLOAD;
2173             p = DAG.getExtLoad(ExtOp, dl, Ins[InsIdx].VT, Root, srcAddr,
2174                                MachinePointerInfo(srcValue), partVT, false,
2175                                false, false, partAlign);
2176           } else {
2177             p = DAG.getLoad(partVT, dl, Root, srcAddr,
2178                             MachinePointerInfo(srcValue), false, false, false,
2179                             partAlign);
2180           }
2181           if (p.getNode())
2182             p.getNode()->setIROrder(idx + 1);
2183           InVals.push_back(p);
2184           ++InsIdx;
2185         }
2186         if (vtparts.size() > 0)
2187           --InsIdx;
2188         continue;
2189       }
2190       if (Ty->isVectorTy()) {
2191         EVT ObjectVT = getValueType(DL, Ty);
2192         SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
2193         unsigned NumElts = ObjectVT.getVectorNumElements();
2194         assert(TLI->getNumRegisters(F->getContext(), ObjectVT) == NumElts &&
2195                "Vector was not scalarized");
2196         EVT EltVT = ObjectVT.getVectorElementType();
2197
2198         // V1 load
2199         // f32 = load ...
2200         if (NumElts == 1) {
2201           // We only have one element, so just directly load it
2202           Value *SrcValue = Constant::getNullValue(PointerType::get(
2203               EltVT.getTypeForEVT(F->getContext()), llvm::ADDRESS_SPACE_PARAM));
2204           SDValue P = DAG.getLoad(
2205               EltVT, dl, Root, Arg, MachinePointerInfo(SrcValue), false, false,
2206               true,
2207               DL.getABITypeAlignment(EltVT.getTypeForEVT(F->getContext())));
2208           if (P.getNode())
2209             P.getNode()->setIROrder(idx + 1);
2210
2211           if (Ins[InsIdx].VT.getSizeInBits() > EltVT.getSizeInBits())
2212             P = DAG.getNode(ISD::ANY_EXTEND, dl, Ins[InsIdx].VT, P);
2213           InVals.push_back(P);
2214           ++InsIdx;
2215         } else if (NumElts == 2) {
2216           // V2 load
2217           // f32,f32 = load ...
2218           EVT VecVT = EVT::getVectorVT(F->getContext(), EltVT, 2);
2219           Value *SrcValue = Constant::getNullValue(PointerType::get(
2220               VecVT.getTypeForEVT(F->getContext()), llvm::ADDRESS_SPACE_PARAM));
2221           SDValue P = DAG.getLoad(
2222               VecVT, dl, Root, Arg, MachinePointerInfo(SrcValue), false, false,
2223               true,
2224               DL.getABITypeAlignment(VecVT.getTypeForEVT(F->getContext())));
2225           if (P.getNode())
2226             P.getNode()->setIROrder(idx + 1);
2227
2228           SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, P,
2229                                      DAG.getIntPtrConstant(0, dl));
2230           SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, P,
2231                                      DAG.getIntPtrConstant(1, dl));
2232
2233           if (Ins[InsIdx].VT.getSizeInBits() > EltVT.getSizeInBits()) {
2234             Elt0 = DAG.getNode(ISD::ANY_EXTEND, dl, Ins[InsIdx].VT, Elt0);
2235             Elt1 = DAG.getNode(ISD::ANY_EXTEND, dl, Ins[InsIdx].VT, Elt1);
2236           }
2237
2238           InVals.push_back(Elt0);
2239           InVals.push_back(Elt1);
2240           InsIdx += 2;
2241         } else {
2242           // V4 loads
2243           // We have at least 4 elements (<3 x Ty> expands to 4 elements) and
2244           // the
2245           // vector will be expanded to a power of 2 elements, so we know we can
2246           // always round up to the next multiple of 4 when creating the vector
2247           // loads.
2248           // e.g.  4 elem => 1 ld.v4
2249           //       6 elem => 2 ld.v4
2250           //       8 elem => 2 ld.v4
2251           //      11 elem => 3 ld.v4
2252           unsigned VecSize = 4;
2253           if (EltVT.getSizeInBits() == 64) {
2254             VecSize = 2;
2255           }
2256           EVT VecVT = EVT::getVectorVT(F->getContext(), EltVT, VecSize);
2257           unsigned Ofst = 0;
2258           for (unsigned i = 0; i < NumElts; i += VecSize) {
2259             Value *SrcValue = Constant::getNullValue(
2260                 PointerType::get(VecVT.getTypeForEVT(F->getContext()),
2261                                  llvm::ADDRESS_SPACE_PARAM));
2262             SDValue SrcAddr = DAG.getNode(ISD::ADD, dl, PtrVT, Arg,
2263                                           DAG.getConstant(Ofst, dl, PtrVT));
2264             SDValue P = DAG.getLoad(
2265                 VecVT, dl, Root, SrcAddr, MachinePointerInfo(SrcValue), false,
2266                 false, true,
2267                 DL.getABITypeAlignment(VecVT.getTypeForEVT(F->getContext())));
2268             if (P.getNode())
2269               P.getNode()->setIROrder(idx + 1);
2270
2271             for (unsigned j = 0; j < VecSize; ++j) {
2272               if (i + j >= NumElts)
2273                 break;
2274               SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, P,
2275                                         DAG.getIntPtrConstant(j, dl));
2276               if (Ins[InsIdx].VT.getSizeInBits() > EltVT.getSizeInBits())
2277                 Elt = DAG.getNode(ISD::ANY_EXTEND, dl, Ins[InsIdx].VT, Elt);
2278               InVals.push_back(Elt);
2279             }
2280             Ofst += DL.getTypeAllocSize(VecVT.getTypeForEVT(F->getContext()));
2281           }
2282           InsIdx += NumElts;
2283         }
2284
2285         if (NumElts > 0)
2286           --InsIdx;
2287         continue;
2288       }
2289       // A plain scalar.
2290       EVT ObjectVT = getValueType(DL, Ty);
2291       // If ABI, load from the param symbol
2292       SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
2293       Value *srcValue = Constant::getNullValue(PointerType::get(
2294           ObjectVT.getTypeForEVT(F->getContext()), llvm::ADDRESS_SPACE_PARAM));
2295       SDValue p;
2296        if (ObjectVT.getSizeInBits() < Ins[InsIdx].VT.getSizeInBits()) {
2297         ISD::LoadExtType ExtOp = Ins[InsIdx].Flags.isSExt() ? 
2298                                        ISD::SEXTLOAD : ISD::ZEXTLOAD;
2299         p = DAG.getExtLoad(
2300             ExtOp, dl, Ins[InsIdx].VT, Root, Arg, MachinePointerInfo(srcValue),
2301             ObjectVT, false, false, false,
2302             DL.getABITypeAlignment(ObjectVT.getTypeForEVT(F->getContext())));
2303       } else {
2304         p = DAG.getLoad(
2305             Ins[InsIdx].VT, dl, Root, Arg, MachinePointerInfo(srcValue), false,
2306             false, false,
2307             DL.getABITypeAlignment(ObjectVT.getTypeForEVT(F->getContext())));
2308       }
2309       if (p.getNode())
2310         p.getNode()->setIROrder(idx + 1);
2311       InVals.push_back(p);
2312       continue;
2313     }
2314
2315     // Param has ByVal attribute
2316     // Return MoveParam(param symbol).
2317     // Ideally, the param symbol can be returned directly,
2318     // but when SDNode builder decides to use it in a CopyToReg(),
2319     // machine instruction fails because TargetExternalSymbol
2320     // (not lowered) is target dependent, and CopyToReg assumes
2321     // the source is lowered.
2322     EVT ObjectVT = getValueType(DL, Ty);
2323     assert(ObjectVT == Ins[InsIdx].VT &&
2324            "Ins type did not match function type");
2325     SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
2326     SDValue p = DAG.getNode(NVPTXISD::MoveParam, dl, ObjectVT, Arg);
2327     if (p.getNode())
2328       p.getNode()->setIROrder(idx + 1);
2329     if (isKernel)
2330       InVals.push_back(p);
2331     else {
2332       SDValue p2 = DAG.getNode(
2333           ISD::INTRINSIC_WO_CHAIN, dl, ObjectVT,
2334           DAG.getConstant(Intrinsic::nvvm_ptr_local_to_gen, dl, MVT::i32), p);
2335       InVals.push_back(p2);
2336     }
2337   }
2338
2339   // Clang will check explicit VarArg and issue error if any. However, Clang
2340   // will let code with
2341   // implicit var arg like f() pass. See bug 617733.
2342   // We treat this case as if the arg list is empty.
2343   // if (F.isVarArg()) {
2344   // assert(0 && "VarArg not supported yet!");
2345   //}
2346
2347   if (!OutChains.empty())
2348     DAG.setRoot(DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains));
2349
2350   return Chain;
2351 }
2352
2353
2354 SDValue
2355 NVPTXTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2356                                  bool isVarArg,
2357                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2358                                  const SmallVectorImpl<SDValue> &OutVals,
2359                                  SDLoc dl, SelectionDAG &DAG) const {
2360   MachineFunction &MF = DAG.getMachineFunction();
2361   const Function *F = MF.getFunction();
2362   Type *RetTy = F->getReturnType();
2363   const DataLayout &TD = DAG.getDataLayout();
2364
2365   bool isABI = (STI.getSmVersion() >= 20);
2366   assert(isABI && "Non-ABI compilation is not supported");
2367   if (!isABI)
2368     return Chain;
2369
2370   if (VectorType *VTy = dyn_cast<VectorType>(RetTy)) {
2371     // If we have a vector type, the OutVals array will be the scalarized
2372     // components and we have combine them into 1 or more vector stores.
2373     unsigned NumElts = VTy->getNumElements();
2374     assert(NumElts == Outs.size() && "Bad scalarization of return value");
2375
2376     // const_cast can be removed in later LLVM versions
2377     EVT EltVT = getValueType(TD, RetTy).getVectorElementType();
2378     bool NeedExtend = false;
2379     if (EltVT.getSizeInBits() < 16)
2380       NeedExtend = true;
2381
2382     // V1 store
2383     if (NumElts == 1) {
2384       SDValue StoreVal = OutVals[0];
2385       // We only have one element, so just directly store it
2386       if (NeedExtend)
2387         StoreVal = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal);
2388       SDValue Ops[] = { Chain, DAG.getConstant(0, dl, MVT::i32), StoreVal };
2389       Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreRetval, dl,
2390                                       DAG.getVTList(MVT::Other), Ops,
2391                                       EltVT, MachinePointerInfo());
2392
2393     } else if (NumElts == 2) {
2394       // V2 store
2395       SDValue StoreVal0 = OutVals[0];
2396       SDValue StoreVal1 = OutVals[1];
2397
2398       if (NeedExtend) {
2399         StoreVal0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal0);
2400         StoreVal1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal1);
2401       }
2402
2403       SDValue Ops[] = { Chain, DAG.getConstant(0, dl, MVT::i32), StoreVal0,
2404                         StoreVal1 };
2405       Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreRetvalV2, dl,
2406                                       DAG.getVTList(MVT::Other), Ops,
2407                                       EltVT, MachinePointerInfo());
2408     } else {
2409       // V4 stores
2410       // We have at least 4 elements (<3 x Ty> expands to 4 elements) and the
2411       // vector will be expanded to a power of 2 elements, so we know we can
2412       // always round up to the next multiple of 4 when creating the vector
2413       // stores.
2414       // e.g.  4 elem => 1 st.v4
2415       //       6 elem => 2 st.v4
2416       //       8 elem => 2 st.v4
2417       //      11 elem => 3 st.v4
2418
2419       unsigned VecSize = 4;
2420       if (OutVals[0].getValueType().getSizeInBits() == 64)
2421         VecSize = 2;
2422
2423       unsigned Offset = 0;
2424
2425       EVT VecVT =
2426           EVT::getVectorVT(F->getContext(), EltVT, VecSize);
2427       unsigned PerStoreOffset =
2428           TD.getTypeAllocSize(VecVT.getTypeForEVT(F->getContext()));
2429
2430       for (unsigned i = 0; i < NumElts; i += VecSize) {
2431         // Get values
2432         SDValue StoreVal;
2433         SmallVector<SDValue, 8> Ops;
2434         Ops.push_back(Chain);
2435         Ops.push_back(DAG.getConstant(Offset, dl, MVT::i32));
2436         unsigned Opc = NVPTXISD::StoreRetvalV2;
2437         EVT ExtendedVT = (NeedExtend) ? MVT::i16 : OutVals[0].getValueType();
2438
2439         StoreVal = OutVals[i];
2440         if (NeedExtend)
2441           StoreVal = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtendedVT, StoreVal);
2442         Ops.push_back(StoreVal);
2443
2444         if (i + 1 < NumElts) {
2445           StoreVal = OutVals[i + 1];
2446           if (NeedExtend)
2447             StoreVal = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtendedVT, StoreVal);
2448         } else {
2449           StoreVal = DAG.getUNDEF(ExtendedVT);
2450         }
2451         Ops.push_back(StoreVal);
2452
2453         if (VecSize == 4) {
2454           Opc = NVPTXISD::StoreRetvalV4;
2455           if (i + 2 < NumElts) {
2456             StoreVal = OutVals[i + 2];
2457             if (NeedExtend)
2458               StoreVal =
2459                   DAG.getNode(ISD::ZERO_EXTEND, dl, ExtendedVT, StoreVal);
2460           } else {
2461             StoreVal = DAG.getUNDEF(ExtendedVT);
2462           }
2463           Ops.push_back(StoreVal);
2464
2465           if (i + 3 < NumElts) {
2466             StoreVal = OutVals[i + 3];
2467             if (NeedExtend)
2468               StoreVal =
2469                   DAG.getNode(ISD::ZERO_EXTEND, dl, ExtendedVT, StoreVal);
2470           } else {
2471             StoreVal = DAG.getUNDEF(ExtendedVT);
2472           }
2473           Ops.push_back(StoreVal);
2474         }
2475
2476         // Chain = DAG.getNode(Opc, dl, MVT::Other, &Ops[0], Ops.size());
2477         Chain =
2478             DAG.getMemIntrinsicNode(Opc, dl, DAG.getVTList(MVT::Other), Ops,
2479                                     EltVT, MachinePointerInfo());
2480         Offset += PerStoreOffset;
2481       }
2482     }
2483   } else {
2484     SmallVector<EVT, 16> ValVTs;
2485     SmallVector<uint64_t, 16> Offsets;
2486     ComputePTXValueVTs(*this, DAG.getDataLayout(), RetTy, ValVTs, &Offsets, 0);
2487     assert(ValVTs.size() == OutVals.size() && "Bad return value decomposition");
2488
2489     for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
2490       SDValue theVal = OutVals[i];
2491       EVT TheValType = theVal.getValueType();
2492       unsigned numElems = 1;
2493       if (TheValType.isVector())
2494         numElems = TheValType.getVectorNumElements();
2495       for (unsigned j = 0, je = numElems; j != je; ++j) {
2496         SDValue TmpVal = theVal;
2497         if (TheValType.isVector())
2498           TmpVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
2499                                TheValType.getVectorElementType(), TmpVal,
2500                                DAG.getIntPtrConstant(j, dl));
2501         EVT TheStoreType = ValVTs[i];
2502         if (RetTy->isIntegerTy() && TD.getTypeAllocSizeInBits(RetTy) < 32) {
2503           // The following zero-extension is for integer types only, and
2504           // specifically not for aggregates.
2505           TmpVal = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, TmpVal);
2506           TheStoreType = MVT::i32;
2507         }
2508         else if (TmpVal.getValueType().getSizeInBits() < 16)
2509           TmpVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, TmpVal);
2510
2511         SDValue Ops[] = {
2512           Chain,
2513           DAG.getConstant(Offsets[i], dl, MVT::i32),
2514           TmpVal };
2515         Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreRetval, dl,
2516                                         DAG.getVTList(MVT::Other), Ops,
2517                                         TheStoreType,
2518                                         MachinePointerInfo());
2519       }
2520     }
2521   }
2522
2523   return DAG.getNode(NVPTXISD::RET_FLAG, dl, MVT::Other, Chain);
2524 }
2525
2526
2527 void NVPTXTargetLowering::LowerAsmOperandForConstraint(
2528     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
2529     SelectionDAG &DAG) const {
2530   if (Constraint.length() > 1)
2531     return;
2532   else
2533     TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
2534 }
2535
2536 static unsigned getOpcForTextureInstr(unsigned Intrinsic) {
2537   switch (Intrinsic) {
2538   default:
2539     return 0;
2540
2541   case Intrinsic::nvvm_tex_1d_v4f32_s32:
2542     return NVPTXISD::Tex1DFloatS32;
2543   case Intrinsic::nvvm_tex_1d_v4f32_f32:
2544     return NVPTXISD::Tex1DFloatFloat;
2545   case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
2546     return NVPTXISD::Tex1DFloatFloatLevel;
2547   case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
2548     return NVPTXISD::Tex1DFloatFloatGrad;
2549   case Intrinsic::nvvm_tex_1d_v4s32_s32:
2550     return NVPTXISD::Tex1DS32S32;
2551   case Intrinsic::nvvm_tex_1d_v4s32_f32:
2552     return NVPTXISD::Tex1DS32Float;
2553   case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
2554     return NVPTXISD::Tex1DS32FloatLevel;
2555   case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
2556     return NVPTXISD::Tex1DS32FloatGrad;
2557   case Intrinsic::nvvm_tex_1d_v4u32_s32:
2558     return NVPTXISD::Tex1DU32S32;
2559   case Intrinsic::nvvm_tex_1d_v4u32_f32:
2560     return NVPTXISD::Tex1DU32Float;
2561   case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
2562     return NVPTXISD::Tex1DU32FloatLevel;
2563   case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
2564     return NVPTXISD::Tex1DU32FloatGrad;
2565
2566   case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
2567     return NVPTXISD::Tex1DArrayFloatS32;
2568   case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
2569     return NVPTXISD::Tex1DArrayFloatFloat;
2570   case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
2571     return NVPTXISD::Tex1DArrayFloatFloatLevel;
2572   case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
2573     return NVPTXISD::Tex1DArrayFloatFloatGrad;
2574   case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
2575     return NVPTXISD::Tex1DArrayS32S32;
2576   case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
2577     return NVPTXISD::Tex1DArrayS32Float;
2578   case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
2579     return NVPTXISD::Tex1DArrayS32FloatLevel;
2580   case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
2581     return NVPTXISD::Tex1DArrayS32FloatGrad;
2582   case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
2583     return NVPTXISD::Tex1DArrayU32S32;
2584   case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
2585     return NVPTXISD::Tex1DArrayU32Float;
2586   case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
2587     return NVPTXISD::Tex1DArrayU32FloatLevel;
2588   case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
2589     return NVPTXISD::Tex1DArrayU32FloatGrad;
2590
2591   case Intrinsic::nvvm_tex_2d_v4f32_s32:
2592     return NVPTXISD::Tex2DFloatS32;
2593   case Intrinsic::nvvm_tex_2d_v4f32_f32:
2594     return NVPTXISD::Tex2DFloatFloat;
2595   case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
2596     return NVPTXISD::Tex2DFloatFloatLevel;
2597   case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
2598     return NVPTXISD::Tex2DFloatFloatGrad;
2599   case Intrinsic::nvvm_tex_2d_v4s32_s32:
2600     return NVPTXISD::Tex2DS32S32;
2601   case Intrinsic::nvvm_tex_2d_v4s32_f32:
2602     return NVPTXISD::Tex2DS32Float;
2603   case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
2604     return NVPTXISD::Tex2DS32FloatLevel;
2605   case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
2606     return NVPTXISD::Tex2DS32FloatGrad;
2607   case Intrinsic::nvvm_tex_2d_v4u32_s32:
2608     return NVPTXISD::Tex2DU32S32;
2609   case Intrinsic::nvvm_tex_2d_v4u32_f32:
2610     return NVPTXISD::Tex2DU32Float;
2611   case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
2612     return NVPTXISD::Tex2DU32FloatLevel;
2613   case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
2614     return NVPTXISD::Tex2DU32FloatGrad;
2615
2616   case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
2617     return NVPTXISD::Tex2DArrayFloatS32;
2618   case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
2619     return NVPTXISD::Tex2DArrayFloatFloat;
2620   case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
2621     return NVPTXISD::Tex2DArrayFloatFloatLevel;
2622   case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
2623     return NVPTXISD::Tex2DArrayFloatFloatGrad;
2624   case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
2625     return NVPTXISD::Tex2DArrayS32S32;
2626   case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
2627     return NVPTXISD::Tex2DArrayS32Float;
2628   case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
2629     return NVPTXISD::Tex2DArrayS32FloatLevel;
2630   case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
2631     return NVPTXISD::Tex2DArrayS32FloatGrad;
2632   case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
2633     return NVPTXISD::Tex2DArrayU32S32;
2634   case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
2635     return NVPTXISD::Tex2DArrayU32Float;
2636   case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
2637     return NVPTXISD::Tex2DArrayU32FloatLevel;
2638   case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
2639     return NVPTXISD::Tex2DArrayU32FloatGrad;
2640
2641   case Intrinsic::nvvm_tex_3d_v4f32_s32:
2642     return NVPTXISD::Tex3DFloatS32;
2643   case Intrinsic::nvvm_tex_3d_v4f32_f32:
2644     return NVPTXISD::Tex3DFloatFloat;
2645   case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
2646     return NVPTXISD::Tex3DFloatFloatLevel;
2647   case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
2648     return NVPTXISD::Tex3DFloatFloatGrad;
2649   case Intrinsic::nvvm_tex_3d_v4s32_s32:
2650     return NVPTXISD::Tex3DS32S32;
2651   case Intrinsic::nvvm_tex_3d_v4s32_f32:
2652     return NVPTXISD::Tex3DS32Float;
2653   case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
2654     return NVPTXISD::Tex3DS32FloatLevel;
2655   case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
2656     return NVPTXISD::Tex3DS32FloatGrad;
2657   case Intrinsic::nvvm_tex_3d_v4u32_s32:
2658     return NVPTXISD::Tex3DU32S32;
2659   case Intrinsic::nvvm_tex_3d_v4u32_f32:
2660     return NVPTXISD::Tex3DU32Float;
2661   case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
2662     return NVPTXISD::Tex3DU32FloatLevel;
2663   case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
2664     return NVPTXISD::Tex3DU32FloatGrad;
2665
2666   case Intrinsic::nvvm_tex_cube_v4f32_f32:
2667     return NVPTXISD::TexCubeFloatFloat;
2668   case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
2669     return NVPTXISD::TexCubeFloatFloatLevel;
2670   case Intrinsic::nvvm_tex_cube_v4s32_f32:
2671     return NVPTXISD::TexCubeS32Float;
2672   case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
2673     return NVPTXISD::TexCubeS32FloatLevel;
2674   case Intrinsic::nvvm_tex_cube_v4u32_f32:
2675     return NVPTXISD::TexCubeU32Float;
2676   case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
2677     return NVPTXISD::TexCubeU32FloatLevel;
2678
2679   case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
2680     return NVPTXISD::TexCubeArrayFloatFloat;
2681   case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
2682     return NVPTXISD::TexCubeArrayFloatFloatLevel;
2683   case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
2684     return NVPTXISD::TexCubeArrayS32Float;
2685   case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
2686     return NVPTXISD::TexCubeArrayS32FloatLevel;
2687   case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
2688     return NVPTXISD::TexCubeArrayU32Float;
2689   case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
2690     return NVPTXISD::TexCubeArrayU32FloatLevel;
2691
2692   case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
2693     return NVPTXISD::Tld4R2DFloatFloat;
2694   case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
2695     return NVPTXISD::Tld4G2DFloatFloat;
2696   case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
2697     return NVPTXISD::Tld4B2DFloatFloat;
2698   case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
2699     return NVPTXISD::Tld4A2DFloatFloat;
2700   case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
2701     return NVPTXISD::Tld4R2DS64Float;
2702   case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
2703     return NVPTXISD::Tld4G2DS64Float;
2704   case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
2705     return NVPTXISD::Tld4B2DS64Float;
2706   case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
2707     return NVPTXISD::Tld4A2DS64Float;
2708   case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
2709     return NVPTXISD::Tld4R2DU64Float;
2710   case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
2711     return NVPTXISD::Tld4G2DU64Float;
2712   case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
2713     return NVPTXISD::Tld4B2DU64Float;
2714   case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
2715     return NVPTXISD::Tld4A2DU64Float;
2716
2717   case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
2718     return NVPTXISD::TexUnified1DFloatS32;
2719   case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
2720     return NVPTXISD::TexUnified1DFloatFloat;
2721   case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
2722     return NVPTXISD::TexUnified1DFloatFloatLevel;
2723   case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
2724     return NVPTXISD::TexUnified1DFloatFloatGrad;
2725   case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
2726     return NVPTXISD::TexUnified1DS32S32;
2727   case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
2728     return NVPTXISD::TexUnified1DS32Float;
2729   case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
2730     return NVPTXISD::TexUnified1DS32FloatLevel;
2731   case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
2732     return NVPTXISD::TexUnified1DS32FloatGrad;
2733   case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
2734     return NVPTXISD::TexUnified1DU32S32;
2735   case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
2736     return NVPTXISD::TexUnified1DU32Float;
2737   case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
2738     return NVPTXISD::TexUnified1DU32FloatLevel;
2739   case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
2740     return NVPTXISD::TexUnified1DU32FloatGrad;
2741
2742   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
2743     return NVPTXISD::TexUnified1DArrayFloatS32;
2744   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
2745     return NVPTXISD::TexUnified1DArrayFloatFloat;
2746   case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
2747     return NVPTXISD::TexUnified1DArrayFloatFloatLevel;
2748   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
2749     return NVPTXISD::TexUnified1DArrayFloatFloatGrad;
2750   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
2751     return NVPTXISD::TexUnified1DArrayS32S32;
2752   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
2753     return NVPTXISD::TexUnified1DArrayS32Float;
2754   case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
2755     return NVPTXISD::TexUnified1DArrayS32FloatLevel;
2756   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
2757     return NVPTXISD::TexUnified1DArrayS32FloatGrad;
2758   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
2759     return NVPTXISD::TexUnified1DArrayU32S32;
2760   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
2761     return NVPTXISD::TexUnified1DArrayU32Float;
2762   case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
2763     return NVPTXISD::TexUnified1DArrayU32FloatLevel;
2764   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
2765     return NVPTXISD::TexUnified1DArrayU32FloatGrad;
2766
2767   case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
2768     return NVPTXISD::TexUnified2DFloatS32;
2769   case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
2770     return NVPTXISD::TexUnified2DFloatFloat;
2771   case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
2772     return NVPTXISD::TexUnified2DFloatFloatLevel;
2773   case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
2774     return NVPTXISD::TexUnified2DFloatFloatGrad;
2775   case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
2776     return NVPTXISD::TexUnified2DS32S32;
2777   case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
2778     return NVPTXISD::TexUnified2DS32Float;
2779   case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
2780     return NVPTXISD::TexUnified2DS32FloatLevel;
2781   case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
2782     return NVPTXISD::TexUnified2DS32FloatGrad;
2783   case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
2784     return NVPTXISD::TexUnified2DU32S32;
2785   case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
2786     return NVPTXISD::TexUnified2DU32Float;
2787   case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
2788     return NVPTXISD::TexUnified2DU32FloatLevel;
2789   case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
2790     return NVPTXISD::TexUnified2DU32FloatGrad;
2791
2792   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
2793     return NVPTXISD::TexUnified2DArrayFloatS32;
2794   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
2795     return NVPTXISD::TexUnified2DArrayFloatFloat;
2796   case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
2797     return NVPTXISD::TexUnified2DArrayFloatFloatLevel;
2798   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
2799     return NVPTXISD::TexUnified2DArrayFloatFloatGrad;
2800   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
2801     return NVPTXISD::TexUnified2DArrayS32S32;
2802   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
2803     return NVPTXISD::TexUnified2DArrayS32Float;
2804   case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
2805     return NVPTXISD::TexUnified2DArrayS32FloatLevel;
2806   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
2807     return NVPTXISD::TexUnified2DArrayS32FloatGrad;
2808   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
2809     return NVPTXISD::TexUnified2DArrayU32S32;
2810   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
2811     return NVPTXISD::TexUnified2DArrayU32Float;
2812   case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
2813     return NVPTXISD::TexUnified2DArrayU32FloatLevel;
2814   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
2815     return NVPTXISD::TexUnified2DArrayU32FloatGrad;
2816
2817   case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
2818     return NVPTXISD::TexUnified3DFloatS32;
2819   case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
2820     return NVPTXISD::TexUnified3DFloatFloat;
2821   case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
2822     return NVPTXISD::TexUnified3DFloatFloatLevel;
2823   case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
2824     return NVPTXISD::TexUnified3DFloatFloatGrad;
2825   case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
2826     return NVPTXISD::TexUnified3DS32S32;
2827   case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
2828     return NVPTXISD::TexUnified3DS32Float;
2829   case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
2830     return NVPTXISD::TexUnified3DS32FloatLevel;
2831   case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
2832     return NVPTXISD::TexUnified3DS32FloatGrad;
2833   case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
2834     return NVPTXISD::TexUnified3DU32S32;
2835   case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
2836     return NVPTXISD::TexUnified3DU32Float;
2837   case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
2838     return NVPTXISD::TexUnified3DU32FloatLevel;
2839   case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
2840     return NVPTXISD::TexUnified3DU32FloatGrad;
2841
2842   case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
2843     return NVPTXISD::TexUnifiedCubeFloatFloat;
2844   case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
2845     return NVPTXISD::TexUnifiedCubeFloatFloatLevel;
2846   case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
2847     return NVPTXISD::TexUnifiedCubeS32Float;
2848   case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
2849     return NVPTXISD::TexUnifiedCubeS32FloatLevel;
2850   case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
2851     return NVPTXISD::TexUnifiedCubeU32Float;
2852   case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
2853     return NVPTXISD::TexUnifiedCubeU32FloatLevel;
2854
2855   case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
2856     return NVPTXISD::TexUnifiedCubeArrayFloatFloat;
2857   case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
2858     return NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel;
2859   case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
2860     return NVPTXISD::TexUnifiedCubeArrayS32Float;
2861   case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
2862     return NVPTXISD::TexUnifiedCubeArrayS32FloatLevel;
2863   case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
2864     return NVPTXISD::TexUnifiedCubeArrayU32Float;
2865   case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
2866     return NVPTXISD::TexUnifiedCubeArrayU32FloatLevel;
2867
2868   case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
2869     return NVPTXISD::Tld4UnifiedR2DFloatFloat;
2870   case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
2871     return NVPTXISD::Tld4UnifiedG2DFloatFloat;
2872   case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
2873     return NVPTXISD::Tld4UnifiedB2DFloatFloat;
2874   case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
2875     return NVPTXISD::Tld4UnifiedA2DFloatFloat;
2876   case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
2877     return NVPTXISD::Tld4UnifiedR2DS64Float;
2878   case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
2879     return NVPTXISD::Tld4UnifiedG2DS64Float;
2880   case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
2881     return NVPTXISD::Tld4UnifiedB2DS64Float;
2882   case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
2883     return NVPTXISD::Tld4UnifiedA2DS64Float;
2884   case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
2885     return NVPTXISD::Tld4UnifiedR2DU64Float;
2886   case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
2887     return NVPTXISD::Tld4UnifiedG2DU64Float;
2888   case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
2889     return NVPTXISD::Tld4UnifiedB2DU64Float;
2890   case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
2891     return NVPTXISD::Tld4UnifiedA2DU64Float;
2892   }
2893 }
2894
2895 static unsigned getOpcForSurfaceInstr(unsigned Intrinsic) {
2896   switch (Intrinsic) {
2897   default:
2898     return 0;
2899   case Intrinsic::nvvm_suld_1d_i8_clamp:
2900     return NVPTXISD::Suld1DI8Clamp;
2901   case Intrinsic::nvvm_suld_1d_i16_clamp:
2902     return NVPTXISD::Suld1DI16Clamp;
2903   case Intrinsic::nvvm_suld_1d_i32_clamp:
2904     return NVPTXISD::Suld1DI32Clamp;
2905   case Intrinsic::nvvm_suld_1d_i64_clamp:
2906     return NVPTXISD::Suld1DI64Clamp;
2907   case Intrinsic::nvvm_suld_1d_v2i8_clamp:
2908     return NVPTXISD::Suld1DV2I8Clamp;
2909   case Intrinsic::nvvm_suld_1d_v2i16_clamp:
2910     return NVPTXISD::Suld1DV2I16Clamp;
2911   case Intrinsic::nvvm_suld_1d_v2i32_clamp:
2912     return NVPTXISD::Suld1DV2I32Clamp;
2913   case Intrinsic::nvvm_suld_1d_v2i64_clamp:
2914     return NVPTXISD::Suld1DV2I64Clamp;
2915   case Intrinsic::nvvm_suld_1d_v4i8_clamp:
2916     return NVPTXISD::Suld1DV4I8Clamp;
2917   case Intrinsic::nvvm_suld_1d_v4i16_clamp:
2918     return NVPTXISD::Suld1DV4I16Clamp;
2919   case Intrinsic::nvvm_suld_1d_v4i32_clamp:
2920     return NVPTXISD::Suld1DV4I32Clamp;
2921   case Intrinsic::nvvm_suld_1d_array_i8_clamp:
2922     return NVPTXISD::Suld1DArrayI8Clamp;
2923   case Intrinsic::nvvm_suld_1d_array_i16_clamp:
2924     return NVPTXISD::Suld1DArrayI16Clamp;
2925   case Intrinsic::nvvm_suld_1d_array_i32_clamp:
2926     return NVPTXISD::Suld1DArrayI32Clamp;
2927   case Intrinsic::nvvm_suld_1d_array_i64_clamp:
2928     return NVPTXISD::Suld1DArrayI64Clamp;
2929   case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
2930     return NVPTXISD::Suld1DArrayV2I8Clamp;
2931   case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
2932     return NVPTXISD::Suld1DArrayV2I16Clamp;
2933   case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
2934     return NVPTXISD::Suld1DArrayV2I32Clamp;
2935   case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
2936     return NVPTXISD::Suld1DArrayV2I64Clamp;
2937   case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
2938     return NVPTXISD::Suld1DArrayV4I8Clamp;
2939   case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
2940     return NVPTXISD::Suld1DArrayV4I16Clamp;
2941   case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
2942     return NVPTXISD::Suld1DArrayV4I32Clamp;
2943   case Intrinsic::nvvm_suld_2d_i8_clamp:
2944     return NVPTXISD::Suld2DI8Clamp;
2945   case Intrinsic::nvvm_suld_2d_i16_clamp:
2946     return NVPTXISD::Suld2DI16Clamp;
2947   case Intrinsic::nvvm_suld_2d_i32_clamp:
2948     return NVPTXISD::Suld2DI32Clamp;
2949   case Intrinsic::nvvm_suld_2d_i64_clamp:
2950     return NVPTXISD::Suld2DI64Clamp;
2951   case Intrinsic::nvvm_suld_2d_v2i8_clamp:
2952     return NVPTXISD::Suld2DV2I8Clamp;
2953   case Intrinsic::nvvm_suld_2d_v2i16_clamp:
2954     return NVPTXISD::Suld2DV2I16Clamp;
2955   case Intrinsic::nvvm_suld_2d_v2i32_clamp:
2956     return NVPTXISD::Suld2DV2I32Clamp;
2957   case Intrinsic::nvvm_suld_2d_v2i64_clamp:
2958     return NVPTXISD::Suld2DV2I64Clamp;
2959   case Intrinsic::nvvm_suld_2d_v4i8_clamp:
2960     return NVPTXISD::Suld2DV4I8Clamp;
2961   case Intrinsic::nvvm_suld_2d_v4i16_clamp:
2962     return NVPTXISD::Suld2DV4I16Clamp;
2963   case Intrinsic::nvvm_suld_2d_v4i32_clamp:
2964     return NVPTXISD::Suld2DV4I32Clamp;
2965   case Intrinsic::nvvm_suld_2d_array_i8_clamp:
2966     return NVPTXISD::Suld2DArrayI8Clamp;
2967   case Intrinsic::nvvm_suld_2d_array_i16_clamp:
2968     return NVPTXISD::Suld2DArrayI16Clamp;
2969   case Intrinsic::nvvm_suld_2d_array_i32_clamp:
2970     return NVPTXISD::Suld2DArrayI32Clamp;
2971   case Intrinsic::nvvm_suld_2d_array_i64_clamp:
2972     return NVPTXISD::Suld2DArrayI64Clamp;
2973   case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
2974     return NVPTXISD::Suld2DArrayV2I8Clamp;
2975   case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
2976     return NVPTXISD::Suld2DArrayV2I16Clamp;
2977   case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
2978     return NVPTXISD::Suld2DArrayV2I32Clamp;
2979   case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
2980     return NVPTXISD::Suld2DArrayV2I64Clamp;
2981   case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
2982     return NVPTXISD::Suld2DArrayV4I8Clamp;
2983   case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
2984     return NVPTXISD::Suld2DArrayV4I16Clamp;
2985   case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
2986     return NVPTXISD::Suld2DArrayV4I32Clamp;
2987   case Intrinsic::nvvm_suld_3d_i8_clamp:
2988     return NVPTXISD::Suld3DI8Clamp;
2989   case Intrinsic::nvvm_suld_3d_i16_clamp:
2990     return NVPTXISD::Suld3DI16Clamp;
2991   case Intrinsic::nvvm_suld_3d_i32_clamp:
2992     return NVPTXISD::Suld3DI32Clamp;
2993   case Intrinsic::nvvm_suld_3d_i64_clamp:
2994     return NVPTXISD::Suld3DI64Clamp;
2995   case Intrinsic::nvvm_suld_3d_v2i8_clamp:
2996     return NVPTXISD::Suld3DV2I8Clamp;
2997   case Intrinsic::nvvm_suld_3d_v2i16_clamp:
2998     return NVPTXISD::Suld3DV2I16Clamp;
2999   case Intrinsic::nvvm_suld_3d_v2i32_clamp:
3000     return NVPTXISD::Suld3DV2I32Clamp;
3001   case Intrinsic::nvvm_suld_3d_v2i64_clamp:
3002     return NVPTXISD::Suld3DV2I64Clamp;
3003   case Intrinsic::nvvm_suld_3d_v4i8_clamp:
3004     return NVPTXISD::Suld3DV4I8Clamp;
3005   case Intrinsic::nvvm_suld_3d_v4i16_clamp:
3006     return NVPTXISD::Suld3DV4I16Clamp;
3007   case Intrinsic::nvvm_suld_3d_v4i32_clamp:
3008     return NVPTXISD::Suld3DV4I32Clamp;
3009   case Intrinsic::nvvm_suld_1d_i8_trap:
3010     return NVPTXISD::Suld1DI8Trap;
3011   case Intrinsic::nvvm_suld_1d_i16_trap:
3012     return NVPTXISD::Suld1DI16Trap;
3013   case Intrinsic::nvvm_suld_1d_i32_trap:
3014     return NVPTXISD::Suld1DI32Trap;
3015   case Intrinsic::nvvm_suld_1d_i64_trap:
3016     return NVPTXISD::Suld1DI64Trap;
3017   case Intrinsic::nvvm_suld_1d_v2i8_trap:
3018     return NVPTXISD::Suld1DV2I8Trap;
3019   case Intrinsic::nvvm_suld_1d_v2i16_trap:
3020     return NVPTXISD::Suld1DV2I16Trap;
3021   case Intrinsic::nvvm_suld_1d_v2i32_trap:
3022     return NVPTXISD::Suld1DV2I32Trap;
3023   case Intrinsic::nvvm_suld_1d_v2i64_trap:
3024     return NVPTXISD::Suld1DV2I64Trap;
3025   case Intrinsic::nvvm_suld_1d_v4i8_trap:
3026     return NVPTXISD::Suld1DV4I8Trap;
3027   case Intrinsic::nvvm_suld_1d_v4i16_trap:
3028     return NVPTXISD::Suld1DV4I16Trap;
3029   case Intrinsic::nvvm_suld_1d_v4i32_trap:
3030     return NVPTXISD::Suld1DV4I32Trap;
3031   case Intrinsic::nvvm_suld_1d_array_i8_trap:
3032     return NVPTXISD::Suld1DArrayI8Trap;
3033   case Intrinsic::nvvm_suld_1d_array_i16_trap:
3034     return NVPTXISD::Suld1DArrayI16Trap;
3035   case Intrinsic::nvvm_suld_1d_array_i32_trap:
3036     return NVPTXISD::Suld1DArrayI32Trap;
3037   case Intrinsic::nvvm_suld_1d_array_i64_trap:
3038     return NVPTXISD::Suld1DArrayI64Trap;
3039   case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
3040     return NVPTXISD::Suld1DArrayV2I8Trap;
3041   case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
3042     return NVPTXISD::Suld1DArrayV2I16Trap;
3043   case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
3044     return NVPTXISD::Suld1DArrayV2I32Trap;
3045   case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
3046     return NVPTXISD::Suld1DArrayV2I64Trap;
3047   case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
3048     return NVPTXISD::Suld1DArrayV4I8Trap;
3049   case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
3050     return NVPTXISD::Suld1DArrayV4I16Trap;
3051   case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
3052     return NVPTXISD::Suld1DArrayV4I32Trap;
3053   case Intrinsic::nvvm_suld_2d_i8_trap:
3054     return NVPTXISD::Suld2DI8Trap;
3055   case Intrinsic::nvvm_suld_2d_i16_trap:
3056     return NVPTXISD::Suld2DI16Trap;
3057   case Intrinsic::nvvm_suld_2d_i32_trap:
3058     return NVPTXISD::Suld2DI32Trap;
3059   case Intrinsic::nvvm_suld_2d_i64_trap:
3060     return NVPTXISD::Suld2DI64Trap;
3061   case Intrinsic::nvvm_suld_2d_v2i8_trap:
3062     return NVPTXISD::Suld2DV2I8Trap;
3063   case Intrinsic::nvvm_suld_2d_v2i16_trap:
3064     return NVPTXISD::Suld2DV2I16Trap;
3065   case Intrinsic::nvvm_suld_2d_v2i32_trap:
3066     return NVPTXISD::Suld2DV2I32Trap;
3067   case Intrinsic::nvvm_suld_2d_v2i64_trap:
3068     return NVPTXISD::Suld2DV2I64Trap;
3069   case Intrinsic::nvvm_suld_2d_v4i8_trap:
3070     return NVPTXISD::Suld2DV4I8Trap;
3071   case Intrinsic::nvvm_suld_2d_v4i16_trap:
3072     return NVPTXISD::Suld2DV4I16Trap;
3073   case Intrinsic::nvvm_suld_2d_v4i32_trap:
3074     return NVPTXISD::Suld2DV4I32Trap;
3075   case Intrinsic::nvvm_suld_2d_array_i8_trap:
3076     return NVPTXISD::Suld2DArrayI8Trap;
3077   case Intrinsic::nvvm_suld_2d_array_i16_trap:
3078     return NVPTXISD::Suld2DArrayI16Trap;
3079   case Intrinsic::nvvm_suld_2d_array_i32_trap:
3080     return NVPTXISD::Suld2DArrayI32Trap;
3081   case Intrinsic::nvvm_suld_2d_array_i64_trap:
3082     return NVPTXISD::Suld2DArrayI64Trap;
3083   case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
3084     return NVPTXISD::Suld2DArrayV2I8Trap;
3085   case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
3086     return NVPTXISD::Suld2DArrayV2I16Trap;
3087   case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
3088     return NVPTXISD::Suld2DArrayV2I32Trap;
3089   case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
3090     return NVPTXISD::Suld2DArrayV2I64Trap;
3091   case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
3092     return NVPTXISD::Suld2DArrayV4I8Trap;
3093   case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
3094     return NVPTXISD::Suld2DArrayV4I16Trap;
3095   case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
3096     return NVPTXISD::Suld2DArrayV4I32Trap;
3097   case Intrinsic::nvvm_suld_3d_i8_trap:
3098     return NVPTXISD::Suld3DI8Trap;
3099   case Intrinsic::nvvm_suld_3d_i16_trap:
3100     return NVPTXISD::Suld3DI16Trap;
3101   case Intrinsic::nvvm_suld_3d_i32_trap:
3102     return NVPTXISD::Suld3DI32Trap;
3103   case Intrinsic::nvvm_suld_3d_i64_trap:
3104     return NVPTXISD::Suld3DI64Trap;
3105   case Intrinsic::nvvm_suld_3d_v2i8_trap:
3106     return NVPTXISD::Suld3DV2I8Trap;
3107   case Intrinsic::nvvm_suld_3d_v2i16_trap:
3108     return NVPTXISD::Suld3DV2I16Trap;
3109   case Intrinsic::nvvm_suld_3d_v2i32_trap:
3110     return NVPTXISD::Suld3DV2I32Trap;
3111   case Intrinsic::nvvm_suld_3d_v2i64_trap:
3112     return NVPTXISD::Suld3DV2I64Trap;
3113   case Intrinsic::nvvm_suld_3d_v4i8_trap:
3114     return NVPTXISD::Suld3DV4I8Trap;
3115   case Intrinsic::nvvm_suld_3d_v4i16_trap:
3116     return NVPTXISD::Suld3DV4I16Trap;
3117   case Intrinsic::nvvm_suld_3d_v4i32_trap:
3118     return NVPTXISD::Suld3DV4I32Trap;
3119   case Intrinsic::nvvm_suld_1d_i8_zero:
3120     return NVPTXISD::Suld1DI8Zero;
3121   case Intrinsic::nvvm_suld_1d_i16_zero:
3122     return NVPTXISD::Suld1DI16Zero;
3123   case Intrinsic::nvvm_suld_1d_i32_zero:
3124     return NVPTXISD::Suld1DI32Zero;
3125   case Intrinsic::nvvm_suld_1d_i64_zero:
3126     return NVPTXISD::Suld1DI64Zero;
3127   case Intrinsic::nvvm_suld_1d_v2i8_zero:
3128     return NVPTXISD::Suld1DV2I8Zero;
3129   case Intrinsic::nvvm_suld_1d_v2i16_zero:
3130     return NVPTXISD::Suld1DV2I16Zero;
3131   case Intrinsic::nvvm_suld_1d_v2i32_zero:
3132     return NVPTXISD::Suld1DV2I32Zero;
3133   case Intrinsic::nvvm_suld_1d_v2i64_zero:
3134     return NVPTXISD::Suld1DV2I64Zero;
3135   case Intrinsic::nvvm_suld_1d_v4i8_zero:
3136     return NVPTXISD::Suld1DV4I8Zero;
3137   case Intrinsic::nvvm_suld_1d_v4i16_zero:
3138     return NVPTXISD::Suld1DV4I16Zero;
3139   case Intrinsic::nvvm_suld_1d_v4i32_zero:
3140     return NVPTXISD::Suld1DV4I32Zero;
3141   case Intrinsic::nvvm_suld_1d_array_i8_zero:
3142     return NVPTXISD::Suld1DArrayI8Zero;
3143   case Intrinsic::nvvm_suld_1d_array_i16_zero:
3144     return NVPTXISD::Suld1DArrayI16Zero;
3145   case Intrinsic::nvvm_suld_1d_array_i32_zero:
3146     return NVPTXISD::Suld1DArrayI32Zero;
3147   case Intrinsic::nvvm_suld_1d_array_i64_zero:
3148     return NVPTXISD::Suld1DArrayI64Zero;
3149   case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
3150     return NVPTXISD::Suld1DArrayV2I8Zero;
3151   case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
3152     return NVPTXISD::Suld1DArrayV2I16Zero;
3153   case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
3154     return NVPTXISD::Suld1DArrayV2I32Zero;
3155   case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
3156     return NVPTXISD::Suld1DArrayV2I64Zero;
3157   case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
3158     return NVPTXISD::Suld1DArrayV4I8Zero;
3159   case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
3160     return NVPTXISD::Suld1DArrayV4I16Zero;
3161   case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
3162     return NVPTXISD::Suld1DArrayV4I32Zero;
3163   case Intrinsic::nvvm_suld_2d_i8_zero:
3164     return NVPTXISD::Suld2DI8Zero;
3165   case Intrinsic::nvvm_suld_2d_i16_zero:
3166     return NVPTXISD::Suld2DI16Zero;
3167   case Intrinsic::nvvm_suld_2d_i32_zero:
3168     return NVPTXISD::Suld2DI32Zero;
3169   case Intrinsic::nvvm_suld_2d_i64_zero:
3170     return NVPTXISD::Suld2DI64Zero;
3171   case Intrinsic::nvvm_suld_2d_v2i8_zero:
3172     return NVPTXISD::Suld2DV2I8Zero;
3173   case Intrinsic::nvvm_suld_2d_v2i16_zero:
3174     return NVPTXISD::Suld2DV2I16Zero;
3175   case Intrinsic::nvvm_suld_2d_v2i32_zero:
3176     return NVPTXISD::Suld2DV2I32Zero;
3177   case Intrinsic::nvvm_suld_2d_v2i64_zero:
3178     return NVPTXISD::Suld2DV2I64Zero;
3179   case Intrinsic::nvvm_suld_2d_v4i8_zero:
3180     return NVPTXISD::Suld2DV4I8Zero;
3181   case Intrinsic::nvvm_suld_2d_v4i16_zero:
3182     return NVPTXISD::Suld2DV4I16Zero;
3183   case Intrinsic::nvvm_suld_2d_v4i32_zero:
3184     return NVPTXISD::Suld2DV4I32Zero;
3185   case Intrinsic::nvvm_suld_2d_array_i8_zero:
3186     return NVPTXISD::Suld2DArrayI8Zero;
3187   case Intrinsic::nvvm_suld_2d_array_i16_zero:
3188     return NVPTXISD::Suld2DArrayI16Zero;
3189   case Intrinsic::nvvm_suld_2d_array_i32_zero:
3190     return NVPTXISD::Suld2DArrayI32Zero;
3191   case Intrinsic::nvvm_suld_2d_array_i64_zero:
3192     return NVPTXISD::Suld2DArrayI64Zero;
3193   case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
3194     return NVPTXISD::Suld2DArrayV2I8Zero;
3195   case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
3196     return NVPTXISD::Suld2DArrayV2I16Zero;
3197   case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
3198     return NVPTXISD::Suld2DArrayV2I32Zero;
3199   case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
3200     return NVPTXISD::Suld2DArrayV2I64Zero;
3201   case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
3202     return NVPTXISD::Suld2DArrayV4I8Zero;
3203   case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
3204     return NVPTXISD::Suld2DArrayV4I16Zero;
3205   case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
3206     return NVPTXISD::Suld2DArrayV4I32Zero;
3207   case Intrinsic::nvvm_suld_3d_i8_zero:
3208     return NVPTXISD::Suld3DI8Zero;
3209   case Intrinsic::nvvm_suld_3d_i16_zero:
3210     return NVPTXISD::Suld3DI16Zero;
3211   case Intrinsic::nvvm_suld_3d_i32_zero:
3212     return NVPTXISD::Suld3DI32Zero;
3213   case Intrinsic::nvvm_suld_3d_i64_zero:
3214     return NVPTXISD::Suld3DI64Zero;
3215   case Intrinsic::nvvm_suld_3d_v2i8_zero:
3216     return NVPTXISD::Suld3DV2I8Zero;
3217   case Intrinsic::nvvm_suld_3d_v2i16_zero:
3218     return NVPTXISD::Suld3DV2I16Zero;
3219   case Intrinsic::nvvm_suld_3d_v2i32_zero:
3220     return NVPTXISD::Suld3DV2I32Zero;
3221   case Intrinsic::nvvm_suld_3d_v2i64_zero:
3222     return NVPTXISD::Suld3DV2I64Zero;
3223   case Intrinsic::nvvm_suld_3d_v4i8_zero:
3224     return NVPTXISD::Suld3DV4I8Zero;
3225   case Intrinsic::nvvm_suld_3d_v4i16_zero:
3226     return NVPTXISD::Suld3DV4I16Zero;
3227   case Intrinsic::nvvm_suld_3d_v4i32_zero:
3228     return NVPTXISD::Suld3DV4I32Zero;
3229   }
3230 }
3231
3232 // llvm.ptx.memcpy.const and llvm.ptx.memmove.const need to be modeled as
3233 // TgtMemIntrinsic
3234 // because we need the information that is only available in the "Value" type
3235 // of destination
3236 // pointer. In particular, the address space information.
3237 bool NVPTXTargetLowering::getTgtMemIntrinsic(
3238     IntrinsicInfo &Info, const CallInst &I, unsigned Intrinsic) const {
3239   switch (Intrinsic) {
3240   default:
3241     return false;
3242
3243   case Intrinsic::nvvm_atomic_load_add_f32:
3244     Info.opc = ISD::INTRINSIC_W_CHAIN;
3245     Info.memVT = MVT::f32;
3246     Info.ptrVal = I.getArgOperand(0);
3247     Info.offset = 0;
3248     Info.vol = 0;
3249     Info.readMem = true;
3250     Info.writeMem = true;
3251     Info.align = 0;
3252     return true;
3253
3254   case Intrinsic::nvvm_atomic_load_inc_32:
3255   case Intrinsic::nvvm_atomic_load_dec_32:
3256     Info.opc = ISD::INTRINSIC_W_CHAIN;
3257     Info.memVT = MVT::i32;
3258     Info.ptrVal = I.getArgOperand(0);
3259     Info.offset = 0;
3260     Info.vol = 0;
3261     Info.readMem = true;
3262     Info.writeMem = true;
3263     Info.align = 0;
3264     return true;
3265
3266   case Intrinsic::nvvm_ldu_global_i:
3267   case Intrinsic::nvvm_ldu_global_f:
3268   case Intrinsic::nvvm_ldu_global_p: {
3269     auto &DL = I.getModule()->getDataLayout();
3270     Info.opc = ISD::INTRINSIC_W_CHAIN;
3271     if (Intrinsic == Intrinsic::nvvm_ldu_global_i)
3272       Info.memVT = getValueType(DL, I.getType());
3273     else if(Intrinsic == Intrinsic::nvvm_ldu_global_p)
3274       Info.memVT = getPointerTy(DL);
3275     else
3276       Info.memVT = getValueType(DL, I.getType());
3277     Info.ptrVal = I.getArgOperand(0);
3278     Info.offset = 0;
3279     Info.vol = 0;
3280     Info.readMem = true;
3281     Info.writeMem = false;
3282     Info.align = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
3283
3284     return true;
3285   }
3286   case Intrinsic::nvvm_ldg_global_i:
3287   case Intrinsic::nvvm_ldg_global_f:
3288   case Intrinsic::nvvm_ldg_global_p: {
3289     auto &DL = I.getModule()->getDataLayout();
3290
3291     Info.opc = ISD::INTRINSIC_W_CHAIN;
3292     if (Intrinsic == Intrinsic::nvvm_ldg_global_i)
3293       Info.memVT = getValueType(DL, I.getType());
3294     else if(Intrinsic == Intrinsic::nvvm_ldg_global_p)
3295       Info.memVT = getPointerTy(DL);
3296     else
3297       Info.memVT = getValueType(DL, I.getType());
3298     Info.ptrVal = I.getArgOperand(0);
3299     Info.offset = 0;
3300     Info.vol = 0;
3301     Info.readMem = true;
3302     Info.writeMem = false;
3303     Info.align = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
3304
3305     return true;
3306   }
3307
3308   case Intrinsic::nvvm_tex_1d_v4f32_s32:
3309   case Intrinsic::nvvm_tex_1d_v4f32_f32:
3310   case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
3311   case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
3312   case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
3313   case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
3314   case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
3315   case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
3316   case Intrinsic::nvvm_tex_2d_v4f32_s32:
3317   case Intrinsic::nvvm_tex_2d_v4f32_f32:
3318   case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
3319   case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
3320   case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
3321   case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
3322   case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
3323   case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
3324   case Intrinsic::nvvm_tex_3d_v4f32_s32:
3325   case Intrinsic::nvvm_tex_3d_v4f32_f32:
3326   case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
3327   case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
3328   case Intrinsic::nvvm_tex_cube_v4f32_f32:
3329   case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
3330   case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
3331   case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
3332   case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
3333   case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
3334   case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
3335   case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
3336   case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
3337   case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
3338   case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
3339   case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
3340   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
3341   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
3342   case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
3343   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
3344   case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
3345   case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
3346   case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
3347   case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
3348   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
3349   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
3350   case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
3351   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
3352   case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
3353   case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
3354   case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
3355   case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
3356   case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
3357   case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
3358   case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
3359   case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
3360   case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
3361   case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
3362   case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
3363   case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32: {
3364     Info.opc = getOpcForTextureInstr(Intrinsic);
3365     Info.memVT = MVT::v4f32;
3366     Info.ptrVal = nullptr;
3367     Info.offset = 0;
3368     Info.vol = 0;
3369     Info.readMem = true;
3370     Info.writeMem = false;
3371     Info.align = 16;
3372     return true;
3373   }
3374   case Intrinsic::nvvm_tex_1d_v4s32_s32:
3375   case Intrinsic::nvvm_tex_1d_v4s32_f32:
3376   case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
3377   case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
3378   case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
3379   case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
3380   case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
3381   case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
3382   case Intrinsic::nvvm_tex_2d_v4s32_s32:
3383   case Intrinsic::nvvm_tex_2d_v4s32_f32:
3384   case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
3385   case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
3386   case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
3387   case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
3388   case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
3389   case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
3390   case Intrinsic::nvvm_tex_3d_v4s32_s32:
3391   case Intrinsic::nvvm_tex_3d_v4s32_f32:
3392   case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
3393   case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
3394   case Intrinsic::nvvm_tex_cube_v4s32_f32:
3395   case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
3396   case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
3397   case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
3398   case Intrinsic::nvvm_tex_cube_v4u32_f32:
3399   case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
3400   case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
3401   case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
3402   case Intrinsic::nvvm_tex_1d_v4u32_s32:
3403   case Intrinsic::nvvm_tex_1d_v4u32_f32:
3404   case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
3405   case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
3406   case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
3407   case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
3408   case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
3409   case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
3410   case Intrinsic::nvvm_tex_2d_v4u32_s32:
3411   case Intrinsic::nvvm_tex_2d_v4u32_f32:
3412   case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
3413   case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
3414   case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
3415   case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
3416   case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
3417   case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
3418   case Intrinsic::nvvm_tex_3d_v4u32_s32:
3419   case Intrinsic::nvvm_tex_3d_v4u32_f32:
3420   case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
3421   case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
3422   case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
3423   case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
3424   case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
3425   case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
3426   case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
3427   case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
3428   case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
3429   case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
3430   case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
3431   case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
3432   case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
3433   case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
3434   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
3435   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
3436   case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
3437   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
3438   case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
3439   case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
3440   case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
3441   case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
3442   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
3443   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
3444   case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
3445   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
3446   case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
3447   case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
3448   case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
3449   case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
3450   case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
3451   case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
3452   case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
3453   case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
3454   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
3455   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
3456   case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
3457   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
3458   case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
3459   case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
3460   case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
3461   case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
3462   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
3463   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
3464   case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
3465   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
3466   case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
3467   case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
3468   case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
3469   case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
3470   case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
3471   case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
3472   case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
3473   case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
3474   case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
3475   case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
3476   case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
3477   case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
3478   case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
3479   case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
3480   case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
3481   case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
3482   case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
3483   case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
3484   case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
3485   case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32: {
3486     Info.opc = getOpcForTextureInstr(Intrinsic);
3487     Info.memVT = MVT::v4i32;
3488     Info.ptrVal = nullptr;
3489     Info.offset = 0;
3490     Info.vol = 0;
3491     Info.readMem = true;
3492     Info.writeMem = false;
3493     Info.align = 16;
3494     return true;
3495   }
3496   case Intrinsic::nvvm_suld_1d_i8_clamp:
3497   case Intrinsic::nvvm_suld_1d_v2i8_clamp:
3498   case Intrinsic::nvvm_suld_1d_v4i8_clamp:
3499   case Intrinsic::nvvm_suld_1d_array_i8_clamp:
3500   case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
3501   case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
3502   case Intrinsic::nvvm_suld_2d_i8_clamp:
3503   case Intrinsic::nvvm_suld_2d_v2i8_clamp:
3504   case Intrinsic::nvvm_suld_2d_v4i8_clamp:
3505   case Intrinsic::nvvm_suld_2d_array_i8_clamp:
3506   case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
3507   case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
3508   case Intrinsic::nvvm_suld_3d_i8_clamp:
3509   case Intrinsic::nvvm_suld_3d_v2i8_clamp:
3510   case Intrinsic::nvvm_suld_3d_v4i8_clamp:
3511   case Intrinsic::nvvm_suld_1d_i8_trap:
3512   case Intrinsic::nvvm_suld_1d_v2i8_trap:
3513   case Intrinsic::nvvm_suld_1d_v4i8_trap:
3514   case Intrinsic::nvvm_suld_1d_array_i8_trap:
3515   case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
3516   case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
3517   case Intrinsic::nvvm_suld_2d_i8_trap:
3518   case Intrinsic::nvvm_suld_2d_v2i8_trap:
3519   case Intrinsic::nvvm_suld_2d_v4i8_trap:
3520   case Intrinsic::nvvm_suld_2d_array_i8_trap:
3521   case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
3522   case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
3523   case Intrinsic::nvvm_suld_3d_i8_trap:
3524   case Intrinsic::nvvm_suld_3d_v2i8_trap:
3525   case Intrinsic::nvvm_suld_3d_v4i8_trap:
3526   case Intrinsic::nvvm_suld_1d_i8_zero:
3527   case Intrinsic::nvvm_suld_1d_v2i8_zero:
3528   case Intrinsic::nvvm_suld_1d_v4i8_zero:
3529   case Intrinsic::nvvm_suld_1d_array_i8_zero:
3530   case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
3531   case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
3532   case Intrinsic::nvvm_suld_2d_i8_zero:
3533   case Intrinsic::nvvm_suld_2d_v2i8_zero:
3534   case Intrinsic::nvvm_suld_2d_v4i8_zero:
3535   case Intrinsic::nvvm_suld_2d_array_i8_zero:
3536   case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
3537   case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
3538   case Intrinsic::nvvm_suld_3d_i8_zero:
3539   case Intrinsic::nvvm_suld_3d_v2i8_zero:
3540   case Intrinsic::nvvm_suld_3d_v4i8_zero: {
3541     Info.opc = getOpcForSurfaceInstr(Intrinsic);
3542     Info.memVT = MVT::i8;
3543     Info.ptrVal = nullptr;
3544     Info.offset = 0;
3545     Info.vol = 0;
3546     Info.readMem = true;
3547     Info.writeMem = false;
3548     Info.align = 16;
3549     return true;
3550   }
3551   case Intrinsic::nvvm_suld_1d_i16_clamp:
3552   case Intrinsic::nvvm_suld_1d_v2i16_clamp:
3553   case Intrinsic::nvvm_suld_1d_v4i16_clamp:
3554   case Intrinsic::nvvm_suld_1d_array_i16_clamp:
3555   case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
3556   case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
3557   case Intrinsic::nvvm_suld_2d_i16_clamp:
3558   case Intrinsic::nvvm_suld_2d_v2i16_clamp:
3559   case Intrinsic::nvvm_suld_2d_v4i16_clamp:
3560   case Intrinsic::nvvm_suld_2d_array_i16_clamp:
3561   case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
3562   case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
3563   case Intrinsic::nvvm_suld_3d_i16_clamp:
3564   case Intrinsic::nvvm_suld_3d_v2i16_clamp:
3565   case Intrinsic::nvvm_suld_3d_v4i16_clamp:
3566   case Intrinsic::nvvm_suld_1d_i16_trap:
3567   case Intrinsic::nvvm_suld_1d_v2i16_trap:
3568   case Intrinsic::nvvm_suld_1d_v4i16_trap:
3569   case Intrinsic::nvvm_suld_1d_array_i16_trap:
3570   case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
3571   case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
3572   case Intrinsic::nvvm_suld_2d_i16_trap:
3573   case Intrinsic::nvvm_suld_2d_v2i16_trap:
3574   case Intrinsic::nvvm_suld_2d_v4i16_trap:
3575   case Intrinsic::nvvm_suld_2d_array_i16_trap:
3576   case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
3577   case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
3578   case Intrinsic::nvvm_suld_3d_i16_trap:
3579   case Intrinsic::nvvm_suld_3d_v2i16_trap:
3580   case Intrinsic::nvvm_suld_3d_v4i16_trap:
3581   case Intrinsic::nvvm_suld_1d_i16_zero:
3582   case Intrinsic::nvvm_suld_1d_v2i16_zero:
3583   case Intrinsic::nvvm_suld_1d_v4i16_zero:
3584   case Intrinsic::nvvm_suld_1d_array_i16_zero:
3585   case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
3586   case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
3587   case Intrinsic::nvvm_suld_2d_i16_zero:
3588   case Intrinsic::nvvm_suld_2d_v2i16_zero:
3589   case Intrinsic::nvvm_suld_2d_v4i16_zero:
3590   case Intrinsic::nvvm_suld_2d_array_i16_zero:
3591   case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
3592   case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
3593   case Intrinsic::nvvm_suld_3d_i16_zero:
3594   case Intrinsic::nvvm_suld_3d_v2i16_zero:
3595   case Intrinsic::nvvm_suld_3d_v4i16_zero: {
3596     Info.opc = getOpcForSurfaceInstr(Intrinsic);
3597     Info.memVT = MVT::i16;
3598     Info.ptrVal = nullptr;
3599     Info.offset = 0;
3600     Info.vol = 0;
3601     Info.readMem = true;
3602     Info.writeMem = false;
3603     Info.align = 16;
3604     return true;
3605   }
3606   case Intrinsic::nvvm_suld_1d_i32_clamp:
3607   case Intrinsic::nvvm_suld_1d_v2i32_clamp:
3608   case Intrinsic::nvvm_suld_1d_v4i32_clamp:
3609   case Intrinsic::nvvm_suld_1d_array_i32_clamp:
3610   case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
3611   case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
3612   case Intrinsic::nvvm_suld_2d_i32_clamp:
3613   case Intrinsic::nvvm_suld_2d_v2i32_clamp:
3614   case Intrinsic::nvvm_suld_2d_v4i32_clamp:
3615   case Intrinsic::nvvm_suld_2d_array_i32_clamp:
3616   case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
3617   case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
3618   case Intrinsic::nvvm_suld_3d_i32_clamp:
3619   case Intrinsic::nvvm_suld_3d_v2i32_clamp:
3620   case Intrinsic::nvvm_suld_3d_v4i32_clamp:
3621   case Intrinsic::nvvm_suld_1d_i32_trap:
3622   case Intrinsic::nvvm_suld_1d_v2i32_trap:
3623   case Intrinsic::nvvm_suld_1d_v4i32_trap:
3624   case Intrinsic::nvvm_suld_1d_array_i32_trap:
3625   case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
3626   case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
3627   case Intrinsic::nvvm_suld_2d_i32_trap:
3628   case Intrinsic::nvvm_suld_2d_v2i32_trap:
3629   case Intrinsic::nvvm_suld_2d_v4i32_trap:
3630   case Intrinsic::nvvm_suld_2d_array_i32_trap:
3631   case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
3632   case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
3633   case Intrinsic::nvvm_suld_3d_i32_trap:
3634   case Intrinsic::nvvm_suld_3d_v2i32_trap:
3635   case Intrinsic::nvvm_suld_3d_v4i32_trap:
3636   case Intrinsic::nvvm_suld_1d_i32_zero:
3637   case Intrinsic::nvvm_suld_1d_v2i32_zero:
3638   case Intrinsic::nvvm_suld_1d_v4i32_zero:
3639   case Intrinsic::nvvm_suld_1d_array_i32_zero:
3640   case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
3641   case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
3642   case Intrinsic::nvvm_suld_2d_i32_zero:
3643   case Intrinsic::nvvm_suld_2d_v2i32_zero:
3644   case Intrinsic::nvvm_suld_2d_v4i32_zero:
3645   case Intrinsic::nvvm_suld_2d_array_i32_zero:
3646   case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
3647   case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
3648   case Intrinsic::nvvm_suld_3d_i32_zero:
3649   case Intrinsic::nvvm_suld_3d_v2i32_zero:
3650   case Intrinsic::nvvm_suld_3d_v4i32_zero: {
3651     Info.opc = getOpcForSurfaceInstr(Intrinsic);
3652     Info.memVT = MVT::i32;
3653     Info.ptrVal = nullptr;
3654     Info.offset = 0;
3655     Info.vol = 0;
3656     Info.readMem = true;
3657     Info.writeMem = false;
3658     Info.align = 16;
3659     return true;
3660   }
3661   case Intrinsic::nvvm_suld_1d_i64_clamp:
3662   case Intrinsic::nvvm_suld_1d_v2i64_clamp:
3663   case Intrinsic::nvvm_suld_1d_array_i64_clamp:
3664   case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
3665   case Intrinsic::nvvm_suld_2d_i64_clamp:
3666   case Intrinsic::nvvm_suld_2d_v2i64_clamp:
3667   case Intrinsic::nvvm_suld_2d_array_i64_clamp:
3668   case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
3669   case Intrinsic::nvvm_suld_3d_i64_clamp:
3670   case Intrinsic::nvvm_suld_3d_v2i64_clamp:
3671   case Intrinsic::nvvm_suld_1d_i64_trap:
3672   case Intrinsic::nvvm_suld_1d_v2i64_trap:
3673   case Intrinsic::nvvm_suld_1d_array_i64_trap:
3674   case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
3675   case Intrinsic::nvvm_suld_2d_i64_trap:
3676   case Intrinsic::nvvm_suld_2d_v2i64_trap:
3677   case Intrinsic::nvvm_suld_2d_array_i64_trap:
3678   case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
3679   case Intrinsic::nvvm_suld_3d_i64_trap:
3680   case Intrinsic::nvvm_suld_3d_v2i64_trap:
3681   case Intrinsic::nvvm_suld_1d_i64_zero:
3682   case Intrinsic::nvvm_suld_1d_v2i64_zero:
3683   case Intrinsic::nvvm_suld_1d_array_i64_zero:
3684   case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
3685   case Intrinsic::nvvm_suld_2d_i64_zero:
3686   case Intrinsic::nvvm_suld_2d_v2i64_zero:
3687   case Intrinsic::nvvm_suld_2d_array_i64_zero:
3688   case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
3689   case Intrinsic::nvvm_suld_3d_i64_zero:
3690   case Intrinsic::nvvm_suld_3d_v2i64_zero: {
3691     Info.opc = getOpcForSurfaceInstr(Intrinsic);
3692     Info.memVT = MVT::i64;
3693     Info.ptrVal = nullptr;
3694     Info.offset = 0;
3695     Info.vol = 0;
3696     Info.readMem = true;
3697     Info.writeMem = false;
3698     Info.align = 16;
3699     return true;
3700   }
3701   }
3702   return false;
3703 }
3704
3705 /// isLegalAddressingMode - Return true if the addressing mode represented
3706 /// by AM is legal for this target, for a load/store of the specified type.
3707 /// Used to guide target specific optimizations, like loop strength reduction
3708 /// (LoopStrengthReduce.cpp) and memory optimization for address mode
3709 /// (CodeGenPrepare.cpp)
3710 bool NVPTXTargetLowering::isLegalAddressingMode(const DataLayout &DL,
3711                                                 const AddrMode &AM, Type *Ty,
3712                                                 unsigned AS) const {
3713
3714   // AddrMode - This represents an addressing mode of:
3715   //    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
3716   //
3717   // The legal address modes are
3718   // - [avar]
3719   // - [areg]
3720   // - [areg+immoff]
3721   // - [immAddr]
3722
3723   if (AM.BaseGV) {
3724     return !AM.BaseOffs && !AM.HasBaseReg && !AM.Scale;
3725   }
3726
3727   switch (AM.Scale) {
3728   case 0: // "r", "r+i" or "i" is allowed
3729     break;
3730   case 1:
3731     if (AM.HasBaseReg) // "r+r+i" or "r+r" is not allowed.
3732       return false;
3733     // Otherwise we have r+i.
3734     break;
3735   default:
3736     // No scale > 1 is allowed
3737     return false;
3738   }
3739   return true;
3740 }
3741
3742 //===----------------------------------------------------------------------===//
3743 //                         NVPTX Inline Assembly Support
3744 //===----------------------------------------------------------------------===//
3745
3746 /// getConstraintType - Given a constraint letter, return the type of
3747 /// constraint it is for this target.
3748 NVPTXTargetLowering::ConstraintType
3749 NVPTXTargetLowering::getConstraintType(StringRef Constraint) const {
3750   if (Constraint.size() == 1) {
3751     switch (Constraint[0]) {
3752     default:
3753       break;
3754     case 'b':
3755     case 'r':
3756     case 'h':
3757     case 'c':
3758     case 'l':
3759     case 'f':
3760     case 'd':
3761     case '0':
3762     case 'N':
3763       return C_RegisterClass;
3764     }
3765   }
3766   return TargetLowering::getConstraintType(Constraint);
3767 }
3768
3769 std::pair<unsigned, const TargetRegisterClass *>
3770 NVPTXTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
3771                                                   StringRef Constraint,
3772                                                   MVT VT) const {
3773   if (Constraint.size() == 1) {
3774     switch (Constraint[0]) {
3775     case 'b':
3776       return std::make_pair(0U, &NVPTX::Int1RegsRegClass);
3777     case 'c':
3778       return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
3779     case 'h':
3780       return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
3781     case 'r':
3782       return std::make_pair(0U, &NVPTX::Int32RegsRegClass);
3783     case 'l':
3784     case 'N':
3785       return std::make_pair(0U, &NVPTX::Int64RegsRegClass);
3786     case 'f':
3787       return std::make_pair(0U, &NVPTX::Float32RegsRegClass);
3788     case 'd':
3789       return std::make_pair(0U, &NVPTX::Float64RegsRegClass);
3790     }
3791   }
3792   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
3793 }
3794
3795 //===----------------------------------------------------------------------===//
3796 //                         NVPTX DAG Combining
3797 //===----------------------------------------------------------------------===//
3798
3799 bool NVPTXTargetLowering::allowFMA(MachineFunction &MF,
3800                                    CodeGenOpt::Level OptLevel) const {
3801   const Function *F = MF.getFunction();
3802   const TargetOptions &TO = MF.getTarget().Options;
3803
3804   // Always honor command-line argument
3805   if (FMAContractLevelOpt.getNumOccurrences() > 0) {
3806     return FMAContractLevelOpt > 0;
3807   } else if (OptLevel == 0) {
3808     // Do not contract if we're not optimizing the code
3809     return false;
3810   } else if (TO.AllowFPOpFusion == FPOpFusion::Fast || TO.UnsafeFPMath) {
3811     // Honor TargetOptions flags that explicitly say fusion is okay
3812     return true;
3813   } else if (F->hasFnAttribute("unsafe-fp-math")) {
3814     // Check for unsafe-fp-math=true coming from Clang
3815     Attribute Attr = F->getFnAttribute("unsafe-fp-math");
3816     StringRef Val = Attr.getValueAsString();
3817     if (Val == "true")
3818       return true;
3819   }
3820
3821   // We did not have a clear indication that fusion is allowed, so assume not
3822   return false;
3823 }
3824
3825 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
3826 /// operands N0 and N1.  This is a helper for PerformADDCombine that is
3827 /// called with the default operands, and if that fails, with commuted
3828 /// operands.
3829 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
3830                                            TargetLowering::DAGCombinerInfo &DCI,
3831                                              const NVPTXSubtarget &Subtarget,
3832                                              CodeGenOpt::Level OptLevel) {
3833   SelectionDAG  &DAG = DCI.DAG;
3834   // Skip non-integer, non-scalar case
3835   EVT VT=N0.getValueType();
3836   if (VT.isVector())
3837     return SDValue();
3838
3839   // fold (add (mul a, b), c) -> (mad a, b, c)
3840   //
3841   if (N0.getOpcode() == ISD::MUL) {
3842     assert (VT.isInteger());
3843     // For integer:
3844     // Since integer multiply-add costs the same as integer multiply
3845     // but is more costly than integer add, do the fusion only when
3846     // the mul is only used in the add.
3847     if (OptLevel==CodeGenOpt::None || VT != MVT::i32 ||
3848         !N0.getNode()->hasOneUse())
3849       return SDValue();
3850
3851     // Do the folding
3852     return DAG.getNode(NVPTXISD::IMAD, SDLoc(N), VT,
3853                        N0.getOperand(0), N0.getOperand(1), N1);
3854   }
3855   else if (N0.getOpcode() == ISD::FMUL) {
3856     if (VT == MVT::f32 || VT == MVT::f64) {
3857       const auto *TLI = static_cast<const NVPTXTargetLowering *>(
3858           &DAG.getTargetLoweringInfo());
3859       if (!TLI->allowFMA(DAG.getMachineFunction(), OptLevel))
3860         return SDValue();
3861
3862       // For floating point:
3863       // Do the fusion only when the mul has less than 5 uses and all
3864       // are add.
3865       // The heuristic is that if a use is not an add, then that use
3866       // cannot be fused into fma, therefore mul is still needed anyway.
3867       // If there are more than 4 uses, even if they are all add, fusing
3868       // them will increase register pressue.
3869       //
3870       int numUses = 0;
3871       int nonAddCount = 0;
3872       for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
3873            UE = N0.getNode()->use_end();
3874            UI != UE; ++UI) {
3875         numUses++;
3876         SDNode *User = *UI;
3877         if (User->getOpcode() != ISD::FADD)
3878           ++nonAddCount;
3879       }
3880       if (numUses >= 5)
3881         return SDValue();
3882       if (nonAddCount) {
3883         int orderNo = N->getIROrder();
3884         int orderNo2 = N0.getNode()->getIROrder();
3885         // simple heuristics here for considering potential register
3886         // pressure, the logics here is that the differnce are used
3887         // to measure the distance between def and use, the longer distance
3888         // more likely cause register pressure.
3889         if (orderNo - orderNo2 < 500)
3890           return SDValue();
3891
3892         // Now, check if at least one of the FMUL's operands is live beyond the node N,
3893         // which guarantees that the FMA will not increase register pressure at node N.
3894         bool opIsLive = false;
3895         const SDNode *left = N0.getOperand(0).getNode();
3896         const SDNode *right = N0.getOperand(1).getNode();
3897
3898         if (isa<ConstantSDNode>(left) || isa<ConstantSDNode>(right))
3899           opIsLive = true;
3900
3901         if (!opIsLive)
3902           for (SDNode::use_iterator UI = left->use_begin(), UE = left->use_end(); UI != UE; ++UI) {
3903             SDNode *User = *UI;
3904             int orderNo3 = User->getIROrder();
3905             if (orderNo3 > orderNo) {
3906               opIsLive = true;
3907               break;
3908             }
3909           }
3910
3911         if (!opIsLive)
3912           for (SDNode::use_iterator UI = right->use_begin(), UE = right->use_end(); UI != UE; ++UI) {
3913             SDNode *User = *UI;
3914             int orderNo3 = User->getIROrder();
3915             if (orderNo3 > orderNo) {
3916               opIsLive = true;
3917               break;
3918             }
3919           }
3920
3921         if (!opIsLive)
3922           return SDValue();
3923       }
3924
3925       return DAG.getNode(ISD::FMA, SDLoc(N), VT,
3926                          N0.getOperand(0), N0.getOperand(1), N1);
3927     }
3928   }
3929
3930   return SDValue();
3931 }
3932
3933 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
3934 ///
3935 static SDValue PerformADDCombine(SDNode *N,
3936                                  TargetLowering::DAGCombinerInfo &DCI,
3937                                  const NVPTXSubtarget &Subtarget,
3938                                  CodeGenOpt::Level OptLevel) {
3939   SDValue N0 = N->getOperand(0);
3940   SDValue N1 = N->getOperand(1);
3941
3942   // First try with the default operand order.
3943   SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget,
3944                                                  OptLevel);
3945   if (Result.getNode())
3946     return Result;
3947
3948   // If that didn't work, try again with the operands commuted.
3949   return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget, OptLevel);
3950 }
3951
3952 static SDValue PerformANDCombine(SDNode *N,
3953                                  TargetLowering::DAGCombinerInfo &DCI) {
3954   // The type legalizer turns a vector load of i8 values into a zextload to i16
3955   // registers, optionally ANY_EXTENDs it (if target type is integer),
3956   // and ANDs off the high 8 bits. Since we turn this load into a
3957   // target-specific DAG node, the DAG combiner fails to eliminate these AND
3958   // nodes. Do that here.
3959   SDValue Val = N->getOperand(0);
3960   SDValue Mask = N->getOperand(1);
3961
3962   if (isa<ConstantSDNode>(Val)) {
3963     std::swap(Val, Mask);
3964   }
3965
3966   SDValue AExt;
3967   // Generally, we will see zextload -> IMOV16rr -> ANY_EXTEND -> and
3968   if (Val.getOpcode() == ISD::ANY_EXTEND) {
3969     AExt = Val;
3970     Val = Val->getOperand(0);
3971   }
3972
3973   if (Val->isMachineOpcode() && Val->getMachineOpcode() == NVPTX::IMOV16rr) {
3974     Val = Val->getOperand(0);
3975   }
3976
3977   if (Val->getOpcode() == NVPTXISD::LoadV2 ||
3978       Val->getOpcode() == NVPTXISD::LoadV4) {
3979     ConstantSDNode *MaskCnst = dyn_cast<ConstantSDNode>(Mask);
3980     if (!MaskCnst) {
3981       // Not an AND with a constant
3982       return SDValue();
3983     }
3984
3985     uint64_t MaskVal = MaskCnst->getZExtValue();
3986     if (MaskVal != 0xff) {
3987       // Not an AND that chops off top 8 bits
3988       return SDValue();
3989     }
3990
3991     MemSDNode *Mem = dyn_cast<MemSDNode>(Val);
3992     if (!Mem) {
3993       // Not a MemSDNode?!?
3994       return SDValue();
3995     }
3996
3997     EVT MemVT = Mem->getMemoryVT();
3998     if (MemVT != MVT::v2i8 && MemVT != MVT::v4i8) {
3999       // We only handle the i8 case
4000       return SDValue();
4001     }
4002
4003     unsigned ExtType =
4004       cast<ConstantSDNode>(Val->getOperand(Val->getNumOperands()-1))->
4005         getZExtValue();
4006     if (ExtType == ISD::SEXTLOAD) {
4007       // If for some reason the load is a sextload, the and is needed to zero
4008       // out the high 8 bits
4009       return SDValue();
4010     }
4011
4012     bool AddTo = false;
4013     if (AExt.getNode() != 0) {
4014       // Re-insert the ext as a zext.
4015       Val = DCI.DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
4016                             AExt.getValueType(), Val);
4017       AddTo = true;
4018     }
4019
4020     // If we get here, the AND is unnecessary.  Just replace it with the load
4021     DCI.CombineTo(N, Val, AddTo);
4022   }
4023
4024   return SDValue();
4025 }
4026
4027 static SDValue PerformSELECTCombine(SDNode *N,
4028                                     TargetLowering::DAGCombinerInfo &DCI) {
4029   // Currently this detects patterns for integer min and max and
4030   // lowers them to PTX-specific intrinsics that enable hardware
4031   // support.
4032
4033   const SDValue Cond = N->getOperand(0);
4034   if (Cond.getOpcode() != ISD::SETCC) return SDValue();
4035
4036   const SDValue LHS = Cond.getOperand(0);
4037   const SDValue RHS = Cond.getOperand(1);
4038   const SDValue True = N->getOperand(1);
4039   const SDValue False = N->getOperand(2);
4040   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
4041     return SDValue();
4042
4043   const EVT VT = N->getValueType(0);
4044   if (VT != MVT::i32 && VT != MVT::i64) return SDValue();
4045
4046   const ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
4047   SDValue Larger;  // The larger of LHS and RHS when condition is true.
4048   switch (CC) {
4049     case ISD::SETULT:
4050     case ISD::SETULE:
4051     case ISD::SETLT:
4052     case ISD::SETLE:
4053       Larger = RHS;
4054       break;
4055
4056     case ISD::SETGT:
4057     case ISD::SETGE:
4058     case ISD::SETUGT:
4059     case ISD::SETUGE:
4060       Larger = LHS;
4061       break;
4062
4063     default:
4064       return SDValue();
4065   }
4066   const bool IsMax = (Larger == True);
4067   const bool IsSigned = ISD::isSignedIntSetCC(CC);
4068
4069   unsigned IntrinsicId;
4070   if (VT == MVT::i32) {
4071     if (IsSigned)
4072       IntrinsicId = IsMax ? Intrinsic::nvvm_max_i : Intrinsic::nvvm_min_i;
4073     else
4074       IntrinsicId = IsMax ? Intrinsic::nvvm_max_ui : Intrinsic::nvvm_min_ui;
4075   } else {
4076     assert(VT == MVT::i64);
4077     if (IsSigned)
4078       IntrinsicId = IsMax ? Intrinsic::nvvm_max_ll : Intrinsic::nvvm_min_ll;
4079     else
4080       IntrinsicId = IsMax ? Intrinsic::nvvm_max_ull : Intrinsic::nvvm_min_ull;
4081   }
4082
4083   SDLoc DL(N);
4084   return DCI.DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
4085                          DCI.DAG.getConstant(IntrinsicId, DL, VT), LHS, RHS);
4086 }
4087
4088 enum OperandSignedness {
4089   Signed = 0,
4090   Unsigned,
4091   Unknown
4092 };
4093
4094 /// IsMulWideOperandDemotable - Checks if the provided DAG node is an operand
4095 /// that can be demoted to \p OptSize bits without loss of information. The
4096 /// signedness of the operand, if determinable, is placed in \p S.
4097 static bool IsMulWideOperandDemotable(SDValue Op,
4098                                       unsigned OptSize,
4099                                       OperandSignedness &S) {
4100   S = Unknown;
4101
4102   if (Op.getOpcode() == ISD::SIGN_EXTEND ||
4103       Op.getOpcode() == ISD::SIGN_EXTEND_INREG) {
4104     EVT OrigVT = Op.getOperand(0).getValueType();
4105     if (OrigVT.getSizeInBits() <= OptSize) {
4106       S = Signed;
4107       return true;
4108     }
4109   } else if (Op.getOpcode() == ISD::ZERO_EXTEND) {
4110     EVT OrigVT = Op.getOperand(0).getValueType();
4111     if (OrigVT.getSizeInBits() <= OptSize) {
4112       S = Unsigned;
4113       return true;
4114     }
4115   }
4116
4117   return false;
4118 }
4119
4120 /// AreMulWideOperandsDemotable - Checks if the given LHS and RHS operands can
4121 /// be demoted to \p OptSize bits without loss of information. If the operands
4122 /// contain a constant, it should appear as the RHS operand. The signedness of
4123 /// the operands is placed in \p IsSigned.
4124 static bool AreMulWideOperandsDemotable(SDValue LHS, SDValue RHS,
4125                                         unsigned OptSize,
4126                                         bool &IsSigned) {
4127
4128   OperandSignedness LHSSign;
4129
4130   // The LHS operand must be a demotable op
4131   if (!IsMulWideOperandDemotable(LHS, OptSize, LHSSign))
4132     return false;
4133
4134   // We should have been able to determine the signedness from the LHS
4135   if (LHSSign == Unknown)
4136     return false;
4137
4138   IsSigned = (LHSSign == Signed);
4139
4140   // The RHS can be a demotable op or a constant
4141   if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(RHS)) {
4142     APInt Val = CI->getAPIntValue();
4143     if (LHSSign == Unsigned) {
4144       return Val.isIntN(OptSize);
4145     } else {
4146       return Val.isSignedIntN(OptSize);
4147     }
4148   } else {
4149     OperandSignedness RHSSign;
4150     if (!IsMulWideOperandDemotable(RHS, OptSize, RHSSign))
4151       return false;
4152
4153     return LHSSign == RHSSign;
4154   }
4155 }
4156
4157 /// TryMULWIDECombine - Attempt to replace a multiply of M bits with a multiply
4158 /// of M/2 bits that produces an M-bit result (i.e. mul.wide). This transform
4159 /// works on both multiply DAG nodes and SHL DAG nodes with a constant shift
4160 /// amount.
4161 static SDValue TryMULWIDECombine(SDNode *N,
4162                                  TargetLowering::DAGCombinerInfo &DCI) {
4163   EVT MulType = N->getValueType(0);
4164   if (MulType != MVT::i32 && MulType != MVT::i64) {
4165     return SDValue();
4166   }
4167
4168   SDLoc DL(N);
4169   unsigned OptSize = MulType.getSizeInBits() >> 1;
4170   SDValue LHS = N->getOperand(0);
4171   SDValue RHS = N->getOperand(1);
4172
4173   // Canonicalize the multiply so the constant (if any) is on the right
4174   if (N->getOpcode() == ISD::MUL) {
4175     if (isa<ConstantSDNode>(LHS)) {
4176       std::swap(LHS, RHS);
4177     }
4178   }
4179
4180   // If we have a SHL, determine the actual multiply amount
4181   if (N->getOpcode() == ISD::SHL) {
4182     ConstantSDNode *ShlRHS = dyn_cast<ConstantSDNode>(RHS);
4183     if (!ShlRHS) {
4184       return SDValue();
4185     }
4186
4187     APInt ShiftAmt = ShlRHS->getAPIntValue();
4188     unsigned BitWidth = MulType.getSizeInBits();
4189     if (ShiftAmt.sge(0) && ShiftAmt.slt(BitWidth)) {
4190       APInt MulVal = APInt(BitWidth, 1) << ShiftAmt;
4191       RHS = DCI.DAG.getConstant(MulVal, DL, MulType);
4192     } else {
4193       return SDValue();
4194     }
4195   }
4196
4197   bool Signed;
4198   // Verify that our operands are demotable
4199   if (!AreMulWideOperandsDemotable(LHS, RHS, OptSize, Signed)) {
4200     return SDValue();
4201   }
4202
4203   EVT DemotedVT;
4204   if (MulType == MVT::i32) {
4205     DemotedVT = MVT::i16;
4206   } else {
4207     DemotedVT = MVT::i32;
4208   }
4209
4210   // Truncate the operands to the correct size. Note that these are just for
4211   // type consistency and will (likely) be eliminated in later phases.
4212   SDValue TruncLHS =
4213     DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, LHS);
4214   SDValue TruncRHS =
4215     DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, RHS);
4216
4217   unsigned Opc;
4218   if (Signed) {
4219     Opc = NVPTXISD::MUL_WIDE_SIGNED;
4220   } else {
4221     Opc = NVPTXISD::MUL_WIDE_UNSIGNED;
4222   }
4223
4224   return DCI.DAG.getNode(Opc, DL, MulType, TruncLHS, TruncRHS);
4225 }
4226
4227 /// PerformMULCombine - Runs PTX-specific DAG combine patterns on MUL nodes.
4228 static SDValue PerformMULCombine(SDNode *N,
4229                                  TargetLowering::DAGCombinerInfo &DCI,
4230                                  CodeGenOpt::Level OptLevel) {
4231   if (OptLevel > 0) {
4232     // Try mul.wide combining at OptLevel > 0
4233     SDValue Ret = TryMULWIDECombine(N, DCI);
4234     if (Ret.getNode())
4235       return Ret;
4236   }
4237
4238   return SDValue();
4239 }
4240
4241 /// PerformSHLCombine - Runs PTX-specific DAG combine patterns on SHL nodes.
4242 static SDValue PerformSHLCombine(SDNode *N,
4243                                  TargetLowering::DAGCombinerInfo &DCI,
4244                                  CodeGenOpt::Level OptLevel) {
4245   if (OptLevel > 0) {
4246     // Try mul.wide combining at OptLevel > 0
4247     SDValue Ret = TryMULWIDECombine(N, DCI);
4248     if (Ret.getNode())
4249       return Ret;
4250   }
4251
4252   return SDValue();
4253 }
4254
4255 SDValue NVPTXTargetLowering::PerformDAGCombine(SDNode *N,
4256                                                DAGCombinerInfo &DCI) const {
4257   CodeGenOpt::Level OptLevel = getTargetMachine().getOptLevel();
4258   switch (N->getOpcode()) {
4259     default: break;
4260     case ISD::ADD:
4261     case ISD::FADD:
4262       return PerformADDCombine(N, DCI, STI, OptLevel);
4263     case ISD::MUL:
4264       return PerformMULCombine(N, DCI, OptLevel);
4265     case ISD::SHL:
4266       return PerformSHLCombine(N, DCI, OptLevel);
4267     case ISD::AND:
4268       return PerformANDCombine(N, DCI);
4269     case ISD::SELECT:
4270       return PerformSELECTCombine(N, DCI);
4271   }
4272   return SDValue();
4273 }
4274
4275 /// ReplaceVectorLoad - Convert vector loads into multi-output scalar loads.
4276 static void ReplaceLoadVector(SDNode *N, SelectionDAG &DAG,
4277                               SmallVectorImpl<SDValue> &Results) {
4278   EVT ResVT = N->getValueType(0);
4279   SDLoc DL(N);
4280
4281   assert(ResVT.isVector() && "Vector load must have vector type");
4282
4283   // We only handle "native" vector sizes for now, e.g. <4 x double> is not
4284   // legal.  We can (and should) split that into 2 loads of <2 x double> here
4285   // but I'm leaving that as a TODO for now.
4286   assert(ResVT.isSimple() && "Can only handle simple types");
4287   switch (ResVT.getSimpleVT().SimpleTy) {
4288   default:
4289     return;
4290   case MVT::v2i8:
4291   case MVT::v2i16:
4292   case MVT::v2i32:
4293   case MVT::v2i64:
4294   case MVT::v2f32:
4295   case MVT::v2f64:
4296   case MVT::v4i8:
4297   case MVT::v4i16:
4298   case MVT::v4i32:
4299   case MVT::v4f32:
4300     // This is a "native" vector type
4301     break;
4302   }
4303
4304   LoadSDNode *LD = cast<LoadSDNode>(N);
4305
4306   unsigned Align = LD->getAlignment();
4307   auto &TD = DAG.getDataLayout();
4308   unsigned PrefAlign =
4309       TD.getPrefTypeAlignment(ResVT.getTypeForEVT(*DAG.getContext()));
4310   if (Align < PrefAlign) {
4311     // This load is not sufficiently aligned, so bail out and let this vector
4312     // load be scalarized.  Note that we may still be able to emit smaller
4313     // vector loads.  For example, if we are loading a <4 x float> with an
4314     // alignment of 8, this check will fail but the legalizer will try again
4315     // with 2 x <2 x float>, which will succeed with an alignment of 8.
4316     return;
4317   }
4318
4319   EVT EltVT = ResVT.getVectorElementType();
4320   unsigned NumElts = ResVT.getVectorNumElements();
4321
4322   // Since LoadV2 is a target node, we cannot rely on DAG type legalization.
4323   // Therefore, we must ensure the type is legal.  For i1 and i8, we set the
4324   // loaded type to i16 and propagate the "real" type as the memory type.
4325   bool NeedTrunc = false;
4326   if (EltVT.getSizeInBits() < 16) {
4327     EltVT = MVT::i16;
4328     NeedTrunc = true;
4329   }
4330
4331   unsigned Opcode = 0;
4332   SDVTList LdResVTs;
4333
4334   switch (NumElts) {
4335   default:
4336     return;
4337   case 2:
4338     Opcode = NVPTXISD::LoadV2;
4339     LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
4340     break;
4341   case 4: {
4342     Opcode = NVPTXISD::LoadV4;
4343     EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
4344     LdResVTs = DAG.getVTList(ListVTs);
4345     break;
4346   }
4347   }
4348
4349   // Copy regular operands
4350   SmallVector<SDValue, 8> OtherOps(N->op_begin(), N->op_end());
4351
4352   // The select routine does not have access to the LoadSDNode instance, so
4353   // pass along the extension information
4354   OtherOps.push_back(DAG.getIntPtrConstant(LD->getExtensionType(), DL));
4355
4356   SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
4357                                           LD->getMemoryVT(),
4358                                           LD->getMemOperand());
4359
4360   SmallVector<SDValue, 4> ScalarRes;
4361
4362   for (unsigned i = 0; i < NumElts; ++i) {
4363     SDValue Res = NewLD.getValue(i);
4364     if (NeedTrunc)
4365       Res = DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
4366     ScalarRes.push_back(Res);
4367   }
4368
4369   SDValue LoadChain = NewLD.getValue(NumElts);
4370
4371   SDValue BuildVec = DAG.getNode(ISD::BUILD_VECTOR, DL, ResVT, ScalarRes);
4372
4373   Results.push_back(BuildVec);
4374   Results.push_back(LoadChain);
4375 }
4376
4377 static void ReplaceINTRINSIC_W_CHAIN(SDNode *N, SelectionDAG &DAG,
4378                                      SmallVectorImpl<SDValue> &Results) {
4379   SDValue Chain = N->getOperand(0);
4380   SDValue Intrin = N->getOperand(1);
4381   SDLoc DL(N);
4382
4383   // Get the intrinsic ID
4384   unsigned IntrinNo = cast<ConstantSDNode>(Intrin.getNode())->getZExtValue();
4385   switch (IntrinNo) {
4386   default:
4387     return;
4388   case Intrinsic::nvvm_ldg_global_i:
4389   case Intrinsic::nvvm_ldg_global_f:
4390   case Intrinsic::nvvm_ldg_global_p:
4391   case Intrinsic::nvvm_ldu_global_i:
4392   case Intrinsic::nvvm_ldu_global_f:
4393   case Intrinsic::nvvm_ldu_global_p: {
4394     EVT ResVT = N->getValueType(0);
4395
4396     if (ResVT.isVector()) {
4397       // Vector LDG/LDU
4398
4399       unsigned NumElts = ResVT.getVectorNumElements();
4400       EVT EltVT = ResVT.getVectorElementType();
4401
4402       // Since LDU/LDG are target nodes, we cannot rely on DAG type
4403       // legalization.
4404       // Therefore, we must ensure the type is legal.  For i1 and i8, we set the
4405       // loaded type to i16 and propagate the "real" type as the memory type.
4406       bool NeedTrunc = false;
4407       if (EltVT.getSizeInBits() < 16) {
4408         EltVT = MVT::i16;
4409         NeedTrunc = true;
4410       }
4411
4412       unsigned Opcode = 0;
4413       SDVTList LdResVTs;
4414
4415       switch (NumElts) {
4416       default:
4417         return;
4418       case 2:
4419         switch (IntrinNo) {
4420         default:
4421           return;
4422         case Intrinsic::nvvm_ldg_global_i:
4423         case Intrinsic::nvvm_ldg_global_f:
4424         case Intrinsic::nvvm_ldg_global_p:
4425           Opcode = NVPTXISD::LDGV2;
4426           break;
4427         case Intrinsic::nvvm_ldu_global_i:
4428         case Intrinsic::nvvm_ldu_global_f:
4429         case Intrinsic::nvvm_ldu_global_p:
4430           Opcode = NVPTXISD::LDUV2;
4431           break;
4432         }
4433         LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
4434         break;
4435       case 4: {
4436         switch (IntrinNo) {
4437         default:
4438           return;
4439         case Intrinsic::nvvm_ldg_global_i:
4440         case Intrinsic::nvvm_ldg_global_f:
4441         case Intrinsic::nvvm_ldg_global_p:
4442           Opcode = NVPTXISD::LDGV4;
4443           break;
4444         case Intrinsic::nvvm_ldu_global_i:
4445         case Intrinsic::nvvm_ldu_global_f:
4446         case Intrinsic::nvvm_ldu_global_p:
4447           Opcode = NVPTXISD::LDUV4;
4448           break;
4449         }
4450         EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
4451         LdResVTs = DAG.getVTList(ListVTs);
4452         break;
4453       }
4454       }
4455
4456       SmallVector<SDValue, 8> OtherOps;
4457
4458       // Copy regular operands
4459
4460       OtherOps.push_back(Chain); // Chain
4461                                  // Skip operand 1 (intrinsic ID)
4462       // Others
4463       OtherOps.append(N->op_begin() + 2, N->op_end());
4464
4465       MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
4466
4467       SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
4468                                               MemSD->getMemoryVT(),
4469                                               MemSD->getMemOperand());
4470
4471       SmallVector<SDValue, 4> ScalarRes;
4472
4473       for (unsigned i = 0; i < NumElts; ++i) {
4474         SDValue Res = NewLD.getValue(i);
4475         if (NeedTrunc)
4476           Res =
4477               DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
4478         ScalarRes.push_back(Res);
4479       }
4480
4481       SDValue LoadChain = NewLD.getValue(NumElts);
4482
4483       SDValue BuildVec =
4484           DAG.getNode(ISD::BUILD_VECTOR, DL, ResVT, ScalarRes);
4485
4486       Results.push_back(BuildVec);
4487       Results.push_back(LoadChain);
4488     } else {
4489       // i8 LDG/LDU
4490       assert(ResVT.isSimple() && ResVT.getSimpleVT().SimpleTy == MVT::i8 &&
4491              "Custom handling of non-i8 ldu/ldg?");
4492
4493       // Just copy all operands as-is
4494       SmallVector<SDValue, 4> Ops(N->op_begin(), N->op_end());
4495
4496       // Force output to i16
4497       SDVTList LdResVTs = DAG.getVTList(MVT::i16, MVT::Other);
4498
4499       MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
4500
4501       // We make sure the memory type is i8, which will be used during isel
4502       // to select the proper instruction.
4503       SDValue NewLD =
4504           DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, LdResVTs, Ops,
4505                                   MVT::i8, MemSD->getMemOperand());
4506
4507       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
4508                                     NewLD.getValue(0)));
4509       Results.push_back(NewLD.getValue(1));
4510     }
4511   }
4512   }
4513 }
4514
4515 void NVPTXTargetLowering::ReplaceNodeResults(
4516     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
4517   switch (N->getOpcode()) {
4518   default:
4519     report_fatal_error("Unhandled custom legalization");
4520   case ISD::LOAD:
4521     ReplaceLoadVector(N, DAG, Results);
4522     return;
4523   case ISD::INTRINSIC_W_CHAIN:
4524     ReplaceINTRINSIC_W_CHAIN(N, DAG, Results);
4525     return;
4526   }
4527 }
4528
4529 // Pin NVPTXSection's and NVPTXTargetObjectFile's vtables to this file.
4530 void NVPTXSection::anchor() {}
4531
4532 NVPTXTargetObjectFile::~NVPTXTargetObjectFile() {
4533   delete static_cast<NVPTXSection *>(TextSection);
4534   delete static_cast<NVPTXSection *>(DataSection);
4535   delete static_cast<NVPTXSection *>(BSSSection);
4536   delete static_cast<NVPTXSection *>(ReadOnlySection);
4537
4538   delete static_cast<NVPTXSection *>(StaticCtorSection);
4539   delete static_cast<NVPTXSection *>(StaticDtorSection);
4540   delete static_cast<NVPTXSection *>(LSDASection);
4541   delete static_cast<NVPTXSection *>(EHFrameSection);
4542   delete static_cast<NVPTXSection *>(DwarfAbbrevSection);
4543   delete static_cast<NVPTXSection *>(DwarfInfoSection);
4544   delete static_cast<NVPTXSection *>(DwarfLineSection);
4545   delete static_cast<NVPTXSection *>(DwarfFrameSection);
4546   delete static_cast<NVPTXSection *>(DwarfPubTypesSection);
4547   delete static_cast<const NVPTXSection *>(DwarfDebugInlineSection);
4548   delete static_cast<NVPTXSection *>(DwarfStrSection);
4549   delete static_cast<NVPTXSection *>(DwarfLocSection);
4550   delete static_cast<NVPTXSection *>(DwarfARangesSection);
4551   delete static_cast<NVPTXSection *>(DwarfRangesSection);
4552 }
4553
4554 MCSection *
4555 NVPTXTargetObjectFile::SelectSectionForGlobal(const GlobalValue *GV,
4556                                               SectionKind Kind, Mangler &Mang,
4557                                               const TargetMachine &TM) const {
4558   return getDataSection();
4559 }