f349897ff275a83ab264d03af9671053d59729a3
[oota-llvm.git] / lib / Target / Mips / MipsConstantIslandPass.cpp
1 //===-- MipsConstantIslandPass.cpp - Emit Pc Relative loads----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //
11 // This pass is used to make Pc relative loads of constants.
12 // For now, only Mips16 will use this. 
13 //
14 // Loading constants inline is expensive on Mips16 and it's in general better
15 // to place the constant nearby in code space and then it can be loaded with a
16 // simple 16 bit load instruction.
17 //
18 // The constants can be not just numbers but addresses of functions and labels.
19 // This can be particularly helpful in static relocation mode for embedded
20 // non-linux targets.
21 //
22 //
23
24 #include "Mips.h"
25 #include "MCTargetDesc/MipsBaseInfo.h"
26 #include "Mips16InstrInfo.h"
27 #include "MipsMachineFunction.h"
28 #include "MipsTargetMachine.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/InstIterator.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/Format.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Target/TargetInstrInfo.h"
42 #include "llvm/Target/TargetMachine.h"
43 #include "llvm/Target/TargetRegisterInfo.h"
44 #include <algorithm>
45
46 using namespace llvm;
47
48 #define DEBUG_TYPE "mips-constant-islands"
49
50 STATISTIC(NumCPEs,       "Number of constpool entries");
51 STATISTIC(NumSplit,      "Number of uncond branches inserted");
52 STATISTIC(NumCBrFixed,   "Number of cond branches fixed");
53 STATISTIC(NumUBrFixed,   "Number of uncond branches fixed");
54
55 // FIXME: This option should be removed once it has received sufficient testing.
56 static cl::opt<bool>
57 AlignConstantIslands("mips-align-constant-islands", cl::Hidden, cl::init(true),
58           cl::desc("Align constant islands in code"));
59
60
61 // Rather than do make check tests with huge amounts of code, we force
62 // the test to use this amount.
63 //
64 static cl::opt<int> ConstantIslandsSmallOffset(
65   "mips-constant-islands-small-offset",
66   cl::init(0),
67   cl::desc("Make small offsets be this amount for testing purposes"),
68   cl::Hidden);
69
70 //
71 // For testing purposes we tell it to not use relaxed load forms so that it
72 // will split blocks.
73 //
74 static cl::opt<bool> NoLoadRelaxation(
75   "mips-constant-islands-no-load-relaxation",
76   cl::init(false),
77   cl::desc("Don't relax loads to long loads - for testing purposes"),
78   cl::Hidden);
79
80 static unsigned int branchTargetOperand(MachineInstr *MI) {
81   switch (MI->getOpcode()) {
82   case Mips::Bimm16:
83   case Mips::BimmX16:
84   case Mips::Bteqz16:
85   case Mips::BteqzX16:
86   case Mips::Btnez16:
87   case Mips::BtnezX16:
88   case Mips::JalB16:
89     return 0;
90   case Mips::BeqzRxImm16:
91   case Mips::BeqzRxImmX16:
92   case Mips::BnezRxImm16:
93   case Mips::BnezRxImmX16:
94     return 1;
95   }
96   llvm_unreachable("Unknown branch type");
97 }
98
99 static bool isUnconditionalBranch(unsigned int Opcode) {
100   switch (Opcode) {
101   default: return false;
102   case Mips::Bimm16:
103   case Mips::BimmX16:
104   case Mips::JalB16:
105     return true;
106   }
107 }
108
109 static unsigned int longformBranchOpcode(unsigned int Opcode) {
110   switch (Opcode) {
111   case Mips::Bimm16:
112   case Mips::BimmX16:
113     return Mips::BimmX16;
114   case Mips::Bteqz16:
115   case Mips::BteqzX16:
116     return Mips::BteqzX16;
117   case Mips::Btnez16:
118   case Mips::BtnezX16:
119     return Mips::BtnezX16;
120   case Mips::JalB16:
121     return Mips::JalB16;
122   case Mips::BeqzRxImm16:
123   case Mips::BeqzRxImmX16:
124     return Mips::BeqzRxImmX16;
125   case Mips::BnezRxImm16:
126   case Mips::BnezRxImmX16:
127     return Mips::BnezRxImmX16;
128   }
129   llvm_unreachable("Unknown branch type");
130 }
131
132 //
133 // FIXME: need to go through this whole constant islands port and check the math
134 // for branch ranges and clean this up and make some functions to calculate things
135 // that are done many times identically.
136 // Need to refactor some of the code to call this routine.
137 //
138 static unsigned int branchMaxOffsets(unsigned int Opcode) {
139   unsigned Bits, Scale;
140   switch (Opcode) {
141     case Mips::Bimm16:
142       Bits = 11;
143       Scale = 2;
144       break;
145     case Mips::BimmX16:
146       Bits = 16;
147       Scale = 2;
148       break;
149     case Mips::BeqzRxImm16:
150       Bits = 8;
151       Scale = 2;
152       break;
153     case Mips::BeqzRxImmX16:
154       Bits = 16;
155       Scale = 2;
156       break;
157     case Mips::BnezRxImm16:
158       Bits = 8;
159       Scale = 2;
160       break;
161     case Mips::BnezRxImmX16:
162       Bits = 16;
163       Scale = 2;
164       break;
165     case Mips::Bteqz16:
166       Bits = 8;
167       Scale = 2;
168       break;
169     case Mips::BteqzX16:
170       Bits = 16;
171       Scale = 2;
172       break;
173     case Mips::Btnez16:
174       Bits = 8;
175       Scale = 2;
176       break;
177     case Mips::BtnezX16:
178       Bits = 16;
179       Scale = 2;
180       break;
181     default:
182       llvm_unreachable("Unknown branch type");
183   }
184   unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
185   return MaxOffs;
186 }
187
188 namespace {
189
190
191   typedef MachineBasicBlock::iterator Iter;
192   typedef MachineBasicBlock::reverse_iterator ReverseIter;
193
194   /// MipsConstantIslands - Due to limited PC-relative displacements, Mips
195   /// requires constant pool entries to be scattered among the instructions
196   /// inside a function.  To do this, it completely ignores the normal LLVM
197   /// constant pool; instead, it places constants wherever it feels like with
198   /// special instructions.
199   ///
200   /// The terminology used in this pass includes:
201   ///   Islands - Clumps of constants placed in the function.
202   ///   Water   - Potential places where an island could be formed.
203   ///   CPE     - A constant pool entry that has been placed somewhere, which
204   ///             tracks a list of users.
205
206   class MipsConstantIslands : public MachineFunctionPass {
207
208     /// BasicBlockInfo - Information about the offset and size of a single
209     /// basic block.
210     struct BasicBlockInfo {
211       /// Offset - Distance from the beginning of the function to the beginning
212       /// of this basic block.
213       ///
214       /// Offsets are computed assuming worst case padding before an aligned
215       /// block. This means that subtracting basic block offsets always gives a
216       /// conservative estimate of the real distance which may be smaller.
217       ///
218       /// Because worst case padding is used, the computed offset of an aligned
219       /// block may not actually be aligned.
220       unsigned Offset;
221
222       /// Size - Size of the basic block in bytes.  If the block contains
223       /// inline assembly, this is a worst case estimate.
224       ///
225       /// The size does not include any alignment padding whether from the
226       /// beginning of the block, or from an aligned jump table at the end.
227       unsigned Size;
228
229       // FIXME: ignore LogAlign for this patch
230       //
231       unsigned postOffset(unsigned LogAlign = 0) const {
232         unsigned PO = Offset + Size;
233         return PO;
234       }
235
236       BasicBlockInfo() : Offset(0), Size(0) {}
237
238     };
239
240     std::vector<BasicBlockInfo> BBInfo;
241
242     /// WaterList - A sorted list of basic blocks where islands could be placed
243     /// (i.e. blocks that don't fall through to the following block, due
244     /// to a return, unreachable, or unconditional branch).
245     std::vector<MachineBasicBlock*> WaterList;
246
247     /// NewWaterList - The subset of WaterList that was created since the
248     /// previous iteration by inserting unconditional branches.
249     SmallSet<MachineBasicBlock*, 4> NewWaterList;
250
251     typedef std::vector<MachineBasicBlock*>::iterator water_iterator;
252
253     /// CPUser - One user of a constant pool, keeping the machine instruction
254     /// pointer, the constant pool being referenced, and the max displacement
255     /// allowed from the instruction to the CP.  The HighWaterMark records the
256     /// highest basic block where a new CPEntry can be placed.  To ensure this
257     /// pass terminates, the CP entries are initially placed at the end of the
258     /// function and then move monotonically to lower addresses.  The
259     /// exception to this rule is when the current CP entry for a particular
260     /// CPUser is out of range, but there is another CP entry for the same
261     /// constant value in range.  We want to use the existing in-range CP
262     /// entry, but if it later moves out of range, the search for new water
263     /// should resume where it left off.  The HighWaterMark is used to record
264     /// that point.
265     struct CPUser {
266       MachineInstr *MI;
267       MachineInstr *CPEMI;
268       MachineBasicBlock *HighWaterMark;
269     private:
270       unsigned MaxDisp;
271       unsigned LongFormMaxDisp; // mips16 has 16/32 bit instructions
272                                 // with different displacements
273       unsigned LongFormOpcode;
274     public:
275       bool NegOk;
276       CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
277              bool neg,
278              unsigned longformmaxdisp, unsigned longformopcode)
279         : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp),
280           LongFormMaxDisp(longformmaxdisp), LongFormOpcode(longformopcode),
281           NegOk(neg){
282         HighWaterMark = CPEMI->getParent();
283       }
284       /// getMaxDisp - Returns the maximum displacement supported by MI.
285       unsigned getMaxDisp() const {
286         unsigned xMaxDisp = ConstantIslandsSmallOffset?
287                             ConstantIslandsSmallOffset: MaxDisp;
288         return xMaxDisp;
289       }
290       void setMaxDisp(unsigned val) {
291         MaxDisp = val;
292       }
293       unsigned getLongFormMaxDisp() const {
294         return LongFormMaxDisp;
295       }
296       unsigned getLongFormOpcode() const {
297           return LongFormOpcode;
298       }
299     };
300
301     /// CPUsers - Keep track of all of the machine instructions that use various
302     /// constant pools and their max displacement.
303     std::vector<CPUser> CPUsers;
304
305   /// CPEntry - One per constant pool entry, keeping the machine instruction
306   /// pointer, the constpool index, and the number of CPUser's which
307   /// reference this entry.
308   struct CPEntry {
309     MachineInstr *CPEMI;
310     unsigned CPI;
311     unsigned RefCount;
312     CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
313       : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
314   };
315
316   /// CPEntries - Keep track of all of the constant pool entry machine
317   /// instructions. For each original constpool index (i.e. those that
318   /// existed upon entry to this pass), it keeps a vector of entries.
319   /// Original elements are cloned as we go along; the clones are
320   /// put in the vector of the original element, but have distinct CPIs.
321   std::vector<std::vector<CPEntry> > CPEntries;
322
323   /// ImmBranch - One per immediate branch, keeping the machine instruction
324   /// pointer, conditional or unconditional, the max displacement,
325   /// and (if isCond is true) the corresponding unconditional branch
326   /// opcode.
327   struct ImmBranch {
328     MachineInstr *MI;
329     unsigned MaxDisp : 31;
330     bool isCond : 1;
331     int UncondBr;
332     ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
333       : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
334   };
335
336   /// ImmBranches - Keep track of all the immediate branch instructions.
337   ///
338   std::vector<ImmBranch> ImmBranches;
339
340   /// HasFarJump - True if any far jump instruction has been emitted during
341   /// the branch fix up pass.
342   bool HasFarJump;
343
344   const TargetMachine &TM;
345   bool IsPIC;
346   unsigned ABI;
347   const MipsSubtarget *STI;
348   const Mips16InstrInfo *TII;
349   MipsFunctionInfo *MFI;
350   MachineFunction *MF;
351   MachineConstantPool *MCP;
352
353   unsigned PICLabelUId;
354   bool PrescannedForConstants;
355
356   void initPICLabelUId(unsigned UId) {
357     PICLabelUId = UId;
358   }
359
360
361   unsigned createPICLabelUId() {
362     return PICLabelUId++;
363   }
364
365   public:
366     static char ID;
367     MipsConstantIslands(TargetMachine &tm)
368         : MachineFunctionPass(ID), TM(tm),
369           IsPIC(TM.getRelocationModel() == Reloc::PIC_),
370           ABI(TM.getSubtarget<MipsSubtarget>().getTargetABI()), STI(nullptr),
371           MF(nullptr), MCP(nullptr), PrescannedForConstants(false) {}
372
373     const char *getPassName() const override {
374       return "Mips Constant Islands";
375     }
376
377     bool runOnMachineFunction(MachineFunction &F) override;
378
379     void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs);
380     CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
381     unsigned getCPELogAlign(const MachineInstr *CPEMI);
382     void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
383     unsigned getOffsetOf(MachineInstr *MI) const;
384     unsigned getUserOffset(CPUser&) const;
385     void dumpBBs();
386
387     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
388                          unsigned Disp, bool NegativeOK);
389     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
390                          const CPUser &U);
391
392     void computeBlockSize(MachineBasicBlock *MBB);
393     MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI);
394     void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
395     void adjustBBOffsetsAfter(MachineBasicBlock *BB);
396     bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
397     int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
398     int findLongFormInRangeCPEntry(CPUser& U, unsigned UserOffset);
399     bool findAvailableWater(CPUser&U, unsigned UserOffset,
400                             water_iterator &WaterIter);
401     void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
402                         MachineBasicBlock *&NewMBB);
403     bool handleConstantPoolUser(unsigned CPUserIndex);
404     void removeDeadCPEMI(MachineInstr *CPEMI);
405     bool removeUnusedCPEntries();
406     bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
407                           MachineInstr *CPEMI, unsigned Disp, bool NegOk,
408                           bool DoDump = false);
409     bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
410                         CPUser &U, unsigned &Growth);
411     bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
412     bool fixupImmediateBr(ImmBranch &Br);
413     bool fixupConditionalBr(ImmBranch &Br);
414     bool fixupUnconditionalBr(ImmBranch &Br);
415
416     void prescanForConstants();
417
418   private:
419
420   };
421
422   char MipsConstantIslands::ID = 0;
423 } // end of anonymous namespace
424
425 bool MipsConstantIslands::isOffsetInRange
426   (unsigned UserOffset, unsigned TrialOffset,
427    const CPUser &U) {
428   return isOffsetInRange(UserOffset, TrialOffset,
429                          U.getMaxDisp(), U.NegOk);
430 }
431 /// print block size and offset information - debugging
432 void MipsConstantIslands::dumpBBs() {
433   DEBUG({
434     for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
435       const BasicBlockInfo &BBI = BBInfo[J];
436       dbgs() << format("%08x BB#%u\t", BBI.Offset, J)
437              << format(" size=%#x\n", BBInfo[J].Size);
438     }
439   });
440 }
441 /// createMipsLongBranchPass - Returns a pass that converts branches to long
442 /// branches.
443 FunctionPass *llvm::createMipsConstantIslandPass(MipsTargetMachine &tm) {
444   return new MipsConstantIslands(tm);
445 }
446
447 bool MipsConstantIslands::runOnMachineFunction(MachineFunction &mf) {
448   // The intention is for this to be a mips16 only pass for now
449   // FIXME:
450   MF = &mf;
451   MCP = mf.getConstantPool();
452   STI = &mf.getTarget().getSubtarget<MipsSubtarget>();
453   DEBUG(dbgs() << "constant island machine function " << "\n");
454   if (!STI->inMips16Mode() || !MipsSubtarget::useConstantIslands()) {
455     return false;
456   }
457   TII = (const Mips16InstrInfo *)MF->getTarget()
458             .getSubtargetImpl()
459             ->getInstrInfo();
460   MFI = MF->getInfo<MipsFunctionInfo>();
461   DEBUG(dbgs() << "constant island processing " << "\n");
462   //
463   // will need to make predermination if there is any constants we need to
464   // put in constant islands. TBD.
465   //
466   if (!PrescannedForConstants) prescanForConstants();
467
468   HasFarJump = false;
469   // This pass invalidates liveness information when it splits basic blocks.
470   MF->getRegInfo().invalidateLiveness();
471
472   // Renumber all of the machine basic blocks in the function, guaranteeing that
473   // the numbers agree with the position of the block in the function.
474   MF->RenumberBlocks();
475
476   bool MadeChange = false;
477
478   // Perform the initial placement of the constant pool entries.  To start with,
479   // we put them all at the end of the function.
480   std::vector<MachineInstr*> CPEMIs;
481   if (!MCP->isEmpty())
482     doInitialPlacement(CPEMIs);
483
484   /// The next UID to take is the first unused one.
485   initPICLabelUId(CPEMIs.size());
486
487   // Do the initial scan of the function, building up information about the
488   // sizes of each block, the location of all the water, and finding all of the
489   // constant pool users.
490   initializeFunctionInfo(CPEMIs);
491   CPEMIs.clear();
492   DEBUG(dumpBBs());
493
494   /// Remove dead constant pool entries.
495   MadeChange |= removeUnusedCPEntries();
496
497   // Iteratively place constant pool entries and fix up branches until there
498   // is no change.
499   unsigned NoCPIters = 0, NoBRIters = 0;
500   (void)NoBRIters;
501   while (true) {
502     DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
503     bool CPChange = false;
504     for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
505       CPChange |= handleConstantPoolUser(i);
506     if (CPChange && ++NoCPIters > 30)
507       report_fatal_error("Constant Island pass failed to converge!");
508     DEBUG(dumpBBs());
509
510     // Clear NewWaterList now.  If we split a block for branches, it should
511     // appear as "new water" for the next iteration of constant pool placement.
512     NewWaterList.clear();
513
514     DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
515     bool BRChange = false;
516     for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
517       BRChange |= fixupImmediateBr(ImmBranches[i]);
518     if (BRChange && ++NoBRIters > 30)
519       report_fatal_error("Branch Fix Up pass failed to converge!");
520     DEBUG(dumpBBs());
521     if (!CPChange && !BRChange)
522       break;
523     MadeChange = true;
524   }
525
526   DEBUG(dbgs() << '\n'; dumpBBs());
527
528   BBInfo.clear();
529   WaterList.clear();
530   CPUsers.clear();
531   CPEntries.clear();
532   ImmBranches.clear();
533   return MadeChange;
534 }
535
536 /// doInitialPlacement - Perform the initial placement of the constant pool
537 /// entries.  To start with, we put them all at the end of the function.
538 void
539 MipsConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) {
540   // Create the basic block to hold the CPE's.
541   MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
542   MF->push_back(BB);
543
544
545   // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
546   unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment());
547
548   // Mark the basic block as required by the const-pool.
549   // If AlignConstantIslands isn't set, use 4-byte alignment for everything.
550   BB->setAlignment(AlignConstantIslands ? MaxAlign : 2);
551
552   // The function needs to be as aligned as the basic blocks. The linker may
553   // move functions around based on their alignment.
554   MF->ensureAlignment(BB->getAlignment());
555
556   // Order the entries in BB by descending alignment.  That ensures correct
557   // alignment of all entries as long as BB is sufficiently aligned.  Keep
558   // track of the insertion point for each alignment.  We are going to bucket
559   // sort the entries as they are created.
560   SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end());
561
562   // Add all of the constants from the constant pool to the end block, use an
563   // identity mapping of CPI's to CPE's.
564   const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
565
566   const DataLayout &TD = *MF->getTarget().getSubtargetImpl()->getDataLayout();
567   for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
568     unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
569     assert(Size >= 4 && "Too small constant pool entry");
570     unsigned Align = CPs[i].getAlignment();
571     assert(isPowerOf2_32(Align) && "Invalid alignment");
572     // Verify that all constant pool entries are a multiple of their alignment.
573     // If not, we would have to pad them out so that instructions stay aligned.
574     assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
575
576     // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
577     unsigned LogAlign = Log2_32(Align);
578     MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
579
580     MachineInstr *CPEMI =
581       BuildMI(*BB, InsAt, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
582         .addImm(i).addConstantPoolIndex(i).addImm(Size);
583
584     CPEMIs.push_back(CPEMI);
585
586     // Ensure that future entries with higher alignment get inserted before
587     // CPEMI. This is bucket sort with iterators.
588     for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a)
589       if (InsPoint[a] == InsAt)
590         InsPoint[a] = CPEMI;
591     // Add a new CPEntry, but no corresponding CPUser yet.
592     std::vector<CPEntry> CPEs;
593     CPEs.push_back(CPEntry(CPEMI, i));
594     CPEntries.push_back(CPEs);
595     ++NumCPEs;
596     DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
597                  << Size << ", align = " << Align <<'\n');
598   }
599   DEBUG(BB->dump());
600 }
601
602 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
603 /// into the block immediately after it.
604 static bool BBHasFallthrough(MachineBasicBlock *MBB) {
605   // Get the next machine basic block in the function.
606   MachineFunction::iterator MBBI = MBB;
607   // Can't fall off end of function.
608   if (std::next(MBBI) == MBB->getParent()->end())
609     return false;
610
611   MachineBasicBlock *NextBB = std::next(MBBI);
612   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
613        E = MBB->succ_end(); I != E; ++I)
614     if (*I == NextBB)
615       return true;
616
617   return false;
618 }
619
620 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
621 /// look up the corresponding CPEntry.
622 MipsConstantIslands::CPEntry
623 *MipsConstantIslands::findConstPoolEntry(unsigned CPI,
624                                         const MachineInstr *CPEMI) {
625   std::vector<CPEntry> &CPEs = CPEntries[CPI];
626   // Number of entries per constpool index should be small, just do a
627   // linear search.
628   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
629     if (CPEs[i].CPEMI == CPEMI)
630       return &CPEs[i];
631   }
632   return nullptr;
633 }
634
635 /// getCPELogAlign - Returns the required alignment of the constant pool entry
636 /// represented by CPEMI.  Alignment is measured in log2(bytes) units.
637 unsigned MipsConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) {
638   assert(CPEMI && CPEMI->getOpcode() == Mips::CONSTPOOL_ENTRY);
639
640   // Everything is 4-byte aligned unless AlignConstantIslands is set.
641   if (!AlignConstantIslands)
642     return 2;
643
644   unsigned CPI = CPEMI->getOperand(1).getIndex();
645   assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
646   unsigned Align = MCP->getConstants()[CPI].getAlignment();
647   assert(isPowerOf2_32(Align) && "Invalid CPE alignment");
648   return Log2_32(Align);
649 }
650
651 /// initializeFunctionInfo - Do the initial scan of the function, building up
652 /// information about the sizes of each block, the location of all the water,
653 /// and finding all of the constant pool users.
654 void MipsConstantIslands::
655 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
656   BBInfo.clear();
657   BBInfo.resize(MF->getNumBlockIDs());
658
659   // First thing, compute the size of all basic blocks, and see if the function
660   // has any inline assembly in it. If so, we have to be conservative about
661   // alignment assumptions, as we don't know for sure the size of any
662   // instructions in the inline assembly.
663   for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I)
664     computeBlockSize(I);
665
666
667   // Compute block offsets.
668   adjustBBOffsetsAfter(MF->begin());
669
670   // Now go back through the instructions and build up our data structures.
671   for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
672        MBBI != E; ++MBBI) {
673     MachineBasicBlock &MBB = *MBBI;
674
675     // If this block doesn't fall through into the next MBB, then this is
676     // 'water' that a constant pool island could be placed.
677     if (!BBHasFallthrough(&MBB))
678       WaterList.push_back(&MBB);
679     for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
680          I != E; ++I) {
681       if (I->isDebugValue())
682         continue;
683
684       int Opc = I->getOpcode();
685       if (I->isBranch()) {
686         bool isCond = false;
687         unsigned Bits = 0;
688         unsigned Scale = 1;
689         int UOpc = Opc;
690         switch (Opc) {
691         default:
692           continue;  // Ignore other branches for now
693         case Mips::Bimm16:
694           Bits = 11;
695           Scale = 2;
696           isCond = false;
697           break;
698         case Mips::BimmX16:
699           Bits = 16;
700           Scale = 2;
701           isCond = false;
702           break;
703         case Mips::BeqzRxImm16:
704           UOpc=Mips::Bimm16;
705           Bits = 8;
706           Scale = 2;
707           isCond = true;
708           break;
709         case Mips::BeqzRxImmX16:
710           UOpc=Mips::Bimm16;
711           Bits = 16;
712           Scale = 2;
713           isCond = true;
714           break;
715         case Mips::BnezRxImm16:
716           UOpc=Mips::Bimm16;
717           Bits = 8;
718           Scale = 2;
719           isCond = true;
720           break;
721         case Mips::BnezRxImmX16:
722           UOpc=Mips::Bimm16;
723           Bits = 16;
724           Scale = 2;
725           isCond = true;
726           break;
727         case Mips::Bteqz16:
728           UOpc=Mips::Bimm16;
729           Bits = 8;
730           Scale = 2;
731           isCond = true;
732           break;
733         case Mips::BteqzX16:
734           UOpc=Mips::Bimm16;
735           Bits = 16;
736           Scale = 2;
737           isCond = true;
738           break;
739         case Mips::Btnez16:
740           UOpc=Mips::Bimm16;
741           Bits = 8;
742           Scale = 2;
743           isCond = true;
744           break;
745         case Mips::BtnezX16:
746           UOpc=Mips::Bimm16;
747           Bits = 16;
748           Scale = 2;
749           isCond = true;
750           break;
751         }
752         // Record this immediate branch.
753         unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
754         ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc));
755       }
756
757       if (Opc == Mips::CONSTPOOL_ENTRY)
758         continue;
759
760
761       // Scan the instructions for constant pool operands.
762       for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
763         if (I->getOperand(op).isCPI()) {
764
765           // We found one.  The addressing mode tells us the max displacement
766           // from the PC that this instruction permits.
767
768           // Basic size info comes from the TSFlags field.
769           unsigned Bits = 0;
770           unsigned Scale = 1;
771           bool NegOk = false;
772           unsigned LongFormBits = 0;
773           unsigned LongFormScale = 0;
774           unsigned LongFormOpcode = 0;
775           switch (Opc) {
776           default:
777             llvm_unreachable("Unknown addressing mode for CP reference!");
778           case Mips::LwRxPcTcp16:
779             Bits = 8;
780             Scale = 4;
781             LongFormOpcode = Mips::LwRxPcTcpX16;
782             LongFormBits = 14;
783             LongFormScale = 1;
784             break;
785           case Mips::LwRxPcTcpX16:
786             Bits = 14;
787             Scale = 1;
788             NegOk = true;
789             break;
790           }
791           // Remember that this is a user of a CP entry.
792           unsigned CPI = I->getOperand(op).getIndex();
793           MachineInstr *CPEMI = CPEMIs[CPI];
794           unsigned MaxOffs = ((1 << Bits)-1) * Scale;
795           unsigned LongFormMaxOffs = ((1 << LongFormBits)-1) * LongFormScale;
796           CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk,
797                                    LongFormMaxOffs, LongFormOpcode));
798
799           // Increment corresponding CPEntry reference count.
800           CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
801           assert(CPE && "Cannot find a corresponding CPEntry!");
802           CPE->RefCount++;
803
804           // Instructions can only use one CP entry, don't bother scanning the
805           // rest of the operands.
806           break;
807
808         }
809
810     }
811   }
812
813 }
814
815 /// computeBlockSize - Compute the size and some alignment information for MBB.
816 /// This function updates BBInfo directly.
817 void MipsConstantIslands::computeBlockSize(MachineBasicBlock *MBB) {
818   BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
819   BBI.Size = 0;
820
821   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
822        ++I)
823     BBI.Size += TII->GetInstSizeInBytes(I);
824
825 }
826
827 /// getOffsetOf - Return the current offset of the specified machine instruction
828 /// from the start of the function.  This offset changes as stuff is moved
829 /// around inside the function.
830 unsigned MipsConstantIslands::getOffsetOf(MachineInstr *MI) const {
831   MachineBasicBlock *MBB = MI->getParent();
832
833   // The offset is composed of two things: the sum of the sizes of all MBB's
834   // before this instruction's block, and the offset from the start of the block
835   // it is in.
836   unsigned Offset = BBInfo[MBB->getNumber()].Offset;
837
838   // Sum instructions before MI in MBB.
839   for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
840     assert(I != MBB->end() && "Didn't find MI in its own basic block?");
841     Offset += TII->GetInstSizeInBytes(I);
842   }
843   return Offset;
844 }
845
846 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
847 /// ID.
848 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
849                               const MachineBasicBlock *RHS) {
850   return LHS->getNumber() < RHS->getNumber();
851 }
852
853 /// updateForInsertedWaterBlock - When a block is newly inserted into the
854 /// machine function, it upsets all of the block numbers.  Renumber the blocks
855 /// and update the arrays that parallel this numbering.
856 void MipsConstantIslands::updateForInsertedWaterBlock
857   (MachineBasicBlock *NewBB) {
858   // Renumber the MBB's to keep them consecutive.
859   NewBB->getParent()->RenumberBlocks(NewBB);
860
861   // Insert an entry into BBInfo to align it properly with the (newly
862   // renumbered) block numbers.
863   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
864
865   // Next, update WaterList.  Specifically, we need to add NewMBB as having
866   // available water after it.
867   water_iterator IP =
868     std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
869                      CompareMBBNumbers);
870   WaterList.insert(IP, NewBB);
871 }
872
873 unsigned MipsConstantIslands::getUserOffset(CPUser &U) const {
874   return getOffsetOf(U.MI);
875 }
876
877 /// Split the basic block containing MI into two blocks, which are joined by
878 /// an unconditional branch.  Update data structures and renumber blocks to
879 /// account for this change and returns the newly created block.
880 MachineBasicBlock *MipsConstantIslands::splitBlockBeforeInstr
881   (MachineInstr *MI) {
882   MachineBasicBlock *OrigBB = MI->getParent();
883
884   // Create a new MBB for the code after the OrigBB.
885   MachineBasicBlock *NewBB =
886     MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
887   MachineFunction::iterator MBBI = OrigBB; ++MBBI;
888   MF->insert(MBBI, NewBB);
889
890   // Splice the instructions starting with MI over to NewBB.
891   NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
892
893   // Add an unconditional branch from OrigBB to NewBB.
894   // Note the new unconditional branch is not being recorded.
895   // There doesn't seem to be meaningful DebugInfo available; this doesn't
896   // correspond to anything in the source.
897   BuildMI(OrigBB, DebugLoc(), TII->get(Mips::Bimm16)).addMBB(NewBB);
898   ++NumSplit;
899
900   // Update the CFG.  All succs of OrigBB are now succs of NewBB.
901   NewBB->transferSuccessors(OrigBB);
902
903   // OrigBB branches to NewBB.
904   OrigBB->addSuccessor(NewBB);
905
906   // Update internal data structures to account for the newly inserted MBB.
907   // This is almost the same as updateForInsertedWaterBlock, except that
908   // the Water goes after OrigBB, not NewBB.
909   MF->RenumberBlocks(NewBB);
910
911   // Insert an entry into BBInfo to align it properly with the (newly
912   // renumbered) block numbers.
913   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
914
915   // Next, update WaterList.  Specifically, we need to add OrigMBB as having
916   // available water after it (but not if it's already there, which happens
917   // when splitting before a conditional branch that is followed by an
918   // unconditional branch - in that case we want to insert NewBB).
919   water_iterator IP =
920     std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
921                      CompareMBBNumbers);
922   MachineBasicBlock* WaterBB = *IP;
923   if (WaterBB == OrigBB)
924     WaterList.insert(std::next(IP), NewBB);
925   else
926     WaterList.insert(IP, OrigBB);
927   NewWaterList.insert(OrigBB);
928
929   // Figure out how large the OrigBB is.  As the first half of the original
930   // block, it cannot contain a tablejump.  The size includes
931   // the new jump we added.  (It should be possible to do this without
932   // recounting everything, but it's very confusing, and this is rarely
933   // executed.)
934   computeBlockSize(OrigBB);
935
936   // Figure out how large the NewMBB is.  As the second half of the original
937   // block, it may contain a tablejump.
938   computeBlockSize(NewBB);
939
940   // All BBOffsets following these blocks must be modified.
941   adjustBBOffsetsAfter(OrigBB);
942
943   return NewBB;
944 }
945
946
947
948 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
949 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
950 /// constant pool entry).
951 bool MipsConstantIslands::isOffsetInRange(unsigned UserOffset,
952                                          unsigned TrialOffset, unsigned MaxDisp,
953                                          bool NegativeOK) {
954   if (UserOffset <= TrialOffset) {
955     // User before the Trial.
956     if (TrialOffset - UserOffset <= MaxDisp)
957       return true;
958   } else if (NegativeOK) {
959     if (UserOffset - TrialOffset <= MaxDisp)
960       return true;
961   }
962   return false;
963 }
964
965 /// isWaterInRange - Returns true if a CPE placed after the specified
966 /// Water (a basic block) will be in range for the specific MI.
967 ///
968 /// Compute how much the function will grow by inserting a CPE after Water.
969 bool MipsConstantIslands::isWaterInRange(unsigned UserOffset,
970                                         MachineBasicBlock* Water, CPUser &U,
971                                         unsigned &Growth) {
972   unsigned CPELogAlign = getCPELogAlign(U.CPEMI);
973   unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign);
974   unsigned NextBlockOffset, NextBlockAlignment;
975   MachineFunction::const_iterator NextBlock = Water;
976   if (++NextBlock == MF->end()) {
977     NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
978     NextBlockAlignment = 0;
979   } else {
980     NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
981     NextBlockAlignment = NextBlock->getAlignment();
982   }
983   unsigned Size = U.CPEMI->getOperand(2).getImm();
984   unsigned CPEEnd = CPEOffset + Size;
985
986   // The CPE may be able to hide in the alignment padding before the next
987   // block. It may also cause more padding to be required if it is more aligned
988   // that the next block.
989   if (CPEEnd > NextBlockOffset) {
990     Growth = CPEEnd - NextBlockOffset;
991     // Compute the padding that would go at the end of the CPE to align the next
992     // block.
993     Growth += OffsetToAlignment(CPEEnd, 1u << NextBlockAlignment);
994
995     // If the CPE is to be inserted before the instruction, that will raise
996     // the offset of the instruction. Also account for unknown alignment padding
997     // in blocks between CPE and the user.
998     if (CPEOffset < UserOffset)
999       UserOffset += Growth;
1000   } else
1001     // CPE fits in existing padding.
1002     Growth = 0;
1003
1004   return isOffsetInRange(UserOffset, CPEOffset, U);
1005 }
1006
1007 /// isCPEntryInRange - Returns true if the distance between specific MI and
1008 /// specific ConstPool entry instruction can fit in MI's displacement field.
1009 bool MipsConstantIslands::isCPEntryInRange
1010   (MachineInstr *MI, unsigned UserOffset,
1011    MachineInstr *CPEMI, unsigned MaxDisp,
1012    bool NegOk, bool DoDump) {
1013   unsigned CPEOffset  = getOffsetOf(CPEMI);
1014
1015   if (DoDump) {
1016     DEBUG({
1017       unsigned Block = MI->getParent()->getNumber();
1018       const BasicBlockInfo &BBI = BBInfo[Block];
1019       dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
1020              << " max delta=" << MaxDisp
1021              << format(" insn address=%#x", UserOffset)
1022              << " in BB#" << Block << ": "
1023              << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
1024              << format("CPE address=%#x offset=%+d: ", CPEOffset,
1025                        int(CPEOffset-UserOffset));
1026     });
1027   }
1028
1029   return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
1030 }
1031
1032 #ifndef NDEBUG
1033 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
1034 /// unconditionally branches to its only successor.
1035 static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
1036   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
1037     return false;
1038   MachineBasicBlock *Succ = *MBB->succ_begin();
1039   MachineBasicBlock *Pred = *MBB->pred_begin();
1040   MachineInstr *PredMI = &Pred->back();
1041   if (PredMI->getOpcode() == Mips::Bimm16)
1042     return PredMI->getOperand(0).getMBB() == Succ;
1043   return false;
1044 }
1045 #endif
1046
1047 void MipsConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
1048   unsigned BBNum = BB->getNumber();
1049   for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) {
1050     // Get the offset and known bits at the end of the layout predecessor.
1051     // Include the alignment of the current block.
1052     unsigned Offset = BBInfo[i - 1].Offset + BBInfo[i - 1].Size;
1053     BBInfo[i].Offset = Offset;
1054   }
1055 }
1056
1057 /// decrementCPEReferenceCount - find the constant pool entry with index CPI
1058 /// and instruction CPEMI, and decrement its refcount.  If the refcount
1059 /// becomes 0 remove the entry and instruction.  Returns true if we removed
1060 /// the entry, false if we didn't.
1061
1062 bool MipsConstantIslands::decrementCPEReferenceCount(unsigned CPI,
1063                                                     MachineInstr *CPEMI) {
1064   // Find the old entry. Eliminate it if it is no longer used.
1065   CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
1066   assert(CPE && "Unexpected!");
1067   if (--CPE->RefCount == 0) {
1068     removeDeadCPEMI(CPEMI);
1069     CPE->CPEMI = nullptr;
1070     --NumCPEs;
1071     return true;
1072   }
1073   return false;
1074 }
1075
1076 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1077 /// if not, see if an in-range clone of the CPE is in range, and if so,
1078 /// change the data structures so the user references the clone.  Returns:
1079 /// 0 = no existing entry found
1080 /// 1 = entry found, and there were no code insertions or deletions
1081 /// 2 = entry found, and there were code insertions or deletions
1082 int MipsConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset)
1083 {
1084   MachineInstr *UserMI = U.MI;
1085   MachineInstr *CPEMI  = U.CPEMI;
1086
1087   // Check to see if the CPE is already in-range.
1088   if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
1089                        true)) {
1090     DEBUG(dbgs() << "In range\n");
1091     return 1;
1092   }
1093
1094   // No.  Look for previously created clones of the CPE that are in range.
1095   unsigned CPI = CPEMI->getOperand(1).getIndex();
1096   std::vector<CPEntry> &CPEs = CPEntries[CPI];
1097   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1098     // We already tried this one
1099     if (CPEs[i].CPEMI == CPEMI)
1100       continue;
1101     // Removing CPEs can leave empty entries, skip
1102     if (CPEs[i].CPEMI == nullptr)
1103       continue;
1104     if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
1105                      U.NegOk)) {
1106       DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1107                    << CPEs[i].CPI << "\n");
1108       // Point the CPUser node to the replacement
1109       U.CPEMI = CPEs[i].CPEMI;
1110       // Change the CPI in the instruction operand to refer to the clone.
1111       for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1112         if (UserMI->getOperand(j).isCPI()) {
1113           UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1114           break;
1115         }
1116       // Adjust the refcount of the clone...
1117       CPEs[i].RefCount++;
1118       // ...and the original.  If we didn't remove the old entry, none of the
1119       // addresses changed, so we don't need another pass.
1120       return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1121     }
1122   }
1123   return 0;
1124 }
1125
1126 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1127 /// This version checks if the longer form of the instruction can be used to
1128 /// to satisfy things.
1129 /// if not, see if an in-range clone of the CPE is in range, and if so,
1130 /// change the data structures so the user references the clone.  Returns:
1131 /// 0 = no existing entry found
1132 /// 1 = entry found, and there were no code insertions or deletions
1133 /// 2 = entry found, and there were code insertions or deletions
1134 int MipsConstantIslands::findLongFormInRangeCPEntry
1135   (CPUser& U, unsigned UserOffset)
1136 {
1137   MachineInstr *UserMI = U.MI;
1138   MachineInstr *CPEMI  = U.CPEMI;
1139
1140   // Check to see if the CPE is already in-range.
1141   if (isCPEntryInRange(UserMI, UserOffset, CPEMI,
1142                        U.getLongFormMaxDisp(), U.NegOk,
1143                        true)) {
1144     DEBUG(dbgs() << "In range\n");
1145     UserMI->setDesc(TII->get(U.getLongFormOpcode()));
1146     U.setMaxDisp(U.getLongFormMaxDisp());
1147     return 2;  // instruction is longer length now
1148   }
1149
1150   // No.  Look for previously created clones of the CPE that are in range.
1151   unsigned CPI = CPEMI->getOperand(1).getIndex();
1152   std::vector<CPEntry> &CPEs = CPEntries[CPI];
1153   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1154     // We already tried this one
1155     if (CPEs[i].CPEMI == CPEMI)
1156       continue;
1157     // Removing CPEs can leave empty entries, skip
1158     if (CPEs[i].CPEMI == nullptr)
1159       continue;
1160     if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI,
1161                          U.getLongFormMaxDisp(), U.NegOk)) {
1162       DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1163                    << CPEs[i].CPI << "\n");
1164       // Point the CPUser node to the replacement
1165       U.CPEMI = CPEs[i].CPEMI;
1166       // Change the CPI in the instruction operand to refer to the clone.
1167       for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1168         if (UserMI->getOperand(j).isCPI()) {
1169           UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1170           break;
1171         }
1172       // Adjust the refcount of the clone...
1173       CPEs[i].RefCount++;
1174       // ...and the original.  If we didn't remove the old entry, none of the
1175       // addresses changed, so we don't need another pass.
1176       return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1177     }
1178   }
1179   return 0;
1180 }
1181
1182 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1183 /// the specific unconditional branch instruction.
1184 static inline unsigned getUnconditionalBrDisp(int Opc) {
1185   switch (Opc) {
1186   case Mips::Bimm16:
1187     return ((1<<10)-1)*2;
1188   case Mips::BimmX16:
1189     return ((1<<16)-1)*2;
1190   default:
1191     break;
1192   }
1193   return ((1<<16)-1)*2;
1194 }
1195
1196 /// findAvailableWater - Look for an existing entry in the WaterList in which
1197 /// we can place the CPE referenced from U so it's within range of U's MI.
1198 /// Returns true if found, false if not.  If it returns true, WaterIter
1199 /// is set to the WaterList entry.  
1200 /// To ensure that this pass
1201 /// terminates, the CPE location for a particular CPUser is only allowed to
1202 /// move to a lower address, so search backward from the end of the list and
1203 /// prefer the first water that is in range.
1204 bool MipsConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
1205                                       water_iterator &WaterIter) {
1206   if (WaterList.empty())
1207     return false;
1208
1209   unsigned BestGrowth = ~0u;
1210   for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
1211        --IP) {
1212     MachineBasicBlock* WaterBB = *IP;
1213     // Check if water is in range and is either at a lower address than the
1214     // current "high water mark" or a new water block that was created since
1215     // the previous iteration by inserting an unconditional branch.  In the
1216     // latter case, we want to allow resetting the high water mark back to
1217     // this new water since we haven't seen it before.  Inserting branches
1218     // should be relatively uncommon and when it does happen, we want to be
1219     // sure to take advantage of it for all the CPEs near that block, so that
1220     // we don't insert more branches than necessary.
1221     unsigned Growth;
1222     if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
1223         (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1224          NewWaterList.count(WaterBB)) && Growth < BestGrowth) {
1225       // This is the least amount of required padding seen so far.
1226       BestGrowth = Growth;
1227       WaterIter = IP;
1228       DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber()
1229                    << " Growth=" << Growth << '\n');
1230
1231       // Keep looking unless it is perfect.
1232       if (BestGrowth == 0)
1233         return true;
1234     }
1235     if (IP == B)
1236       break;
1237   }
1238   return BestGrowth != ~0u;
1239 }
1240
1241 /// createNewWater - No existing WaterList entry will work for
1242 /// CPUsers[CPUserIndex], so create a place to put the CPE.  The end of the
1243 /// block is used if in range, and the conditional branch munged so control
1244 /// flow is correct.  Otherwise the block is split to create a hole with an
1245 /// unconditional branch around it.  In either case NewMBB is set to a
1246 /// block following which the new island can be inserted (the WaterList
1247 /// is not adjusted).
1248 void MipsConstantIslands::createNewWater(unsigned CPUserIndex,
1249                                         unsigned UserOffset,
1250                                         MachineBasicBlock *&NewMBB) {
1251   CPUser &U = CPUsers[CPUserIndex];
1252   MachineInstr *UserMI = U.MI;
1253   MachineInstr *CPEMI  = U.CPEMI;
1254   unsigned CPELogAlign = getCPELogAlign(CPEMI);
1255   MachineBasicBlock *UserMBB = UserMI->getParent();
1256   const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
1257
1258   // If the block does not end in an unconditional branch already, and if the
1259   // end of the block is within range, make new water there.  
1260   if (BBHasFallthrough(UserMBB)) {
1261     // Size of branch to insert.
1262     unsigned Delta = 2;
1263     // Compute the offset where the CPE will begin.
1264     unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta;
1265
1266     if (isOffsetInRange(UserOffset, CPEOffset, U)) {
1267       DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber()
1268             << format(", expected CPE offset %#x\n", CPEOffset));
1269       NewMBB = std::next(MachineFunction::iterator(UserMBB));
1270       // Add an unconditional branch from UserMBB to fallthrough block.  Record
1271       // it for branch lengthening; this new branch will not get out of range,
1272       // but if the preceding conditional branch is out of range, the targets
1273       // will be exchanged, and the altered branch may be out of range, so the
1274       // machinery has to know about it.
1275       int UncondBr = Mips::Bimm16;
1276       BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
1277       unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1278       ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1279                                       MaxDisp, false, UncondBr));
1280       BBInfo[UserMBB->getNumber()].Size += Delta;
1281       adjustBBOffsetsAfter(UserMBB);
1282       return;
1283     }
1284   }
1285
1286   // What a big block.  Find a place within the block to split it.  
1287
1288   // Try to split the block so it's fully aligned.  Compute the latest split
1289   // point where we can add a 4-byte branch instruction, and then align to
1290   // LogAlign which is the largest possible alignment in the function.
1291   unsigned LogAlign = MF->getAlignment();
1292   assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry");
1293   unsigned BaseInsertOffset = UserOffset + U.getMaxDisp();
1294   DEBUG(dbgs() << format("Split in middle of big block before %#x",
1295                          BaseInsertOffset));
1296
1297   // The 4 in the following is for the unconditional branch we'll be inserting
1298   // Alignment of the island is handled
1299   // inside isOffsetInRange.
1300   BaseInsertOffset -= 4;
1301
1302   DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
1303                << " la=" << LogAlign << '\n');
1304
1305   // This could point off the end of the block if we've already got constant
1306   // pool entries following this block; only the last one is in the water list.
1307   // Back past any possible branches (allow for a conditional and a maximally
1308   // long unconditional).
1309   if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
1310     BaseInsertOffset = UserBBI.postOffset() - 8;
1311     DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
1312   }
1313   unsigned EndInsertOffset = BaseInsertOffset + 4 +
1314     CPEMI->getOperand(2).getImm();
1315   MachineBasicBlock::iterator MI = UserMI;
1316   ++MI;
1317   unsigned CPUIndex = CPUserIndex+1;
1318   unsigned NumCPUsers = CPUsers.size();
1319   //MachineInstr *LastIT = 0;
1320   for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI);
1321        Offset < BaseInsertOffset;
1322        Offset += TII->GetInstSizeInBytes(MI), MI = std::next(MI)) {
1323     assert(MI != UserMBB->end() && "Fell off end of block");
1324     if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
1325       CPUser &U = CPUsers[CPUIndex];
1326       if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
1327         // Shift intertion point by one unit of alignment so it is within reach.
1328         BaseInsertOffset -= 1u << LogAlign;
1329         EndInsertOffset  -= 1u << LogAlign;
1330       }
1331       // This is overly conservative, as we don't account for CPEMIs being
1332       // reused within the block, but it doesn't matter much.  Also assume CPEs
1333       // are added in order with alignment padding.  We may eventually be able
1334       // to pack the aligned CPEs better.
1335       EndInsertOffset += U.CPEMI->getOperand(2).getImm();
1336       CPUIndex++;
1337     }
1338   }
1339
1340   --MI;
1341   NewMBB = splitBlockBeforeInstr(MI);
1342 }
1343
1344 /// handleConstantPoolUser - Analyze the specified user, checking to see if it
1345 /// is out-of-range.  If so, pick up the constant pool value and move it some
1346 /// place in-range.  Return true if we changed any addresses (thus must run
1347 /// another pass of branch lengthening), false otherwise.
1348 bool MipsConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) {
1349   CPUser &U = CPUsers[CPUserIndex];
1350   MachineInstr *UserMI = U.MI;
1351   MachineInstr *CPEMI  = U.CPEMI;
1352   unsigned CPI = CPEMI->getOperand(1).getIndex();
1353   unsigned Size = CPEMI->getOperand(2).getImm();
1354   // Compute this only once, it's expensive.
1355   unsigned UserOffset = getUserOffset(U);
1356
1357   // See if the current entry is within range, or there is a clone of it
1358   // in range.
1359   int result = findInRangeCPEntry(U, UserOffset);
1360   if (result==1) return false;
1361   else if (result==2) return true;
1362
1363
1364   // Look for water where we can place this CPE.
1365   MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
1366   MachineBasicBlock *NewMBB;
1367   water_iterator IP;
1368   if (findAvailableWater(U, UserOffset, IP)) {
1369     DEBUG(dbgs() << "Found water in range\n");
1370     MachineBasicBlock *WaterBB = *IP;
1371
1372     // If the original WaterList entry was "new water" on this iteration,
1373     // propagate that to the new island.  This is just keeping NewWaterList
1374     // updated to match the WaterList, which will be updated below.
1375     if (NewWaterList.erase(WaterBB))
1376       NewWaterList.insert(NewIsland);
1377
1378     // The new CPE goes before the following block (NewMBB).
1379     NewMBB = std::next(MachineFunction::iterator(WaterBB));
1380
1381   } else {
1382     // No water found.
1383     // we first see if a longer form of the instrucion could have reached
1384     // the constant. in that case we won't bother to split
1385     if (!NoLoadRelaxation) {
1386       result = findLongFormInRangeCPEntry(U, UserOffset);
1387       if (result != 0) return true;
1388     }
1389     DEBUG(dbgs() << "No water found\n");
1390     createNewWater(CPUserIndex, UserOffset, NewMBB);
1391
1392     // splitBlockBeforeInstr adds to WaterList, which is important when it is
1393     // called while handling branches so that the water will be seen on the
1394     // next iteration for constant pools, but in this context, we don't want
1395     // it.  Check for this so it will be removed from the WaterList.
1396     // Also remove any entry from NewWaterList.
1397     MachineBasicBlock *WaterBB = std::prev(MachineFunction::iterator(NewMBB));
1398     IP = std::find(WaterList.begin(), WaterList.end(), WaterBB);
1399     if (IP != WaterList.end())
1400       NewWaterList.erase(WaterBB);
1401
1402     // We are adding new water.  Update NewWaterList.
1403     NewWaterList.insert(NewIsland);
1404   }
1405
1406   // Remove the original WaterList entry; we want subsequent insertions in
1407   // this vicinity to go after the one we're about to insert.  This
1408   // considerably reduces the number of times we have to move the same CPE
1409   // more than once and is also important to ensure the algorithm terminates.
1410   if (IP != WaterList.end())
1411     WaterList.erase(IP);
1412
1413   // Okay, we know we can put an island before NewMBB now, do it!
1414   MF->insert(NewMBB, NewIsland);
1415
1416   // Update internal data structures to account for the newly inserted MBB.
1417   updateForInsertedWaterBlock(NewIsland);
1418
1419   // Decrement the old entry, and remove it if refcount becomes 0.
1420   decrementCPEReferenceCount(CPI, CPEMI);
1421
1422   // No existing clone of this CPE is within range.
1423   // We will be generating a new clone.  Get a UID for it.
1424   unsigned ID = createPICLabelUId();
1425
1426   // Now that we have an island to add the CPE to, clone the original CPE and
1427   // add it to the island.
1428   U.HighWaterMark = NewIsland;
1429   U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
1430                 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
1431   CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1432   ++NumCPEs;
1433
1434   // Mark the basic block as aligned as required by the const-pool entry.
1435   NewIsland->setAlignment(getCPELogAlign(U.CPEMI));
1436
1437   // Increase the size of the island block to account for the new entry.
1438   BBInfo[NewIsland->getNumber()].Size += Size;
1439   adjustBBOffsetsAfter(std::prev(MachineFunction::iterator(NewIsland)));
1440
1441
1442
1443   // Finally, change the CPI in the instruction operand to be ID.
1444   for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1445     if (UserMI->getOperand(i).isCPI()) {
1446       UserMI->getOperand(i).setIndex(ID);
1447       break;
1448     }
1449
1450   DEBUG(dbgs() << "  Moved CPE to #" << ID << " CPI=" << CPI
1451         << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
1452
1453   return true;
1454 }
1455
1456 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
1457 /// sizes and offsets of impacted basic blocks.
1458 void MipsConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
1459   MachineBasicBlock *CPEBB = CPEMI->getParent();
1460   unsigned Size = CPEMI->getOperand(2).getImm();
1461   CPEMI->eraseFromParent();
1462   BBInfo[CPEBB->getNumber()].Size -= Size;
1463   // All succeeding offsets have the current size value added in, fix this.
1464   if (CPEBB->empty()) {
1465     BBInfo[CPEBB->getNumber()].Size = 0;
1466
1467     // This block no longer needs to be aligned.
1468     CPEBB->setAlignment(0);
1469   } else
1470     // Entries are sorted by descending alignment, so realign from the front.
1471     CPEBB->setAlignment(getCPELogAlign(CPEBB->begin()));
1472
1473   adjustBBOffsetsAfter(CPEBB);
1474   // An island has only one predecessor BB and one successor BB. Check if
1475   // this BB's predecessor jumps directly to this BB's successor. This
1476   // shouldn't happen currently.
1477   assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1478   // FIXME: remove the empty blocks after all the work is done?
1479 }
1480
1481 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts
1482 /// are zero.
1483 bool MipsConstantIslands::removeUnusedCPEntries() {
1484   unsigned MadeChange = false;
1485   for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1486       std::vector<CPEntry> &CPEs = CPEntries[i];
1487       for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1488         if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1489           removeDeadCPEMI(CPEs[j].CPEMI);
1490           CPEs[j].CPEMI = nullptr;
1491           MadeChange = true;
1492         }
1493       }
1494   }
1495   return MadeChange;
1496 }
1497
1498 /// isBBInRange - Returns true if the distance between specific MI and
1499 /// specific BB can fit in MI's displacement field.
1500 bool MipsConstantIslands::isBBInRange
1501   (MachineInstr *MI,MachineBasicBlock *DestBB, unsigned MaxDisp) {
1502
1503 unsigned PCAdj = 4;
1504
1505   unsigned BrOffset   = getOffsetOf(MI) + PCAdj;
1506   unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1507
1508   DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber()
1509                << " from BB#" << MI->getParent()->getNumber()
1510                << " max delta=" << MaxDisp
1511                << " from " << getOffsetOf(MI) << " to " << DestOffset
1512                << " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
1513
1514   if (BrOffset <= DestOffset) {
1515     // Branch before the Dest.
1516     if (DestOffset-BrOffset <= MaxDisp)
1517       return true;
1518   } else {
1519     if (BrOffset-DestOffset <= MaxDisp)
1520       return true;
1521   }
1522   return false;
1523 }
1524
1525 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far
1526 /// away to fit in its displacement field.
1527 bool MipsConstantIslands::fixupImmediateBr(ImmBranch &Br) {
1528   MachineInstr *MI = Br.MI;
1529   unsigned TargetOperand = branchTargetOperand(MI);
1530   MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB();
1531
1532   // Check to see if the DestBB is already in-range.
1533   if (isBBInRange(MI, DestBB, Br.MaxDisp))
1534     return false;
1535
1536   if (!Br.isCond)
1537     return fixupUnconditionalBr(Br);
1538   return fixupConditionalBr(Br);
1539 }
1540
1541 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
1542 /// too far away to fit in its displacement field. If the LR register has been
1543 /// spilled in the epilogue, then we can use BL to implement a far jump.
1544 /// Otherwise, add an intermediate branch instruction to a branch.
1545 bool
1546 MipsConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
1547   MachineInstr *MI = Br.MI;
1548   MachineBasicBlock *MBB = MI->getParent();
1549   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1550   // Use BL to implement far jump.
1551   unsigned BimmX16MaxDisp = ((1 << 16)-1) * 2;
1552   if (isBBInRange(MI, DestBB, BimmX16MaxDisp)) {
1553     Br.MaxDisp = BimmX16MaxDisp;
1554     MI->setDesc(TII->get(Mips::BimmX16));
1555   }
1556   else {
1557     // need to give the math a more careful look here
1558     // this is really a segment address and not
1559     // a PC relative address. FIXME. But I think that
1560     // just reducing the bits by 1 as I've done is correct.
1561     // The basic block we are branching too much be longword aligned.
1562     // we know that RA is saved because we always save it right now.
1563     // this requirement will be relaxed later but we also have an alternate
1564     // way to implement this that I will implement that does not need jal.
1565     // We should have a way to back out this alignment restriction if we "can" later.
1566     // but it is not harmful.
1567     //
1568     DestBB->setAlignment(2);
1569     Br.MaxDisp = ((1<<24)-1) * 2;
1570     MI->setDesc(TII->get(Mips::JalB16));
1571   }
1572   BBInfo[MBB->getNumber()].Size += 2;
1573   adjustBBOffsetsAfter(MBB);
1574   HasFarJump = true;
1575   ++NumUBrFixed;
1576
1577   DEBUG(dbgs() << "  Changed B to long jump " << *MI);
1578
1579   return true;
1580 }
1581
1582
1583 /// fixupConditionalBr - Fix up a conditional branch whose destination is too
1584 /// far away to fit in its displacement field. It is converted to an inverse
1585 /// conditional branch + an unconditional branch to the destination.
1586 bool
1587 MipsConstantIslands::fixupConditionalBr(ImmBranch &Br) {
1588   MachineInstr *MI = Br.MI;
1589   unsigned TargetOperand = branchTargetOperand(MI);
1590   MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB();
1591   unsigned Opcode = MI->getOpcode();
1592   unsigned LongFormOpcode = longformBranchOpcode(Opcode);
1593   unsigned LongFormMaxOff = branchMaxOffsets(LongFormOpcode);
1594
1595   // Check to see if the DestBB is already in-range.
1596   if (isBBInRange(MI, DestBB, LongFormMaxOff)) {
1597     Br.MaxDisp = LongFormMaxOff;
1598     MI->setDesc(TII->get(LongFormOpcode));
1599     return true;
1600   }
1601
1602   // Add an unconditional branch to the destination and invert the branch
1603   // condition to jump over it:
1604   // bteqz L1
1605   // =>
1606   // bnez L2
1607   // b   L1
1608   // L2:
1609
1610   // If the branch is at the end of its MBB and that has a fall-through block,
1611   // direct the updated conditional branch to the fall-through block. Otherwise,
1612   // split the MBB before the next instruction.
1613   MachineBasicBlock *MBB = MI->getParent();
1614   MachineInstr *BMI = &MBB->back();
1615   bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1616   unsigned OppositeBranchOpcode = TII->getOppositeBranchOpc(Opcode);
1617  
1618   ++NumCBrFixed;
1619   if (BMI != MI) {
1620     if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
1621         isUnconditionalBranch(BMI->getOpcode())) {
1622       // Last MI in the BB is an unconditional branch. Can we simply invert the
1623       // condition and swap destinations:
1624       // beqz L1
1625       // b   L2
1626       // =>
1627       // bnez L2
1628       // b   L1
1629       unsigned BMITargetOperand = branchTargetOperand(BMI);
1630       MachineBasicBlock *NewDest = 
1631         BMI->getOperand(BMITargetOperand).getMBB();
1632       if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
1633         DEBUG(dbgs() << "  Invert Bcc condition and swap its destination with "
1634                      << *BMI);
1635         MI->setDesc(TII->get(OppositeBranchOpcode));
1636         BMI->getOperand(BMITargetOperand).setMBB(DestBB);
1637         MI->getOperand(TargetOperand).setMBB(NewDest);
1638         return true;
1639       }
1640     }
1641   }
1642
1643
1644   if (NeedSplit) {
1645     splitBlockBeforeInstr(MI);
1646     // No need for the branch to the next block. We're adding an unconditional
1647     // branch to the destination.
1648     int delta = TII->GetInstSizeInBytes(&MBB->back());
1649     BBInfo[MBB->getNumber()].Size -= delta;
1650     MBB->back().eraseFromParent();
1651     // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
1652   }
1653   MachineBasicBlock *NextBB = std::next(MachineFunction::iterator(MBB));
1654
1655   DEBUG(dbgs() << "  Insert B to BB#" << DestBB->getNumber()
1656                << " also invert condition and change dest. to BB#"
1657                << NextBB->getNumber() << "\n");
1658
1659   // Insert a new conditional branch and a new unconditional branch.
1660   // Also update the ImmBranch as well as adding a new entry for the new branch.
1661   if (MI->getNumExplicitOperands() == 2) {
1662     BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode))
1663            .addReg(MI->getOperand(0).getReg())
1664            .addMBB(NextBB);
1665   } else {
1666     BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode))
1667            .addMBB(NextBB);
1668   }
1669   Br.MI = &MBB->back();
1670   BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
1671   BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1672   BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
1673   unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1674   ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1675
1676   // Remove the old conditional branch.  It may or may not still be in MBB.
1677   BBInfo[MI->getParent()->getNumber()].Size -= TII->GetInstSizeInBytes(MI);
1678   MI->eraseFromParent();
1679   adjustBBOffsetsAfter(MBB);
1680   return true;
1681 }
1682
1683
1684 void MipsConstantIslands::prescanForConstants() {
1685   unsigned J = 0;
1686   (void)J;
1687   for (MachineFunction::iterator B =
1688          MF->begin(), E = MF->end(); B != E; ++B) {
1689     for (MachineBasicBlock::instr_iterator I =
1690         B->instr_begin(), EB = B->instr_end(); I != EB; ++I) {
1691       switch(I->getDesc().getOpcode()) {
1692         case Mips::LwConstant32: {
1693           PrescannedForConstants = true;
1694           DEBUG(dbgs() << "constant island constant " << *I << "\n");
1695           J = I->getNumOperands();
1696           DEBUG(dbgs() << "num operands " << J  << "\n");
1697           MachineOperand& Literal = I->getOperand(1);
1698           if (Literal.isImm()) {
1699             int64_t V = Literal.getImm();
1700             DEBUG(dbgs() << "literal " << V  << "\n");
1701             Type *Int32Ty =
1702               Type::getInt32Ty(MF->getFunction()->getContext());
1703             const Constant *C = ConstantInt::get(Int32Ty, V);
1704             unsigned index = MCP->getConstantPoolIndex(C, 4);
1705             I->getOperand(2).ChangeToImmediate(index);
1706             DEBUG(dbgs() << "constant island constant " << *I << "\n");
1707             I->setDesc(TII->get(Mips::LwRxPcTcp16));
1708             I->RemoveOperand(1);
1709             I->RemoveOperand(1);
1710             I->addOperand(MachineOperand::CreateCPI(index, 0));
1711             I->addOperand(MachineOperand::CreateImm(4));
1712           }
1713           break;
1714         }
1715         default:
1716           break;
1717       }
1718     }
1719   }
1720 }
1721