Move most user of TargetMachine::getDataLayout to the Module one
[oota-llvm.git] / lib / Target / Mips / MipsConstantIslandPass.cpp
1 //===-- MipsConstantIslandPass.cpp - Emit Pc Relative loads----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //
11 // This pass is used to make Pc relative loads of constants.
12 // For now, only Mips16 will use this. 
13 //
14 // Loading constants inline is expensive on Mips16 and it's in general better
15 // to place the constant nearby in code space and then it can be loaded with a
16 // simple 16 bit load instruction.
17 //
18 // The constants can be not just numbers but addresses of functions and labels.
19 // This can be particularly helpful in static relocation mode for embedded
20 // non-linux targets.
21 //
22 //
23
24 #include "Mips.h"
25 #include "MCTargetDesc/MipsBaseInfo.h"
26 #include "Mips16InstrInfo.h"
27 #include "MipsMachineFunction.h"
28 #include "MipsTargetMachine.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineConstantPool.h"
32 #include "llvm/CodeGen/MachineFunctionPass.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/InstIterator.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/Format.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Target/TargetInstrInfo.h"
43 #include "llvm/Target/TargetMachine.h"
44 #include "llvm/Target/TargetRegisterInfo.h"
45 #include <algorithm>
46
47 using namespace llvm;
48
49 #define DEBUG_TYPE "mips-constant-islands"
50
51 STATISTIC(NumCPEs,       "Number of constpool entries");
52 STATISTIC(NumSplit,      "Number of uncond branches inserted");
53 STATISTIC(NumCBrFixed,   "Number of cond branches fixed");
54 STATISTIC(NumUBrFixed,   "Number of uncond branches fixed");
55
56 // FIXME: This option should be removed once it has received sufficient testing.
57 static cl::opt<bool>
58 AlignConstantIslands("mips-align-constant-islands", cl::Hidden, cl::init(true),
59           cl::desc("Align constant islands in code"));
60
61
62 // Rather than do make check tests with huge amounts of code, we force
63 // the test to use this amount.
64 //
65 static cl::opt<int> ConstantIslandsSmallOffset(
66   "mips-constant-islands-small-offset",
67   cl::init(0),
68   cl::desc("Make small offsets be this amount for testing purposes"),
69   cl::Hidden);
70
71 //
72 // For testing purposes we tell it to not use relaxed load forms so that it
73 // will split blocks.
74 //
75 static cl::opt<bool> NoLoadRelaxation(
76   "mips-constant-islands-no-load-relaxation",
77   cl::init(false),
78   cl::desc("Don't relax loads to long loads - for testing purposes"),
79   cl::Hidden);
80
81 static unsigned int branchTargetOperand(MachineInstr *MI) {
82   switch (MI->getOpcode()) {
83   case Mips::Bimm16:
84   case Mips::BimmX16:
85   case Mips::Bteqz16:
86   case Mips::BteqzX16:
87   case Mips::Btnez16:
88   case Mips::BtnezX16:
89   case Mips::JalB16:
90     return 0;
91   case Mips::BeqzRxImm16:
92   case Mips::BeqzRxImmX16:
93   case Mips::BnezRxImm16:
94   case Mips::BnezRxImmX16:
95     return 1;
96   }
97   llvm_unreachable("Unknown branch type");
98 }
99
100 static bool isUnconditionalBranch(unsigned int Opcode) {
101   switch (Opcode) {
102   default: return false;
103   case Mips::Bimm16:
104   case Mips::BimmX16:
105   case Mips::JalB16:
106     return true;
107   }
108 }
109
110 static unsigned int longformBranchOpcode(unsigned int Opcode) {
111   switch (Opcode) {
112   case Mips::Bimm16:
113   case Mips::BimmX16:
114     return Mips::BimmX16;
115   case Mips::Bteqz16:
116   case Mips::BteqzX16:
117     return Mips::BteqzX16;
118   case Mips::Btnez16:
119   case Mips::BtnezX16:
120     return Mips::BtnezX16;
121   case Mips::JalB16:
122     return Mips::JalB16;
123   case Mips::BeqzRxImm16:
124   case Mips::BeqzRxImmX16:
125     return Mips::BeqzRxImmX16;
126   case Mips::BnezRxImm16:
127   case Mips::BnezRxImmX16:
128     return Mips::BnezRxImmX16;
129   }
130   llvm_unreachable("Unknown branch type");
131 }
132
133 //
134 // FIXME: need to go through this whole constant islands port and check the math
135 // for branch ranges and clean this up and make some functions to calculate things
136 // that are done many times identically.
137 // Need to refactor some of the code to call this routine.
138 //
139 static unsigned int branchMaxOffsets(unsigned int Opcode) {
140   unsigned Bits, Scale;
141   switch (Opcode) {
142     case Mips::Bimm16:
143       Bits = 11;
144       Scale = 2;
145       break;
146     case Mips::BimmX16:
147       Bits = 16;
148       Scale = 2;
149       break;
150     case Mips::BeqzRxImm16:
151       Bits = 8;
152       Scale = 2;
153       break;
154     case Mips::BeqzRxImmX16:
155       Bits = 16;
156       Scale = 2;
157       break;
158     case Mips::BnezRxImm16:
159       Bits = 8;
160       Scale = 2;
161       break;
162     case Mips::BnezRxImmX16:
163       Bits = 16;
164       Scale = 2;
165       break;
166     case Mips::Bteqz16:
167       Bits = 8;
168       Scale = 2;
169       break;
170     case Mips::BteqzX16:
171       Bits = 16;
172       Scale = 2;
173       break;
174     case Mips::Btnez16:
175       Bits = 8;
176       Scale = 2;
177       break;
178     case Mips::BtnezX16:
179       Bits = 16;
180       Scale = 2;
181       break;
182     default:
183       llvm_unreachable("Unknown branch type");
184   }
185   unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
186   return MaxOffs;
187 }
188
189 namespace {
190
191
192   typedef MachineBasicBlock::iterator Iter;
193   typedef MachineBasicBlock::reverse_iterator ReverseIter;
194
195   /// MipsConstantIslands - Due to limited PC-relative displacements, Mips
196   /// requires constant pool entries to be scattered among the instructions
197   /// inside a function.  To do this, it completely ignores the normal LLVM
198   /// constant pool; instead, it places constants wherever it feels like with
199   /// special instructions.
200   ///
201   /// The terminology used in this pass includes:
202   ///   Islands - Clumps of constants placed in the function.
203   ///   Water   - Potential places where an island could be formed.
204   ///   CPE     - A constant pool entry that has been placed somewhere, which
205   ///             tracks a list of users.
206
207   class MipsConstantIslands : public MachineFunctionPass {
208
209     /// BasicBlockInfo - Information about the offset and size of a single
210     /// basic block.
211     struct BasicBlockInfo {
212       /// Offset - Distance from the beginning of the function to the beginning
213       /// of this basic block.
214       ///
215       /// Offsets are computed assuming worst case padding before an aligned
216       /// block. This means that subtracting basic block offsets always gives a
217       /// conservative estimate of the real distance which may be smaller.
218       ///
219       /// Because worst case padding is used, the computed offset of an aligned
220       /// block may not actually be aligned.
221       unsigned Offset;
222
223       /// Size - Size of the basic block in bytes.  If the block contains
224       /// inline assembly, this is a worst case estimate.
225       ///
226       /// The size does not include any alignment padding whether from the
227       /// beginning of the block, or from an aligned jump table at the end.
228       unsigned Size;
229
230       // FIXME: ignore LogAlign for this patch
231       //
232       unsigned postOffset(unsigned LogAlign = 0) const {
233         unsigned PO = Offset + Size;
234         return PO;
235       }
236
237       BasicBlockInfo() : Offset(0), Size(0) {}
238
239     };
240
241     std::vector<BasicBlockInfo> BBInfo;
242
243     /// WaterList - A sorted list of basic blocks where islands could be placed
244     /// (i.e. blocks that don't fall through to the following block, due
245     /// to a return, unreachable, or unconditional branch).
246     std::vector<MachineBasicBlock*> WaterList;
247
248     /// NewWaterList - The subset of WaterList that was created since the
249     /// previous iteration by inserting unconditional branches.
250     SmallSet<MachineBasicBlock*, 4> NewWaterList;
251
252     typedef std::vector<MachineBasicBlock*>::iterator water_iterator;
253
254     /// CPUser - One user of a constant pool, keeping the machine instruction
255     /// pointer, the constant pool being referenced, and the max displacement
256     /// allowed from the instruction to the CP.  The HighWaterMark records the
257     /// highest basic block where a new CPEntry can be placed.  To ensure this
258     /// pass terminates, the CP entries are initially placed at the end of the
259     /// function and then move monotonically to lower addresses.  The
260     /// exception to this rule is when the current CP entry for a particular
261     /// CPUser is out of range, but there is another CP entry for the same
262     /// constant value in range.  We want to use the existing in-range CP
263     /// entry, but if it later moves out of range, the search for new water
264     /// should resume where it left off.  The HighWaterMark is used to record
265     /// that point.
266     struct CPUser {
267       MachineInstr *MI;
268       MachineInstr *CPEMI;
269       MachineBasicBlock *HighWaterMark;
270     private:
271       unsigned MaxDisp;
272       unsigned LongFormMaxDisp; // mips16 has 16/32 bit instructions
273                                 // with different displacements
274       unsigned LongFormOpcode;
275     public:
276       bool NegOk;
277       CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
278              bool neg,
279              unsigned longformmaxdisp, unsigned longformopcode)
280         : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp),
281           LongFormMaxDisp(longformmaxdisp), LongFormOpcode(longformopcode),
282           NegOk(neg){
283         HighWaterMark = CPEMI->getParent();
284       }
285       /// getMaxDisp - Returns the maximum displacement supported by MI.
286       unsigned getMaxDisp() const {
287         unsigned xMaxDisp = ConstantIslandsSmallOffset?
288                             ConstantIslandsSmallOffset: MaxDisp;
289         return xMaxDisp;
290       }
291       void setMaxDisp(unsigned val) {
292         MaxDisp = val;
293       }
294       unsigned getLongFormMaxDisp() const {
295         return LongFormMaxDisp;
296       }
297       unsigned getLongFormOpcode() const {
298           return LongFormOpcode;
299       }
300     };
301
302     /// CPUsers - Keep track of all of the machine instructions that use various
303     /// constant pools and their max displacement.
304     std::vector<CPUser> CPUsers;
305
306   /// CPEntry - One per constant pool entry, keeping the machine instruction
307   /// pointer, the constpool index, and the number of CPUser's which
308   /// reference this entry.
309   struct CPEntry {
310     MachineInstr *CPEMI;
311     unsigned CPI;
312     unsigned RefCount;
313     CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
314       : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
315   };
316
317   /// CPEntries - Keep track of all of the constant pool entry machine
318   /// instructions. For each original constpool index (i.e. those that
319   /// existed upon entry to this pass), it keeps a vector of entries.
320   /// Original elements are cloned as we go along; the clones are
321   /// put in the vector of the original element, but have distinct CPIs.
322   std::vector<std::vector<CPEntry> > CPEntries;
323
324   /// ImmBranch - One per immediate branch, keeping the machine instruction
325   /// pointer, conditional or unconditional, the max displacement,
326   /// and (if isCond is true) the corresponding unconditional branch
327   /// opcode.
328   struct ImmBranch {
329     MachineInstr *MI;
330     unsigned MaxDisp : 31;
331     bool isCond : 1;
332     int UncondBr;
333     ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
334       : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
335   };
336
337   /// ImmBranches - Keep track of all the immediate branch instructions.
338   ///
339   std::vector<ImmBranch> ImmBranches;
340
341   /// HasFarJump - True if any far jump instruction has been emitted during
342   /// the branch fix up pass.
343   bool HasFarJump;
344
345   const TargetMachine &TM;
346   bool IsPIC;
347   const MipsSubtarget *STI;
348   const Mips16InstrInfo *TII;
349   MipsFunctionInfo *MFI;
350   MachineFunction *MF;
351   MachineConstantPool *MCP;
352
353   unsigned PICLabelUId;
354   bool PrescannedForConstants;
355
356   void initPICLabelUId(unsigned UId) {
357     PICLabelUId = UId;
358   }
359
360
361   unsigned createPICLabelUId() {
362     return PICLabelUId++;
363   }
364
365   public:
366     static char ID;
367     MipsConstantIslands(TargetMachine &tm)
368         : MachineFunctionPass(ID), TM(tm),
369           IsPIC(TM.getRelocationModel() == Reloc::PIC_), STI(nullptr),
370           MF(nullptr), MCP(nullptr), PrescannedForConstants(false) {}
371
372     const char *getPassName() const override {
373       return "Mips Constant Islands";
374     }
375
376     bool runOnMachineFunction(MachineFunction &F) override;
377
378     void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs);
379     CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
380     unsigned getCPELogAlign(const MachineInstr *CPEMI);
381     void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
382     unsigned getOffsetOf(MachineInstr *MI) const;
383     unsigned getUserOffset(CPUser&) const;
384     void dumpBBs();
385
386     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
387                          unsigned Disp, bool NegativeOK);
388     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
389                          const CPUser &U);
390
391     void computeBlockSize(MachineBasicBlock *MBB);
392     MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI);
393     void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
394     void adjustBBOffsetsAfter(MachineBasicBlock *BB);
395     bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
396     int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
397     int findLongFormInRangeCPEntry(CPUser& U, unsigned UserOffset);
398     bool findAvailableWater(CPUser&U, unsigned UserOffset,
399                             water_iterator &WaterIter);
400     void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
401                         MachineBasicBlock *&NewMBB);
402     bool handleConstantPoolUser(unsigned CPUserIndex);
403     void removeDeadCPEMI(MachineInstr *CPEMI);
404     bool removeUnusedCPEntries();
405     bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
406                           MachineInstr *CPEMI, unsigned Disp, bool NegOk,
407                           bool DoDump = false);
408     bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
409                         CPUser &U, unsigned &Growth);
410     bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
411     bool fixupImmediateBr(ImmBranch &Br);
412     bool fixupConditionalBr(ImmBranch &Br);
413     bool fixupUnconditionalBr(ImmBranch &Br);
414
415     void prescanForConstants();
416
417   private:
418
419   };
420
421   char MipsConstantIslands::ID = 0;
422 } // end of anonymous namespace
423
424 bool MipsConstantIslands::isOffsetInRange
425   (unsigned UserOffset, unsigned TrialOffset,
426    const CPUser &U) {
427   return isOffsetInRange(UserOffset, TrialOffset,
428                          U.getMaxDisp(), U.NegOk);
429 }
430 /// print block size and offset information - debugging
431 void MipsConstantIslands::dumpBBs() {
432   DEBUG({
433     for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
434       const BasicBlockInfo &BBI = BBInfo[J];
435       dbgs() << format("%08x BB#%u\t", BBI.Offset, J)
436              << format(" size=%#x\n", BBInfo[J].Size);
437     }
438   });
439 }
440 /// createMipsLongBranchPass - Returns a pass that converts branches to long
441 /// branches.
442 FunctionPass *llvm::createMipsConstantIslandPass(MipsTargetMachine &tm) {
443   return new MipsConstantIslands(tm);
444 }
445
446 bool MipsConstantIslands::runOnMachineFunction(MachineFunction &mf) {
447   // The intention is for this to be a mips16 only pass for now
448   // FIXME:
449   MF = &mf;
450   MCP = mf.getConstantPool();
451   STI = &static_cast<const MipsSubtarget &>(mf.getSubtarget());
452   DEBUG(dbgs() << "constant island machine function " << "\n");
453   if (!STI->inMips16Mode() || !MipsSubtarget::useConstantIslands()) {
454     return false;
455   }
456   TII = (const Mips16InstrInfo *)STI->getInstrInfo();
457   MFI = MF->getInfo<MipsFunctionInfo>();
458   DEBUG(dbgs() << "constant island processing " << "\n");
459   //
460   // will need to make predermination if there is any constants we need to
461   // put in constant islands. TBD.
462   //
463   if (!PrescannedForConstants) prescanForConstants();
464
465   HasFarJump = false;
466   // This pass invalidates liveness information when it splits basic blocks.
467   MF->getRegInfo().invalidateLiveness();
468
469   // Renumber all of the machine basic blocks in the function, guaranteeing that
470   // the numbers agree with the position of the block in the function.
471   MF->RenumberBlocks();
472
473   bool MadeChange = false;
474
475   // Perform the initial placement of the constant pool entries.  To start with,
476   // we put them all at the end of the function.
477   std::vector<MachineInstr*> CPEMIs;
478   if (!MCP->isEmpty())
479     doInitialPlacement(CPEMIs);
480
481   /// The next UID to take is the first unused one.
482   initPICLabelUId(CPEMIs.size());
483
484   // Do the initial scan of the function, building up information about the
485   // sizes of each block, the location of all the water, and finding all of the
486   // constant pool users.
487   initializeFunctionInfo(CPEMIs);
488   CPEMIs.clear();
489   DEBUG(dumpBBs());
490
491   /// Remove dead constant pool entries.
492   MadeChange |= removeUnusedCPEntries();
493
494   // Iteratively place constant pool entries and fix up branches until there
495   // is no change.
496   unsigned NoCPIters = 0, NoBRIters = 0;
497   (void)NoBRIters;
498   while (true) {
499     DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
500     bool CPChange = false;
501     for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
502       CPChange |= handleConstantPoolUser(i);
503     if (CPChange && ++NoCPIters > 30)
504       report_fatal_error("Constant Island pass failed to converge!");
505     DEBUG(dumpBBs());
506
507     // Clear NewWaterList now.  If we split a block for branches, it should
508     // appear as "new water" for the next iteration of constant pool placement.
509     NewWaterList.clear();
510
511     DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
512     bool BRChange = false;
513     for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
514       BRChange |= fixupImmediateBr(ImmBranches[i]);
515     if (BRChange && ++NoBRIters > 30)
516       report_fatal_error("Branch Fix Up pass failed to converge!");
517     DEBUG(dumpBBs());
518     if (!CPChange && !BRChange)
519       break;
520     MadeChange = true;
521   }
522
523   DEBUG(dbgs() << '\n'; dumpBBs());
524
525   BBInfo.clear();
526   WaterList.clear();
527   CPUsers.clear();
528   CPEntries.clear();
529   ImmBranches.clear();
530   return MadeChange;
531 }
532
533 /// doInitialPlacement - Perform the initial placement of the constant pool
534 /// entries.  To start with, we put them all at the end of the function.
535 void
536 MipsConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) {
537   // Create the basic block to hold the CPE's.
538   MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
539   MF->push_back(BB);
540
541
542   // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
543   unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment());
544
545   // Mark the basic block as required by the const-pool.
546   // If AlignConstantIslands isn't set, use 4-byte alignment for everything.
547   BB->setAlignment(AlignConstantIslands ? MaxAlign : 2);
548
549   // The function needs to be as aligned as the basic blocks. The linker may
550   // move functions around based on their alignment.
551   MF->ensureAlignment(BB->getAlignment());
552
553   // Order the entries in BB by descending alignment.  That ensures correct
554   // alignment of all entries as long as BB is sufficiently aligned.  Keep
555   // track of the insertion point for each alignment.  We are going to bucket
556   // sort the entries as they are created.
557   SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end());
558
559   // Add all of the constants from the constant pool to the end block, use an
560   // identity mapping of CPI's to CPE's.
561   const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
562
563   const DataLayout &TD = MF->getDataLayout();
564   for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
565     unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
566     assert(Size >= 4 && "Too small constant pool entry");
567     unsigned Align = CPs[i].getAlignment();
568     assert(isPowerOf2_32(Align) && "Invalid alignment");
569     // Verify that all constant pool entries are a multiple of their alignment.
570     // If not, we would have to pad them out so that instructions stay aligned.
571     assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
572
573     // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
574     unsigned LogAlign = Log2_32(Align);
575     MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
576
577     MachineInstr *CPEMI =
578       BuildMI(*BB, InsAt, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
579         .addImm(i).addConstantPoolIndex(i).addImm(Size);
580
581     CPEMIs.push_back(CPEMI);
582
583     // Ensure that future entries with higher alignment get inserted before
584     // CPEMI. This is bucket sort with iterators.
585     for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a)
586       if (InsPoint[a] == InsAt)
587         InsPoint[a] = CPEMI;
588     // Add a new CPEntry, but no corresponding CPUser yet.
589     CPEntries.emplace_back(1, CPEntry(CPEMI, i));
590     ++NumCPEs;
591     DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
592                  << Size << ", align = " << Align <<'\n');
593   }
594   DEBUG(BB->dump());
595 }
596
597 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
598 /// into the block immediately after it.
599 static bool BBHasFallthrough(MachineBasicBlock *MBB) {
600   // Get the next machine basic block in the function.
601   MachineFunction::iterator MBBI = MBB;
602   // Can't fall off end of function.
603   if (std::next(MBBI) == MBB->getParent()->end())
604     return false;
605
606   MachineBasicBlock *NextBB = std::next(MBBI);
607   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
608        E = MBB->succ_end(); I != E; ++I)
609     if (*I == NextBB)
610       return true;
611
612   return false;
613 }
614
615 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
616 /// look up the corresponding CPEntry.
617 MipsConstantIslands::CPEntry
618 *MipsConstantIslands::findConstPoolEntry(unsigned CPI,
619                                         const MachineInstr *CPEMI) {
620   std::vector<CPEntry> &CPEs = CPEntries[CPI];
621   // Number of entries per constpool index should be small, just do a
622   // linear search.
623   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
624     if (CPEs[i].CPEMI == CPEMI)
625       return &CPEs[i];
626   }
627   return nullptr;
628 }
629
630 /// getCPELogAlign - Returns the required alignment of the constant pool entry
631 /// represented by CPEMI.  Alignment is measured in log2(bytes) units.
632 unsigned MipsConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) {
633   assert(CPEMI && CPEMI->getOpcode() == Mips::CONSTPOOL_ENTRY);
634
635   // Everything is 4-byte aligned unless AlignConstantIslands is set.
636   if (!AlignConstantIslands)
637     return 2;
638
639   unsigned CPI = CPEMI->getOperand(1).getIndex();
640   assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
641   unsigned Align = MCP->getConstants()[CPI].getAlignment();
642   assert(isPowerOf2_32(Align) && "Invalid CPE alignment");
643   return Log2_32(Align);
644 }
645
646 /// initializeFunctionInfo - Do the initial scan of the function, building up
647 /// information about the sizes of each block, the location of all the water,
648 /// and finding all of the constant pool users.
649 void MipsConstantIslands::
650 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
651   BBInfo.clear();
652   BBInfo.resize(MF->getNumBlockIDs());
653
654   // First thing, compute the size of all basic blocks, and see if the function
655   // has any inline assembly in it. If so, we have to be conservative about
656   // alignment assumptions, as we don't know for sure the size of any
657   // instructions in the inline assembly.
658   for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I)
659     computeBlockSize(I);
660
661
662   // Compute block offsets.
663   adjustBBOffsetsAfter(MF->begin());
664
665   // Now go back through the instructions and build up our data structures.
666   for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
667        MBBI != E; ++MBBI) {
668     MachineBasicBlock &MBB = *MBBI;
669
670     // If this block doesn't fall through into the next MBB, then this is
671     // 'water' that a constant pool island could be placed.
672     if (!BBHasFallthrough(&MBB))
673       WaterList.push_back(&MBB);
674     for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
675          I != E; ++I) {
676       if (I->isDebugValue())
677         continue;
678
679       int Opc = I->getOpcode();
680       if (I->isBranch()) {
681         bool isCond = false;
682         unsigned Bits = 0;
683         unsigned Scale = 1;
684         int UOpc = Opc;
685         switch (Opc) {
686         default:
687           continue;  // Ignore other branches for now
688         case Mips::Bimm16:
689           Bits = 11;
690           Scale = 2;
691           isCond = false;
692           break;
693         case Mips::BimmX16:
694           Bits = 16;
695           Scale = 2;
696           isCond = false;
697           break;
698         case Mips::BeqzRxImm16:
699           UOpc=Mips::Bimm16;
700           Bits = 8;
701           Scale = 2;
702           isCond = true;
703           break;
704         case Mips::BeqzRxImmX16:
705           UOpc=Mips::Bimm16;
706           Bits = 16;
707           Scale = 2;
708           isCond = true;
709           break;
710         case Mips::BnezRxImm16:
711           UOpc=Mips::Bimm16;
712           Bits = 8;
713           Scale = 2;
714           isCond = true;
715           break;
716         case Mips::BnezRxImmX16:
717           UOpc=Mips::Bimm16;
718           Bits = 16;
719           Scale = 2;
720           isCond = true;
721           break;
722         case Mips::Bteqz16:
723           UOpc=Mips::Bimm16;
724           Bits = 8;
725           Scale = 2;
726           isCond = true;
727           break;
728         case Mips::BteqzX16:
729           UOpc=Mips::Bimm16;
730           Bits = 16;
731           Scale = 2;
732           isCond = true;
733           break;
734         case Mips::Btnez16:
735           UOpc=Mips::Bimm16;
736           Bits = 8;
737           Scale = 2;
738           isCond = true;
739           break;
740         case Mips::BtnezX16:
741           UOpc=Mips::Bimm16;
742           Bits = 16;
743           Scale = 2;
744           isCond = true;
745           break;
746         }
747         // Record this immediate branch.
748         unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
749         ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc));
750       }
751
752       if (Opc == Mips::CONSTPOOL_ENTRY)
753         continue;
754
755
756       // Scan the instructions for constant pool operands.
757       for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
758         if (I->getOperand(op).isCPI()) {
759
760           // We found one.  The addressing mode tells us the max displacement
761           // from the PC that this instruction permits.
762
763           // Basic size info comes from the TSFlags field.
764           unsigned Bits = 0;
765           unsigned Scale = 1;
766           bool NegOk = false;
767           unsigned LongFormBits = 0;
768           unsigned LongFormScale = 0;
769           unsigned LongFormOpcode = 0;
770           switch (Opc) {
771           default:
772             llvm_unreachable("Unknown addressing mode for CP reference!");
773           case Mips::LwRxPcTcp16:
774             Bits = 8;
775             Scale = 4;
776             LongFormOpcode = Mips::LwRxPcTcpX16;
777             LongFormBits = 14;
778             LongFormScale = 1;
779             break;
780           case Mips::LwRxPcTcpX16:
781             Bits = 14;
782             Scale = 1;
783             NegOk = true;
784             break;
785           }
786           // Remember that this is a user of a CP entry.
787           unsigned CPI = I->getOperand(op).getIndex();
788           MachineInstr *CPEMI = CPEMIs[CPI];
789           unsigned MaxOffs = ((1 << Bits)-1) * Scale;
790           unsigned LongFormMaxOffs = ((1 << LongFormBits)-1) * LongFormScale;
791           CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk,
792                                    LongFormMaxOffs, LongFormOpcode));
793
794           // Increment corresponding CPEntry reference count.
795           CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
796           assert(CPE && "Cannot find a corresponding CPEntry!");
797           CPE->RefCount++;
798
799           // Instructions can only use one CP entry, don't bother scanning the
800           // rest of the operands.
801           break;
802
803         }
804
805     }
806   }
807
808 }
809
810 /// computeBlockSize - Compute the size and some alignment information for MBB.
811 /// This function updates BBInfo directly.
812 void MipsConstantIslands::computeBlockSize(MachineBasicBlock *MBB) {
813   BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
814   BBI.Size = 0;
815
816   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
817        ++I)
818     BBI.Size += TII->GetInstSizeInBytes(I);
819
820 }
821
822 /// getOffsetOf - Return the current offset of the specified machine instruction
823 /// from the start of the function.  This offset changes as stuff is moved
824 /// around inside the function.
825 unsigned MipsConstantIslands::getOffsetOf(MachineInstr *MI) const {
826   MachineBasicBlock *MBB = MI->getParent();
827
828   // The offset is composed of two things: the sum of the sizes of all MBB's
829   // before this instruction's block, and the offset from the start of the block
830   // it is in.
831   unsigned Offset = BBInfo[MBB->getNumber()].Offset;
832
833   // Sum instructions before MI in MBB.
834   for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
835     assert(I != MBB->end() && "Didn't find MI in its own basic block?");
836     Offset += TII->GetInstSizeInBytes(I);
837   }
838   return Offset;
839 }
840
841 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
842 /// ID.
843 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
844                               const MachineBasicBlock *RHS) {
845   return LHS->getNumber() < RHS->getNumber();
846 }
847
848 /// updateForInsertedWaterBlock - When a block is newly inserted into the
849 /// machine function, it upsets all of the block numbers.  Renumber the blocks
850 /// and update the arrays that parallel this numbering.
851 void MipsConstantIslands::updateForInsertedWaterBlock
852   (MachineBasicBlock *NewBB) {
853   // Renumber the MBB's to keep them consecutive.
854   NewBB->getParent()->RenumberBlocks(NewBB);
855
856   // Insert an entry into BBInfo to align it properly with the (newly
857   // renumbered) block numbers.
858   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
859
860   // Next, update WaterList.  Specifically, we need to add NewMBB as having
861   // available water after it.
862   water_iterator IP =
863     std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
864                      CompareMBBNumbers);
865   WaterList.insert(IP, NewBB);
866 }
867
868 unsigned MipsConstantIslands::getUserOffset(CPUser &U) const {
869   return getOffsetOf(U.MI);
870 }
871
872 /// Split the basic block containing MI into two blocks, which are joined by
873 /// an unconditional branch.  Update data structures and renumber blocks to
874 /// account for this change and returns the newly created block.
875 MachineBasicBlock *MipsConstantIslands::splitBlockBeforeInstr
876   (MachineInstr *MI) {
877   MachineBasicBlock *OrigBB = MI->getParent();
878
879   // Create a new MBB for the code after the OrigBB.
880   MachineBasicBlock *NewBB =
881     MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
882   MachineFunction::iterator MBBI = OrigBB; ++MBBI;
883   MF->insert(MBBI, NewBB);
884
885   // Splice the instructions starting with MI over to NewBB.
886   NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
887
888   // Add an unconditional branch from OrigBB to NewBB.
889   // Note the new unconditional branch is not being recorded.
890   // There doesn't seem to be meaningful DebugInfo available; this doesn't
891   // correspond to anything in the source.
892   BuildMI(OrigBB, DebugLoc(), TII->get(Mips::Bimm16)).addMBB(NewBB);
893   ++NumSplit;
894
895   // Update the CFG.  All succs of OrigBB are now succs of NewBB.
896   NewBB->transferSuccessors(OrigBB);
897
898   // OrigBB branches to NewBB.
899   OrigBB->addSuccessor(NewBB);
900
901   // Update internal data structures to account for the newly inserted MBB.
902   // This is almost the same as updateForInsertedWaterBlock, except that
903   // the Water goes after OrigBB, not NewBB.
904   MF->RenumberBlocks(NewBB);
905
906   // Insert an entry into BBInfo to align it properly with the (newly
907   // renumbered) block numbers.
908   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
909
910   // Next, update WaterList.  Specifically, we need to add OrigMBB as having
911   // available water after it (but not if it's already there, which happens
912   // when splitting before a conditional branch that is followed by an
913   // unconditional branch - in that case we want to insert NewBB).
914   water_iterator IP =
915     std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
916                      CompareMBBNumbers);
917   MachineBasicBlock* WaterBB = *IP;
918   if (WaterBB == OrigBB)
919     WaterList.insert(std::next(IP), NewBB);
920   else
921     WaterList.insert(IP, OrigBB);
922   NewWaterList.insert(OrigBB);
923
924   // Figure out how large the OrigBB is.  As the first half of the original
925   // block, it cannot contain a tablejump.  The size includes
926   // the new jump we added.  (It should be possible to do this without
927   // recounting everything, but it's very confusing, and this is rarely
928   // executed.)
929   computeBlockSize(OrigBB);
930
931   // Figure out how large the NewMBB is.  As the second half of the original
932   // block, it may contain a tablejump.
933   computeBlockSize(NewBB);
934
935   // All BBOffsets following these blocks must be modified.
936   adjustBBOffsetsAfter(OrigBB);
937
938   return NewBB;
939 }
940
941
942
943 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
944 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
945 /// constant pool entry).
946 bool MipsConstantIslands::isOffsetInRange(unsigned UserOffset,
947                                          unsigned TrialOffset, unsigned MaxDisp,
948                                          bool NegativeOK) {
949   if (UserOffset <= TrialOffset) {
950     // User before the Trial.
951     if (TrialOffset - UserOffset <= MaxDisp)
952       return true;
953   } else if (NegativeOK) {
954     if (UserOffset - TrialOffset <= MaxDisp)
955       return true;
956   }
957   return false;
958 }
959
960 /// isWaterInRange - Returns true if a CPE placed after the specified
961 /// Water (a basic block) will be in range for the specific MI.
962 ///
963 /// Compute how much the function will grow by inserting a CPE after Water.
964 bool MipsConstantIslands::isWaterInRange(unsigned UserOffset,
965                                         MachineBasicBlock* Water, CPUser &U,
966                                         unsigned &Growth) {
967   unsigned CPELogAlign = getCPELogAlign(U.CPEMI);
968   unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign);
969   unsigned NextBlockOffset, NextBlockAlignment;
970   MachineFunction::const_iterator NextBlock = Water;
971   if (++NextBlock == MF->end()) {
972     NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
973     NextBlockAlignment = 0;
974   } else {
975     NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
976     NextBlockAlignment = NextBlock->getAlignment();
977   }
978   unsigned Size = U.CPEMI->getOperand(2).getImm();
979   unsigned CPEEnd = CPEOffset + Size;
980
981   // The CPE may be able to hide in the alignment padding before the next
982   // block. It may also cause more padding to be required if it is more aligned
983   // that the next block.
984   if (CPEEnd > NextBlockOffset) {
985     Growth = CPEEnd - NextBlockOffset;
986     // Compute the padding that would go at the end of the CPE to align the next
987     // block.
988     Growth += OffsetToAlignment(CPEEnd, 1u << NextBlockAlignment);
989
990     // If the CPE is to be inserted before the instruction, that will raise
991     // the offset of the instruction. Also account for unknown alignment padding
992     // in blocks between CPE and the user.
993     if (CPEOffset < UserOffset)
994       UserOffset += Growth;
995   } else
996     // CPE fits in existing padding.
997     Growth = 0;
998
999   return isOffsetInRange(UserOffset, CPEOffset, U);
1000 }
1001
1002 /// isCPEntryInRange - Returns true if the distance between specific MI and
1003 /// specific ConstPool entry instruction can fit in MI's displacement field.
1004 bool MipsConstantIslands::isCPEntryInRange
1005   (MachineInstr *MI, unsigned UserOffset,
1006    MachineInstr *CPEMI, unsigned MaxDisp,
1007    bool NegOk, bool DoDump) {
1008   unsigned CPEOffset  = getOffsetOf(CPEMI);
1009
1010   if (DoDump) {
1011     DEBUG({
1012       unsigned Block = MI->getParent()->getNumber();
1013       const BasicBlockInfo &BBI = BBInfo[Block];
1014       dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
1015              << " max delta=" << MaxDisp
1016              << format(" insn address=%#x", UserOffset)
1017              << " in BB#" << Block << ": "
1018              << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
1019              << format("CPE address=%#x offset=%+d: ", CPEOffset,
1020                        int(CPEOffset-UserOffset));
1021     });
1022   }
1023
1024   return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
1025 }
1026
1027 #ifndef NDEBUG
1028 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
1029 /// unconditionally branches to its only successor.
1030 static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
1031   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
1032     return false;
1033   MachineBasicBlock *Succ = *MBB->succ_begin();
1034   MachineBasicBlock *Pred = *MBB->pred_begin();
1035   MachineInstr *PredMI = &Pred->back();
1036   if (PredMI->getOpcode() == Mips::Bimm16)
1037     return PredMI->getOperand(0).getMBB() == Succ;
1038   return false;
1039 }
1040 #endif
1041
1042 void MipsConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
1043   unsigned BBNum = BB->getNumber();
1044   for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) {
1045     // Get the offset and known bits at the end of the layout predecessor.
1046     // Include the alignment of the current block.
1047     unsigned Offset = BBInfo[i - 1].Offset + BBInfo[i - 1].Size;
1048     BBInfo[i].Offset = Offset;
1049   }
1050 }
1051
1052 /// decrementCPEReferenceCount - find the constant pool entry with index CPI
1053 /// and instruction CPEMI, and decrement its refcount.  If the refcount
1054 /// becomes 0 remove the entry and instruction.  Returns true if we removed
1055 /// the entry, false if we didn't.
1056
1057 bool MipsConstantIslands::decrementCPEReferenceCount(unsigned CPI,
1058                                                     MachineInstr *CPEMI) {
1059   // Find the old entry. Eliminate it if it is no longer used.
1060   CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
1061   assert(CPE && "Unexpected!");
1062   if (--CPE->RefCount == 0) {
1063     removeDeadCPEMI(CPEMI);
1064     CPE->CPEMI = nullptr;
1065     --NumCPEs;
1066     return true;
1067   }
1068   return false;
1069 }
1070
1071 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1072 /// if not, see if an in-range clone of the CPE is in range, and if so,
1073 /// change the data structures so the user references the clone.  Returns:
1074 /// 0 = no existing entry found
1075 /// 1 = entry found, and there were no code insertions or deletions
1076 /// 2 = entry found, and there were code insertions or deletions
1077 int MipsConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset)
1078 {
1079   MachineInstr *UserMI = U.MI;
1080   MachineInstr *CPEMI  = U.CPEMI;
1081
1082   // Check to see if the CPE is already in-range.
1083   if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
1084                        true)) {
1085     DEBUG(dbgs() << "In range\n");
1086     return 1;
1087   }
1088
1089   // No.  Look for previously created clones of the CPE that are in range.
1090   unsigned CPI = CPEMI->getOperand(1).getIndex();
1091   std::vector<CPEntry> &CPEs = CPEntries[CPI];
1092   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1093     // We already tried this one
1094     if (CPEs[i].CPEMI == CPEMI)
1095       continue;
1096     // Removing CPEs can leave empty entries, skip
1097     if (CPEs[i].CPEMI == nullptr)
1098       continue;
1099     if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
1100                      U.NegOk)) {
1101       DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1102                    << CPEs[i].CPI << "\n");
1103       // Point the CPUser node to the replacement
1104       U.CPEMI = CPEs[i].CPEMI;
1105       // Change the CPI in the instruction operand to refer to the clone.
1106       for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1107         if (UserMI->getOperand(j).isCPI()) {
1108           UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1109           break;
1110         }
1111       // Adjust the refcount of the clone...
1112       CPEs[i].RefCount++;
1113       // ...and the original.  If we didn't remove the old entry, none of the
1114       // addresses changed, so we don't need another pass.
1115       return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1116     }
1117   }
1118   return 0;
1119 }
1120
1121 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1122 /// This version checks if the longer form of the instruction can be used to
1123 /// to satisfy things.
1124 /// if not, see if an in-range clone of the CPE is in range, and if so,
1125 /// change the data structures so the user references the clone.  Returns:
1126 /// 0 = no existing entry found
1127 /// 1 = entry found, and there were no code insertions or deletions
1128 /// 2 = entry found, and there were code insertions or deletions
1129 int MipsConstantIslands::findLongFormInRangeCPEntry
1130   (CPUser& U, unsigned UserOffset)
1131 {
1132   MachineInstr *UserMI = U.MI;
1133   MachineInstr *CPEMI  = U.CPEMI;
1134
1135   // Check to see if the CPE is already in-range.
1136   if (isCPEntryInRange(UserMI, UserOffset, CPEMI,
1137                        U.getLongFormMaxDisp(), U.NegOk,
1138                        true)) {
1139     DEBUG(dbgs() << "In range\n");
1140     UserMI->setDesc(TII->get(U.getLongFormOpcode()));
1141     U.setMaxDisp(U.getLongFormMaxDisp());
1142     return 2;  // instruction is longer length now
1143   }
1144
1145   // No.  Look for previously created clones of the CPE that are in range.
1146   unsigned CPI = CPEMI->getOperand(1).getIndex();
1147   std::vector<CPEntry> &CPEs = CPEntries[CPI];
1148   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1149     // We already tried this one
1150     if (CPEs[i].CPEMI == CPEMI)
1151       continue;
1152     // Removing CPEs can leave empty entries, skip
1153     if (CPEs[i].CPEMI == nullptr)
1154       continue;
1155     if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI,
1156                          U.getLongFormMaxDisp(), U.NegOk)) {
1157       DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1158                    << CPEs[i].CPI << "\n");
1159       // Point the CPUser node to the replacement
1160       U.CPEMI = CPEs[i].CPEMI;
1161       // Change the CPI in the instruction operand to refer to the clone.
1162       for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1163         if (UserMI->getOperand(j).isCPI()) {
1164           UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1165           break;
1166         }
1167       // Adjust the refcount of the clone...
1168       CPEs[i].RefCount++;
1169       // ...and the original.  If we didn't remove the old entry, none of the
1170       // addresses changed, so we don't need another pass.
1171       return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1172     }
1173   }
1174   return 0;
1175 }
1176
1177 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1178 /// the specific unconditional branch instruction.
1179 static inline unsigned getUnconditionalBrDisp(int Opc) {
1180   switch (Opc) {
1181   case Mips::Bimm16:
1182     return ((1<<10)-1)*2;
1183   case Mips::BimmX16:
1184     return ((1<<16)-1)*2;
1185   default:
1186     break;
1187   }
1188   return ((1<<16)-1)*2;
1189 }
1190
1191 /// findAvailableWater - Look for an existing entry in the WaterList in which
1192 /// we can place the CPE referenced from U so it's within range of U's MI.
1193 /// Returns true if found, false if not.  If it returns true, WaterIter
1194 /// is set to the WaterList entry.  
1195 /// To ensure that this pass
1196 /// terminates, the CPE location for a particular CPUser is only allowed to
1197 /// move to a lower address, so search backward from the end of the list and
1198 /// prefer the first water that is in range.
1199 bool MipsConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
1200                                       water_iterator &WaterIter) {
1201   if (WaterList.empty())
1202     return false;
1203
1204   unsigned BestGrowth = ~0u;
1205   for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
1206        --IP) {
1207     MachineBasicBlock* WaterBB = *IP;
1208     // Check if water is in range and is either at a lower address than the
1209     // current "high water mark" or a new water block that was created since
1210     // the previous iteration by inserting an unconditional branch.  In the
1211     // latter case, we want to allow resetting the high water mark back to
1212     // this new water since we haven't seen it before.  Inserting branches
1213     // should be relatively uncommon and when it does happen, we want to be
1214     // sure to take advantage of it for all the CPEs near that block, so that
1215     // we don't insert more branches than necessary.
1216     unsigned Growth;
1217     if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
1218         (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1219          NewWaterList.count(WaterBB)) && Growth < BestGrowth) {
1220       // This is the least amount of required padding seen so far.
1221       BestGrowth = Growth;
1222       WaterIter = IP;
1223       DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber()
1224                    << " Growth=" << Growth << '\n');
1225
1226       // Keep looking unless it is perfect.
1227       if (BestGrowth == 0)
1228         return true;
1229     }
1230     if (IP == B)
1231       break;
1232   }
1233   return BestGrowth != ~0u;
1234 }
1235
1236 /// createNewWater - No existing WaterList entry will work for
1237 /// CPUsers[CPUserIndex], so create a place to put the CPE.  The end of the
1238 /// block is used if in range, and the conditional branch munged so control
1239 /// flow is correct.  Otherwise the block is split to create a hole with an
1240 /// unconditional branch around it.  In either case NewMBB is set to a
1241 /// block following which the new island can be inserted (the WaterList
1242 /// is not adjusted).
1243 void MipsConstantIslands::createNewWater(unsigned CPUserIndex,
1244                                         unsigned UserOffset,
1245                                         MachineBasicBlock *&NewMBB) {
1246   CPUser &U = CPUsers[CPUserIndex];
1247   MachineInstr *UserMI = U.MI;
1248   MachineInstr *CPEMI  = U.CPEMI;
1249   unsigned CPELogAlign = getCPELogAlign(CPEMI);
1250   MachineBasicBlock *UserMBB = UserMI->getParent();
1251   const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
1252
1253   // If the block does not end in an unconditional branch already, and if the
1254   // end of the block is within range, make new water there.  
1255   if (BBHasFallthrough(UserMBB)) {
1256     // Size of branch to insert.
1257     unsigned Delta = 2;
1258     // Compute the offset where the CPE will begin.
1259     unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta;
1260
1261     if (isOffsetInRange(UserOffset, CPEOffset, U)) {
1262       DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber()
1263             << format(", expected CPE offset %#x\n", CPEOffset));
1264       NewMBB = std::next(MachineFunction::iterator(UserMBB));
1265       // Add an unconditional branch from UserMBB to fallthrough block.  Record
1266       // it for branch lengthening; this new branch will not get out of range,
1267       // but if the preceding conditional branch is out of range, the targets
1268       // will be exchanged, and the altered branch may be out of range, so the
1269       // machinery has to know about it.
1270       int UncondBr = Mips::Bimm16;
1271       BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
1272       unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1273       ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1274                                       MaxDisp, false, UncondBr));
1275       BBInfo[UserMBB->getNumber()].Size += Delta;
1276       adjustBBOffsetsAfter(UserMBB);
1277       return;
1278     }
1279   }
1280
1281   // What a big block.  Find a place within the block to split it.  
1282
1283   // Try to split the block so it's fully aligned.  Compute the latest split
1284   // point where we can add a 4-byte branch instruction, and then align to
1285   // LogAlign which is the largest possible alignment in the function.
1286   unsigned LogAlign = MF->getAlignment();
1287   assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry");
1288   unsigned BaseInsertOffset = UserOffset + U.getMaxDisp();
1289   DEBUG(dbgs() << format("Split in middle of big block before %#x",
1290                          BaseInsertOffset));
1291
1292   // The 4 in the following is for the unconditional branch we'll be inserting
1293   // Alignment of the island is handled
1294   // inside isOffsetInRange.
1295   BaseInsertOffset -= 4;
1296
1297   DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
1298                << " la=" << LogAlign << '\n');
1299
1300   // This could point off the end of the block if we've already got constant
1301   // pool entries following this block; only the last one is in the water list.
1302   // Back past any possible branches (allow for a conditional and a maximally
1303   // long unconditional).
1304   if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
1305     BaseInsertOffset = UserBBI.postOffset() - 8;
1306     DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
1307   }
1308   unsigned EndInsertOffset = BaseInsertOffset + 4 +
1309     CPEMI->getOperand(2).getImm();
1310   MachineBasicBlock::iterator MI = UserMI;
1311   ++MI;
1312   unsigned CPUIndex = CPUserIndex+1;
1313   unsigned NumCPUsers = CPUsers.size();
1314   //MachineInstr *LastIT = 0;
1315   for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI);
1316        Offset < BaseInsertOffset;
1317        Offset += TII->GetInstSizeInBytes(MI), MI = std::next(MI)) {
1318     assert(MI != UserMBB->end() && "Fell off end of block");
1319     if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
1320       CPUser &U = CPUsers[CPUIndex];
1321       if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
1322         // Shift intertion point by one unit of alignment so it is within reach.
1323         BaseInsertOffset -= 1u << LogAlign;
1324         EndInsertOffset  -= 1u << LogAlign;
1325       }
1326       // This is overly conservative, as we don't account for CPEMIs being
1327       // reused within the block, but it doesn't matter much.  Also assume CPEs
1328       // are added in order with alignment padding.  We may eventually be able
1329       // to pack the aligned CPEs better.
1330       EndInsertOffset += U.CPEMI->getOperand(2).getImm();
1331       CPUIndex++;
1332     }
1333   }
1334
1335   --MI;
1336   NewMBB = splitBlockBeforeInstr(MI);
1337 }
1338
1339 /// handleConstantPoolUser - Analyze the specified user, checking to see if it
1340 /// is out-of-range.  If so, pick up the constant pool value and move it some
1341 /// place in-range.  Return true if we changed any addresses (thus must run
1342 /// another pass of branch lengthening), false otherwise.
1343 bool MipsConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) {
1344   CPUser &U = CPUsers[CPUserIndex];
1345   MachineInstr *UserMI = U.MI;
1346   MachineInstr *CPEMI  = U.CPEMI;
1347   unsigned CPI = CPEMI->getOperand(1).getIndex();
1348   unsigned Size = CPEMI->getOperand(2).getImm();
1349   // Compute this only once, it's expensive.
1350   unsigned UserOffset = getUserOffset(U);
1351
1352   // See if the current entry is within range, or there is a clone of it
1353   // in range.
1354   int result = findInRangeCPEntry(U, UserOffset);
1355   if (result==1) return false;
1356   else if (result==2) return true;
1357
1358
1359   // Look for water where we can place this CPE.
1360   MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
1361   MachineBasicBlock *NewMBB;
1362   water_iterator IP;
1363   if (findAvailableWater(U, UserOffset, IP)) {
1364     DEBUG(dbgs() << "Found water in range\n");
1365     MachineBasicBlock *WaterBB = *IP;
1366
1367     // If the original WaterList entry was "new water" on this iteration,
1368     // propagate that to the new island.  This is just keeping NewWaterList
1369     // updated to match the WaterList, which will be updated below.
1370     if (NewWaterList.erase(WaterBB))
1371       NewWaterList.insert(NewIsland);
1372
1373     // The new CPE goes before the following block (NewMBB).
1374     NewMBB = std::next(MachineFunction::iterator(WaterBB));
1375
1376   } else {
1377     // No water found.
1378     // we first see if a longer form of the instrucion could have reached
1379     // the constant. in that case we won't bother to split
1380     if (!NoLoadRelaxation) {
1381       result = findLongFormInRangeCPEntry(U, UserOffset);
1382       if (result != 0) return true;
1383     }
1384     DEBUG(dbgs() << "No water found\n");
1385     createNewWater(CPUserIndex, UserOffset, NewMBB);
1386
1387     // splitBlockBeforeInstr adds to WaterList, which is important when it is
1388     // called while handling branches so that the water will be seen on the
1389     // next iteration for constant pools, but in this context, we don't want
1390     // it.  Check for this so it will be removed from the WaterList.
1391     // Also remove any entry from NewWaterList.
1392     MachineBasicBlock *WaterBB = std::prev(MachineFunction::iterator(NewMBB));
1393     IP = std::find(WaterList.begin(), WaterList.end(), WaterBB);
1394     if (IP != WaterList.end())
1395       NewWaterList.erase(WaterBB);
1396
1397     // We are adding new water.  Update NewWaterList.
1398     NewWaterList.insert(NewIsland);
1399   }
1400
1401   // Remove the original WaterList entry; we want subsequent insertions in
1402   // this vicinity to go after the one we're about to insert.  This
1403   // considerably reduces the number of times we have to move the same CPE
1404   // more than once and is also important to ensure the algorithm terminates.
1405   if (IP != WaterList.end())
1406     WaterList.erase(IP);
1407
1408   // Okay, we know we can put an island before NewMBB now, do it!
1409   MF->insert(NewMBB, NewIsland);
1410
1411   // Update internal data structures to account for the newly inserted MBB.
1412   updateForInsertedWaterBlock(NewIsland);
1413
1414   // Decrement the old entry, and remove it if refcount becomes 0.
1415   decrementCPEReferenceCount(CPI, CPEMI);
1416
1417   // No existing clone of this CPE is within range.
1418   // We will be generating a new clone.  Get a UID for it.
1419   unsigned ID = createPICLabelUId();
1420
1421   // Now that we have an island to add the CPE to, clone the original CPE and
1422   // add it to the island.
1423   U.HighWaterMark = NewIsland;
1424   U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
1425                 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
1426   CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1427   ++NumCPEs;
1428
1429   // Mark the basic block as aligned as required by the const-pool entry.
1430   NewIsland->setAlignment(getCPELogAlign(U.CPEMI));
1431
1432   // Increase the size of the island block to account for the new entry.
1433   BBInfo[NewIsland->getNumber()].Size += Size;
1434   adjustBBOffsetsAfter(std::prev(MachineFunction::iterator(NewIsland)));
1435
1436
1437
1438   // Finally, change the CPI in the instruction operand to be ID.
1439   for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1440     if (UserMI->getOperand(i).isCPI()) {
1441       UserMI->getOperand(i).setIndex(ID);
1442       break;
1443     }
1444
1445   DEBUG(dbgs() << "  Moved CPE to #" << ID << " CPI=" << CPI
1446         << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
1447
1448   return true;
1449 }
1450
1451 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
1452 /// sizes and offsets of impacted basic blocks.
1453 void MipsConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
1454   MachineBasicBlock *CPEBB = CPEMI->getParent();
1455   unsigned Size = CPEMI->getOperand(2).getImm();
1456   CPEMI->eraseFromParent();
1457   BBInfo[CPEBB->getNumber()].Size -= Size;
1458   // All succeeding offsets have the current size value added in, fix this.
1459   if (CPEBB->empty()) {
1460     BBInfo[CPEBB->getNumber()].Size = 0;
1461
1462     // This block no longer needs to be aligned.
1463     CPEBB->setAlignment(0);
1464   } else
1465     // Entries are sorted by descending alignment, so realign from the front.
1466     CPEBB->setAlignment(getCPELogAlign(CPEBB->begin()));
1467
1468   adjustBBOffsetsAfter(CPEBB);
1469   // An island has only one predecessor BB and one successor BB. Check if
1470   // this BB's predecessor jumps directly to this BB's successor. This
1471   // shouldn't happen currently.
1472   assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1473   // FIXME: remove the empty blocks after all the work is done?
1474 }
1475
1476 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts
1477 /// are zero.
1478 bool MipsConstantIslands::removeUnusedCPEntries() {
1479   unsigned MadeChange = false;
1480   for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1481       std::vector<CPEntry> &CPEs = CPEntries[i];
1482       for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1483         if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1484           removeDeadCPEMI(CPEs[j].CPEMI);
1485           CPEs[j].CPEMI = nullptr;
1486           MadeChange = true;
1487         }
1488       }
1489   }
1490   return MadeChange;
1491 }
1492
1493 /// isBBInRange - Returns true if the distance between specific MI and
1494 /// specific BB can fit in MI's displacement field.
1495 bool MipsConstantIslands::isBBInRange
1496   (MachineInstr *MI,MachineBasicBlock *DestBB, unsigned MaxDisp) {
1497
1498 unsigned PCAdj = 4;
1499
1500   unsigned BrOffset   = getOffsetOf(MI) + PCAdj;
1501   unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1502
1503   DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber()
1504                << " from BB#" << MI->getParent()->getNumber()
1505                << " max delta=" << MaxDisp
1506                << " from " << getOffsetOf(MI) << " to " << DestOffset
1507                << " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
1508
1509   if (BrOffset <= DestOffset) {
1510     // Branch before the Dest.
1511     if (DestOffset-BrOffset <= MaxDisp)
1512       return true;
1513   } else {
1514     if (BrOffset-DestOffset <= MaxDisp)
1515       return true;
1516   }
1517   return false;
1518 }
1519
1520 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far
1521 /// away to fit in its displacement field.
1522 bool MipsConstantIslands::fixupImmediateBr(ImmBranch &Br) {
1523   MachineInstr *MI = Br.MI;
1524   unsigned TargetOperand = branchTargetOperand(MI);
1525   MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB();
1526
1527   // Check to see if the DestBB is already in-range.
1528   if (isBBInRange(MI, DestBB, Br.MaxDisp))
1529     return false;
1530
1531   if (!Br.isCond)
1532     return fixupUnconditionalBr(Br);
1533   return fixupConditionalBr(Br);
1534 }
1535
1536 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
1537 /// too far away to fit in its displacement field. If the LR register has been
1538 /// spilled in the epilogue, then we can use BL to implement a far jump.
1539 /// Otherwise, add an intermediate branch instruction to a branch.
1540 bool
1541 MipsConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
1542   MachineInstr *MI = Br.MI;
1543   MachineBasicBlock *MBB = MI->getParent();
1544   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1545   // Use BL to implement far jump.
1546   unsigned BimmX16MaxDisp = ((1 << 16)-1) * 2;
1547   if (isBBInRange(MI, DestBB, BimmX16MaxDisp)) {
1548     Br.MaxDisp = BimmX16MaxDisp;
1549     MI->setDesc(TII->get(Mips::BimmX16));
1550   }
1551   else {
1552     // need to give the math a more careful look here
1553     // this is really a segment address and not
1554     // a PC relative address. FIXME. But I think that
1555     // just reducing the bits by 1 as I've done is correct.
1556     // The basic block we are branching too much be longword aligned.
1557     // we know that RA is saved because we always save it right now.
1558     // this requirement will be relaxed later but we also have an alternate
1559     // way to implement this that I will implement that does not need jal.
1560     // We should have a way to back out this alignment restriction if we "can" later.
1561     // but it is not harmful.
1562     //
1563     DestBB->setAlignment(2);
1564     Br.MaxDisp = ((1<<24)-1) * 2;
1565     MI->setDesc(TII->get(Mips::JalB16));
1566   }
1567   BBInfo[MBB->getNumber()].Size += 2;
1568   adjustBBOffsetsAfter(MBB);
1569   HasFarJump = true;
1570   ++NumUBrFixed;
1571
1572   DEBUG(dbgs() << "  Changed B to long jump " << *MI);
1573
1574   return true;
1575 }
1576
1577
1578 /// fixupConditionalBr - Fix up a conditional branch whose destination is too
1579 /// far away to fit in its displacement field. It is converted to an inverse
1580 /// conditional branch + an unconditional branch to the destination.
1581 bool
1582 MipsConstantIslands::fixupConditionalBr(ImmBranch &Br) {
1583   MachineInstr *MI = Br.MI;
1584   unsigned TargetOperand = branchTargetOperand(MI);
1585   MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB();
1586   unsigned Opcode = MI->getOpcode();
1587   unsigned LongFormOpcode = longformBranchOpcode(Opcode);
1588   unsigned LongFormMaxOff = branchMaxOffsets(LongFormOpcode);
1589
1590   // Check to see if the DestBB is already in-range.
1591   if (isBBInRange(MI, DestBB, LongFormMaxOff)) {
1592     Br.MaxDisp = LongFormMaxOff;
1593     MI->setDesc(TII->get(LongFormOpcode));
1594     return true;
1595   }
1596
1597   // Add an unconditional branch to the destination and invert the branch
1598   // condition to jump over it:
1599   // bteqz L1
1600   // =>
1601   // bnez L2
1602   // b   L1
1603   // L2:
1604
1605   // If the branch is at the end of its MBB and that has a fall-through block,
1606   // direct the updated conditional branch to the fall-through block. Otherwise,
1607   // split the MBB before the next instruction.
1608   MachineBasicBlock *MBB = MI->getParent();
1609   MachineInstr *BMI = &MBB->back();
1610   bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1611   unsigned OppositeBranchOpcode = TII->getOppositeBranchOpc(Opcode);
1612  
1613   ++NumCBrFixed;
1614   if (BMI != MI) {
1615     if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
1616         isUnconditionalBranch(BMI->getOpcode())) {
1617       // Last MI in the BB is an unconditional branch. Can we simply invert the
1618       // condition and swap destinations:
1619       // beqz L1
1620       // b   L2
1621       // =>
1622       // bnez L2
1623       // b   L1
1624       unsigned BMITargetOperand = branchTargetOperand(BMI);
1625       MachineBasicBlock *NewDest = 
1626         BMI->getOperand(BMITargetOperand).getMBB();
1627       if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
1628         DEBUG(dbgs() << "  Invert Bcc condition and swap its destination with "
1629                      << *BMI);
1630         MI->setDesc(TII->get(OppositeBranchOpcode));
1631         BMI->getOperand(BMITargetOperand).setMBB(DestBB);
1632         MI->getOperand(TargetOperand).setMBB(NewDest);
1633         return true;
1634       }
1635     }
1636   }
1637
1638
1639   if (NeedSplit) {
1640     splitBlockBeforeInstr(MI);
1641     // No need for the branch to the next block. We're adding an unconditional
1642     // branch to the destination.
1643     int delta = TII->GetInstSizeInBytes(&MBB->back());
1644     BBInfo[MBB->getNumber()].Size -= delta;
1645     MBB->back().eraseFromParent();
1646     // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
1647   }
1648   MachineBasicBlock *NextBB = std::next(MachineFunction::iterator(MBB));
1649
1650   DEBUG(dbgs() << "  Insert B to BB#" << DestBB->getNumber()
1651                << " also invert condition and change dest. to BB#"
1652                << NextBB->getNumber() << "\n");
1653
1654   // Insert a new conditional branch and a new unconditional branch.
1655   // Also update the ImmBranch as well as adding a new entry for the new branch.
1656   if (MI->getNumExplicitOperands() == 2) {
1657     BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode))
1658            .addReg(MI->getOperand(0).getReg())
1659            .addMBB(NextBB);
1660   } else {
1661     BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode))
1662            .addMBB(NextBB);
1663   }
1664   Br.MI = &MBB->back();
1665   BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
1666   BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1667   BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
1668   unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1669   ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1670
1671   // Remove the old conditional branch.  It may or may not still be in MBB.
1672   BBInfo[MI->getParent()->getNumber()].Size -= TII->GetInstSizeInBytes(MI);
1673   MI->eraseFromParent();
1674   adjustBBOffsetsAfter(MBB);
1675   return true;
1676 }
1677
1678
1679 void MipsConstantIslands::prescanForConstants() {
1680   unsigned J = 0;
1681   (void)J;
1682   for (MachineFunction::iterator B =
1683          MF->begin(), E = MF->end(); B != E; ++B) {
1684     for (MachineBasicBlock::instr_iterator I =
1685         B->instr_begin(), EB = B->instr_end(); I != EB; ++I) {
1686       switch(I->getDesc().getOpcode()) {
1687         case Mips::LwConstant32: {
1688           PrescannedForConstants = true;
1689           DEBUG(dbgs() << "constant island constant " << *I << "\n");
1690           J = I->getNumOperands();
1691           DEBUG(dbgs() << "num operands " << J  << "\n");
1692           MachineOperand& Literal = I->getOperand(1);
1693           if (Literal.isImm()) {
1694             int64_t V = Literal.getImm();
1695             DEBUG(dbgs() << "literal " << V  << "\n");
1696             Type *Int32Ty =
1697               Type::getInt32Ty(MF->getFunction()->getContext());
1698             const Constant *C = ConstantInt::get(Int32Ty, V);
1699             unsigned index = MCP->getConstantPoolIndex(C, 4);
1700             I->getOperand(2).ChangeToImmediate(index);
1701             DEBUG(dbgs() << "constant island constant " << *I << "\n");
1702             I->setDesc(TII->get(Mips::LwRxPcTcp16));
1703             I->RemoveOperand(1);
1704             I->RemoveOperand(1);
1705             I->addOperand(MachineOperand::CreateCPI(index, 0));
1706             I->addOperand(MachineOperand::CreateImm(4));
1707           }
1708           break;
1709         }
1710         default:
1711           break;
1712       }
1713     }
1714   }
1715 }
1716