[C++] Use 'nullptr'. Target edition.
[oota-llvm.git] / lib / Target / Mips / MipsConstantIslandPass.cpp
1 //===-- MipsConstantIslandPass.cpp - Emit Pc Relative loads----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //
11 // This pass is used to make Pc relative loads of constants.
12 // For now, only Mips16 will use this. 
13 //
14 // Loading constants inline is expensive on Mips16 and it's in general better
15 // to place the constant nearby in code space and then it can be loaded with a
16 // simple 16 bit load instruction.
17 //
18 // The constants can be not just numbers but addresses of functions and labels.
19 // This can be particularly helpful in static relocation mode for embedded
20 // non-linux targets.
21 //
22 //
23
24 #include "Mips.h"
25 #include "MCTargetDesc/MipsBaseInfo.h"
26 #include "Mips16InstrInfo.h"
27 #include "MipsMachineFunction.h"
28 #include "MipsTargetMachine.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/InstIterator.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/Format.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Target/TargetInstrInfo.h"
42 #include "llvm/Target/TargetMachine.h"
43 #include "llvm/Target/TargetRegisterInfo.h"
44 #include <algorithm>
45
46 using namespace llvm;
47
48 #define DEBUG_TYPE "mips-constant-islands"
49
50 STATISTIC(NumCPEs,       "Number of constpool entries");
51 STATISTIC(NumSplit,      "Number of uncond branches inserted");
52 STATISTIC(NumCBrFixed,   "Number of cond branches fixed");
53 STATISTIC(NumUBrFixed,   "Number of uncond branches fixed");
54
55 // FIXME: This option should be removed once it has received sufficient testing.
56 static cl::opt<bool>
57 AlignConstantIslands("mips-align-constant-islands", cl::Hidden, cl::init(true),
58           cl::desc("Align constant islands in code"));
59
60
61 // Rather than do make check tests with huge amounts of code, we force
62 // the test to use this amount.
63 //
64 static cl::opt<int> ConstantIslandsSmallOffset(
65   "mips-constant-islands-small-offset",
66   cl::init(0),
67   cl::desc("Make small offsets be this amount for testing purposes"),
68   cl::Hidden);
69
70 //
71 // For testing purposes we tell it to not use relaxed load forms so that it
72 // will split blocks.
73 //
74 static cl::opt<bool> NoLoadRelaxation(
75   "mips-constant-islands-no-load-relaxation",
76   cl::init(false),
77   cl::desc("Don't relax loads to long loads - for testing purposes"),
78   cl::Hidden);
79
80 static unsigned int branchTargetOperand(MachineInstr *MI) {
81   switch (MI->getOpcode()) {
82   case Mips::Bimm16:
83   case Mips::BimmX16:
84   case Mips::Bteqz16:
85   case Mips::BteqzX16:
86   case Mips::Btnez16:
87   case Mips::BtnezX16:
88   case Mips::JalB16:
89     return 0;
90   case Mips::BeqzRxImm16:
91   case Mips::BeqzRxImmX16:
92   case Mips::BnezRxImm16:
93   case Mips::BnezRxImmX16:
94     return 1;
95   }
96   llvm_unreachable("Unknown branch type");
97 }
98
99 static bool isUnconditionalBranch(unsigned int Opcode) {
100   switch (Opcode) {
101   default: return false;
102   case Mips::Bimm16:
103   case Mips::BimmX16:
104   case Mips::JalB16:
105     return true;
106   }
107 }
108
109 static unsigned int longformBranchOpcode(unsigned int Opcode) {
110   switch (Opcode) {
111   case Mips::Bimm16:
112   case Mips::BimmX16:
113     return Mips::BimmX16;
114   case Mips::Bteqz16:
115   case Mips::BteqzX16:
116     return Mips::BteqzX16;
117   case Mips::Btnez16:
118   case Mips::BtnezX16:
119     return Mips::BtnezX16;
120   case Mips::JalB16:
121     return Mips::JalB16;
122   case Mips::BeqzRxImm16:
123   case Mips::BeqzRxImmX16:
124     return Mips::BeqzRxImmX16;
125   case Mips::BnezRxImm16:
126   case Mips::BnezRxImmX16:
127     return Mips::BnezRxImmX16;
128   }
129   llvm_unreachable("Unknown branch type");
130 }
131
132 //
133 // FIXME: need to go through this whole constant islands port and check the math
134 // for branch ranges and clean this up and make some functions to calculate things
135 // that are done many times identically.
136 // Need to refactor some of the code to call this routine.
137 //
138 static unsigned int branchMaxOffsets(unsigned int Opcode) {
139   unsigned Bits, Scale;
140   switch (Opcode) {
141     case Mips::Bimm16:
142       Bits = 11;
143       Scale = 2;
144       break;
145     case Mips::BimmX16:
146       Bits = 16;
147       Scale = 2;
148       break;
149     case Mips::BeqzRxImm16:
150       Bits = 8;
151       Scale = 2;
152       break;
153     case Mips::BeqzRxImmX16:
154       Bits = 16;
155       Scale = 2;
156       break;
157     case Mips::BnezRxImm16:
158       Bits = 8;
159       Scale = 2;
160       break;
161     case Mips::BnezRxImmX16:
162       Bits = 16;
163       Scale = 2;
164       break;
165     case Mips::Bteqz16:
166       Bits = 8;
167       Scale = 2;
168       break;
169     case Mips::BteqzX16:
170       Bits = 16;
171       Scale = 2;
172       break;
173     case Mips::Btnez16:
174       Bits = 8;
175       Scale = 2;
176       break;
177     case Mips::BtnezX16:
178       Bits = 16;
179       Scale = 2;
180       break;
181     default:
182       llvm_unreachable("Unknown branch type");
183   }
184   unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
185   return MaxOffs;
186 }
187
188 namespace {
189
190
191   typedef MachineBasicBlock::iterator Iter;
192   typedef MachineBasicBlock::reverse_iterator ReverseIter;
193
194   /// MipsConstantIslands - Due to limited PC-relative displacements, Mips
195   /// requires constant pool entries to be scattered among the instructions
196   /// inside a function.  To do this, it completely ignores the normal LLVM
197   /// constant pool; instead, it places constants wherever it feels like with
198   /// special instructions.
199   ///
200   /// The terminology used in this pass includes:
201   ///   Islands - Clumps of constants placed in the function.
202   ///   Water   - Potential places where an island could be formed.
203   ///   CPE     - A constant pool entry that has been placed somewhere, which
204   ///             tracks a list of users.
205
206   class MipsConstantIslands : public MachineFunctionPass {
207
208     /// BasicBlockInfo - Information about the offset and size of a single
209     /// basic block.
210     struct BasicBlockInfo {
211       /// Offset - Distance from the beginning of the function to the beginning
212       /// of this basic block.
213       ///
214       /// Offsets are computed assuming worst case padding before an aligned
215       /// block. This means that subtracting basic block offsets always gives a
216       /// conservative estimate of the real distance which may be smaller.
217       ///
218       /// Because worst case padding is used, the computed offset of an aligned
219       /// block may not actually be aligned.
220       unsigned Offset;
221
222       /// Size - Size of the basic block in bytes.  If the block contains
223       /// inline assembly, this is a worst case estimate.
224       ///
225       /// The size does not include any alignment padding whether from the
226       /// beginning of the block, or from an aligned jump table at the end.
227       unsigned Size;
228
229       // FIXME: ignore LogAlign for this patch
230       //
231       unsigned postOffset(unsigned LogAlign = 0) const {
232         unsigned PO = Offset + Size;
233         return PO;
234       }
235
236       BasicBlockInfo() : Offset(0), Size(0) {}
237
238     };
239
240     std::vector<BasicBlockInfo> BBInfo;
241
242     /// WaterList - A sorted list of basic blocks where islands could be placed
243     /// (i.e. blocks that don't fall through to the following block, due
244     /// to a return, unreachable, or unconditional branch).
245     std::vector<MachineBasicBlock*> WaterList;
246
247     /// NewWaterList - The subset of WaterList that was created since the
248     /// previous iteration by inserting unconditional branches.
249     SmallSet<MachineBasicBlock*, 4> NewWaterList;
250
251     typedef std::vector<MachineBasicBlock*>::iterator water_iterator;
252
253     /// CPUser - One user of a constant pool, keeping the machine instruction
254     /// pointer, the constant pool being referenced, and the max displacement
255     /// allowed from the instruction to the CP.  The HighWaterMark records the
256     /// highest basic block where a new CPEntry can be placed.  To ensure this
257     /// pass terminates, the CP entries are initially placed at the end of the
258     /// function and then move monotonically to lower addresses.  The
259     /// exception to this rule is when the current CP entry for a particular
260     /// CPUser is out of range, but there is another CP entry for the same
261     /// constant value in range.  We want to use the existing in-range CP
262     /// entry, but if it later moves out of range, the search for new water
263     /// should resume where it left off.  The HighWaterMark is used to record
264     /// that point.
265     struct CPUser {
266       MachineInstr *MI;
267       MachineInstr *CPEMI;
268       MachineBasicBlock *HighWaterMark;
269     private:
270       unsigned MaxDisp;
271       unsigned LongFormMaxDisp; // mips16 has 16/32 bit instructions
272                                 // with different displacements
273       unsigned LongFormOpcode;
274     public:
275       bool NegOk;
276       CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
277              bool neg,
278              unsigned longformmaxdisp, unsigned longformopcode)
279         : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp),
280           LongFormMaxDisp(longformmaxdisp), LongFormOpcode(longformopcode),
281           NegOk(neg){
282         HighWaterMark = CPEMI->getParent();
283       }
284       /// getMaxDisp - Returns the maximum displacement supported by MI.
285       unsigned getMaxDisp() const {
286         unsigned xMaxDisp = ConstantIslandsSmallOffset?
287                             ConstantIslandsSmallOffset: MaxDisp;
288         return xMaxDisp;
289       }
290       void setMaxDisp(unsigned val) {
291         MaxDisp = val;
292       }
293       unsigned getLongFormMaxDisp() const {
294         return LongFormMaxDisp;
295       }
296       unsigned getLongFormOpcode() const {
297           return LongFormOpcode;
298       }
299     };
300
301     /// CPUsers - Keep track of all of the machine instructions that use various
302     /// constant pools and their max displacement.
303     std::vector<CPUser> CPUsers;
304
305   /// CPEntry - One per constant pool entry, keeping the machine instruction
306   /// pointer, the constpool index, and the number of CPUser's which
307   /// reference this entry.
308   struct CPEntry {
309     MachineInstr *CPEMI;
310     unsigned CPI;
311     unsigned RefCount;
312     CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
313       : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
314   };
315
316   /// CPEntries - Keep track of all of the constant pool entry machine
317   /// instructions. For each original constpool index (i.e. those that
318   /// existed upon entry to this pass), it keeps a vector of entries.
319   /// Original elements are cloned as we go along; the clones are
320   /// put in the vector of the original element, but have distinct CPIs.
321   std::vector<std::vector<CPEntry> > CPEntries;
322
323   /// ImmBranch - One per immediate branch, keeping the machine instruction
324   /// pointer, conditional or unconditional, the max displacement,
325   /// and (if isCond is true) the corresponding unconditional branch
326   /// opcode.
327   struct ImmBranch {
328     MachineInstr *MI;
329     unsigned MaxDisp : 31;
330     bool isCond : 1;
331     int UncondBr;
332     ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
333       : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
334   };
335
336   /// ImmBranches - Keep track of all the immediate branch instructions.
337   ///
338   std::vector<ImmBranch> ImmBranches;
339
340   /// HasFarJump - True if any far jump instruction has been emitted during
341   /// the branch fix up pass.
342   bool HasFarJump;
343
344   const TargetMachine &TM;
345   bool IsPIC;
346   unsigned ABI;
347   const MipsSubtarget *STI;
348   const Mips16InstrInfo *TII;
349   MipsFunctionInfo *MFI;
350   MachineFunction *MF;
351   MachineConstantPool *MCP;
352
353   unsigned PICLabelUId;
354   bool PrescannedForConstants;
355
356   void initPICLabelUId(unsigned UId) {
357     PICLabelUId = UId;
358   }
359
360
361   unsigned createPICLabelUId() {
362     return PICLabelUId++;
363   }
364
365   public:
366     static char ID;
367     MipsConstantIslands(TargetMachine &tm)
368       : MachineFunctionPass(ID), TM(tm),
369         IsPIC(TM.getRelocationModel() == Reloc::PIC_),
370         ABI(TM.getSubtarget<MipsSubtarget>().getTargetABI()),
371         STI(&TM.getSubtarget<MipsSubtarget>()), MF(nullptr), MCP(nullptr),
372         PrescannedForConstants(false){}
373
374     virtual const char *getPassName() const {
375       return "Mips Constant Islands";
376     }
377
378     bool runOnMachineFunction(MachineFunction &F);
379
380     void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs);
381     CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
382     unsigned getCPELogAlign(const MachineInstr *CPEMI);
383     void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
384     unsigned getOffsetOf(MachineInstr *MI) const;
385     unsigned getUserOffset(CPUser&) const;
386     void dumpBBs();
387
388     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
389                          unsigned Disp, bool NegativeOK);
390     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
391                          const CPUser &U);
392
393     void computeBlockSize(MachineBasicBlock *MBB);
394     MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI);
395     void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
396     void adjustBBOffsetsAfter(MachineBasicBlock *BB);
397     bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
398     int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
399     int findLongFormInRangeCPEntry(CPUser& U, unsigned UserOffset);
400     bool findAvailableWater(CPUser&U, unsigned UserOffset,
401                             water_iterator &WaterIter);
402     void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
403                         MachineBasicBlock *&NewMBB);
404     bool handleConstantPoolUser(unsigned CPUserIndex);
405     void removeDeadCPEMI(MachineInstr *CPEMI);
406     bool removeUnusedCPEntries();
407     bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
408                           MachineInstr *CPEMI, unsigned Disp, bool NegOk,
409                           bool DoDump = false);
410     bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
411                         CPUser &U, unsigned &Growth);
412     bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
413     bool fixupImmediateBr(ImmBranch &Br);
414     bool fixupConditionalBr(ImmBranch &Br);
415     bool fixupUnconditionalBr(ImmBranch &Br);
416
417     void prescanForConstants();
418
419   private:
420
421   };
422
423   char MipsConstantIslands::ID = 0;
424 } // end of anonymous namespace
425
426 bool MipsConstantIslands::isOffsetInRange
427   (unsigned UserOffset, unsigned TrialOffset,
428    const CPUser &U) {
429   return isOffsetInRange(UserOffset, TrialOffset,
430                          U.getMaxDisp(), U.NegOk);
431 }
432 /// print block size and offset information - debugging
433 void MipsConstantIslands::dumpBBs() {
434   DEBUG({
435     for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
436       const BasicBlockInfo &BBI = BBInfo[J];
437       dbgs() << format("%08x BB#%u\t", BBI.Offset, J)
438              << format(" size=%#x\n", BBInfo[J].Size);
439     }
440   });
441 }
442 /// createMipsLongBranchPass - Returns a pass that converts branches to long
443 /// branches.
444 FunctionPass *llvm::createMipsConstantIslandPass(MipsTargetMachine &tm) {
445   return new MipsConstantIslands(tm);
446 }
447
448 bool MipsConstantIslands::runOnMachineFunction(MachineFunction &mf) {
449   // The intention is for this to be a mips16 only pass for now
450   // FIXME:
451   MF = &mf;
452   MCP = mf.getConstantPool();
453   DEBUG(dbgs() << "constant island machine function " << "\n");
454   if (!TM.getSubtarget<MipsSubtarget>().inMips16Mode() ||
455       !MipsSubtarget::useConstantIslands()) {
456     return false;
457   }
458   TII = (const Mips16InstrInfo*)MF->getTarget().getInstrInfo();
459   MFI = MF->getInfo<MipsFunctionInfo>();
460   DEBUG(dbgs() << "constant island processing " << "\n");
461   //
462   // will need to make predermination if there is any constants we need to
463   // put in constant islands. TBD.
464   //
465   if (!PrescannedForConstants) prescanForConstants();
466
467   HasFarJump = false;
468   // This pass invalidates liveness information when it splits basic blocks.
469   MF->getRegInfo().invalidateLiveness();
470
471   // Renumber all of the machine basic blocks in the function, guaranteeing that
472   // the numbers agree with the position of the block in the function.
473   MF->RenumberBlocks();
474
475   bool MadeChange = false;
476
477   // Perform the initial placement of the constant pool entries.  To start with,
478   // we put them all at the end of the function.
479   std::vector<MachineInstr*> CPEMIs;
480   if (!MCP->isEmpty())
481     doInitialPlacement(CPEMIs);
482
483   /// The next UID to take is the first unused one.
484   initPICLabelUId(CPEMIs.size());
485
486   // Do the initial scan of the function, building up information about the
487   // sizes of each block, the location of all the water, and finding all of the
488   // constant pool users.
489   initializeFunctionInfo(CPEMIs);
490   CPEMIs.clear();
491   DEBUG(dumpBBs());
492
493   /// Remove dead constant pool entries.
494   MadeChange |= removeUnusedCPEntries();
495
496   // Iteratively place constant pool entries and fix up branches until there
497   // is no change.
498   unsigned NoCPIters = 0, NoBRIters = 0;
499   (void)NoBRIters;
500   while (true) {
501     DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
502     bool CPChange = false;
503     for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
504       CPChange |= handleConstantPoolUser(i);
505     if (CPChange && ++NoCPIters > 30)
506       report_fatal_error("Constant Island pass failed to converge!");
507     DEBUG(dumpBBs());
508
509     // Clear NewWaterList now.  If we split a block for branches, it should
510     // appear as "new water" for the next iteration of constant pool placement.
511     NewWaterList.clear();
512
513     DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
514     bool BRChange = false;
515     for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
516       BRChange |= fixupImmediateBr(ImmBranches[i]);
517     if (BRChange && ++NoBRIters > 30)
518       report_fatal_error("Branch Fix Up pass failed to converge!");
519     DEBUG(dumpBBs());
520     if (!CPChange && !BRChange)
521       break;
522     MadeChange = true;
523   }
524
525   DEBUG(dbgs() << '\n'; dumpBBs());
526
527   BBInfo.clear();
528   WaterList.clear();
529   CPUsers.clear();
530   CPEntries.clear();
531   ImmBranches.clear();
532   return MadeChange;
533 }
534
535 /// doInitialPlacement - Perform the initial placement of the constant pool
536 /// entries.  To start with, we put them all at the end of the function.
537 void
538 MipsConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) {
539   // Create the basic block to hold the CPE's.
540   MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
541   MF->push_back(BB);
542
543
544   // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
545   unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment());
546
547   // Mark the basic block as required by the const-pool.
548   // If AlignConstantIslands isn't set, use 4-byte alignment for everything.
549   BB->setAlignment(AlignConstantIslands ? MaxAlign : 2);
550
551   // The function needs to be as aligned as the basic blocks. The linker may
552   // move functions around based on their alignment.
553   MF->ensureAlignment(BB->getAlignment());
554
555   // Order the entries in BB by descending alignment.  That ensures correct
556   // alignment of all entries as long as BB is sufficiently aligned.  Keep
557   // track of the insertion point for each alignment.  We are going to bucket
558   // sort the entries as they are created.
559   SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end());
560
561   // Add all of the constants from the constant pool to the end block, use an
562   // identity mapping of CPI's to CPE's.
563   const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
564
565   const DataLayout &TD = *MF->getTarget().getDataLayout();
566   for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
567     unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
568     assert(Size >= 4 && "Too small constant pool entry");
569     unsigned Align = CPs[i].getAlignment();
570     assert(isPowerOf2_32(Align) && "Invalid alignment");
571     // Verify that all constant pool entries are a multiple of their alignment.
572     // If not, we would have to pad them out so that instructions stay aligned.
573     assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
574
575     // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
576     unsigned LogAlign = Log2_32(Align);
577     MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
578
579     MachineInstr *CPEMI =
580       BuildMI(*BB, InsAt, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
581         .addImm(i).addConstantPoolIndex(i).addImm(Size);
582
583     CPEMIs.push_back(CPEMI);
584
585     // Ensure that future entries with higher alignment get inserted before
586     // CPEMI. This is bucket sort with iterators.
587     for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a)
588       if (InsPoint[a] == InsAt)
589         InsPoint[a] = CPEMI;
590     // Add a new CPEntry, but no corresponding CPUser yet.
591     std::vector<CPEntry> CPEs;
592     CPEs.push_back(CPEntry(CPEMI, i));
593     CPEntries.push_back(CPEs);
594     ++NumCPEs;
595     DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
596                  << Size << ", align = " << Align <<'\n');
597   }
598   DEBUG(BB->dump());
599 }
600
601 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
602 /// into the block immediately after it.
603 static bool BBHasFallthrough(MachineBasicBlock *MBB) {
604   // Get the next machine basic block in the function.
605   MachineFunction::iterator MBBI = MBB;
606   // Can't fall off end of function.
607   if (std::next(MBBI) == MBB->getParent()->end())
608     return false;
609
610   MachineBasicBlock *NextBB = std::next(MBBI);
611   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
612        E = MBB->succ_end(); I != E; ++I)
613     if (*I == NextBB)
614       return true;
615
616   return false;
617 }
618
619 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
620 /// look up the corresponding CPEntry.
621 MipsConstantIslands::CPEntry
622 *MipsConstantIslands::findConstPoolEntry(unsigned CPI,
623                                         const MachineInstr *CPEMI) {
624   std::vector<CPEntry> &CPEs = CPEntries[CPI];
625   // Number of entries per constpool index should be small, just do a
626   // linear search.
627   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
628     if (CPEs[i].CPEMI == CPEMI)
629       return &CPEs[i];
630   }
631   return nullptr;
632 }
633
634 /// getCPELogAlign - Returns the required alignment of the constant pool entry
635 /// represented by CPEMI.  Alignment is measured in log2(bytes) units.
636 unsigned MipsConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) {
637   assert(CPEMI && CPEMI->getOpcode() == Mips::CONSTPOOL_ENTRY);
638
639   // Everything is 4-byte aligned unless AlignConstantIslands is set.
640   if (!AlignConstantIslands)
641     return 2;
642
643   unsigned CPI = CPEMI->getOperand(1).getIndex();
644   assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
645   unsigned Align = MCP->getConstants()[CPI].getAlignment();
646   assert(isPowerOf2_32(Align) && "Invalid CPE alignment");
647   return Log2_32(Align);
648 }
649
650 /// initializeFunctionInfo - Do the initial scan of the function, building up
651 /// information about the sizes of each block, the location of all the water,
652 /// and finding all of the constant pool users.
653 void MipsConstantIslands::
654 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
655   BBInfo.clear();
656   BBInfo.resize(MF->getNumBlockIDs());
657
658   // First thing, compute the size of all basic blocks, and see if the function
659   // has any inline assembly in it. If so, we have to be conservative about
660   // alignment assumptions, as we don't know for sure the size of any
661   // instructions in the inline assembly.
662   for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I)
663     computeBlockSize(I);
664
665
666   // Compute block offsets.
667   adjustBBOffsetsAfter(MF->begin());
668
669   // Now go back through the instructions and build up our data structures.
670   for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
671        MBBI != E; ++MBBI) {
672     MachineBasicBlock &MBB = *MBBI;
673
674     // If this block doesn't fall through into the next MBB, then this is
675     // 'water' that a constant pool island could be placed.
676     if (!BBHasFallthrough(&MBB))
677       WaterList.push_back(&MBB);
678     for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
679          I != E; ++I) {
680       if (I->isDebugValue())
681         continue;
682
683       int Opc = I->getOpcode();
684       if (I->isBranch()) {
685         bool isCond = false;
686         unsigned Bits = 0;
687         unsigned Scale = 1;
688         int UOpc = Opc;
689         switch (Opc) {
690         default:
691           continue;  // Ignore other branches for now
692         case Mips::Bimm16:
693           Bits = 11;
694           Scale = 2;
695           isCond = false;
696           break;
697         case Mips::BimmX16:
698           Bits = 16;
699           Scale = 2;
700           isCond = false;
701           break;
702         case Mips::BeqzRxImm16:
703           UOpc=Mips::Bimm16;
704           Bits = 8;
705           Scale = 2;
706           isCond = true;
707           break;
708         case Mips::BeqzRxImmX16:
709           UOpc=Mips::Bimm16;
710           Bits = 16;
711           Scale = 2;
712           isCond = true;
713           break;
714         case Mips::BnezRxImm16:
715           UOpc=Mips::Bimm16;
716           Bits = 8;
717           Scale = 2;
718           isCond = true;
719           break;
720         case Mips::BnezRxImmX16:
721           UOpc=Mips::Bimm16;
722           Bits = 16;
723           Scale = 2;
724           isCond = true;
725           break;
726         case Mips::Bteqz16:
727           UOpc=Mips::Bimm16;
728           Bits = 8;
729           Scale = 2;
730           isCond = true;
731           break;
732         case Mips::BteqzX16:
733           UOpc=Mips::Bimm16;
734           Bits = 16;
735           Scale = 2;
736           isCond = true;
737           break;
738         case Mips::Btnez16:
739           UOpc=Mips::Bimm16;
740           Bits = 8;
741           Scale = 2;
742           isCond = true;
743           break;
744         case Mips::BtnezX16:
745           UOpc=Mips::Bimm16;
746           Bits = 16;
747           Scale = 2;
748           isCond = true;
749           break;
750         }
751         // Record this immediate branch.
752         unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
753         ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc));
754       }
755
756       if (Opc == Mips::CONSTPOOL_ENTRY)
757         continue;
758
759
760       // Scan the instructions for constant pool operands.
761       for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
762         if (I->getOperand(op).isCPI()) {
763
764           // We found one.  The addressing mode tells us the max displacement
765           // from the PC that this instruction permits.
766
767           // Basic size info comes from the TSFlags field.
768           unsigned Bits = 0;
769           unsigned Scale = 1;
770           bool NegOk = false;
771           unsigned LongFormBits = 0;
772           unsigned LongFormScale = 0;
773           unsigned LongFormOpcode = 0;
774           switch (Opc) {
775           default:
776             llvm_unreachable("Unknown addressing mode for CP reference!");
777           case Mips::LwRxPcTcp16:
778             Bits = 8;
779             Scale = 4;
780             LongFormOpcode = Mips::LwRxPcTcpX16;
781             LongFormBits = 14;
782             LongFormScale = 1;
783             break;
784           case Mips::LwRxPcTcpX16:
785             Bits = 14;
786             Scale = 1;
787             NegOk = true;
788             break;
789           }
790           // Remember that this is a user of a CP entry.
791           unsigned CPI = I->getOperand(op).getIndex();
792           MachineInstr *CPEMI = CPEMIs[CPI];
793           unsigned MaxOffs = ((1 << Bits)-1) * Scale;
794           unsigned LongFormMaxOffs = ((1 << LongFormBits)-1) * LongFormScale;
795           CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk,
796                                    LongFormMaxOffs, LongFormOpcode));
797
798           // Increment corresponding CPEntry reference count.
799           CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
800           assert(CPE && "Cannot find a corresponding CPEntry!");
801           CPE->RefCount++;
802
803           // Instructions can only use one CP entry, don't bother scanning the
804           // rest of the operands.
805           break;
806
807         }
808
809     }
810   }
811
812 }
813
814 /// computeBlockSize - Compute the size and some alignment information for MBB.
815 /// This function updates BBInfo directly.
816 void MipsConstantIslands::computeBlockSize(MachineBasicBlock *MBB) {
817   BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
818   BBI.Size = 0;
819
820   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
821        ++I)
822     BBI.Size += TII->GetInstSizeInBytes(I);
823
824 }
825
826 /// getOffsetOf - Return the current offset of the specified machine instruction
827 /// from the start of the function.  This offset changes as stuff is moved
828 /// around inside the function.
829 unsigned MipsConstantIslands::getOffsetOf(MachineInstr *MI) const {
830   MachineBasicBlock *MBB = MI->getParent();
831
832   // The offset is composed of two things: the sum of the sizes of all MBB's
833   // before this instruction's block, and the offset from the start of the block
834   // it is in.
835   unsigned Offset = BBInfo[MBB->getNumber()].Offset;
836
837   // Sum instructions before MI in MBB.
838   for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
839     assert(I != MBB->end() && "Didn't find MI in its own basic block?");
840     Offset += TII->GetInstSizeInBytes(I);
841   }
842   return Offset;
843 }
844
845 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
846 /// ID.
847 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
848                               const MachineBasicBlock *RHS) {
849   return LHS->getNumber() < RHS->getNumber();
850 }
851
852 /// updateForInsertedWaterBlock - When a block is newly inserted into the
853 /// machine function, it upsets all of the block numbers.  Renumber the blocks
854 /// and update the arrays that parallel this numbering.
855 void MipsConstantIslands::updateForInsertedWaterBlock
856   (MachineBasicBlock *NewBB) {
857   // Renumber the MBB's to keep them consecutive.
858   NewBB->getParent()->RenumberBlocks(NewBB);
859
860   // Insert an entry into BBInfo to align it properly with the (newly
861   // renumbered) block numbers.
862   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
863
864   // Next, update WaterList.  Specifically, we need to add NewMBB as having
865   // available water after it.
866   water_iterator IP =
867     std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
868                      CompareMBBNumbers);
869   WaterList.insert(IP, NewBB);
870 }
871
872 unsigned MipsConstantIslands::getUserOffset(CPUser &U) const {
873   return getOffsetOf(U.MI);
874 }
875
876 /// Split the basic block containing MI into two blocks, which are joined by
877 /// an unconditional branch.  Update data structures and renumber blocks to
878 /// account for this change and returns the newly created block.
879 MachineBasicBlock *MipsConstantIslands::splitBlockBeforeInstr
880   (MachineInstr *MI) {
881   MachineBasicBlock *OrigBB = MI->getParent();
882
883   // Create a new MBB for the code after the OrigBB.
884   MachineBasicBlock *NewBB =
885     MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
886   MachineFunction::iterator MBBI = OrigBB; ++MBBI;
887   MF->insert(MBBI, NewBB);
888
889   // Splice the instructions starting with MI over to NewBB.
890   NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
891
892   // Add an unconditional branch from OrigBB to NewBB.
893   // Note the new unconditional branch is not being recorded.
894   // There doesn't seem to be meaningful DebugInfo available; this doesn't
895   // correspond to anything in the source.
896   BuildMI(OrigBB, DebugLoc(), TII->get(Mips::Bimm16)).addMBB(NewBB);
897   ++NumSplit;
898
899   // Update the CFG.  All succs of OrigBB are now succs of NewBB.
900   NewBB->transferSuccessors(OrigBB);
901
902   // OrigBB branches to NewBB.
903   OrigBB->addSuccessor(NewBB);
904
905   // Update internal data structures to account for the newly inserted MBB.
906   // This is almost the same as updateForInsertedWaterBlock, except that
907   // the Water goes after OrigBB, not NewBB.
908   MF->RenumberBlocks(NewBB);
909
910   // Insert an entry into BBInfo to align it properly with the (newly
911   // renumbered) block numbers.
912   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
913
914   // Next, update WaterList.  Specifically, we need to add OrigMBB as having
915   // available water after it (but not if it's already there, which happens
916   // when splitting before a conditional branch that is followed by an
917   // unconditional branch - in that case we want to insert NewBB).
918   water_iterator IP =
919     std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
920                      CompareMBBNumbers);
921   MachineBasicBlock* WaterBB = *IP;
922   if (WaterBB == OrigBB)
923     WaterList.insert(std::next(IP), NewBB);
924   else
925     WaterList.insert(IP, OrigBB);
926   NewWaterList.insert(OrigBB);
927
928   // Figure out how large the OrigBB is.  As the first half of the original
929   // block, it cannot contain a tablejump.  The size includes
930   // the new jump we added.  (It should be possible to do this without
931   // recounting everything, but it's very confusing, and this is rarely
932   // executed.)
933   computeBlockSize(OrigBB);
934
935   // Figure out how large the NewMBB is.  As the second half of the original
936   // block, it may contain a tablejump.
937   computeBlockSize(NewBB);
938
939   // All BBOffsets following these blocks must be modified.
940   adjustBBOffsetsAfter(OrigBB);
941
942   return NewBB;
943 }
944
945
946
947 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
948 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
949 /// constant pool entry).
950 bool MipsConstantIslands::isOffsetInRange(unsigned UserOffset,
951                                          unsigned TrialOffset, unsigned MaxDisp,
952                                          bool NegativeOK) {
953   if (UserOffset <= TrialOffset) {
954     // User before the Trial.
955     if (TrialOffset - UserOffset <= MaxDisp)
956       return true;
957   } else if (NegativeOK) {
958     if (UserOffset - TrialOffset <= MaxDisp)
959       return true;
960   }
961   return false;
962 }
963
964 /// isWaterInRange - Returns true if a CPE placed after the specified
965 /// Water (a basic block) will be in range for the specific MI.
966 ///
967 /// Compute how much the function will grow by inserting a CPE after Water.
968 bool MipsConstantIslands::isWaterInRange(unsigned UserOffset,
969                                         MachineBasicBlock* Water, CPUser &U,
970                                         unsigned &Growth) {
971   unsigned CPELogAlign = getCPELogAlign(U.CPEMI);
972   unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign);
973   unsigned NextBlockOffset, NextBlockAlignment;
974   MachineFunction::const_iterator NextBlock = Water;
975   if (++NextBlock == MF->end()) {
976     NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
977     NextBlockAlignment = 0;
978   } else {
979     NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
980     NextBlockAlignment = NextBlock->getAlignment();
981   }
982   unsigned Size = U.CPEMI->getOperand(2).getImm();
983   unsigned CPEEnd = CPEOffset + Size;
984
985   // The CPE may be able to hide in the alignment padding before the next
986   // block. It may also cause more padding to be required if it is more aligned
987   // that the next block.
988   if (CPEEnd > NextBlockOffset) {
989     Growth = CPEEnd - NextBlockOffset;
990     // Compute the padding that would go at the end of the CPE to align the next
991     // block.
992     Growth += OffsetToAlignment(CPEEnd, 1u << NextBlockAlignment);
993
994     // If the CPE is to be inserted before the instruction, that will raise
995     // the offset of the instruction. Also account for unknown alignment padding
996     // in blocks between CPE and the user.
997     if (CPEOffset < UserOffset)
998       UserOffset += Growth;
999   } else
1000     // CPE fits in existing padding.
1001     Growth = 0;
1002
1003   return isOffsetInRange(UserOffset, CPEOffset, U);
1004 }
1005
1006 /// isCPEntryInRange - Returns true if the distance between specific MI and
1007 /// specific ConstPool entry instruction can fit in MI's displacement field.
1008 bool MipsConstantIslands::isCPEntryInRange
1009   (MachineInstr *MI, unsigned UserOffset,
1010    MachineInstr *CPEMI, unsigned MaxDisp,
1011    bool NegOk, bool DoDump) {
1012   unsigned CPEOffset  = getOffsetOf(CPEMI);
1013
1014   if (DoDump) {
1015     DEBUG({
1016       unsigned Block = MI->getParent()->getNumber();
1017       const BasicBlockInfo &BBI = BBInfo[Block];
1018       dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
1019              << " max delta=" << MaxDisp
1020              << format(" insn address=%#x", UserOffset)
1021              << " in BB#" << Block << ": "
1022              << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
1023              << format("CPE address=%#x offset=%+d: ", CPEOffset,
1024                        int(CPEOffset-UserOffset));
1025     });
1026   }
1027
1028   return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
1029 }
1030
1031 #ifndef NDEBUG
1032 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
1033 /// unconditionally branches to its only successor.
1034 static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
1035   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
1036     return false;
1037   MachineBasicBlock *Succ = *MBB->succ_begin();
1038   MachineBasicBlock *Pred = *MBB->pred_begin();
1039   MachineInstr *PredMI = &Pred->back();
1040   if (PredMI->getOpcode() == Mips::Bimm16)
1041     return PredMI->getOperand(0).getMBB() == Succ;
1042   return false;
1043 }
1044 #endif
1045
1046 void MipsConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
1047   unsigned BBNum = BB->getNumber();
1048   for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) {
1049     // Get the offset and known bits at the end of the layout predecessor.
1050     // Include the alignment of the current block.
1051     unsigned Offset = BBInfo[i - 1].Offset + BBInfo[i - 1].Size;
1052     BBInfo[i].Offset = Offset;
1053   }
1054 }
1055
1056 /// decrementCPEReferenceCount - find the constant pool entry with index CPI
1057 /// and instruction CPEMI, and decrement its refcount.  If the refcount
1058 /// becomes 0 remove the entry and instruction.  Returns true if we removed
1059 /// the entry, false if we didn't.
1060
1061 bool MipsConstantIslands::decrementCPEReferenceCount(unsigned CPI,
1062                                                     MachineInstr *CPEMI) {
1063   // Find the old entry. Eliminate it if it is no longer used.
1064   CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
1065   assert(CPE && "Unexpected!");
1066   if (--CPE->RefCount == 0) {
1067     removeDeadCPEMI(CPEMI);
1068     CPE->CPEMI = nullptr;
1069     --NumCPEs;
1070     return true;
1071   }
1072   return false;
1073 }
1074
1075 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1076 /// if not, see if an in-range clone of the CPE is in range, and if so,
1077 /// change the data structures so the user references the clone.  Returns:
1078 /// 0 = no existing entry found
1079 /// 1 = entry found, and there were no code insertions or deletions
1080 /// 2 = entry found, and there were code insertions or deletions
1081 int MipsConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset)
1082 {
1083   MachineInstr *UserMI = U.MI;
1084   MachineInstr *CPEMI  = U.CPEMI;
1085
1086   // Check to see if the CPE is already in-range.
1087   if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
1088                        true)) {
1089     DEBUG(dbgs() << "In range\n");
1090     return 1;
1091   }
1092
1093   // No.  Look for previously created clones of the CPE that are in range.
1094   unsigned CPI = CPEMI->getOperand(1).getIndex();
1095   std::vector<CPEntry> &CPEs = CPEntries[CPI];
1096   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1097     // We already tried this one
1098     if (CPEs[i].CPEMI == CPEMI)
1099       continue;
1100     // Removing CPEs can leave empty entries, skip
1101     if (CPEs[i].CPEMI == nullptr)
1102       continue;
1103     if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
1104                      U.NegOk)) {
1105       DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1106                    << CPEs[i].CPI << "\n");
1107       // Point the CPUser node to the replacement
1108       U.CPEMI = CPEs[i].CPEMI;
1109       // Change the CPI in the instruction operand to refer to the clone.
1110       for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1111         if (UserMI->getOperand(j).isCPI()) {
1112           UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1113           break;
1114         }
1115       // Adjust the refcount of the clone...
1116       CPEs[i].RefCount++;
1117       // ...and the original.  If we didn't remove the old entry, none of the
1118       // addresses changed, so we don't need another pass.
1119       return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1120     }
1121   }
1122   return 0;
1123 }
1124
1125 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1126 /// This version checks if the longer form of the instruction can be used to
1127 /// to satisfy things.
1128 /// if not, see if an in-range clone of the CPE is in range, and if so,
1129 /// change the data structures so the user references the clone.  Returns:
1130 /// 0 = no existing entry found
1131 /// 1 = entry found, and there were no code insertions or deletions
1132 /// 2 = entry found, and there were code insertions or deletions
1133 int MipsConstantIslands::findLongFormInRangeCPEntry
1134   (CPUser& U, unsigned UserOffset)
1135 {
1136   MachineInstr *UserMI = U.MI;
1137   MachineInstr *CPEMI  = U.CPEMI;
1138
1139   // Check to see if the CPE is already in-range.
1140   if (isCPEntryInRange(UserMI, UserOffset, CPEMI,
1141                        U.getLongFormMaxDisp(), U.NegOk,
1142                        true)) {
1143     DEBUG(dbgs() << "In range\n");
1144     UserMI->setDesc(TII->get(U.getLongFormOpcode()));
1145     U.setMaxDisp(U.getLongFormMaxDisp());
1146     return 2;  // instruction is longer length now
1147   }
1148
1149   // No.  Look for previously created clones of the CPE that are in range.
1150   unsigned CPI = CPEMI->getOperand(1).getIndex();
1151   std::vector<CPEntry> &CPEs = CPEntries[CPI];
1152   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1153     // We already tried this one
1154     if (CPEs[i].CPEMI == CPEMI)
1155       continue;
1156     // Removing CPEs can leave empty entries, skip
1157     if (CPEs[i].CPEMI == nullptr)
1158       continue;
1159     if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI,
1160                          U.getLongFormMaxDisp(), U.NegOk)) {
1161       DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1162                    << CPEs[i].CPI << "\n");
1163       // Point the CPUser node to the replacement
1164       U.CPEMI = CPEs[i].CPEMI;
1165       // Change the CPI in the instruction operand to refer to the clone.
1166       for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1167         if (UserMI->getOperand(j).isCPI()) {
1168           UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1169           break;
1170         }
1171       // Adjust the refcount of the clone...
1172       CPEs[i].RefCount++;
1173       // ...and the original.  If we didn't remove the old entry, none of the
1174       // addresses changed, so we don't need another pass.
1175       return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1176     }
1177   }
1178   return 0;
1179 }
1180
1181 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1182 /// the specific unconditional branch instruction.
1183 static inline unsigned getUnconditionalBrDisp(int Opc) {
1184   switch (Opc) {
1185   case Mips::Bimm16:
1186     return ((1<<10)-1)*2;
1187   case Mips::BimmX16:
1188     return ((1<<16)-1)*2;
1189   default:
1190     break;
1191   }
1192   return ((1<<16)-1)*2;
1193 }
1194
1195 /// findAvailableWater - Look for an existing entry in the WaterList in which
1196 /// we can place the CPE referenced from U so it's within range of U's MI.
1197 /// Returns true if found, false if not.  If it returns true, WaterIter
1198 /// is set to the WaterList entry.  
1199 /// To ensure that this pass
1200 /// terminates, the CPE location for a particular CPUser is only allowed to
1201 /// move to a lower address, so search backward from the end of the list and
1202 /// prefer the first water that is in range.
1203 bool MipsConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
1204                                       water_iterator &WaterIter) {
1205   if (WaterList.empty())
1206     return false;
1207
1208   unsigned BestGrowth = ~0u;
1209   for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
1210        --IP) {
1211     MachineBasicBlock* WaterBB = *IP;
1212     // Check if water is in range and is either at a lower address than the
1213     // current "high water mark" or a new water block that was created since
1214     // the previous iteration by inserting an unconditional branch.  In the
1215     // latter case, we want to allow resetting the high water mark back to
1216     // this new water since we haven't seen it before.  Inserting branches
1217     // should be relatively uncommon and when it does happen, we want to be
1218     // sure to take advantage of it for all the CPEs near that block, so that
1219     // we don't insert more branches than necessary.
1220     unsigned Growth;
1221     if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
1222         (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1223          NewWaterList.count(WaterBB)) && Growth < BestGrowth) {
1224       // This is the least amount of required padding seen so far.
1225       BestGrowth = Growth;
1226       WaterIter = IP;
1227       DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber()
1228                    << " Growth=" << Growth << '\n');
1229
1230       // Keep looking unless it is perfect.
1231       if (BestGrowth == 0)
1232         return true;
1233     }
1234     if (IP == B)
1235       break;
1236   }
1237   return BestGrowth != ~0u;
1238 }
1239
1240 /// createNewWater - No existing WaterList entry will work for
1241 /// CPUsers[CPUserIndex], so create a place to put the CPE.  The end of the
1242 /// block is used if in range, and the conditional branch munged so control
1243 /// flow is correct.  Otherwise the block is split to create a hole with an
1244 /// unconditional branch around it.  In either case NewMBB is set to a
1245 /// block following which the new island can be inserted (the WaterList
1246 /// is not adjusted).
1247 void MipsConstantIslands::createNewWater(unsigned CPUserIndex,
1248                                         unsigned UserOffset,
1249                                         MachineBasicBlock *&NewMBB) {
1250   CPUser &U = CPUsers[CPUserIndex];
1251   MachineInstr *UserMI = U.MI;
1252   MachineInstr *CPEMI  = U.CPEMI;
1253   unsigned CPELogAlign = getCPELogAlign(CPEMI);
1254   MachineBasicBlock *UserMBB = UserMI->getParent();
1255   const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
1256
1257   // If the block does not end in an unconditional branch already, and if the
1258   // end of the block is within range, make new water there.  
1259   if (BBHasFallthrough(UserMBB)) {
1260     // Size of branch to insert.
1261     unsigned Delta = 2;
1262     // Compute the offset where the CPE will begin.
1263     unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta;
1264
1265     if (isOffsetInRange(UserOffset, CPEOffset, U)) {
1266       DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber()
1267             << format(", expected CPE offset %#x\n", CPEOffset));
1268       NewMBB = std::next(MachineFunction::iterator(UserMBB));
1269       // Add an unconditional branch from UserMBB to fallthrough block.  Record
1270       // it for branch lengthening; this new branch will not get out of range,
1271       // but if the preceding conditional branch is out of range, the targets
1272       // will be exchanged, and the altered branch may be out of range, so the
1273       // machinery has to know about it.
1274       int UncondBr = Mips::Bimm16;
1275       BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
1276       unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1277       ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1278                                       MaxDisp, false, UncondBr));
1279       BBInfo[UserMBB->getNumber()].Size += Delta;
1280       adjustBBOffsetsAfter(UserMBB);
1281       return;
1282     }
1283   }
1284
1285   // What a big block.  Find a place within the block to split it.  
1286
1287   // Try to split the block so it's fully aligned.  Compute the latest split
1288   // point where we can add a 4-byte branch instruction, and then align to
1289   // LogAlign which is the largest possible alignment in the function.
1290   unsigned LogAlign = MF->getAlignment();
1291   assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry");
1292   unsigned BaseInsertOffset = UserOffset + U.getMaxDisp();
1293   DEBUG(dbgs() << format("Split in middle of big block before %#x",
1294                          BaseInsertOffset));
1295
1296   // The 4 in the following is for the unconditional branch we'll be inserting
1297   // Alignment of the island is handled
1298   // inside isOffsetInRange.
1299   BaseInsertOffset -= 4;
1300
1301   DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
1302                << " la=" << LogAlign << '\n');
1303
1304   // This could point off the end of the block if we've already got constant
1305   // pool entries following this block; only the last one is in the water list.
1306   // Back past any possible branches (allow for a conditional and a maximally
1307   // long unconditional).
1308   if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
1309     BaseInsertOffset = UserBBI.postOffset() - 8;
1310     DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
1311   }
1312   unsigned EndInsertOffset = BaseInsertOffset + 4 +
1313     CPEMI->getOperand(2).getImm();
1314   MachineBasicBlock::iterator MI = UserMI;
1315   ++MI;
1316   unsigned CPUIndex = CPUserIndex+1;
1317   unsigned NumCPUsers = CPUsers.size();
1318   //MachineInstr *LastIT = 0;
1319   for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI);
1320        Offset < BaseInsertOffset;
1321        Offset += TII->GetInstSizeInBytes(MI), MI = std::next(MI)) {
1322     assert(MI != UserMBB->end() && "Fell off end of block");
1323     if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
1324       CPUser &U = CPUsers[CPUIndex];
1325       if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
1326         // Shift intertion point by one unit of alignment so it is within reach.
1327         BaseInsertOffset -= 1u << LogAlign;
1328         EndInsertOffset  -= 1u << LogAlign;
1329       }
1330       // This is overly conservative, as we don't account for CPEMIs being
1331       // reused within the block, but it doesn't matter much.  Also assume CPEs
1332       // are added in order with alignment padding.  We may eventually be able
1333       // to pack the aligned CPEs better.
1334       EndInsertOffset += U.CPEMI->getOperand(2).getImm();
1335       CPUIndex++;
1336     }
1337   }
1338
1339   --MI;
1340   NewMBB = splitBlockBeforeInstr(MI);
1341 }
1342
1343 /// handleConstantPoolUser - Analyze the specified user, checking to see if it
1344 /// is out-of-range.  If so, pick up the constant pool value and move it some
1345 /// place in-range.  Return true if we changed any addresses (thus must run
1346 /// another pass of branch lengthening), false otherwise.
1347 bool MipsConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) {
1348   CPUser &U = CPUsers[CPUserIndex];
1349   MachineInstr *UserMI = U.MI;
1350   MachineInstr *CPEMI  = U.CPEMI;
1351   unsigned CPI = CPEMI->getOperand(1).getIndex();
1352   unsigned Size = CPEMI->getOperand(2).getImm();
1353   // Compute this only once, it's expensive.
1354   unsigned UserOffset = getUserOffset(U);
1355
1356   // See if the current entry is within range, or there is a clone of it
1357   // in range.
1358   int result = findInRangeCPEntry(U, UserOffset);
1359   if (result==1) return false;
1360   else if (result==2) return true;
1361
1362
1363   // Look for water where we can place this CPE.
1364   MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
1365   MachineBasicBlock *NewMBB;
1366   water_iterator IP;
1367   if (findAvailableWater(U, UserOffset, IP)) {
1368     DEBUG(dbgs() << "Found water in range\n");
1369     MachineBasicBlock *WaterBB = *IP;
1370
1371     // If the original WaterList entry was "new water" on this iteration,
1372     // propagate that to the new island.  This is just keeping NewWaterList
1373     // updated to match the WaterList, which will be updated below.
1374     if (NewWaterList.erase(WaterBB))
1375       NewWaterList.insert(NewIsland);
1376
1377     // The new CPE goes before the following block (NewMBB).
1378     NewMBB = std::next(MachineFunction::iterator(WaterBB));
1379
1380   } else {
1381     // No water found.
1382     // we first see if a longer form of the instrucion could have reached
1383     // the constant. in that case we won't bother to split
1384     if (!NoLoadRelaxation) {
1385       result = findLongFormInRangeCPEntry(U, UserOffset);
1386       if (result != 0) return true;
1387     }
1388     DEBUG(dbgs() << "No water found\n");
1389     createNewWater(CPUserIndex, UserOffset, NewMBB);
1390
1391     // splitBlockBeforeInstr adds to WaterList, which is important when it is
1392     // called while handling branches so that the water will be seen on the
1393     // next iteration for constant pools, but in this context, we don't want
1394     // it.  Check for this so it will be removed from the WaterList.
1395     // Also remove any entry from NewWaterList.
1396     MachineBasicBlock *WaterBB = std::prev(MachineFunction::iterator(NewMBB));
1397     IP = std::find(WaterList.begin(), WaterList.end(), WaterBB);
1398     if (IP != WaterList.end())
1399       NewWaterList.erase(WaterBB);
1400
1401     // We are adding new water.  Update NewWaterList.
1402     NewWaterList.insert(NewIsland);
1403   }
1404
1405   // Remove the original WaterList entry; we want subsequent insertions in
1406   // this vicinity to go after the one we're about to insert.  This
1407   // considerably reduces the number of times we have to move the same CPE
1408   // more than once and is also important to ensure the algorithm terminates.
1409   if (IP != WaterList.end())
1410     WaterList.erase(IP);
1411
1412   // Okay, we know we can put an island before NewMBB now, do it!
1413   MF->insert(NewMBB, NewIsland);
1414
1415   // Update internal data structures to account for the newly inserted MBB.
1416   updateForInsertedWaterBlock(NewIsland);
1417
1418   // Decrement the old entry, and remove it if refcount becomes 0.
1419   decrementCPEReferenceCount(CPI, CPEMI);
1420
1421   // No existing clone of this CPE is within range.
1422   // We will be generating a new clone.  Get a UID for it.
1423   unsigned ID = createPICLabelUId();
1424
1425   // Now that we have an island to add the CPE to, clone the original CPE and
1426   // add it to the island.
1427   U.HighWaterMark = NewIsland;
1428   U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
1429                 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
1430   CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1431   ++NumCPEs;
1432
1433   // Mark the basic block as aligned as required by the const-pool entry.
1434   NewIsland->setAlignment(getCPELogAlign(U.CPEMI));
1435
1436   // Increase the size of the island block to account for the new entry.
1437   BBInfo[NewIsland->getNumber()].Size += Size;
1438   adjustBBOffsetsAfter(std::prev(MachineFunction::iterator(NewIsland)));
1439
1440
1441
1442   // Finally, change the CPI in the instruction operand to be ID.
1443   for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1444     if (UserMI->getOperand(i).isCPI()) {
1445       UserMI->getOperand(i).setIndex(ID);
1446       break;
1447     }
1448
1449   DEBUG(dbgs() << "  Moved CPE to #" << ID << " CPI=" << CPI
1450         << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
1451
1452   return true;
1453 }
1454
1455 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
1456 /// sizes and offsets of impacted basic blocks.
1457 void MipsConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
1458   MachineBasicBlock *CPEBB = CPEMI->getParent();
1459   unsigned Size = CPEMI->getOperand(2).getImm();
1460   CPEMI->eraseFromParent();
1461   BBInfo[CPEBB->getNumber()].Size -= Size;
1462   // All succeeding offsets have the current size value added in, fix this.
1463   if (CPEBB->empty()) {
1464     BBInfo[CPEBB->getNumber()].Size = 0;
1465
1466     // This block no longer needs to be aligned.
1467     CPEBB->setAlignment(0);
1468   } else
1469     // Entries are sorted by descending alignment, so realign from the front.
1470     CPEBB->setAlignment(getCPELogAlign(CPEBB->begin()));
1471
1472   adjustBBOffsetsAfter(CPEBB);
1473   // An island has only one predecessor BB and one successor BB. Check if
1474   // this BB's predecessor jumps directly to this BB's successor. This
1475   // shouldn't happen currently.
1476   assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1477   // FIXME: remove the empty blocks after all the work is done?
1478 }
1479
1480 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts
1481 /// are zero.
1482 bool MipsConstantIslands::removeUnusedCPEntries() {
1483   unsigned MadeChange = false;
1484   for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1485       std::vector<CPEntry> &CPEs = CPEntries[i];
1486       for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1487         if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1488           removeDeadCPEMI(CPEs[j].CPEMI);
1489           CPEs[j].CPEMI = nullptr;
1490           MadeChange = true;
1491         }
1492       }
1493   }
1494   return MadeChange;
1495 }
1496
1497 /// isBBInRange - Returns true if the distance between specific MI and
1498 /// specific BB can fit in MI's displacement field.
1499 bool MipsConstantIslands::isBBInRange
1500   (MachineInstr *MI,MachineBasicBlock *DestBB, unsigned MaxDisp) {
1501
1502 unsigned PCAdj = 4;
1503
1504   unsigned BrOffset   = getOffsetOf(MI) + PCAdj;
1505   unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1506
1507   DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber()
1508                << " from BB#" << MI->getParent()->getNumber()
1509                << " max delta=" << MaxDisp
1510                << " from " << getOffsetOf(MI) << " to " << DestOffset
1511                << " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
1512
1513   if (BrOffset <= DestOffset) {
1514     // Branch before the Dest.
1515     if (DestOffset-BrOffset <= MaxDisp)
1516       return true;
1517   } else {
1518     if (BrOffset-DestOffset <= MaxDisp)
1519       return true;
1520   }
1521   return false;
1522 }
1523
1524 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far
1525 /// away to fit in its displacement field.
1526 bool MipsConstantIslands::fixupImmediateBr(ImmBranch &Br) {
1527   MachineInstr *MI = Br.MI;
1528   unsigned TargetOperand = branchTargetOperand(MI);
1529   MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB();
1530
1531   // Check to see if the DestBB is already in-range.
1532   if (isBBInRange(MI, DestBB, Br.MaxDisp))
1533     return false;
1534
1535   if (!Br.isCond)
1536     return fixupUnconditionalBr(Br);
1537   return fixupConditionalBr(Br);
1538 }
1539
1540 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
1541 /// too far away to fit in its displacement field. If the LR register has been
1542 /// spilled in the epilogue, then we can use BL to implement a far jump.
1543 /// Otherwise, add an intermediate branch instruction to a branch.
1544 bool
1545 MipsConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
1546   MachineInstr *MI = Br.MI;
1547   MachineBasicBlock *MBB = MI->getParent();
1548   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1549   // Use BL to implement far jump.
1550   unsigned BimmX16MaxDisp = ((1 << 16)-1) * 2;
1551   if (isBBInRange(MI, DestBB, BimmX16MaxDisp)) {
1552     Br.MaxDisp = BimmX16MaxDisp;
1553     MI->setDesc(TII->get(Mips::BimmX16));
1554   }
1555   else {
1556     // need to give the math a more careful look here
1557     // this is really a segment address and not
1558     // a PC relative address. FIXME. But I think that
1559     // just reducing the bits by 1 as I've done is correct.
1560     // The basic block we are branching too much be longword aligned.
1561     // we know that RA is saved because we always save it right now.
1562     // this requirement will be relaxed later but we also have an alternate
1563     // way to implement this that I will implement that does not need jal.
1564     // We should have a way to back out this alignment restriction if we "can" later.
1565     // but it is not harmful.
1566     //
1567     DestBB->setAlignment(2);
1568     Br.MaxDisp = ((1<<24)-1) * 2;
1569     MI->setDesc(TII->get(Mips::JalB16));
1570   }
1571   BBInfo[MBB->getNumber()].Size += 2;
1572   adjustBBOffsetsAfter(MBB);
1573   HasFarJump = true;
1574   ++NumUBrFixed;
1575
1576   DEBUG(dbgs() << "  Changed B to long jump " << *MI);
1577
1578   return true;
1579 }
1580
1581
1582 /// fixupConditionalBr - Fix up a conditional branch whose destination is too
1583 /// far away to fit in its displacement field. It is converted to an inverse
1584 /// conditional branch + an unconditional branch to the destination.
1585 bool
1586 MipsConstantIslands::fixupConditionalBr(ImmBranch &Br) {
1587   MachineInstr *MI = Br.MI;
1588   unsigned TargetOperand = branchTargetOperand(MI);
1589   MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB();
1590   unsigned Opcode = MI->getOpcode();
1591   unsigned LongFormOpcode = longformBranchOpcode(Opcode);
1592   unsigned LongFormMaxOff = branchMaxOffsets(LongFormOpcode);
1593
1594   // Check to see if the DestBB is already in-range.
1595   if (isBBInRange(MI, DestBB, LongFormMaxOff)) {
1596     Br.MaxDisp = LongFormMaxOff;
1597     MI->setDesc(TII->get(LongFormOpcode));
1598     return true;
1599   }
1600
1601   // Add an unconditional branch to the destination and invert the branch
1602   // condition to jump over it:
1603   // bteqz L1
1604   // =>
1605   // bnez L2
1606   // b   L1
1607   // L2:
1608
1609   // If the branch is at the end of its MBB and that has a fall-through block,
1610   // direct the updated conditional branch to the fall-through block. Otherwise,
1611   // split the MBB before the next instruction.
1612   MachineBasicBlock *MBB = MI->getParent();
1613   MachineInstr *BMI = &MBB->back();
1614   bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1615   unsigned OppositeBranchOpcode = TII->getOppositeBranchOpc(Opcode);
1616  
1617   ++NumCBrFixed;
1618   if (BMI != MI) {
1619     if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
1620         isUnconditionalBranch(BMI->getOpcode())) {
1621       // Last MI in the BB is an unconditional branch. Can we simply invert the
1622       // condition and swap destinations:
1623       // beqz L1
1624       // b   L2
1625       // =>
1626       // bnez L2
1627       // b   L1
1628       unsigned BMITargetOperand = branchTargetOperand(BMI);
1629       MachineBasicBlock *NewDest = 
1630         BMI->getOperand(BMITargetOperand).getMBB();
1631       if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
1632         DEBUG(dbgs() << "  Invert Bcc condition and swap its destination with "
1633                      << *BMI);
1634         MI->setDesc(TII->get(OppositeBranchOpcode));
1635         BMI->getOperand(BMITargetOperand).setMBB(DestBB);
1636         MI->getOperand(TargetOperand).setMBB(NewDest);
1637         return true;
1638       }
1639     }
1640   }
1641
1642
1643   if (NeedSplit) {
1644     splitBlockBeforeInstr(MI);
1645     // No need for the branch to the next block. We're adding an unconditional
1646     // branch to the destination.
1647     int delta = TII->GetInstSizeInBytes(&MBB->back());
1648     BBInfo[MBB->getNumber()].Size -= delta;
1649     MBB->back().eraseFromParent();
1650     // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
1651   }
1652   MachineBasicBlock *NextBB = std::next(MachineFunction::iterator(MBB));
1653
1654   DEBUG(dbgs() << "  Insert B to BB#" << DestBB->getNumber()
1655                << " also invert condition and change dest. to BB#"
1656                << NextBB->getNumber() << "\n");
1657
1658   // Insert a new conditional branch and a new unconditional branch.
1659   // Also update the ImmBranch as well as adding a new entry for the new branch.
1660   if (MI->getNumExplicitOperands() == 2) {
1661     BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode))
1662            .addReg(MI->getOperand(0).getReg())
1663            .addMBB(NextBB);
1664   } else {
1665     BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode))
1666            .addMBB(NextBB);
1667   }
1668   Br.MI = &MBB->back();
1669   BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
1670   BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1671   BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
1672   unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1673   ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1674
1675   // Remove the old conditional branch.  It may or may not still be in MBB.
1676   BBInfo[MI->getParent()->getNumber()].Size -= TII->GetInstSizeInBytes(MI);
1677   MI->eraseFromParent();
1678   adjustBBOffsetsAfter(MBB);
1679   return true;
1680 }
1681
1682
1683 void MipsConstantIslands::prescanForConstants() {
1684   unsigned J = 0;
1685   (void)J;
1686   for (MachineFunction::iterator B =
1687          MF->begin(), E = MF->end(); B != E; ++B) {
1688     for (MachineBasicBlock::instr_iterator I =
1689         B->instr_begin(), EB = B->instr_end(); I != EB; ++I) {
1690       switch(I->getDesc().getOpcode()) {
1691         case Mips::LwConstant32: {
1692           PrescannedForConstants = true;
1693           DEBUG(dbgs() << "constant island constant " << *I << "\n");
1694           J = I->getNumOperands();
1695           DEBUG(dbgs() << "num operands " << J  << "\n");
1696           MachineOperand& Literal = I->getOperand(1);
1697           if (Literal.isImm()) {
1698             int64_t V = Literal.getImm();
1699             DEBUG(dbgs() << "literal " << V  << "\n");
1700             Type *Int32Ty =
1701               Type::getInt32Ty(MF->getFunction()->getContext());
1702             const Constant *C = ConstantInt::get(Int32Ty, V);
1703             unsigned index = MCP->getConstantPoolIndex(C, 4);
1704             I->getOperand(2).ChangeToImmediate(index);
1705             DEBUG(dbgs() << "constant island constant " << *I << "\n");
1706             I->setDesc(TII->get(Mips::LwRxPcTcp16));
1707             I->RemoveOperand(1);
1708             I->RemoveOperand(1);
1709             I->addOperand(MachineOperand::CreateCPI(index, 0));
1710             I->addOperand(MachineOperand::CreateImm(4));
1711           }
1712           break;
1713         }
1714         default:
1715           break;
1716       }
1717     }
1718   }
1719 }
1720