Add function attribute 'optnone'.
[oota-llvm.git] / lib / Target / CppBackend / CPPBackend.cpp
1 //===-- CPPBackend.cpp - Library for converting LLVM code to C++ code -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the writing of the LLVM IR as a set of C++ calls to the
11 // LLVM IR interface. The input module is assumed to be verified.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "CPPTargetMachine.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/Config/config.h"
19 #include "llvm/IR/CallingConv.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/InlineAsm.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/MC/MCAsmInfo.h"
27 #include "llvm/MC/MCInstrInfo.h"
28 #include "llvm/MC/MCSubtargetInfo.h"
29 #include "llvm/Pass.h"
30 #include "llvm/PassManager.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/FormattedStream.h"
34 #include "llvm/Support/TargetRegistry.h"
35 #include <algorithm>
36 #include <cstdio>
37 #include <map>
38 #include <set>
39 using namespace llvm;
40
41 static cl::opt<std::string>
42 FuncName("cppfname", cl::desc("Specify the name of the generated function"),
43          cl::value_desc("function name"));
44
45 enum WhatToGenerate {
46   GenProgram,
47   GenModule,
48   GenContents,
49   GenFunction,
50   GenFunctions,
51   GenInline,
52   GenVariable,
53   GenType
54 };
55
56 static cl::opt<WhatToGenerate> GenerationType("cppgen", cl::Optional,
57   cl::desc("Choose what kind of output to generate"),
58   cl::init(GenProgram),
59   cl::values(
60     clEnumValN(GenProgram,  "program",   "Generate a complete program"),
61     clEnumValN(GenModule,   "module",    "Generate a module definition"),
62     clEnumValN(GenContents, "contents",  "Generate contents of a module"),
63     clEnumValN(GenFunction, "function",  "Generate a function definition"),
64     clEnumValN(GenFunctions,"functions", "Generate all function definitions"),
65     clEnumValN(GenInline,   "inline",    "Generate an inline function"),
66     clEnumValN(GenVariable, "variable",  "Generate a variable definition"),
67     clEnumValN(GenType,     "type",      "Generate a type definition"),
68     clEnumValEnd
69   )
70 );
71
72 static cl::opt<std::string> NameToGenerate("cppfor", cl::Optional,
73   cl::desc("Specify the name of the thing to generate"),
74   cl::init("!bad!"));
75
76 extern "C" void LLVMInitializeCppBackendTarget() {
77   // Register the target.
78   RegisterTargetMachine<CPPTargetMachine> X(TheCppBackendTarget);
79 }
80
81 namespace {
82   typedef std::vector<Type*> TypeList;
83   typedef std::map<Type*,std::string> TypeMap;
84   typedef std::map<const Value*,std::string> ValueMap;
85   typedef std::set<std::string> NameSet;
86   typedef std::set<Type*> TypeSet;
87   typedef std::set<const Value*> ValueSet;
88   typedef std::map<const Value*,std::string> ForwardRefMap;
89
90   /// CppWriter - This class is the main chunk of code that converts an LLVM
91   /// module to a C++ translation unit.
92   class CppWriter : public ModulePass {
93     formatted_raw_ostream &Out;
94     const Module *TheModule;
95     uint64_t uniqueNum;
96     TypeMap TypeNames;
97     ValueMap ValueNames;
98     NameSet UsedNames;
99     TypeSet DefinedTypes;
100     ValueSet DefinedValues;
101     ForwardRefMap ForwardRefs;
102     bool is_inline;
103     unsigned indent_level;
104
105   public:
106     static char ID;
107     explicit CppWriter(formatted_raw_ostream &o) :
108       ModulePass(ID), Out(o), uniqueNum(0), is_inline(false), indent_level(0){}
109
110     virtual const char *getPassName() const { return "C++ backend"; }
111
112     bool runOnModule(Module &M);
113
114     void printProgram(const std::string& fname, const std::string& modName );
115     void printModule(const std::string& fname, const std::string& modName );
116     void printContents(const std::string& fname, const std::string& modName );
117     void printFunction(const std::string& fname, const std::string& funcName );
118     void printFunctions();
119     void printInline(const std::string& fname, const std::string& funcName );
120     void printVariable(const std::string& fname, const std::string& varName );
121     void printType(const std::string& fname, const std::string& typeName );
122
123     void error(const std::string& msg);
124
125     
126     formatted_raw_ostream& nl(formatted_raw_ostream &Out, int delta = 0);
127     inline void in() { indent_level++; }
128     inline void out() { if (indent_level >0) indent_level--; }
129     
130   private:
131     void printLinkageType(GlobalValue::LinkageTypes LT);
132     void printVisibilityType(GlobalValue::VisibilityTypes VisTypes);
133     void printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM);
134     void printCallingConv(CallingConv::ID cc);
135     void printEscapedString(const std::string& str);
136     void printCFP(const ConstantFP* CFP);
137
138     std::string getCppName(Type* val);
139     inline void printCppName(Type* val);
140
141     std::string getCppName(const Value* val);
142     inline void printCppName(const Value* val);
143
144     void printAttributes(const AttributeSet &PAL, const std::string &name);
145     void printType(Type* Ty);
146     void printTypes(const Module* M);
147
148     void printConstant(const Constant *CPV);
149     void printConstants(const Module* M);
150
151     void printVariableUses(const GlobalVariable *GV);
152     void printVariableHead(const GlobalVariable *GV);
153     void printVariableBody(const GlobalVariable *GV);
154
155     void printFunctionUses(const Function *F);
156     void printFunctionHead(const Function *F);
157     void printFunctionBody(const Function *F);
158     void printInstruction(const Instruction *I, const std::string& bbname);
159     std::string getOpName(const Value*);
160
161     void printModuleBody();
162   };
163 } // end anonymous namespace.
164
165 formatted_raw_ostream &CppWriter::nl(formatted_raw_ostream &Out, int delta) {
166   Out << '\n';
167   if (delta >= 0 || indent_level >= unsigned(-delta))
168     indent_level += delta;
169   Out.indent(indent_level);
170   return Out;
171 }
172
173 static inline void sanitize(std::string &str) {
174   for (size_t i = 0; i < str.length(); ++i)
175     if (!isalnum(str[i]) && str[i] != '_')
176       str[i] = '_';
177 }
178
179 static std::string getTypePrefix(Type *Ty) {
180   switch (Ty->getTypeID()) {
181   case Type::VoidTyID:     return "void_";
182   case Type::IntegerTyID:
183     return "int" + utostr(cast<IntegerType>(Ty)->getBitWidth()) + "_";
184   case Type::FloatTyID:    return "float_";
185   case Type::DoubleTyID:   return "double_";
186   case Type::LabelTyID:    return "label_";
187   case Type::FunctionTyID: return "func_";
188   case Type::StructTyID:   return "struct_";
189   case Type::ArrayTyID:    return "array_";
190   case Type::PointerTyID:  return "ptr_";
191   case Type::VectorTyID:   return "packed_";
192   default:                 return "other_";
193   }
194 }
195
196 void CppWriter::error(const std::string& msg) {
197   report_fatal_error(msg);
198 }
199
200 static inline std::string ftostr(const APFloat& V) {
201   std::string Buf;
202   if (&V.getSemantics() == &APFloat::IEEEdouble) {
203     raw_string_ostream(Buf) << V.convertToDouble();
204     return Buf;
205   } else if (&V.getSemantics() == &APFloat::IEEEsingle) {
206     raw_string_ostream(Buf) << (double)V.convertToFloat();
207     return Buf;
208   }
209   return "<unknown format in ftostr>"; // error
210 }
211
212 // printCFP - Print a floating point constant .. very carefully :)
213 // This makes sure that conversion to/from floating yields the same binary
214 // result so that we don't lose precision.
215 void CppWriter::printCFP(const ConstantFP *CFP) {
216   bool ignored;
217   APFloat APF = APFloat(CFP->getValueAPF());  // copy
218   if (CFP->getType() == Type::getFloatTy(CFP->getContext()))
219     APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
220   Out << "ConstantFP::get(mod->getContext(), ";
221   Out << "APFloat(";
222 #if HAVE_PRINTF_A
223   char Buffer[100];
224   sprintf(Buffer, "%A", APF.convertToDouble());
225   if ((!strncmp(Buffer, "0x", 2) ||
226        !strncmp(Buffer, "-0x", 3) ||
227        !strncmp(Buffer, "+0x", 3)) &&
228       APF.bitwiseIsEqual(APFloat(atof(Buffer)))) {
229     if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
230       Out << "BitsToDouble(" << Buffer << ")";
231     else
232       Out << "BitsToFloat((float)" << Buffer << ")";
233     Out << ")";
234   } else {
235 #endif
236     std::string StrVal = ftostr(CFP->getValueAPF());
237
238     while (StrVal[0] == ' ')
239       StrVal.erase(StrVal.begin());
240
241     // Check to make sure that the stringized number is not some string like
242     // "Inf" or NaN.  Check that the string matches the "[-+]?[0-9]" regex.
243     if (((StrVal[0] >= '0' && StrVal[0] <= '9') ||
244          ((StrVal[0] == '-' || StrVal[0] == '+') &&
245           (StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
246         (CFP->isExactlyValue(atof(StrVal.c_str())))) {
247       if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
248         Out <<  StrVal;
249       else
250         Out << StrVal << "f";
251     } else if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
252       Out << "BitsToDouble(0x"
253           << utohexstr(CFP->getValueAPF().bitcastToAPInt().getZExtValue())
254           << "ULL) /* " << StrVal << " */";
255     else
256       Out << "BitsToFloat(0x"
257           << utohexstr((uint32_t)CFP->getValueAPF().
258                                       bitcastToAPInt().getZExtValue())
259           << "U) /* " << StrVal << " */";
260     Out << ")";
261 #if HAVE_PRINTF_A
262   }
263 #endif
264   Out << ")";
265 }
266
267 void CppWriter::printCallingConv(CallingConv::ID cc){
268   // Print the calling convention.
269   switch (cc) {
270   case CallingConv::C:     Out << "CallingConv::C"; break;
271   case CallingConv::Fast:  Out << "CallingConv::Fast"; break;
272   case CallingConv::Cold:  Out << "CallingConv::Cold"; break;
273   case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break;
274   default:                 Out << cc; break;
275   }
276 }
277
278 void CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) {
279   switch (LT) {
280   case GlobalValue::InternalLinkage:
281     Out << "GlobalValue::InternalLinkage"; break;
282   case GlobalValue::PrivateLinkage:
283     Out << "GlobalValue::PrivateLinkage"; break;
284   case GlobalValue::LinkerPrivateLinkage:
285     Out << "GlobalValue::LinkerPrivateLinkage"; break;
286   case GlobalValue::LinkerPrivateWeakLinkage:
287     Out << "GlobalValue::LinkerPrivateWeakLinkage"; break;
288   case GlobalValue::AvailableExternallyLinkage:
289     Out << "GlobalValue::AvailableExternallyLinkage "; break;
290   case GlobalValue::LinkOnceAnyLinkage:
291     Out << "GlobalValue::LinkOnceAnyLinkage "; break;
292   case GlobalValue::LinkOnceODRLinkage:
293     Out << "GlobalValue::LinkOnceODRLinkage "; break;
294   case GlobalValue::LinkOnceODRAutoHideLinkage:
295     Out << "GlobalValue::LinkOnceODRAutoHideLinkage"; break;
296   case GlobalValue::WeakAnyLinkage:
297     Out << "GlobalValue::WeakAnyLinkage"; break;
298   case GlobalValue::WeakODRLinkage:
299     Out << "GlobalValue::WeakODRLinkage"; break;
300   case GlobalValue::AppendingLinkage:
301     Out << "GlobalValue::AppendingLinkage"; break;
302   case GlobalValue::ExternalLinkage:
303     Out << "GlobalValue::ExternalLinkage"; break;
304   case GlobalValue::DLLImportLinkage:
305     Out << "GlobalValue::DLLImportLinkage"; break;
306   case GlobalValue::DLLExportLinkage:
307     Out << "GlobalValue::DLLExportLinkage"; break;
308   case GlobalValue::ExternalWeakLinkage:
309     Out << "GlobalValue::ExternalWeakLinkage"; break;
310   case GlobalValue::CommonLinkage:
311     Out << "GlobalValue::CommonLinkage"; break;
312   }
313 }
314
315 void CppWriter::printVisibilityType(GlobalValue::VisibilityTypes VisType) {
316   switch (VisType) {
317   case GlobalValue::DefaultVisibility:
318     Out << "GlobalValue::DefaultVisibility";
319     break;
320   case GlobalValue::HiddenVisibility:
321     Out << "GlobalValue::HiddenVisibility";
322     break;
323   case GlobalValue::ProtectedVisibility:
324     Out << "GlobalValue::ProtectedVisibility";
325     break;
326   }
327 }
328
329 void CppWriter::printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM) {
330   switch (TLM) {
331     case GlobalVariable::NotThreadLocal:
332       Out << "GlobalVariable::NotThreadLocal";
333       break;
334     case GlobalVariable::GeneralDynamicTLSModel:
335       Out << "GlobalVariable::GeneralDynamicTLSModel";
336       break;
337     case GlobalVariable::LocalDynamicTLSModel:
338       Out << "GlobalVariable::LocalDynamicTLSModel";
339       break;
340     case GlobalVariable::InitialExecTLSModel:
341       Out << "GlobalVariable::InitialExecTLSModel";
342       break;
343     case GlobalVariable::LocalExecTLSModel:
344       Out << "GlobalVariable::LocalExecTLSModel";
345       break;
346   }
347 }
348
349 // printEscapedString - Print each character of the specified string, escaping
350 // it if it is not printable or if it is an escape char.
351 void CppWriter::printEscapedString(const std::string &Str) {
352   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
353     unsigned char C = Str[i];
354     if (isprint(C) && C != '"' && C != '\\') {
355       Out << C;
356     } else {
357       Out << "\\x"
358           << (char) ((C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
359           << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
360     }
361   }
362 }
363
364 std::string CppWriter::getCppName(Type* Ty) {
365   // First, handle the primitive types .. easy
366   if (Ty->isPrimitiveType() || Ty->isIntegerTy()) {
367     switch (Ty->getTypeID()) {
368     case Type::VoidTyID:   return "Type::getVoidTy(mod->getContext())";
369     case Type::IntegerTyID: {
370       unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
371       return "IntegerType::get(mod->getContext(), " + utostr(BitWidth) + ")";
372     }
373     case Type::X86_FP80TyID: return "Type::getX86_FP80Ty(mod->getContext())";
374     case Type::FloatTyID:    return "Type::getFloatTy(mod->getContext())";
375     case Type::DoubleTyID:   return "Type::getDoubleTy(mod->getContext())";
376     case Type::LabelTyID:    return "Type::getLabelTy(mod->getContext())";
377     case Type::X86_MMXTyID:  return "Type::getX86_MMXTy(mod->getContext())";
378     default:
379       error("Invalid primitive type");
380       break;
381     }
382     // shouldn't be returned, but make it sensible
383     return "Type::getVoidTy(mod->getContext())";
384   }
385
386   // Now, see if we've seen the type before and return that
387   TypeMap::iterator I = TypeNames.find(Ty);
388   if (I != TypeNames.end())
389     return I->second;
390
391   // Okay, let's build a new name for this type. Start with a prefix
392   const char* prefix = 0;
393   switch (Ty->getTypeID()) {
394   case Type::FunctionTyID:    prefix = "FuncTy_"; break;
395   case Type::StructTyID:      prefix = "StructTy_"; break;
396   case Type::ArrayTyID:       prefix = "ArrayTy_"; break;
397   case Type::PointerTyID:     prefix = "PointerTy_"; break;
398   case Type::VectorTyID:      prefix = "VectorTy_"; break;
399   default:                    prefix = "OtherTy_"; break; // prevent breakage
400   }
401
402   // See if the type has a name in the symboltable and build accordingly
403   std::string name;
404   if (StructType *STy = dyn_cast<StructType>(Ty))
405     if (STy->hasName())
406       name = STy->getName();
407   
408   if (name.empty())
409     name = utostr(uniqueNum++);
410   
411   name = std::string(prefix) + name;
412   sanitize(name);
413
414   // Save the name
415   return TypeNames[Ty] = name;
416 }
417
418 void CppWriter::printCppName(Type* Ty) {
419   printEscapedString(getCppName(Ty));
420 }
421
422 std::string CppWriter::getCppName(const Value* val) {
423   std::string name;
424   ValueMap::iterator I = ValueNames.find(val);
425   if (I != ValueNames.end() && I->first == val)
426     return  I->second;
427
428   if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(val)) {
429     name = std::string("gvar_") +
430       getTypePrefix(GV->getType()->getElementType());
431   } else if (isa<Function>(val)) {
432     name = std::string("func_");
433   } else if (const Constant* C = dyn_cast<Constant>(val)) {
434     name = std::string("const_") + getTypePrefix(C->getType());
435   } else if (const Argument* Arg = dyn_cast<Argument>(val)) {
436     if (is_inline) {
437       unsigned argNum = std::distance(Arg->getParent()->arg_begin(),
438                                       Function::const_arg_iterator(Arg)) + 1;
439       name = std::string("arg_") + utostr(argNum);
440       NameSet::iterator NI = UsedNames.find(name);
441       if (NI != UsedNames.end())
442         name += std::string("_") + utostr(uniqueNum++);
443       UsedNames.insert(name);
444       return ValueNames[val] = name;
445     } else {
446       name = getTypePrefix(val->getType());
447     }
448   } else {
449     name = getTypePrefix(val->getType());
450   }
451   if (val->hasName())
452     name += val->getName();
453   else
454     name += utostr(uniqueNum++);
455   sanitize(name);
456   NameSet::iterator NI = UsedNames.find(name);
457   if (NI != UsedNames.end())
458     name += std::string("_") + utostr(uniqueNum++);
459   UsedNames.insert(name);
460   return ValueNames[val] = name;
461 }
462
463 void CppWriter::printCppName(const Value* val) {
464   printEscapedString(getCppName(val));
465 }
466
467 void CppWriter::printAttributes(const AttributeSet &PAL,
468                                 const std::string &name) {
469   Out << "AttributeSet " << name << "_PAL;";
470   nl(Out);
471   if (!PAL.isEmpty()) {
472     Out << '{'; in(); nl(Out);
473     Out << "SmallVector<AttributeSet, 4> Attrs;"; nl(Out);
474     Out << "AttributeSet PAS;"; in(); nl(Out);
475     for (unsigned i = 0; i < PAL.getNumSlots(); ++i) {
476       unsigned index = PAL.getSlotIndex(i);
477       AttrBuilder attrs(PAL.getSlotAttributes(i), index);
478       Out << "{"; in(); nl(Out);
479       Out << "AttrBuilder B;"; nl(Out);
480
481 #define HANDLE_ATTR(X)                                                  \
482       if (attrs.contains(Attribute::X)) {                               \
483         Out << "B.addAttribute(Attribute::" #X ");"; nl(Out);           \
484         attrs.removeAttribute(Attribute::X);                            \
485       }
486
487       HANDLE_ATTR(SExt);
488       HANDLE_ATTR(ZExt);
489       HANDLE_ATTR(NoReturn);
490       HANDLE_ATTR(InReg);
491       HANDLE_ATTR(StructRet);
492       HANDLE_ATTR(NoUnwind);
493       HANDLE_ATTR(NoAlias);
494       HANDLE_ATTR(ByVal);
495       HANDLE_ATTR(Nest);
496       HANDLE_ATTR(ReadNone);
497       HANDLE_ATTR(ReadOnly);
498       HANDLE_ATTR(NoInline);
499       HANDLE_ATTR(AlwaysInline);
500       HANDLE_ATTR(OptimizeNone);
501       HANDLE_ATTR(OptimizeForSize);
502       HANDLE_ATTR(StackProtect);
503       HANDLE_ATTR(StackProtectReq);
504       HANDLE_ATTR(StackProtectStrong);
505       HANDLE_ATTR(NoCapture);
506       HANDLE_ATTR(NoRedZone);
507       HANDLE_ATTR(NoImplicitFloat);
508       HANDLE_ATTR(Naked);
509       HANDLE_ATTR(InlineHint);
510       HANDLE_ATTR(ReturnsTwice);
511       HANDLE_ATTR(UWTable);
512       HANDLE_ATTR(NonLazyBind);
513       HANDLE_ATTR(MinSize);
514 #undef HANDLE_ATTR
515
516       if (attrs.contains(Attribute::StackAlignment)) {
517         Out << "B.addStackAlignmentAttr(" << attrs.getStackAlignment()<<')';
518         nl(Out);
519         attrs.removeAttribute(Attribute::StackAlignment);
520       }
521
522       Out << "PAS = AttributeSet::get(mod->getContext(), ";
523       if (index == ~0U)
524         Out << "~0U,";
525       else
526         Out << index << "U,";
527       Out << " B);"; out(); nl(Out);
528       Out << "}"; out(); nl(Out);
529       nl(Out);
530       Out << "Attrs.push_back(PAS);"; nl(Out);
531     }
532     Out << name << "_PAL = AttributeSet::get(mod->getContext(), Attrs);";
533     nl(Out);
534     out(); nl(Out);
535     Out << '}'; nl(Out);
536   }
537 }
538
539 void CppWriter::printType(Type* Ty) {
540   // We don't print definitions for primitive types
541   if (Ty->isPrimitiveType() || Ty->isIntegerTy())
542     return;
543
544   // If we already defined this type, we don't need to define it again.
545   if (DefinedTypes.find(Ty) != DefinedTypes.end())
546     return;
547
548   // Everything below needs the name for the type so get it now.
549   std::string typeName(getCppName(Ty));
550
551   // Print the type definition
552   switch (Ty->getTypeID()) {
553   case Type::FunctionTyID:  {
554     FunctionType* FT = cast<FunctionType>(Ty);
555     Out << "std::vector<Type*>" << typeName << "_args;";
556     nl(Out);
557     FunctionType::param_iterator PI = FT->param_begin();
558     FunctionType::param_iterator PE = FT->param_end();
559     for (; PI != PE; ++PI) {
560       Type* argTy = static_cast<Type*>(*PI);
561       printType(argTy);
562       std::string argName(getCppName(argTy));
563       Out << typeName << "_args.push_back(" << argName;
564       Out << ");";
565       nl(Out);
566     }
567     printType(FT->getReturnType());
568     std::string retTypeName(getCppName(FT->getReturnType()));
569     Out << "FunctionType* " << typeName << " = FunctionType::get(";
570     in(); nl(Out) << "/*Result=*/" << retTypeName;
571     Out << ",";
572     nl(Out) << "/*Params=*/" << typeName << "_args,";
573     nl(Out) << "/*isVarArg=*/" << (FT->isVarArg() ? "true" : "false") << ");";
574     out();
575     nl(Out);
576     break;
577   }
578   case Type::StructTyID: {
579     StructType* ST = cast<StructType>(Ty);
580     if (!ST->isLiteral()) {
581       Out << "StructType *" << typeName << " = mod->getTypeByName(\"";
582       printEscapedString(ST->getName());
583       Out << "\");";
584       nl(Out);
585       Out << "if (!" << typeName << ") {";
586       nl(Out);
587       Out << typeName << " = ";
588       Out << "StructType::create(mod->getContext(), \"";
589       printEscapedString(ST->getName());
590       Out << "\");";
591       nl(Out);
592       Out << "}";
593       nl(Out);
594       // Indicate that this type is now defined.
595       DefinedTypes.insert(Ty);
596     }
597
598     Out << "std::vector<Type*>" << typeName << "_fields;";
599     nl(Out);
600     StructType::element_iterator EI = ST->element_begin();
601     StructType::element_iterator EE = ST->element_end();
602     for (; EI != EE; ++EI) {
603       Type* fieldTy = static_cast<Type*>(*EI);
604       printType(fieldTy);
605       std::string fieldName(getCppName(fieldTy));
606       Out << typeName << "_fields.push_back(" << fieldName;
607       Out << ");";
608       nl(Out);
609     }
610
611     if (ST->isLiteral()) {
612       Out << "StructType *" << typeName << " = ";
613       Out << "StructType::get(" << "mod->getContext(), ";
614     } else {
615       Out << "if (" << typeName << "->isOpaque()) {";
616       nl(Out);
617       Out << typeName << "->setBody(";
618     }
619
620     Out << typeName << "_fields, /*isPacked=*/"
621         << (ST->isPacked() ? "true" : "false") << ");";
622     nl(Out);
623     if (!ST->isLiteral()) {
624       Out << "}";
625       nl(Out);
626     }
627     break;
628   }
629   case Type::ArrayTyID: {
630     ArrayType* AT = cast<ArrayType>(Ty);
631     Type* ET = AT->getElementType();
632     printType(ET);
633     if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
634       std::string elemName(getCppName(ET));
635       Out << "ArrayType* " << typeName << " = ArrayType::get("
636           << elemName
637           << ", " << utostr(AT->getNumElements()) << ");";
638       nl(Out);
639     }
640     break;
641   }
642   case Type::PointerTyID: {
643     PointerType* PT = cast<PointerType>(Ty);
644     Type* ET = PT->getElementType();
645     printType(ET);
646     if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
647       std::string elemName(getCppName(ET));
648       Out << "PointerType* " << typeName << " = PointerType::get("
649           << elemName
650           << ", " << utostr(PT->getAddressSpace()) << ");";
651       nl(Out);
652     }
653     break;
654   }
655   case Type::VectorTyID: {
656     VectorType* PT = cast<VectorType>(Ty);
657     Type* ET = PT->getElementType();
658     printType(ET);
659     if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
660       std::string elemName(getCppName(ET));
661       Out << "VectorType* " << typeName << " = VectorType::get("
662           << elemName
663           << ", " << utostr(PT->getNumElements()) << ");";
664       nl(Out);
665     }
666     break;
667   }
668   default:
669     error("Invalid TypeID");
670   }
671
672   // Indicate that this type is now defined.
673   DefinedTypes.insert(Ty);
674
675   // Finally, separate the type definition from other with a newline.
676   nl(Out);
677 }
678
679 void CppWriter::printTypes(const Module* M) {
680   // Add all of the global variables to the value table.
681   for (Module::const_global_iterator I = TheModule->global_begin(),
682          E = TheModule->global_end(); I != E; ++I) {
683     if (I->hasInitializer())
684       printType(I->getInitializer()->getType());
685     printType(I->getType());
686   }
687
688   // Add all the functions to the table
689   for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
690        FI != FE; ++FI) {
691     printType(FI->getReturnType());
692     printType(FI->getFunctionType());
693     // Add all the function arguments
694     for (Function::const_arg_iterator AI = FI->arg_begin(),
695            AE = FI->arg_end(); AI != AE; ++AI) {
696       printType(AI->getType());
697     }
698
699     // Add all of the basic blocks and instructions
700     for (Function::const_iterator BB = FI->begin(),
701            E = FI->end(); BB != E; ++BB) {
702       printType(BB->getType());
703       for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
704            ++I) {
705         printType(I->getType());
706         for (unsigned i = 0; i < I->getNumOperands(); ++i)
707           printType(I->getOperand(i)->getType());
708       }
709     }
710   }
711 }
712
713
714 // printConstant - Print out a constant pool entry...
715 void CppWriter::printConstant(const Constant *CV) {
716   // First, if the constant is actually a GlobalValue (variable or function)
717   // or its already in the constant list then we've printed it already and we
718   // can just return.
719   if (isa<GlobalValue>(CV) || ValueNames.find(CV) != ValueNames.end())
720     return;
721
722   std::string constName(getCppName(CV));
723   std::string typeName(getCppName(CV->getType()));
724
725   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
726     std::string constValue = CI->getValue().toString(10, true);
727     Out << "ConstantInt* " << constName
728         << " = ConstantInt::get(mod->getContext(), APInt("
729         << cast<IntegerType>(CI->getType())->getBitWidth()
730         << ", StringRef(\"" <<  constValue << "\"), 10));";
731   } else if (isa<ConstantAggregateZero>(CV)) {
732     Out << "ConstantAggregateZero* " << constName
733         << " = ConstantAggregateZero::get(" << typeName << ");";
734   } else if (isa<ConstantPointerNull>(CV)) {
735     Out << "ConstantPointerNull* " << constName
736         << " = ConstantPointerNull::get(" << typeName << ");";
737   } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
738     Out << "ConstantFP* " << constName << " = ";
739     printCFP(CFP);
740     Out << ";";
741   } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
742     Out << "std::vector<Constant*> " << constName << "_elems;";
743     nl(Out);
744     unsigned N = CA->getNumOperands();
745     for (unsigned i = 0; i < N; ++i) {
746       printConstant(CA->getOperand(i)); // recurse to print operands
747       Out << constName << "_elems.push_back("
748           << getCppName(CA->getOperand(i)) << ");";
749       nl(Out);
750     }
751     Out << "Constant* " << constName << " = ConstantArray::get("
752         << typeName << ", " << constName << "_elems);";
753   } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
754     Out << "std::vector<Constant*> " << constName << "_fields;";
755     nl(Out);
756     unsigned N = CS->getNumOperands();
757     for (unsigned i = 0; i < N; i++) {
758       printConstant(CS->getOperand(i));
759       Out << constName << "_fields.push_back("
760           << getCppName(CS->getOperand(i)) << ");";
761       nl(Out);
762     }
763     Out << "Constant* " << constName << " = ConstantStruct::get("
764         << typeName << ", " << constName << "_fields);";
765   } else if (const ConstantVector *CVec = dyn_cast<ConstantVector>(CV)) {
766     Out << "std::vector<Constant*> " << constName << "_elems;";
767     nl(Out);
768     unsigned N = CVec->getNumOperands();
769     for (unsigned i = 0; i < N; ++i) {
770       printConstant(CVec->getOperand(i));
771       Out << constName << "_elems.push_back("
772           << getCppName(CVec->getOperand(i)) << ");";
773       nl(Out);
774     }
775     Out << "Constant* " << constName << " = ConstantVector::get("
776         << typeName << ", " << constName << "_elems);";
777   } else if (isa<UndefValue>(CV)) {
778     Out << "UndefValue* " << constName << " = UndefValue::get("
779         << typeName << ");";
780   } else if (const ConstantDataSequential *CDS =
781                dyn_cast<ConstantDataSequential>(CV)) {
782     if (CDS->isString()) {
783       Out << "Constant *" << constName <<
784       " = ConstantDataArray::getString(mod->getContext(), \"";
785       StringRef Str = CDS->getAsString();
786       bool nullTerminate = false;
787       if (Str.back() == 0) {
788         Str = Str.drop_back();
789         nullTerminate = true;
790       }
791       printEscapedString(Str);
792       // Determine if we want null termination or not.
793       if (nullTerminate)
794         Out << "\", true);";
795       else
796         Out << "\", false);";// No null terminator
797     } else {
798       // TODO: Could generate more efficient code generating CDS calls instead.
799       Out << "std::vector<Constant*> " << constName << "_elems;";
800       nl(Out);
801       for (unsigned i = 0; i != CDS->getNumElements(); ++i) {
802         Constant *Elt = CDS->getElementAsConstant(i);
803         printConstant(Elt);
804         Out << constName << "_elems.push_back(" << getCppName(Elt) << ");";
805         nl(Out);
806       }
807       Out << "Constant* " << constName;
808       
809       if (isa<ArrayType>(CDS->getType()))
810         Out << " = ConstantArray::get(";
811       else
812         Out << " = ConstantVector::get(";
813       Out << typeName << ", " << constName << "_elems);";
814     }
815   } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
816     if (CE->getOpcode() == Instruction::GetElementPtr) {
817       Out << "std::vector<Constant*> " << constName << "_indices;";
818       nl(Out);
819       printConstant(CE->getOperand(0));
820       for (unsigned i = 1; i < CE->getNumOperands(); ++i ) {
821         printConstant(CE->getOperand(i));
822         Out << constName << "_indices.push_back("
823             << getCppName(CE->getOperand(i)) << ");";
824         nl(Out);
825       }
826       Out << "Constant* " << constName
827           << " = ConstantExpr::getGetElementPtr("
828           << getCppName(CE->getOperand(0)) << ", "
829           << constName << "_indices);";
830     } else if (CE->isCast()) {
831       printConstant(CE->getOperand(0));
832       Out << "Constant* " << constName << " = ConstantExpr::getCast(";
833       switch (CE->getOpcode()) {
834       default: llvm_unreachable("Invalid cast opcode");
835       case Instruction::Trunc: Out << "Instruction::Trunc"; break;
836       case Instruction::ZExt:  Out << "Instruction::ZExt"; break;
837       case Instruction::SExt:  Out << "Instruction::SExt"; break;
838       case Instruction::FPTrunc:  Out << "Instruction::FPTrunc"; break;
839       case Instruction::FPExt:  Out << "Instruction::FPExt"; break;
840       case Instruction::FPToUI:  Out << "Instruction::FPToUI"; break;
841       case Instruction::FPToSI:  Out << "Instruction::FPToSI"; break;
842       case Instruction::UIToFP:  Out << "Instruction::UIToFP"; break;
843       case Instruction::SIToFP:  Out << "Instruction::SIToFP"; break;
844       case Instruction::PtrToInt:  Out << "Instruction::PtrToInt"; break;
845       case Instruction::IntToPtr:  Out << "Instruction::IntToPtr"; break;
846       case Instruction::BitCast:  Out << "Instruction::BitCast"; break;
847       }
848       Out << ", " << getCppName(CE->getOperand(0)) << ", "
849           << getCppName(CE->getType()) << ");";
850     } else {
851       unsigned N = CE->getNumOperands();
852       for (unsigned i = 0; i < N; ++i ) {
853         printConstant(CE->getOperand(i));
854       }
855       Out << "Constant* " << constName << " = ConstantExpr::";
856       switch (CE->getOpcode()) {
857       case Instruction::Add:    Out << "getAdd(";  break;
858       case Instruction::FAdd:   Out << "getFAdd(";  break;
859       case Instruction::Sub:    Out << "getSub("; break;
860       case Instruction::FSub:   Out << "getFSub("; break;
861       case Instruction::Mul:    Out << "getMul("; break;
862       case Instruction::FMul:   Out << "getFMul("; break;
863       case Instruction::UDiv:   Out << "getUDiv("; break;
864       case Instruction::SDiv:   Out << "getSDiv("; break;
865       case Instruction::FDiv:   Out << "getFDiv("; break;
866       case Instruction::URem:   Out << "getURem("; break;
867       case Instruction::SRem:   Out << "getSRem("; break;
868       case Instruction::FRem:   Out << "getFRem("; break;
869       case Instruction::And:    Out << "getAnd("; break;
870       case Instruction::Or:     Out << "getOr("; break;
871       case Instruction::Xor:    Out << "getXor("; break;
872       case Instruction::ICmp:
873         Out << "getICmp(ICmpInst::ICMP_";
874         switch (CE->getPredicate()) {
875         case ICmpInst::ICMP_EQ:  Out << "EQ"; break;
876         case ICmpInst::ICMP_NE:  Out << "NE"; break;
877         case ICmpInst::ICMP_SLT: Out << "SLT"; break;
878         case ICmpInst::ICMP_ULT: Out << "ULT"; break;
879         case ICmpInst::ICMP_SGT: Out << "SGT"; break;
880         case ICmpInst::ICMP_UGT: Out << "UGT"; break;
881         case ICmpInst::ICMP_SLE: Out << "SLE"; break;
882         case ICmpInst::ICMP_ULE: Out << "ULE"; break;
883         case ICmpInst::ICMP_SGE: Out << "SGE"; break;
884         case ICmpInst::ICMP_UGE: Out << "UGE"; break;
885         default: error("Invalid ICmp Predicate");
886         }
887         break;
888       case Instruction::FCmp:
889         Out << "getFCmp(FCmpInst::FCMP_";
890         switch (CE->getPredicate()) {
891         case FCmpInst::FCMP_FALSE: Out << "FALSE"; break;
892         case FCmpInst::FCMP_ORD:   Out << "ORD"; break;
893         case FCmpInst::FCMP_UNO:   Out << "UNO"; break;
894         case FCmpInst::FCMP_OEQ:   Out << "OEQ"; break;
895         case FCmpInst::FCMP_UEQ:   Out << "UEQ"; break;
896         case FCmpInst::FCMP_ONE:   Out << "ONE"; break;
897         case FCmpInst::FCMP_UNE:   Out << "UNE"; break;
898         case FCmpInst::FCMP_OLT:   Out << "OLT"; break;
899         case FCmpInst::FCMP_ULT:   Out << "ULT"; break;
900         case FCmpInst::FCMP_OGT:   Out << "OGT"; break;
901         case FCmpInst::FCMP_UGT:   Out << "UGT"; break;
902         case FCmpInst::FCMP_OLE:   Out << "OLE"; break;
903         case FCmpInst::FCMP_ULE:   Out << "ULE"; break;
904         case FCmpInst::FCMP_OGE:   Out << "OGE"; break;
905         case FCmpInst::FCMP_UGE:   Out << "UGE"; break;
906         case FCmpInst::FCMP_TRUE:  Out << "TRUE"; break;
907         default: error("Invalid FCmp Predicate");
908         }
909         break;
910       case Instruction::Shl:     Out << "getShl("; break;
911       case Instruction::LShr:    Out << "getLShr("; break;
912       case Instruction::AShr:    Out << "getAShr("; break;
913       case Instruction::Select:  Out << "getSelect("; break;
914       case Instruction::ExtractElement: Out << "getExtractElement("; break;
915       case Instruction::InsertElement:  Out << "getInsertElement("; break;
916       case Instruction::ShuffleVector:  Out << "getShuffleVector("; break;
917       default:
918         error("Invalid constant expression");
919         break;
920       }
921       Out << getCppName(CE->getOperand(0));
922       for (unsigned i = 1; i < CE->getNumOperands(); ++i)
923         Out << ", " << getCppName(CE->getOperand(i));
924       Out << ");";
925     }
926   } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
927     Out << "Constant* " << constName << " = ";
928     Out << "BlockAddress::get(" << getOpName(BA->getBasicBlock()) << ");";
929   } else {
930     error("Bad Constant");
931     Out << "Constant* " << constName << " = 0; ";
932   }
933   nl(Out);
934 }
935
936 void CppWriter::printConstants(const Module* M) {
937   // Traverse all the global variables looking for constant initializers
938   for (Module::const_global_iterator I = TheModule->global_begin(),
939          E = TheModule->global_end(); I != E; ++I)
940     if (I->hasInitializer())
941       printConstant(I->getInitializer());
942
943   // Traverse the LLVM functions looking for constants
944   for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
945        FI != FE; ++FI) {
946     // Add all of the basic blocks and instructions
947     for (Function::const_iterator BB = FI->begin(),
948            E = FI->end(); BB != E; ++BB) {
949       for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
950            ++I) {
951         for (unsigned i = 0; i < I->getNumOperands(); ++i) {
952           if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) {
953             printConstant(C);
954           }
955         }
956       }
957     }
958   }
959 }
960
961 void CppWriter::printVariableUses(const GlobalVariable *GV) {
962   nl(Out) << "// Type Definitions";
963   nl(Out);
964   printType(GV->getType());
965   if (GV->hasInitializer()) {
966     const Constant *Init = GV->getInitializer();
967     printType(Init->getType());
968     if (const Function *F = dyn_cast<Function>(Init)) {
969       nl(Out)<< "/ Function Declarations"; nl(Out);
970       printFunctionHead(F);
971     } else if (const GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) {
972       nl(Out) << "// Global Variable Declarations"; nl(Out);
973       printVariableHead(gv);
974       
975       nl(Out) << "// Global Variable Definitions"; nl(Out);
976       printVariableBody(gv);
977     } else  {
978       nl(Out) << "// Constant Definitions"; nl(Out);
979       printConstant(Init);
980     }
981   }
982 }
983
984 void CppWriter::printVariableHead(const GlobalVariable *GV) {
985   nl(Out) << "GlobalVariable* " << getCppName(GV);
986   if (is_inline) {
987     Out << " = mod->getGlobalVariable(mod->getContext(), ";
988     printEscapedString(GV->getName());
989     Out << ", " << getCppName(GV->getType()->getElementType()) << ",true)";
990     nl(Out) << "if (!" << getCppName(GV) << ") {";
991     in(); nl(Out) << getCppName(GV);
992   }
993   Out << " = new GlobalVariable(/*Module=*/*mod, ";
994   nl(Out) << "/*Type=*/";
995   printCppName(GV->getType()->getElementType());
996   Out << ",";
997   nl(Out) << "/*isConstant=*/" << (GV->isConstant()?"true":"false");
998   Out << ",";
999   nl(Out) << "/*Linkage=*/";
1000   printLinkageType(GV->getLinkage());
1001   Out << ",";
1002   nl(Out) << "/*Initializer=*/0, ";
1003   if (GV->hasInitializer()) {
1004     Out << "// has initializer, specified below";
1005   }
1006   nl(Out) << "/*Name=*/\"";
1007   printEscapedString(GV->getName());
1008   Out << "\");";
1009   nl(Out);
1010
1011   if (GV->hasSection()) {
1012     printCppName(GV);
1013     Out << "->setSection(\"";
1014     printEscapedString(GV->getSection());
1015     Out << "\");";
1016     nl(Out);
1017   }
1018   if (GV->getAlignment()) {
1019     printCppName(GV);
1020     Out << "->setAlignment(" << utostr(GV->getAlignment()) << ");";
1021     nl(Out);
1022   }
1023   if (GV->getVisibility() != GlobalValue::DefaultVisibility) {
1024     printCppName(GV);
1025     Out << "->setVisibility(";
1026     printVisibilityType(GV->getVisibility());
1027     Out << ");";
1028     nl(Out);
1029   }
1030   if (GV->isThreadLocal()) {
1031     printCppName(GV);
1032     Out << "->setThreadLocalMode(";
1033     printThreadLocalMode(GV->getThreadLocalMode());
1034     Out << ");";
1035     nl(Out);
1036   }
1037   if (is_inline) {
1038     out(); Out << "}"; nl(Out);
1039   }
1040 }
1041
1042 void CppWriter::printVariableBody(const GlobalVariable *GV) {
1043   if (GV->hasInitializer()) {
1044     printCppName(GV);
1045     Out << "->setInitializer(";
1046     Out << getCppName(GV->getInitializer()) << ");";
1047     nl(Out);
1048   }
1049 }
1050
1051 std::string CppWriter::getOpName(const Value* V) {
1052   if (!isa<Instruction>(V) || DefinedValues.find(V) != DefinedValues.end())
1053     return getCppName(V);
1054
1055   // See if its alread in the map of forward references, if so just return the
1056   // name we already set up for it
1057   ForwardRefMap::const_iterator I = ForwardRefs.find(V);
1058   if (I != ForwardRefs.end())
1059     return I->second;
1060
1061   // This is a new forward reference. Generate a unique name for it
1062   std::string result(std::string("fwdref_") + utostr(uniqueNum++));
1063
1064   // Yes, this is a hack. An Argument is the smallest instantiable value that
1065   // we can make as a placeholder for the real value. We'll replace these
1066   // Argument instances later.
1067   Out << "Argument* " << result << " = new Argument("
1068       << getCppName(V->getType()) << ");";
1069   nl(Out);
1070   ForwardRefs[V] = result;
1071   return result;
1072 }
1073
1074 static StringRef ConvertAtomicOrdering(AtomicOrdering Ordering) {
1075   switch (Ordering) {
1076     case NotAtomic: return "NotAtomic";
1077     case Unordered: return "Unordered";
1078     case Monotonic: return "Monotonic";
1079     case Acquire: return "Acquire";
1080     case Release: return "Release";
1081     case AcquireRelease: return "AcquireRelease";
1082     case SequentiallyConsistent: return "SequentiallyConsistent";
1083   }
1084   llvm_unreachable("Unknown ordering");
1085 }
1086
1087 static StringRef ConvertAtomicSynchScope(SynchronizationScope SynchScope) {
1088   switch (SynchScope) {
1089     case SingleThread: return "SingleThread";
1090     case CrossThread: return "CrossThread";
1091   }
1092   llvm_unreachable("Unknown synch scope");
1093 }
1094
1095 // printInstruction - This member is called for each Instruction in a function.
1096 void CppWriter::printInstruction(const Instruction *I,
1097                                  const std::string& bbname) {
1098   std::string iName(getCppName(I));
1099
1100   // Before we emit this instruction, we need to take care of generating any
1101   // forward references. So, we get the names of all the operands in advance
1102   const unsigned Ops(I->getNumOperands());
1103   std::string* opNames = new std::string[Ops];
1104   for (unsigned i = 0; i < Ops; i++)
1105     opNames[i] = getOpName(I->getOperand(i));
1106
1107   switch (I->getOpcode()) {
1108   default:
1109     error("Invalid instruction");
1110     break;
1111
1112   case Instruction::Ret: {
1113     const ReturnInst* ret =  cast<ReturnInst>(I);
1114     Out << "ReturnInst::Create(mod->getContext(), "
1115         << (ret->getReturnValue() ? opNames[0] + ", " : "") << bbname << ");";
1116     break;
1117   }
1118   case Instruction::Br: {
1119     const BranchInst* br = cast<BranchInst>(I);
1120     Out << "BranchInst::Create(" ;
1121     if (br->getNumOperands() == 3) {
1122       Out << opNames[2] << ", "
1123           << opNames[1] << ", "
1124           << opNames[0] << ", ";
1125
1126     } else if (br->getNumOperands() == 1) {
1127       Out << opNames[0] << ", ";
1128     } else {
1129       error("Branch with 2 operands?");
1130     }
1131     Out << bbname << ");";
1132     break;
1133   }
1134   case Instruction::Switch: {
1135     const SwitchInst *SI = cast<SwitchInst>(I);
1136     Out << "SwitchInst* " << iName << " = SwitchInst::Create("
1137         << getOpName(SI->getCondition()) << ", "
1138         << getOpName(SI->getDefaultDest()) << ", "
1139         << SI->getNumCases() << ", " << bbname << ");";
1140     nl(Out);
1141     for (SwitchInst::ConstCaseIt i = SI->case_begin(), e = SI->case_end();
1142          i != e; ++i) {
1143       const IntegersSubset CaseVal = i.getCaseValueEx();
1144       const BasicBlock *BB = i.getCaseSuccessor();
1145       Out << iName << "->addCase("
1146           << getOpName(CaseVal) << ", "
1147           << getOpName(BB) << ");";
1148       nl(Out);
1149     }
1150     break;
1151   }
1152   case Instruction::IndirectBr: {
1153     const IndirectBrInst *IBI = cast<IndirectBrInst>(I);
1154     Out << "IndirectBrInst *" << iName << " = IndirectBrInst::Create("
1155         << opNames[0] << ", " << IBI->getNumDestinations() << ");";
1156     nl(Out);
1157     for (unsigned i = 1; i != IBI->getNumOperands(); ++i) {
1158       Out << iName << "->addDestination(" << opNames[i] << ");";
1159       nl(Out);
1160     }
1161     break;
1162   }
1163   case Instruction::Resume: {
1164     Out << "ResumeInst::Create(mod->getContext(), " << opNames[0]
1165         << ", " << bbname << ");";
1166     break;
1167   }
1168   case Instruction::Invoke: {
1169     const InvokeInst* inv = cast<InvokeInst>(I);
1170     Out << "std::vector<Value*> " << iName << "_params;";
1171     nl(Out);
1172     for (unsigned i = 0; i < inv->getNumArgOperands(); ++i) {
1173       Out << iName << "_params.push_back("
1174           << getOpName(inv->getArgOperand(i)) << ");";
1175       nl(Out);
1176     }
1177     // FIXME: This shouldn't use magic numbers -3, -2, and -1.
1178     Out << "InvokeInst *" << iName << " = InvokeInst::Create("
1179         << getOpName(inv->getCalledFunction()) << ", "
1180         << getOpName(inv->getNormalDest()) << ", "
1181         << getOpName(inv->getUnwindDest()) << ", "
1182         << iName << "_params, \"";
1183     printEscapedString(inv->getName());
1184     Out << "\", " << bbname << ");";
1185     nl(Out) << iName << "->setCallingConv(";
1186     printCallingConv(inv->getCallingConv());
1187     Out << ");";
1188     printAttributes(inv->getAttributes(), iName);
1189     Out << iName << "->setAttributes(" << iName << "_PAL);";
1190     nl(Out);
1191     break;
1192   }
1193   case Instruction::Unreachable: {
1194     Out << "new UnreachableInst("
1195         << "mod->getContext(), "
1196         << bbname << ");";
1197     break;
1198   }
1199   case Instruction::Add:
1200   case Instruction::FAdd:
1201   case Instruction::Sub:
1202   case Instruction::FSub:
1203   case Instruction::Mul:
1204   case Instruction::FMul:
1205   case Instruction::UDiv:
1206   case Instruction::SDiv:
1207   case Instruction::FDiv:
1208   case Instruction::URem:
1209   case Instruction::SRem:
1210   case Instruction::FRem:
1211   case Instruction::And:
1212   case Instruction::Or:
1213   case Instruction::Xor:
1214   case Instruction::Shl:
1215   case Instruction::LShr:
1216   case Instruction::AShr:{
1217     Out << "BinaryOperator* " << iName << " = BinaryOperator::Create(";
1218     switch (I->getOpcode()) {
1219     case Instruction::Add: Out << "Instruction::Add"; break;
1220     case Instruction::FAdd: Out << "Instruction::FAdd"; break;
1221     case Instruction::Sub: Out << "Instruction::Sub"; break;
1222     case Instruction::FSub: Out << "Instruction::FSub"; break;
1223     case Instruction::Mul: Out << "Instruction::Mul"; break;
1224     case Instruction::FMul: Out << "Instruction::FMul"; break;
1225     case Instruction::UDiv:Out << "Instruction::UDiv"; break;
1226     case Instruction::SDiv:Out << "Instruction::SDiv"; break;
1227     case Instruction::FDiv:Out << "Instruction::FDiv"; break;
1228     case Instruction::URem:Out << "Instruction::URem"; break;
1229     case Instruction::SRem:Out << "Instruction::SRem"; break;
1230     case Instruction::FRem:Out << "Instruction::FRem"; break;
1231     case Instruction::And: Out << "Instruction::And"; break;
1232     case Instruction::Or:  Out << "Instruction::Or";  break;
1233     case Instruction::Xor: Out << "Instruction::Xor"; break;
1234     case Instruction::Shl: Out << "Instruction::Shl"; break;
1235     case Instruction::LShr:Out << "Instruction::LShr"; break;
1236     case Instruction::AShr:Out << "Instruction::AShr"; break;
1237     default: Out << "Instruction::BadOpCode"; break;
1238     }
1239     Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1240     printEscapedString(I->getName());
1241     Out << "\", " << bbname << ");";
1242     break;
1243   }
1244   case Instruction::FCmp: {
1245     Out << "FCmpInst* " << iName << " = new FCmpInst(*" << bbname << ", ";
1246     switch (cast<FCmpInst>(I)->getPredicate()) {
1247     case FCmpInst::FCMP_FALSE: Out << "FCmpInst::FCMP_FALSE"; break;
1248     case FCmpInst::FCMP_OEQ  : Out << "FCmpInst::FCMP_OEQ"; break;
1249     case FCmpInst::FCMP_OGT  : Out << "FCmpInst::FCMP_OGT"; break;
1250     case FCmpInst::FCMP_OGE  : Out << "FCmpInst::FCMP_OGE"; break;
1251     case FCmpInst::FCMP_OLT  : Out << "FCmpInst::FCMP_OLT"; break;
1252     case FCmpInst::FCMP_OLE  : Out << "FCmpInst::FCMP_OLE"; break;
1253     case FCmpInst::FCMP_ONE  : Out << "FCmpInst::FCMP_ONE"; break;
1254     case FCmpInst::FCMP_ORD  : Out << "FCmpInst::FCMP_ORD"; break;
1255     case FCmpInst::FCMP_UNO  : Out << "FCmpInst::FCMP_UNO"; break;
1256     case FCmpInst::FCMP_UEQ  : Out << "FCmpInst::FCMP_UEQ"; break;
1257     case FCmpInst::FCMP_UGT  : Out << "FCmpInst::FCMP_UGT"; break;
1258     case FCmpInst::FCMP_UGE  : Out << "FCmpInst::FCMP_UGE"; break;
1259     case FCmpInst::FCMP_ULT  : Out << "FCmpInst::FCMP_ULT"; break;
1260     case FCmpInst::FCMP_ULE  : Out << "FCmpInst::FCMP_ULE"; break;
1261     case FCmpInst::FCMP_UNE  : Out << "FCmpInst::FCMP_UNE"; break;
1262     case FCmpInst::FCMP_TRUE : Out << "FCmpInst::FCMP_TRUE"; break;
1263     default: Out << "FCmpInst::BAD_ICMP_PREDICATE"; break;
1264     }
1265     Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1266     printEscapedString(I->getName());
1267     Out << "\");";
1268     break;
1269   }
1270   case Instruction::ICmp: {
1271     Out << "ICmpInst* " << iName << " = new ICmpInst(*" << bbname << ", ";
1272     switch (cast<ICmpInst>(I)->getPredicate()) {
1273     case ICmpInst::ICMP_EQ:  Out << "ICmpInst::ICMP_EQ";  break;
1274     case ICmpInst::ICMP_NE:  Out << "ICmpInst::ICMP_NE";  break;
1275     case ICmpInst::ICMP_ULE: Out << "ICmpInst::ICMP_ULE"; break;
1276     case ICmpInst::ICMP_SLE: Out << "ICmpInst::ICMP_SLE"; break;
1277     case ICmpInst::ICMP_UGE: Out << "ICmpInst::ICMP_UGE"; break;
1278     case ICmpInst::ICMP_SGE: Out << "ICmpInst::ICMP_SGE"; break;
1279     case ICmpInst::ICMP_ULT: Out << "ICmpInst::ICMP_ULT"; break;
1280     case ICmpInst::ICMP_SLT: Out << "ICmpInst::ICMP_SLT"; break;
1281     case ICmpInst::ICMP_UGT: Out << "ICmpInst::ICMP_UGT"; break;
1282     case ICmpInst::ICMP_SGT: Out << "ICmpInst::ICMP_SGT"; break;
1283     default: Out << "ICmpInst::BAD_ICMP_PREDICATE"; break;
1284     }
1285     Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1286     printEscapedString(I->getName());
1287     Out << "\");";
1288     break;
1289   }
1290   case Instruction::Alloca: {
1291     const AllocaInst* allocaI = cast<AllocaInst>(I);
1292     Out << "AllocaInst* " << iName << " = new AllocaInst("
1293         << getCppName(allocaI->getAllocatedType()) << ", ";
1294     if (allocaI->isArrayAllocation())
1295       Out << opNames[0] << ", ";
1296     Out << "\"";
1297     printEscapedString(allocaI->getName());
1298     Out << "\", " << bbname << ");";
1299     if (allocaI->getAlignment())
1300       nl(Out) << iName << "->setAlignment("
1301           << allocaI->getAlignment() << ");";
1302     break;
1303   }
1304   case Instruction::Load: {
1305     const LoadInst* load = cast<LoadInst>(I);
1306     Out << "LoadInst* " << iName << " = new LoadInst("
1307         << opNames[0] << ", \"";
1308     printEscapedString(load->getName());
1309     Out << "\", " << (load->isVolatile() ? "true" : "false" )
1310         << ", " << bbname << ");";
1311     if (load->getAlignment())
1312       nl(Out) << iName << "->setAlignment("
1313               << load->getAlignment() << ");";
1314     if (load->isAtomic()) {
1315       StringRef Ordering = ConvertAtomicOrdering(load->getOrdering());
1316       StringRef CrossThread = ConvertAtomicSynchScope(load->getSynchScope());
1317       nl(Out) << iName << "->setAtomic("
1318               << Ordering << ", " << CrossThread << ");";
1319     }
1320     break;
1321   }
1322   case Instruction::Store: {
1323     const StoreInst* store = cast<StoreInst>(I);
1324     Out << "StoreInst* " << iName << " = new StoreInst("
1325         << opNames[0] << ", "
1326         << opNames[1] << ", "
1327         << (store->isVolatile() ? "true" : "false")
1328         << ", " << bbname << ");";
1329     if (store->getAlignment())
1330       nl(Out) << iName << "->setAlignment("
1331               << store->getAlignment() << ");";
1332     if (store->isAtomic()) {
1333       StringRef Ordering = ConvertAtomicOrdering(store->getOrdering());
1334       StringRef CrossThread = ConvertAtomicSynchScope(store->getSynchScope());
1335       nl(Out) << iName << "->setAtomic("
1336               << Ordering << ", " << CrossThread << ");";
1337     }
1338     break;
1339   }
1340   case Instruction::GetElementPtr: {
1341     const GetElementPtrInst* gep = cast<GetElementPtrInst>(I);
1342     if (gep->getNumOperands() <= 2) {
1343       Out << "GetElementPtrInst* " << iName << " = GetElementPtrInst::Create("
1344           << opNames[0];
1345       if (gep->getNumOperands() == 2)
1346         Out << ", " << opNames[1];
1347     } else {
1348       Out << "std::vector<Value*> " << iName << "_indices;";
1349       nl(Out);
1350       for (unsigned i = 1; i < gep->getNumOperands(); ++i ) {
1351         Out << iName << "_indices.push_back("
1352             << opNames[i] << ");";
1353         nl(Out);
1354       }
1355       Out << "Instruction* " << iName << " = GetElementPtrInst::Create("
1356           << opNames[0] << ", " << iName << "_indices";
1357     }
1358     Out << ", \"";
1359     printEscapedString(gep->getName());
1360     Out << "\", " << bbname << ");";
1361     break;
1362   }
1363   case Instruction::PHI: {
1364     const PHINode* phi = cast<PHINode>(I);
1365
1366     Out << "PHINode* " << iName << " = PHINode::Create("
1367         << getCppName(phi->getType()) << ", "
1368         << phi->getNumIncomingValues() << ", \"";
1369     printEscapedString(phi->getName());
1370     Out << "\", " << bbname << ");";
1371     nl(Out);
1372     for (unsigned i = 0; i < phi->getNumIncomingValues(); ++i) {
1373       Out << iName << "->addIncoming("
1374           << opNames[PHINode::getOperandNumForIncomingValue(i)] << ", "
1375           << getOpName(phi->getIncomingBlock(i)) << ");";
1376       nl(Out);
1377     }
1378     break;
1379   }
1380   case Instruction::Trunc:
1381   case Instruction::ZExt:
1382   case Instruction::SExt:
1383   case Instruction::FPTrunc:
1384   case Instruction::FPExt:
1385   case Instruction::FPToUI:
1386   case Instruction::FPToSI:
1387   case Instruction::UIToFP:
1388   case Instruction::SIToFP:
1389   case Instruction::PtrToInt:
1390   case Instruction::IntToPtr:
1391   case Instruction::BitCast: {
1392     const CastInst* cst = cast<CastInst>(I);
1393     Out << "CastInst* " << iName << " = new ";
1394     switch (I->getOpcode()) {
1395     case Instruction::Trunc:    Out << "TruncInst"; break;
1396     case Instruction::ZExt:     Out << "ZExtInst"; break;
1397     case Instruction::SExt:     Out << "SExtInst"; break;
1398     case Instruction::FPTrunc:  Out << "FPTruncInst"; break;
1399     case Instruction::FPExt:    Out << "FPExtInst"; break;
1400     case Instruction::FPToUI:   Out << "FPToUIInst"; break;
1401     case Instruction::FPToSI:   Out << "FPToSIInst"; break;
1402     case Instruction::UIToFP:   Out << "UIToFPInst"; break;
1403     case Instruction::SIToFP:   Out << "SIToFPInst"; break;
1404     case Instruction::PtrToInt: Out << "PtrToIntInst"; break;
1405     case Instruction::IntToPtr: Out << "IntToPtrInst"; break;
1406     case Instruction::BitCast:  Out << "BitCastInst"; break;
1407     default: llvm_unreachable("Unreachable");
1408     }
1409     Out << "(" << opNames[0] << ", "
1410         << getCppName(cst->getType()) << ", \"";
1411     printEscapedString(cst->getName());
1412     Out << "\", " << bbname << ");";
1413     break;
1414   }
1415   case Instruction::Call: {
1416     const CallInst* call = cast<CallInst>(I);
1417     if (const InlineAsm* ila = dyn_cast<InlineAsm>(call->getCalledValue())) {
1418       Out << "InlineAsm* " << getCppName(ila) << " = InlineAsm::get("
1419           << getCppName(ila->getFunctionType()) << ", \""
1420           << ila->getAsmString() << "\", \""
1421           << ila->getConstraintString() << "\","
1422           << (ila->hasSideEffects() ? "true" : "false") << ");";
1423       nl(Out);
1424     }
1425     if (call->getNumArgOperands() > 1) {
1426       Out << "std::vector<Value*> " << iName << "_params;";
1427       nl(Out);
1428       for (unsigned i = 0; i < call->getNumArgOperands(); ++i) {
1429         Out << iName << "_params.push_back(" << opNames[i] << ");";
1430         nl(Out);
1431       }
1432       Out << "CallInst* " << iName << " = CallInst::Create("
1433           << opNames[call->getNumArgOperands()] << ", "
1434           << iName << "_params, \"";
1435     } else if (call->getNumArgOperands() == 1) {
1436       Out << "CallInst* " << iName << " = CallInst::Create("
1437           << opNames[call->getNumArgOperands()] << ", " << opNames[0] << ", \"";
1438     } else {
1439       Out << "CallInst* " << iName << " = CallInst::Create("
1440           << opNames[call->getNumArgOperands()] << ", \"";
1441     }
1442     printEscapedString(call->getName());
1443     Out << "\", " << bbname << ");";
1444     nl(Out) << iName << "->setCallingConv(";
1445     printCallingConv(call->getCallingConv());
1446     Out << ");";
1447     nl(Out) << iName << "->setTailCall("
1448         << (call->isTailCall() ? "true" : "false");
1449     Out << ");";
1450     nl(Out);
1451     printAttributes(call->getAttributes(), iName);
1452     Out << iName << "->setAttributes(" << iName << "_PAL);";
1453     nl(Out);
1454     break;
1455   }
1456   case Instruction::Select: {
1457     const SelectInst* sel = cast<SelectInst>(I);
1458     Out << "SelectInst* " << getCppName(sel) << " = SelectInst::Create(";
1459     Out << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1460     printEscapedString(sel->getName());
1461     Out << "\", " << bbname << ");";
1462     break;
1463   }
1464   case Instruction::UserOp1:
1465     /// FALL THROUGH
1466   case Instruction::UserOp2: {
1467     /// FIXME: What should be done here?
1468     break;
1469   }
1470   case Instruction::VAArg: {
1471     const VAArgInst* va = cast<VAArgInst>(I);
1472     Out << "VAArgInst* " << getCppName(va) << " = new VAArgInst("
1473         << opNames[0] << ", " << getCppName(va->getType()) << ", \"";
1474     printEscapedString(va->getName());
1475     Out << "\", " << bbname << ");";
1476     break;
1477   }
1478   case Instruction::ExtractElement: {
1479     const ExtractElementInst* eei = cast<ExtractElementInst>(I);
1480     Out << "ExtractElementInst* " << getCppName(eei)
1481         << " = new ExtractElementInst(" << opNames[0]
1482         << ", " << opNames[1] << ", \"";
1483     printEscapedString(eei->getName());
1484     Out << "\", " << bbname << ");";
1485     break;
1486   }
1487   case Instruction::InsertElement: {
1488     const InsertElementInst* iei = cast<InsertElementInst>(I);
1489     Out << "InsertElementInst* " << getCppName(iei)
1490         << " = InsertElementInst::Create(" << opNames[0]
1491         << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1492     printEscapedString(iei->getName());
1493     Out << "\", " << bbname << ");";
1494     break;
1495   }
1496   case Instruction::ShuffleVector: {
1497     const ShuffleVectorInst* svi = cast<ShuffleVectorInst>(I);
1498     Out << "ShuffleVectorInst* " << getCppName(svi)
1499         << " = new ShuffleVectorInst(" << opNames[0]
1500         << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1501     printEscapedString(svi->getName());
1502     Out << "\", " << bbname << ");";
1503     break;
1504   }
1505   case Instruction::ExtractValue: {
1506     const ExtractValueInst *evi = cast<ExtractValueInst>(I);
1507     Out << "std::vector<unsigned> " << iName << "_indices;";
1508     nl(Out);
1509     for (unsigned i = 0; i < evi->getNumIndices(); ++i) {
1510       Out << iName << "_indices.push_back("
1511           << evi->idx_begin()[i] << ");";
1512       nl(Out);
1513     }
1514     Out << "ExtractValueInst* " << getCppName(evi)
1515         << " = ExtractValueInst::Create(" << opNames[0]
1516         << ", "
1517         << iName << "_indices, \"";
1518     printEscapedString(evi->getName());
1519     Out << "\", " << bbname << ");";
1520     break;
1521   }
1522   case Instruction::InsertValue: {
1523     const InsertValueInst *ivi = cast<InsertValueInst>(I);
1524     Out << "std::vector<unsigned> " << iName << "_indices;";
1525     nl(Out);
1526     for (unsigned i = 0; i < ivi->getNumIndices(); ++i) {
1527       Out << iName << "_indices.push_back("
1528           << ivi->idx_begin()[i] << ");";
1529       nl(Out);
1530     }
1531     Out << "InsertValueInst* " << getCppName(ivi)
1532         << " = InsertValueInst::Create(" << opNames[0]
1533         << ", " << opNames[1] << ", "
1534         << iName << "_indices, \"";
1535     printEscapedString(ivi->getName());
1536     Out << "\", " << bbname << ");";
1537     break;
1538   }
1539   case Instruction::Fence: {
1540     const FenceInst *fi = cast<FenceInst>(I);
1541     StringRef Ordering = ConvertAtomicOrdering(fi->getOrdering());
1542     StringRef CrossThread = ConvertAtomicSynchScope(fi->getSynchScope());
1543     Out << "FenceInst* " << iName
1544         << " = new FenceInst(mod->getContext(), "
1545         << Ordering << ", " << CrossThread << ", " << bbname
1546         << ");";
1547     break;
1548   }
1549   case Instruction::AtomicCmpXchg: {
1550     const AtomicCmpXchgInst *cxi = cast<AtomicCmpXchgInst>(I);
1551     StringRef Ordering = ConvertAtomicOrdering(cxi->getOrdering());
1552     StringRef CrossThread = ConvertAtomicSynchScope(cxi->getSynchScope());
1553     Out << "AtomicCmpXchgInst* " << iName
1554         << " = new AtomicCmpXchgInst("
1555         << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", "
1556         << Ordering << ", " << CrossThread << ", " << bbname
1557         << ");";
1558     nl(Out) << iName << "->setName(\"";
1559     printEscapedString(cxi->getName());
1560     Out << "\");";
1561     break;
1562   }
1563   case Instruction::AtomicRMW: {
1564     const AtomicRMWInst *rmwi = cast<AtomicRMWInst>(I);
1565     StringRef Ordering = ConvertAtomicOrdering(rmwi->getOrdering());
1566     StringRef CrossThread = ConvertAtomicSynchScope(rmwi->getSynchScope());
1567     StringRef Operation;
1568     switch (rmwi->getOperation()) {
1569       case AtomicRMWInst::Xchg: Operation = "AtomicRMWInst::Xchg"; break;
1570       case AtomicRMWInst::Add:  Operation = "AtomicRMWInst::Add"; break;
1571       case AtomicRMWInst::Sub:  Operation = "AtomicRMWInst::Sub"; break;
1572       case AtomicRMWInst::And:  Operation = "AtomicRMWInst::And"; break;
1573       case AtomicRMWInst::Nand: Operation = "AtomicRMWInst::Nand"; break;
1574       case AtomicRMWInst::Or:   Operation = "AtomicRMWInst::Or"; break;
1575       case AtomicRMWInst::Xor:  Operation = "AtomicRMWInst::Xor"; break;
1576       case AtomicRMWInst::Max:  Operation = "AtomicRMWInst::Max"; break;
1577       case AtomicRMWInst::Min:  Operation = "AtomicRMWInst::Min"; break;
1578       case AtomicRMWInst::UMax: Operation = "AtomicRMWInst::UMax"; break;
1579       case AtomicRMWInst::UMin: Operation = "AtomicRMWInst::UMin"; break;
1580       case AtomicRMWInst::BAD_BINOP: llvm_unreachable("Bad atomic operation");
1581     }
1582     Out << "AtomicRMWInst* " << iName
1583         << " = new AtomicRMWInst("
1584         << Operation << ", "
1585         << opNames[0] << ", " << opNames[1] << ", "
1586         << Ordering << ", " << CrossThread << ", " << bbname
1587         << ");";
1588     nl(Out) << iName << "->setName(\"";
1589     printEscapedString(rmwi->getName());
1590     Out << "\");";
1591     break;
1592   }
1593   }
1594   DefinedValues.insert(I);
1595   nl(Out);
1596   delete [] opNames;
1597 }
1598
1599 // Print out the types, constants and declarations needed by one function
1600 void CppWriter::printFunctionUses(const Function* F) {
1601   nl(Out) << "// Type Definitions"; nl(Out);
1602   if (!is_inline) {
1603     // Print the function's return type
1604     printType(F->getReturnType());
1605
1606     // Print the function's function type
1607     printType(F->getFunctionType());
1608
1609     // Print the types of each of the function's arguments
1610     for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1611          AI != AE; ++AI) {
1612       printType(AI->getType());
1613     }
1614   }
1615
1616   // Print type definitions for every type referenced by an instruction and
1617   // make a note of any global values or constants that are referenced
1618   SmallPtrSet<GlobalValue*,64> gvs;
1619   SmallPtrSet<Constant*,64> consts;
1620   for (Function::const_iterator BB = F->begin(), BE = F->end();
1621        BB != BE; ++BB){
1622     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1623          I != E; ++I) {
1624       // Print the type of the instruction itself
1625       printType(I->getType());
1626
1627       // Print the type of each of the instruction's operands
1628       for (unsigned i = 0; i < I->getNumOperands(); ++i) {
1629         Value* operand = I->getOperand(i);
1630         printType(operand->getType());
1631
1632         // If the operand references a GVal or Constant, make a note of it
1633         if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
1634           gvs.insert(GV);
1635           if (GenerationType != GenFunction)
1636             if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1637               if (GVar->hasInitializer())
1638                 consts.insert(GVar->getInitializer());
1639         } else if (Constant* C = dyn_cast<Constant>(operand)) {
1640           consts.insert(C);
1641           for (unsigned j = 0; j < C->getNumOperands(); ++j) {
1642             // If the operand references a GVal or Constant, make a note of it
1643             Value* operand = C->getOperand(j);
1644             printType(operand->getType());
1645             if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
1646               gvs.insert(GV);
1647               if (GenerationType != GenFunction)
1648                 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1649                   if (GVar->hasInitializer())
1650                     consts.insert(GVar->getInitializer());
1651             }
1652           }
1653         }
1654       }
1655     }
1656   }
1657
1658   // Print the function declarations for any functions encountered
1659   nl(Out) << "// Function Declarations"; nl(Out);
1660   for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1661        I != E; ++I) {
1662     if (Function* Fun = dyn_cast<Function>(*I)) {
1663       if (!is_inline || Fun != F)
1664         printFunctionHead(Fun);
1665     }
1666   }
1667
1668   // Print the global variable declarations for any variables encountered
1669   nl(Out) << "// Global Variable Declarations"; nl(Out);
1670   for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1671        I != E; ++I) {
1672     if (GlobalVariable* F = dyn_cast<GlobalVariable>(*I))
1673       printVariableHead(F);
1674   }
1675
1676   // Print the constants found
1677   nl(Out) << "// Constant Definitions"; nl(Out);
1678   for (SmallPtrSet<Constant*,64>::iterator I = consts.begin(),
1679          E = consts.end(); I != E; ++I) {
1680     printConstant(*I);
1681   }
1682
1683   // Process the global variables definitions now that all the constants have
1684   // been emitted. These definitions just couple the gvars with their constant
1685   // initializers.
1686   if (GenerationType != GenFunction) {
1687     nl(Out) << "// Global Variable Definitions"; nl(Out);
1688     for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1689          I != E; ++I) {
1690       if (GlobalVariable* GV = dyn_cast<GlobalVariable>(*I))
1691         printVariableBody(GV);
1692     }
1693   }
1694 }
1695
1696 void CppWriter::printFunctionHead(const Function* F) {
1697   nl(Out) << "Function* " << getCppName(F);
1698   Out << " = mod->getFunction(\"";
1699   printEscapedString(F->getName());
1700   Out << "\");";
1701   nl(Out) << "if (!" << getCppName(F) << ") {";
1702   nl(Out) << getCppName(F);
1703
1704   Out<< " = Function::Create(";
1705   nl(Out,1) << "/*Type=*/" << getCppName(F->getFunctionType()) << ",";
1706   nl(Out) << "/*Linkage=*/";
1707   printLinkageType(F->getLinkage());
1708   Out << ",";
1709   nl(Out) << "/*Name=*/\"";
1710   printEscapedString(F->getName());
1711   Out << "\", mod); " << (F->isDeclaration()? "// (external, no body)" : "");
1712   nl(Out,-1);
1713   printCppName(F);
1714   Out << "->setCallingConv(";
1715   printCallingConv(F->getCallingConv());
1716   Out << ");";
1717   nl(Out);
1718   if (F->hasSection()) {
1719     printCppName(F);
1720     Out << "->setSection(\"" << F->getSection() << "\");";
1721     nl(Out);
1722   }
1723   if (F->getAlignment()) {
1724     printCppName(F);
1725     Out << "->setAlignment(" << F->getAlignment() << ");";
1726     nl(Out);
1727   }
1728   if (F->getVisibility() != GlobalValue::DefaultVisibility) {
1729     printCppName(F);
1730     Out << "->setVisibility(";
1731     printVisibilityType(F->getVisibility());
1732     Out << ");";
1733     nl(Out);
1734   }
1735   if (F->hasGC()) {
1736     printCppName(F);
1737     Out << "->setGC(\"" << F->getGC() << "\");";
1738     nl(Out);
1739   }
1740   Out << "}";
1741   nl(Out);
1742   printAttributes(F->getAttributes(), getCppName(F));
1743   printCppName(F);
1744   Out << "->setAttributes(" << getCppName(F) << "_PAL);";
1745   nl(Out);
1746 }
1747
1748 void CppWriter::printFunctionBody(const Function *F) {
1749   if (F->isDeclaration())
1750     return; // external functions have no bodies.
1751
1752   // Clear the DefinedValues and ForwardRefs maps because we can't have
1753   // cross-function forward refs
1754   ForwardRefs.clear();
1755   DefinedValues.clear();
1756
1757   // Create all the argument values
1758   if (!is_inline) {
1759     if (!F->arg_empty()) {
1760       Out << "Function::arg_iterator args = " << getCppName(F)
1761           << "->arg_begin();";
1762       nl(Out);
1763     }
1764     for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1765          AI != AE; ++AI) {
1766       Out << "Value* " << getCppName(AI) << " = args++;";
1767       nl(Out);
1768       if (AI->hasName()) {
1769         Out << getCppName(AI) << "->setName(\"";
1770         printEscapedString(AI->getName());
1771         Out << "\");";
1772         nl(Out);
1773       }
1774     }
1775   }
1776
1777   // Create all the basic blocks
1778   nl(Out);
1779   for (Function::const_iterator BI = F->begin(), BE = F->end();
1780        BI != BE; ++BI) {
1781     std::string bbname(getCppName(BI));
1782     Out << "BasicBlock* " << bbname <<
1783            " = BasicBlock::Create(mod->getContext(), \"";
1784     if (BI->hasName())
1785       printEscapedString(BI->getName());
1786     Out << "\"," << getCppName(BI->getParent()) << ",0);";
1787     nl(Out);
1788   }
1789
1790   // Output all of its basic blocks... for the function
1791   for (Function::const_iterator BI = F->begin(), BE = F->end();
1792        BI != BE; ++BI) {
1793     std::string bbname(getCppName(BI));
1794     nl(Out) << "// Block " << BI->getName() << " (" << bbname << ")";
1795     nl(Out);
1796
1797     // Output all of the instructions in the basic block...
1798     for (BasicBlock::const_iterator I = BI->begin(), E = BI->end();
1799          I != E; ++I) {
1800       printInstruction(I,bbname);
1801     }
1802   }
1803
1804   // Loop over the ForwardRefs and resolve them now that all instructions
1805   // are generated.
1806   if (!ForwardRefs.empty()) {
1807     nl(Out) << "// Resolve Forward References";
1808     nl(Out);
1809   }
1810
1811   while (!ForwardRefs.empty()) {
1812     ForwardRefMap::iterator I = ForwardRefs.begin();
1813     Out << I->second << "->replaceAllUsesWith("
1814         << getCppName(I->first) << "); delete " << I->second << ";";
1815     nl(Out);
1816     ForwardRefs.erase(I);
1817   }
1818 }
1819
1820 void CppWriter::printInline(const std::string& fname,
1821                             const std::string& func) {
1822   const Function* F = TheModule->getFunction(func);
1823   if (!F) {
1824     error(std::string("Function '") + func + "' not found in input module");
1825     return;
1826   }
1827   if (F->isDeclaration()) {
1828     error(std::string("Function '") + func + "' is external!");
1829     return;
1830   }
1831   nl(Out) << "BasicBlock* " << fname << "(Module* mod, Function *"
1832           << getCppName(F);
1833   unsigned arg_count = 1;
1834   for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1835        AI != AE; ++AI) {
1836     Out << ", Value* arg_" << arg_count++;
1837   }
1838   Out << ") {";
1839   nl(Out);
1840   is_inline = true;
1841   printFunctionUses(F);
1842   printFunctionBody(F);
1843   is_inline = false;
1844   Out << "return " << getCppName(F->begin()) << ";";
1845   nl(Out) << "}";
1846   nl(Out);
1847 }
1848
1849 void CppWriter::printModuleBody() {
1850   // Print out all the type definitions
1851   nl(Out) << "// Type Definitions"; nl(Out);
1852   printTypes(TheModule);
1853
1854   // Functions can call each other and global variables can reference them so
1855   // define all the functions first before emitting their function bodies.
1856   nl(Out) << "// Function Declarations"; nl(Out);
1857   for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1858        I != E; ++I)
1859     printFunctionHead(I);
1860
1861   // Process the global variables declarations. We can't initialze them until
1862   // after the constants are printed so just print a header for each global
1863   nl(Out) << "// Global Variable Declarations\n"; nl(Out);
1864   for (Module::const_global_iterator I = TheModule->global_begin(),
1865          E = TheModule->global_end(); I != E; ++I) {
1866     printVariableHead(I);
1867   }
1868
1869   // Print out all the constants definitions. Constants don't recurse except
1870   // through GlobalValues. All GlobalValues have been declared at this point
1871   // so we can proceed to generate the constants.
1872   nl(Out) << "// Constant Definitions"; nl(Out);
1873   printConstants(TheModule);
1874
1875   // Process the global variables definitions now that all the constants have
1876   // been emitted. These definitions just couple the gvars with their constant
1877   // initializers.
1878   nl(Out) << "// Global Variable Definitions"; nl(Out);
1879   for (Module::const_global_iterator I = TheModule->global_begin(),
1880          E = TheModule->global_end(); I != E; ++I) {
1881     printVariableBody(I);
1882   }
1883
1884   // Finally, we can safely put out all of the function bodies.
1885   nl(Out) << "// Function Definitions"; nl(Out);
1886   for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1887        I != E; ++I) {
1888     if (!I->isDeclaration()) {
1889       nl(Out) << "// Function: " << I->getName() << " (" << getCppName(I)
1890               << ")";
1891       nl(Out) << "{";
1892       nl(Out,1);
1893       printFunctionBody(I);
1894       nl(Out,-1) << "}";
1895       nl(Out);
1896     }
1897   }
1898 }
1899
1900 void CppWriter::printProgram(const std::string& fname,
1901                              const std::string& mName) {
1902   Out << "#include <llvm/Pass.h>\n";
1903   Out << "#include <llvm/PassManager.h>\n";
1904
1905   Out << "#include <llvm/ADT/SmallVector.h>\n";
1906   Out << "#include <llvm/Analysis/Verifier.h>\n";
1907   Out << "#include <llvm/Assembly/PrintModulePass.h>\n";
1908   Out << "#include <llvm/IR/BasicBlock.h>\n";
1909   Out << "#include <llvm/IR/CallingConv.h>\n";
1910   Out << "#include <llvm/IR/Constants.h>\n";
1911   Out << "#include <llvm/IR/DerivedTypes.h>\n";
1912   Out << "#include <llvm/IR/Function.h>\n";
1913   Out << "#include <llvm/IR/GlobalVariable.h>\n";
1914   Out << "#include <llvm/IR/InlineAsm.h>\n";
1915   Out << "#include <llvm/IR/Instructions.h>\n";
1916   Out << "#include <llvm/IR/LLVMContext.h>\n";
1917   Out << "#include <llvm/IR/Module.h>\n";
1918   Out << "#include <llvm/Support/FormattedStream.h>\n";
1919   Out << "#include <llvm/Support/MathExtras.h>\n";
1920   Out << "#include <algorithm>\n";
1921   Out << "using namespace llvm;\n\n";
1922   Out << "Module* " << fname << "();\n\n";
1923   Out << "int main(int argc, char**argv) {\n";
1924   Out << "  Module* Mod = " << fname << "();\n";
1925   Out << "  verifyModule(*Mod, PrintMessageAction);\n";
1926   Out << "  PassManager PM;\n";
1927   Out << "  PM.add(createPrintModulePass(&outs()));\n";
1928   Out << "  PM.run(*Mod);\n";
1929   Out << "  return 0;\n";
1930   Out << "}\n\n";
1931   printModule(fname,mName);
1932 }
1933
1934 void CppWriter::printModule(const std::string& fname,
1935                             const std::string& mName) {
1936   nl(Out) << "Module* " << fname << "() {";
1937   nl(Out,1) << "// Module Construction";
1938   nl(Out) << "Module* mod = new Module(\"";
1939   printEscapedString(mName);
1940   Out << "\", getGlobalContext());";
1941   if (!TheModule->getTargetTriple().empty()) {
1942     nl(Out) << "mod->setDataLayout(\"" << TheModule->getDataLayout() << "\");";
1943   }
1944   if (!TheModule->getTargetTriple().empty()) {
1945     nl(Out) << "mod->setTargetTriple(\"" << TheModule->getTargetTriple()
1946             << "\");";
1947   }
1948
1949   if (!TheModule->getModuleInlineAsm().empty()) {
1950     nl(Out) << "mod->setModuleInlineAsm(\"";
1951     printEscapedString(TheModule->getModuleInlineAsm());
1952     Out << "\");";
1953   }
1954   nl(Out);
1955
1956   printModuleBody();
1957   nl(Out) << "return mod;";
1958   nl(Out,-1) << "}";
1959   nl(Out);
1960 }
1961
1962 void CppWriter::printContents(const std::string& fname,
1963                               const std::string& mName) {
1964   Out << "\nModule* " << fname << "(Module *mod) {\n";
1965   Out << "\nmod->setModuleIdentifier(\"";
1966   printEscapedString(mName);
1967   Out << "\");\n";
1968   printModuleBody();
1969   Out << "\nreturn mod;\n";
1970   Out << "\n}\n";
1971 }
1972
1973 void CppWriter::printFunction(const std::string& fname,
1974                               const std::string& funcName) {
1975   const Function* F = TheModule->getFunction(funcName);
1976   if (!F) {
1977     error(std::string("Function '") + funcName + "' not found in input module");
1978     return;
1979   }
1980   Out << "\nFunction* " << fname << "(Module *mod) {\n";
1981   printFunctionUses(F);
1982   printFunctionHead(F);
1983   printFunctionBody(F);
1984   Out << "return " << getCppName(F) << ";\n";
1985   Out << "}\n";
1986 }
1987
1988 void CppWriter::printFunctions() {
1989   const Module::FunctionListType &funcs = TheModule->getFunctionList();
1990   Module::const_iterator I  = funcs.begin();
1991   Module::const_iterator IE = funcs.end();
1992
1993   for (; I != IE; ++I) {
1994     const Function &func = *I;
1995     if (!func.isDeclaration()) {
1996       std::string name("define_");
1997       name += func.getName();
1998       printFunction(name, func.getName());
1999     }
2000   }
2001 }
2002
2003 void CppWriter::printVariable(const std::string& fname,
2004                               const std::string& varName) {
2005   const GlobalVariable* GV = TheModule->getNamedGlobal(varName);
2006
2007   if (!GV) {
2008     error(std::string("Variable '") + varName + "' not found in input module");
2009     return;
2010   }
2011   Out << "\nGlobalVariable* " << fname << "(Module *mod) {\n";
2012   printVariableUses(GV);
2013   printVariableHead(GV);
2014   printVariableBody(GV);
2015   Out << "return " << getCppName(GV) << ";\n";
2016   Out << "}\n";
2017 }
2018
2019 void CppWriter::printType(const std::string &fname,
2020                           const std::string &typeName) {
2021   Type* Ty = TheModule->getTypeByName(typeName);
2022   if (!Ty) {
2023     error(std::string("Type '") + typeName + "' not found in input module");
2024     return;
2025   }
2026   Out << "\nType* " << fname << "(Module *mod) {\n";
2027   printType(Ty);
2028   Out << "return " << getCppName(Ty) << ";\n";
2029   Out << "}\n";
2030 }
2031
2032 bool CppWriter::runOnModule(Module &M) {
2033   TheModule = &M;
2034
2035   // Emit a header
2036   Out << "// Generated by llvm2cpp - DO NOT MODIFY!\n\n";
2037
2038   // Get the name of the function we're supposed to generate
2039   std::string fname = FuncName.getValue();
2040
2041   // Get the name of the thing we are to generate
2042   std::string tgtname = NameToGenerate.getValue();
2043   if (GenerationType == GenModule ||
2044       GenerationType == GenContents ||
2045       GenerationType == GenProgram ||
2046       GenerationType == GenFunctions) {
2047     if (tgtname == "!bad!") {
2048       if (M.getModuleIdentifier() == "-")
2049         tgtname = "<stdin>";
2050       else
2051         tgtname = M.getModuleIdentifier();
2052     }
2053   } else if (tgtname == "!bad!")
2054     error("You must use the -for option with -gen-{function,variable,type}");
2055
2056   switch (WhatToGenerate(GenerationType)) {
2057    case GenProgram:
2058     if (fname.empty())
2059       fname = "makeLLVMModule";
2060     printProgram(fname,tgtname);
2061     break;
2062    case GenModule:
2063     if (fname.empty())
2064       fname = "makeLLVMModule";
2065     printModule(fname,tgtname);
2066     break;
2067    case GenContents:
2068     if (fname.empty())
2069       fname = "makeLLVMModuleContents";
2070     printContents(fname,tgtname);
2071     break;
2072    case GenFunction:
2073     if (fname.empty())
2074       fname = "makeLLVMFunction";
2075     printFunction(fname,tgtname);
2076     break;
2077    case GenFunctions:
2078     printFunctions();
2079     break;
2080    case GenInline:
2081     if (fname.empty())
2082       fname = "makeLLVMInline";
2083     printInline(fname,tgtname);
2084     break;
2085    case GenVariable:
2086     if (fname.empty())
2087       fname = "makeLLVMVariable";
2088     printVariable(fname,tgtname);
2089     break;
2090    case GenType:
2091     if (fname.empty())
2092       fname = "makeLLVMType";
2093     printType(fname,tgtname);
2094     break;
2095   }
2096
2097   return false;
2098 }
2099
2100 char CppWriter::ID = 0;
2101
2102 //===----------------------------------------------------------------------===//
2103 //                       External Interface declaration
2104 //===----------------------------------------------------------------------===//
2105
2106 bool CPPTargetMachine::addPassesToEmitFile(PassManagerBase &PM,
2107                                            formatted_raw_ostream &o,
2108                                            CodeGenFileType FileType,
2109                                            bool DisableVerify,
2110                                            AnalysisID StartAfter,
2111                                            AnalysisID StopAfter) {
2112   if (FileType != TargetMachine::CGFT_AssemblyFile) return true;
2113   PM.add(new CppWriter(o));
2114   return false;
2115 }