Fix broken build
[oota-llvm.git] / lib / Target / ARM64 / ARM64SchedCyclone.td
1 //=- ARMSchedCyclone.td - ARM64 Cyclone Scheduling Defs ------*- tablegen -*-=//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the machine model for ARM64 Cyclone to support
11 // instruction scheduling and other instruction cost heuristics.
12 //
13 //===----------------------------------------------------------------------===//
14
15 def CycloneModel : SchedMachineModel {
16   let IssueWidth = 6; // 6 micro-ops are dispatched per cycle.
17   let MicroOpBufferSize = 192; // Based on the reorder buffer.
18   let LoadLatency = 4; // Optimistic load latency.
19   let MispredictPenalty = 16; // 14-19 cycles are typical.
20 }
21
22 //===----------------------------------------------------------------------===//
23 // Define each kind of processor resource and number available on Cyclone.
24
25 // 4 integer pipes
26 def CyUnitI : ProcResource<4> {
27   let BufferSize = 48;
28 }
29
30 // 2 branch units: I[0..1]
31 def CyUnitB : ProcResource<2> {
32   let Super  = CyUnitI;
33   let BufferSize = 24;
34 }
35
36 // 1 indirect-branch unit: I[0]
37 def CyUnitBR : ProcResource<1> {
38   let Super  = CyUnitB;
39 }
40
41 // 2 shifter pipes: I[2..3]
42 // When an instruction consumes a CyUnitIS, it also consumes a CyUnitI
43 def CyUnitIS : ProcResource<2> {
44   let Super = CyUnitI;
45   let BufferSize = 24;
46 }
47
48 // 1 mul pipe: I[0]
49 def CyUnitIM : ProcResource<1> {
50   let Super = CyUnitBR;
51   let BufferSize = 32;
52 }
53
54 // 1 div pipe: I[1]
55 def CyUnitID : ProcResource<1> {
56   let Super = CyUnitB;
57   let BufferSize = 16;
58 }
59
60 // 1 integer division unit. This is driven by the ID pipe, but only
61 // consumes the pipe for one cycle at issue and another cycle at writeback.
62 def CyUnitIntDiv : ProcResource<1>;
63
64 // 2 ld/st pipes.
65 def CyUnitLS : ProcResource<2> {
66   let BufferSize = 28;
67 }
68
69 // 3 fp/vector pipes.
70 def CyUnitV : ProcResource<3> {
71   let BufferSize = 48;
72 }
73 // 2 fp/vector arithmetic and multiply pipes: V[0-1]
74 def CyUnitVM : ProcResource<2> {
75   let Super = CyUnitV;
76   let BufferSize = 32;
77 }
78 // 1 fp/vector division/sqrt pipe: V[2]
79 def CyUnitVD : ProcResource<1> {
80   let Super = CyUnitV;
81   let BufferSize = 16;
82 }
83 // 1 fp compare pipe: V[0]
84 def CyUnitVC : ProcResource<1> {
85   let Super = CyUnitVM;
86   let BufferSize = 16;
87 }
88
89 // 2 fp division/square-root units.  These are driven by the VD pipe,
90 // but only consume the pipe for one cycle at issue and a cycle at writeback.
91 def CyUnitFloatDiv : ProcResource<2>;
92
93 //===----------------------------------------------------------------------===//
94 // Define scheduler read/write resources and latency on Cyclone.
95 // This mirrors sections 7.7-7.9 of the Tuning Guide v1.0.1.
96
97 let SchedModel = CycloneModel in {
98
99 //---
100 // 7.8.1. Moves
101 //---
102
103 // A single nop micro-op (uX).
104 def WriteX : SchedWriteRes<[]> { let Latency = 0; }
105
106 // Move zero is a register rename (to machine register zero).
107 // The move is replaced by a single nop micro-op.
108 // MOVZ Rd, #0
109 // AND Rd, Rzr, #imm
110 def WriteZPred : SchedPredicate<[{TII->isGPRZero(MI)}]>;
111 def WriteImmZ  : SchedWriteVariant<[
112                    SchedVar<WriteZPred, [WriteX]>,
113                    SchedVar<NoSchedPred, [WriteImm]>]>;
114 def : InstRW<[WriteImmZ], (instrs MOVZWi,MOVZXi,ANDWri,ANDXri)>;
115
116 // Move GPR is a register rename and single nop micro-op.
117 // ORR Xd, XZR, Xm
118 // ADD Xd, Xn, #0
119 def WriteIMovPred : SchedPredicate<[{TII->isGPRCopy(MI)}]>;
120 def WriteVMovPred : SchedPredicate<[{TII->isFPRCopy(MI)}]>;
121 def WriteMov      : SchedWriteVariant<[
122                       SchedVar<WriteIMovPred, [WriteX]>,
123                       SchedVar<WriteVMovPred, [WriteX]>,
124                       SchedVar<NoSchedPred,   [WriteI]>]>;
125 def : InstRW<[WriteMov], (instrs COPY,ORRXrr,ADDXrr)>;
126
127 // Move non-zero immediate is an integer ALU op.
128 // MOVN,MOVZ,MOVK
129 def : WriteRes<WriteImm, [CyUnitI]>;
130
131 //---
132 // 7.8.2-7.8.5. Arithmetic and Logical, Comparison, Conditional,
133 //              Shifts and Bitfield Operations
134 //---
135
136 // ADR,ADRP
137 // ADD(S)ri,SUB(S)ri,AND(S)ri,EORri,ORRri
138 // ADD(S)rr,SUB(S)rr,AND(S)rr,BIC(S)rr,EONrr,EORrr,ORNrr,ORRrr
139 // ADC(S),SBC(S)
140 // Aliases: CMN, CMP, TST
141 //
142 // Conditional operations.
143 // CCMNi,CCMPi,CCMNr,CCMPr,
144 // CSEL,CSINC,CSINV,CSNEG
145 //
146 // Bit counting and reversal operations.
147 // CLS,CLZ,RBIT,REV,REV16,REV32
148 def : WriteRes<WriteI, [CyUnitI]>;
149
150 // ADD with shifted register operand is a single micro-op that
151 // consumes a shift pipeline for two cycles.
152 // ADD(S)rs,SUB(S)rs,AND(S)rs,BIC(S)rs,EONrs,EORrs,ORNrs,ORRrs
153 // EXAMPLE: ADDrs Xn, Xm LSL #imm
154 def : WriteRes<WriteISReg, [CyUnitIS]> {
155   let Latency = 2;
156   let ResourceCycles = [2];
157 }
158
159 // ADD with extended register operand is the same as shifted reg operand.
160 // ADD(S)re,SUB(S)re
161 // EXAMPLE: ADDXre Xn, Xm, UXTB #1
162 def : WriteRes<WriteIEReg, [CyUnitIS]> {
163   let Latency = 2;
164   let ResourceCycles = [2];
165 }
166
167 // Variable shift and bitfield operations.
168 // ASRV,LSLV,LSRV,RORV,BFM,SBFM,UBFM
169 def : WriteRes<WriteIS, [CyUnitIS]>;
170
171 // EXTR Shifts a pair of registers and requires two micro-ops.
172 // The second micro-op is delayed, as modeled by ReadExtrHi.
173 // EXTR Xn, Xm, #imm
174 def : WriteRes<WriteExtr, [CyUnitIS, CyUnitIS]> {
175   let Latency = 2;
176   let NumMicroOps = 2;
177 }
178
179 // EXTR's first register read is delayed by one cycle, effectively
180 // shortening its writer's latency.
181 // EXTR Xn, Xm, #imm
182 def : ReadAdvance<ReadExtrHi, 1>;
183
184 //---
185 // 7.8.6. Multiplies
186 //---
187
188 // MUL/MNEG are aliases for MADD/MSUB.
189 // MADDW,MSUBW,SMADDL,SMSUBL,UMADDL,UMSUBL
190 def : WriteRes<WriteIM32, [CyUnitIM]> {
191   let Latency = 4;
192 }
193 // MADDX,MSUBX,SMULH,UMULH
194 def : WriteRes<WriteIM64, [CyUnitIM]> {
195   let Latency = 5;
196 }
197
198 //---
199 // 7.8.7. Divide
200 //---
201
202 // 32-bit divide takes 7-13 cycles. 10 cycles covers a 20-bit quotient.
203 // The ID pipe is consumed for 2 cycles: issue and writeback.
204 // SDIVW,UDIVW
205 def : WriteRes<WriteID32, [CyUnitID, CyUnitIntDiv]> {
206   let Latency = 10;
207   let ResourceCycles = [2, 10];
208 }
209 // 64-bit divide takes 7-21 cycles. 13 cycles covers a 32-bit quotient.
210 // The ID pipe is consumed for 2 cycles: issue and writeback.
211 // SDIVX,UDIVX
212 def : WriteRes<WriteID64, [CyUnitID, CyUnitIntDiv]> {
213   let Latency = 13;
214   let ResourceCycles = [2, 13];
215 }
216
217 //---
218 // 7.8.8,7.8.10. Load/Store, single element
219 //---
220
221 // Integer loads take 4 cycles and use one LS unit for one cycle.
222 def : WriteRes<WriteLD, [CyUnitLS]> {
223   let Latency = 4;
224 }
225
226 // Store-load forwarding is 4 cycles.
227 //
228 // Note: The store-exclusive sequence incorporates this
229 // latency. However, general heuristics should not model the
230 // dependence between a store and subsequent may-alias load because
231 // hardware speculation works.
232 def : WriteRes<WriteST, [CyUnitLS]> {
233   let Latency = 4;
234 }
235
236 // Load from base address plus an optionally scaled register offset.
237 // Rt latency is latency WriteIS + WriteLD.
238 // EXAMPLE: LDR Xn, Xm [, lsl 3]
239 def CyWriteLDIdx : SchedWriteVariant<[
240   SchedVar<ScaledIdxPred, [WriteIS, WriteLD]>, // Load from scaled register.
241   SchedVar<NoSchedPred,   [WriteLD]>]>;        // Load from register offset.
242 def : SchedAlias<WriteLDIdx, CyWriteLDIdx>;    // Map ARM64->Cyclone type.
243
244 // EXAMPLE: STR Xn, Xm [, lsl 3]
245 def CyWriteSTIdx : SchedWriteVariant<[
246   SchedVar<ScaledIdxPred, [WriteIS, WriteST]>, // Store to scaled register.
247   SchedVar<NoSchedPred,   [WriteST]>]>;        // Store to register offset.
248 def : SchedAlias<WriteSTIdx, CyWriteSTIdx>;    // Map ARM64->Cyclone type.
249
250 // Read the (unshifted) base register Xn in the second micro-op one cycle later.
251 // EXAMPLE: LDR Xn, Xm [, lsl 3]
252 def ReadBaseRS : SchedReadAdvance<1>;
253 def CyReadAdrBase : SchedReadVariant<[
254   SchedVar<ScaledIdxPred, [ReadBaseRS]>, // Read base reg after shifting offset.
255   SchedVar<NoSchedPred,   [ReadDefault]>]>;   // Read base reg with no shift.
256 def : SchedAlias<ReadAdrBase, CyReadAdrBase>; // Map ARM64->Cyclone type.
257
258 //---
259 // 7.8.9,7.8.11. Load/Store, paired
260 //---
261
262 // Address pre/post increment is a simple ALU op with one cycle latency.
263 def : WriteRes<WriteAdr, [CyUnitI]>;
264
265 // LDP high register write is fused with the load, but a nop micro-op remains.
266 def : WriteRes<WriteLDHi, []> {
267   let Latency = 4;
268 }
269
270 // STP is a vector op and store, except for QQ, which is just two stores.
271 def : SchedAlias<WriteSTP, WriteVSTShuffle>;
272 def : InstRW<[WriteST, WriteST], (instrs STPQi)>;
273
274 //---
275 // 7.8.13. Branches
276 //---
277
278 // Branches take a single micro-op.
279 // The misprediction penalty is defined as a SchedMachineModel property.
280 def : WriteRes<WriteBr,    [CyUnitB]>  {let Latency = 0;}
281 def : WriteRes<WriteBrReg, [CyUnitBR]> {let Latency = 0;}
282
283 //---
284 // 7.8.14. Never-issued Instructions, Barrier and Hint Operations
285 //---
286
287 // NOP,SEV,SEVL,WFE,WFI,YIELD
288 def : WriteRes<WriteHint, []> {let Latency = 0;}
289 // ISB
290 def : InstRW<[WriteI], (instrs ISB)>;
291 // SLREX,DMB,DSB
292 def : WriteRes<WriteBarrier, [CyUnitLS]>;
293
294 // System instructions get an invalid latency because the latency of
295 // other operations across them is meaningless.
296 def : WriteRes<WriteSys, []> {let Latency = -1;}
297
298 //===----------------------------------------------------------------------===//
299 // 7.9 Vector Unit Instructions
300
301 // Simple vector operations take 2 cycles.
302 def : WriteRes<WriteV, [CyUnitV]> {let Latency = 2;}
303
304 // Define some longer latency vector op types for Cyclone.
305 def CyWriteV3 : SchedWriteRes<[CyUnitV]> {let Latency = 3;}
306 def CyWriteV4 : SchedWriteRes<[CyUnitV]> {let Latency = 4;}
307 def CyWriteV5 : SchedWriteRes<[CyUnitV]> {let Latency = 5;}
308 def CyWriteV6 : SchedWriteRes<[CyUnitV]> {let Latency = 6;}
309
310 // Simple floating-point operations take 2 cycles.
311 def : WriteRes<WriteF, [CyUnitV]> {let Latency = 2;}
312
313 //---
314 // 7.9.1 Vector Moves
315 //---
316
317 // TODO: Add Cyclone-specific zero-cycle zeros. LLVM currently
318 // generates expensive int-float conversion instead:
319 // FMOVDi Dd, #0.0
320 // FMOVv2f64ns Vd.2d, #0.0
321
322 // FMOVSi,FMOVDi
323 def : WriteRes<WriteFImm, [CyUnitV]> {let Latency = 2;}
324
325 // MOVI,MVNI are WriteV
326 // FMOVv2f32ns,FMOVv2f64ns,FMOVv4f32ns are WriteV
327
328 // Move FPR is a register rename and single nop micro-op.
329 // ORR.16b Vd,Vn,Vn
330 // COPY is handled above in the WriteMov Variant.
331 def WriteVMov    : SchedWriteVariant<[
332                      SchedVar<WriteVMovPred, [WriteX]>,
333                      SchedVar<NoSchedPred,   [WriteV]>]>;
334 def : InstRW<[WriteVMov], (instrs ORRv16i8)>;
335
336 // FMOVSr,FMOVDr are WriteF.
337
338 // MOV V,V is a WriteV.
339
340 // CPY D,V[x] is a WriteV
341
342 // INS V[x],V[y] is a WriteV.
343
344 // FMOVWSr,FMOVXDr,FMOVXDHighr
345 def : WriteRes<WriteFCopy, [CyUnitLS]> {
346   let Latency = 5;
347 }
348
349 // FMOVSWr,FMOVDXr
350 def : InstRW<[WriteLD], (instrs FMOVSWr,FMOVDXr,FMOVDXHighr)>;
351
352 // INS V[x],R
353 def CyWriteCopyToFPR : WriteSequence<[WriteVLD, WriteV]>;
354 def : InstRW<[CyWriteCopyToFPR], (instregex "INSv")>;
355
356 // SMOV,UMOV R,V[x]
357 def CyWriteCopyToGPR : WriteSequence<[WriteLD, WriteI]>;
358 def : InstRW<[CyWriteCopyToGPR], (instregex "SMOVv","UMOVv")>;
359
360 // DUP V,R
361 def : InstRW<[CyWriteCopyToFPR], (instregex "DUPv")>;
362
363 // DUP V,V[x] is a WriteV.
364
365 //---
366 // 7.9.2 Integer Arithmetic, Logical, and Comparisons
367 //---
368
369 // BIC,ORR V,#imm are WriteV
370
371 def : InstRW<[CyWriteV3], (instregex "ABSv")>;
372
373 // MVN,NEG,NOT are WriteV
374
375 def : InstRW<[CyWriteV3], (instregex "SQABSv","SQNEGv")>;
376
377 // ADDP is a WriteV.
378 def CyWriteVADDLP : SchedWriteRes<[CyUnitV]> {let Latency = 2;}
379 def : InstRW<[CyWriteVADDLP], (instregex "SADDLPv","UADDLPv")>;
380
381 def : InstRW<[CyWriteV3],
382              (instregex "ADDVv","SMAXVv","UMAXVv","SMINVv","UMINVv")>;
383
384 def : InstRW<[CyWriteV3], (instregex "SADDLV","UADDLV")>;
385
386 // ADD,SUB are WriteV
387
388 // Forward declare.
389 def CyWriteVABD : SchedWriteRes<[CyUnitV]> {let Latency = 3;}
390
391 // Add/Diff and accumulate uses the vector multiply unit.
392 def CyWriteVAccum : SchedWriteRes<[CyUnitVM]> {let Latency = 3;}
393 def CyReadVAccum  : SchedReadAdvance<1,
394                     [CyWriteVAccum, CyWriteVADDLP, CyWriteVABD]>;
395
396 def : InstRW<[CyWriteVAccum, CyReadVAccum],
397              (instregex "SADALP","UADALP")>;
398
399 def : InstRW<[CyWriteVAccum, CyReadVAccum],
400              (instregex "SABAv","UABAv","SABALv","UABALv")>;
401
402 def : InstRW<[CyWriteV3], (instregex "SQADDv","SQSUBv","UQADDv","UQSUBv")>;
403
404 def : InstRW<[CyWriteV3], (instregex "SUQADDv","USQADDv")>;
405
406 def : InstRW<[CyWriteV4], (instregex "ADDHNv","RADDHNv", "RSUBHNv", "SUBHNv")>;
407
408 // WriteV includes:
409 // AND,BIC,CMTST,EOR,ORN,ORR
410 // ADDP
411 // SHADD,SHSUB,SRHADD,UHADD,UHSUB,URHADD
412 // SADDL,SSUBL,UADDL,USUBL
413 // SADDW,SSUBW,UADDW,USUBW
414
415 def : InstRW<[CyWriteV3], (instregex "CMEQv","CMGEv","CMGTv",
416                                      "CMLEv","CMLTv",
417                                      "CMHIv","CMHSv")>;
418
419 def : InstRW<[CyWriteV3], (instregex "SMAXv","SMINv","UMAXv","UMINv",
420                                      "SMAXPv","SMINPv","UMAXPv","UMINPv")>;
421
422 def : InstRW<[CyWriteVABD], (instregex "SABDv","UABDv",
423                                        "SABDLv","UABDLv")>;
424
425 //---
426 // 7.9.3 Floating Point Arithmetic and Comparisons
427 //---
428
429 // FABS,FNEG are WriteF
430
431 def : InstRW<[CyWriteV4], (instrs FADDPv2i32p)>;
432 def : InstRW<[CyWriteV5], (instrs FADDPv2i64p)>;
433
434 def : InstRW<[CyWriteV3], (instregex "FMAXPv2i","FMAXNMPv2i",
435                                      "FMINPv2i","FMINNMPv2i")>;
436
437 def : InstRW<[CyWriteV4], (instregex "FMAXVv","FMAXNMVv","FMINVv","FMINNMVv")>;
438
439 def : InstRW<[CyWriteV4], (instrs FADDSrr,FADDv2f32,FADDv4f32,
440                                   FSUBSrr,FSUBv2f32,FSUBv4f32,
441                                   FADDPv2f32,FADDPv4f32,
442                                   FABD32,FABDv2f32,FABDv4f32)>;
443 def : InstRW<[CyWriteV5], (instrs FADDDrr,FADDv2f64,
444                                   FSUBDrr,FSUBv2f64,
445                                   FADDPv2f64,
446                                   FABD64,FABDv2f64)>;
447
448 def : InstRW<[CyWriteV3], (instregex "FCMEQ","FCMGT","FCMLE","FCMLT")>;
449
450 def : InstRW<[CyWriteV3], (instregex "FACGE","FACGT",
451                                      "FMAXS","FMAXD","FMAXv",
452                                      "FMINS","FMIND","FMINv",
453                                      "FMAXNMS","FMAXNMD","FMAXNMv",
454                                      "FMINNMS","FMINNMD","FMINNMv",
455                                      "FMAXPv2f","FMAXPv4f",
456                                      "FMINPv2f","FMINPv4f",
457                                      "FMAXNMPv2f","FMAXNMPv4f",
458                                      "FMINNMPv2f","FMINNMPv4f")>;
459
460 // FCMP,FCMPE,FCCMP,FCCMPE
461 def : WriteRes<WriteFCmp, [CyUnitVC]> {let Latency = 4;}
462
463 // FCSEL is a WriteF.
464
465 //---
466 // 7.9.4 Shifts and Bitfield Operations
467 //---
468
469 // SHL is a WriteV
470
471 def CyWriteVSHR : SchedWriteRes<[CyUnitV]> {let Latency = 2;}
472 def : InstRW<[CyWriteVSHR], (instregex "SSHRv","USHRv")>;
473
474 def CyWriteVSRSHR : SchedWriteRes<[CyUnitV]> {let Latency = 3;}
475 def : InstRW<[CyWriteVSRSHR], (instregex "SRSHRv","URSHRv")>;
476
477 // Shift and accumulate uses the vector multiply unit.
478 def CyWriteVShiftAcc : SchedWriteRes<[CyUnitVM]> {let Latency = 3;}
479 def CyReadVShiftAcc  : SchedReadAdvance<1,
480                         [CyWriteVShiftAcc, CyWriteVSHR, CyWriteVSRSHR]>;
481 def : InstRW<[CyWriteVShiftAcc, CyReadVShiftAcc],
482              (instregex "SRSRAv","SSRAv","URSRAv","USRAv")>;
483
484 // SSHL,USHL are WriteV.
485
486 def : InstRW<[CyWriteV3], (instregex "SRSHLv","URSHLv")>;
487
488 // SQSHL,SQSHLU,UQSHL are WriteV.
489
490 def : InstRW<[CyWriteV3], (instregex "SQRSHLv","UQRSHLv")>;
491
492 // WriteV includes:
493 // SHLL,SSHLL,USHLL
494 // SLI,SRI
495 // BIF,BIT,BSL
496 // EXT
497 // CLS,CLZ,CNT,RBIT,REV16,REV32,REV64,XTN
498 // XTN2
499
500 def : InstRW<[CyWriteV4],
501              (instregex "RSHRNv","SHRNv",
502                         "SQRSHRNv","SQRSHRUNv","SQSHRNv","SQSHRUNv",
503                         "UQRSHRNv","UQSHRNv","SQXTNv","SQXTUNv","UQXTNv")>;
504
505 //---
506 // 7.9.5 Multiplication
507 //---
508
509 def CyWriteVMul : SchedWriteRes<[CyUnitVM]> { let Latency = 4;}
510 def : InstRW<[CyWriteVMul], (instregex "MULv","SMULLv","UMULLv",
511                              "SQDMULLv","SQDMULHv","SQRDMULHv")>;
512
513 // FMUL,FMULX,FNMUL default to WriteFMul.
514 def : WriteRes<WriteFMul, [CyUnitVM]> { let Latency = 4;}
515
516 def CyWriteV64Mul : SchedWriteRes<[CyUnitVM]> { let Latency = 5;}
517 def : InstRW<[CyWriteV64Mul], (instrs FMULDrr,FMULv2f64,FMULv2i64_indexed,
518                                FNMULDrr,FMULX64,FMULXv2f64,FMULXv2i64_indexed)>;
519
520 def CyReadVMulAcc : SchedReadAdvance<1, [CyWriteVMul, CyWriteV64Mul]>;
521 def : InstRW<[CyWriteVMul, CyReadVMulAcc],
522              (instregex "MLA","MLS","SMLAL","SMLSL","UMLAL","UMLSL",
523               "SQDMLAL","SQDMLSL")>;
524
525 def CyWriteSMul : SchedWriteRes<[CyUnitVM]> { let Latency = 8;}
526 def CyWriteDMul : SchedWriteRes<[CyUnitVM]> { let Latency = 10;}
527 def CyReadSMul : SchedReadAdvance<4, [CyWriteSMul]>;
528 def CyReadDMul : SchedReadAdvance<5, [CyWriteDMul]>;
529
530 def : InstRW<[CyWriteSMul, CyReadSMul],
531              (instrs FMADDSrrr,FMSUBSrrr,FNMADDSrrr,FNMSUBSrrr,
532               FMLAv2f32,FMLAv4f32,
533               FMLAv1i32_indexed,FMLAv1i64_indexed,FMLAv2i32_indexed)>;
534 def : InstRW<[CyWriteDMul, CyReadDMul],
535              (instrs FMADDDrrr,FMSUBDrrr,FNMADDDrrr,FNMSUBDrrr,
536               FMLAv2f64,FMLAv2i64_indexed,
537               FMLSv2f64,FMLSv2i64_indexed)>;
538
539 def CyWritePMUL : SchedWriteRes<[CyUnitVD]> { let Latency = 3; }
540 def : InstRW<[CyWritePMUL], (instregex "PMULv", "PMULLv")>;
541
542 //---
543 // 7.9.6 Divide and Square Root
544 //---
545
546 // FDIV,FSQRT
547 // TODO: Add 64-bit variant with 19 cycle latency.
548 // TODO: Specialize FSQRT for longer latency.
549 def : WriteRes<WriteFDiv, [CyUnitVD, CyUnitFloatDiv]> {
550   let Latency = 17;
551   let ResourceCycles = [2, 17];
552 }
553
554 def : InstRW<[CyWriteV4], (instregex "FRECPEv","FRECPXv","URECPEv","URSQRTEv")>;
555
556 def WriteFRSQRTE : SchedWriteRes<[CyUnitVM]> { let Latency = 4; }
557 def : InstRW<[WriteFRSQRTE], (instregex "FRSQRTEv")>;
558
559 def WriteFRECPS : SchedWriteRes<[CyUnitVM]> { let Latency = 8; }
560 def WriteFRSQRTS : SchedWriteRes<[CyUnitVM]> { let Latency = 10; }
561 def : InstRW<[WriteFRECPS],  (instregex "FRECPSv")>;
562 def : InstRW<[WriteFRSQRTS], (instregex "FRSQRTSv")>;
563
564 //---
565 // 7.9.7 Integer-FP Conversions
566 //---
567
568 // FCVT lengthen f16/s32
569 def : InstRW<[WriteV], (instrs FCVTSHr,FCVTDHr,FCVTDSr)>;
570
571 // FCVT,FCVTN,FCVTXN
572 // SCVTF,UCVTF V,V
573 // FRINT(AIMNPXZ) V,V
574 def : WriteRes<WriteFCvt, [CyUnitV]> {let Latency = 4;}
575
576 // SCVT/UCVT S/D, Rd = VLD5+V4: 9 cycles.
577 def CyWriteCvtToFPR : WriteSequence<[WriteVLD, CyWriteV4]>;
578 def : InstRW<[CyWriteCopyToFPR], (instregex "FCVT[AMNPZ][SU][SU][WX][SD]r")>;
579
580 // FCVT Rd, S/D = V6+LD4: 10 cycles
581 def CyWriteCvtToGPR : WriteSequence<[CyWriteV6, WriteLD]>;
582 def : InstRW<[CyWriteCvtToGPR], (instregex "[SU]CVTF[SU][WX][SD]r")>;
583
584 // FCVTL is a WriteV
585
586 //---
587 // 7.9.8-7.9.10 Cryptography, Data Transposition, Table Lookup
588 //---
589
590 def CyWriteCrypto2 : SchedWriteRes<[CyUnitVD]> {let Latency = 2;}
591 def : InstRW<[CyWriteCrypto2], (instrs AESIMCrr, AESMCrr, SHA1Hrr,
592                                        AESDrr, AESErr, SHA1SU1rr, SHA256SU0rr,
593                                        SHA1SU0rrr)>;
594
595 def CyWriteCrypto3 : SchedWriteRes<[CyUnitVD]> {let Latency = 3;}
596 def : InstRW<[CyWriteCrypto3], (instrs SHA256SU1rrr)>;
597
598 def CyWriteCrypto6 : SchedWriteRes<[CyUnitVD]> {let Latency = 6;}
599 def : InstRW<[CyWriteCrypto6], (instrs SHA1Crrr, SHA1Mrrr, SHA1Prrr,
600                                        SHA256Hrrr,SHA256H2rrr)>;
601
602 // TRN,UZP,ZUP are WriteV.
603
604 // TBL,TBX are WriteV.
605
606 //---
607 // 7.9.11-7.9.14 Load/Store, single element and paired
608 //---
609
610 // Loading into the vector unit takes 5 cycles vs 4 for integer loads.
611 def : WriteRes<WriteVLD, [CyUnitLS]> {
612   let Latency = 5;
613 }
614
615 // Store-load forwarding is 4 cycles.
616 def : WriteRes<WriteVST, [CyUnitLS]> {
617   let Latency = 4;
618 }
619
620 // WriteVLDPair/VSTPair sequences are expanded by the target description.
621
622 //---
623 // 7.9.15 Load, element operations
624 //---
625
626 // Only the first WriteVLD and WriteAdr for writeback matches def operands.
627 // Subsequent WriteVLDs consume resources. Since all loaded values have the
628 // same latency, this is acceptable.
629
630 // Vd is read 5 cycles after issuing the vector load.
631 def : ReadAdvance<ReadVLD, 5>;
632
633 def : InstRW<[WriteVLD],
634              (instregex "LD1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
635 def : InstRW<[WriteVLD, WriteAdr],
636              (instregex "LD1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST")>;
637
638 // Register writes from the load's high half are fused micro-ops.
639 def : InstRW<[WriteVLD],
640              (instregex "LD1Twov(8b|4h|2s|1d)$")>;
641 def : InstRW<[WriteVLD, WriteAdr],
642              (instregex "LD1Twov(8b|4h|2s|1d)_POST")>;
643 def : InstRW<[WriteVLD, WriteVLD],
644              (instregex "LD1Twov(16b|8h|4s|2d)$")>;
645 def : InstRW<[WriteVLD, WriteAdr, WriteVLD],
646              (instregex "LD1Twov(16b|8h|4s|2d)_POST")>;
647
648 def : InstRW<[WriteVLD, WriteVLD],
649              (instregex "LD1Threev(8b|4h|2s|1d)$")>;
650 def : InstRW<[WriteVLD, WriteAdr, WriteVLD],
651              (instregex "LD1Threev(8b|4h|2s|1d)_POST")>;
652 def : InstRW<[WriteVLD, WriteVLD, WriteVLD],
653              (instregex "LD1Threev(16b|8h|4s|2d)$")>;
654 def : InstRW<[WriteVLD, WriteAdr, WriteVLD, WriteVLD],
655              (instregex "LD1Threev(16b|8h|4s|2d)_POST")>;
656
657 def : InstRW<[WriteVLD, WriteVLD],
658              (instregex "LD1Fourv(8b|4h|2s|1d)$")>;
659 def : InstRW<[WriteVLD, WriteAdr, WriteVLD],
660              (instregex "LD1Fourv(8b|4h|2s|1d)_POST")>;
661 def : InstRW<[WriteVLD, WriteVLD, WriteVLD, WriteVLD],
662              (instregex "LD1Fourv(16b|8h|4s|2d)$")>;
663 def : InstRW<[WriteVLD, WriteAdr, WriteVLD, WriteVLD, WriteVLD],
664              (instregex "LD1Fourv(16b|8h|4s|2d)_POST")>;
665
666 def : InstRW<[WriteVLDShuffle, ReadVLD],
667              (instregex "LD1i(8|16|32)$")>;
668 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr],
669              (instregex "LD1i(8|16|32)_POST")>;
670
671 def : InstRW<[WriteVLDShuffle, ReadVLD],          (instrs LD1i64)>;
672 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr],(instrs LD1i64_POST)>;
673
674 def : InstRW<[WriteVLDShuffle],
675              (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
676 def : InstRW<[WriteVLDShuffle, WriteAdr],
677              (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
678
679 def : InstRW<[WriteVLDShuffle, WriteV],
680              (instregex "LD2Twov(8b|4h|2s)$")>;
681 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteV],
682              (instregex "LD2Twov(8b|4h|2s)_POST$")>;
683 def : InstRW<[WriteVLDShuffle, WriteVLDShuffle],
684              (instregex "LD2Twov(16b|8h|4s|2d)$")>;
685 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle],
686              (instregex "LD2Twov(16b|8h|4s|2d)_POST")>;
687
688 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteV],
689              (instregex "LD2i(8|16|32)$")>;
690 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteV],
691              (instregex "LD2i(8|16|32)_POST")>;
692 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteV],
693              (instregex "LD2i64$")>;
694 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteV],
695              (instregex "LD2i64_POST")>;
696
697 def : InstRW<[WriteVLDShuffle, WriteV],
698              (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
699 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteV],
700              (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST")>;
701
702 def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteV],
703              (instregex "LD3Threev(8b|4h|2s)$")>;
704 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteV],
705              (instregex "LD3Threev(8b|4h|2s)_POST")>;
706 def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteVLDShuffle],
707              (instregex "LD3Threev(16b|8h|4s|2d)$")>;
708 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteVLDShuffle],
709              (instregex "LD3Threev(16b|8h|4s|2d)_POST")>;
710
711 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteV, WriteV],
712              (instregex "LD3i(8|16|32)$")>;
713 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteV, WriteV],
714              (instregex "LD3i(8|16|32)_POST")>;
715
716 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteVLDShuffle, WriteV],
717              (instregex "LD3i64$")>;
718 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteVLDShuffle, WriteV],
719              (instregex "LD3i64_POST")>;
720
721 def : InstRW<[WriteVLDShuffle, WriteV, WriteV],
722              (instregex "LD3Rv(8b|4h|2s|16b|8h|4s)$")>;
723 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteV, WriteV],
724              (instregex "LD3Rv(8b|4h|2s|16b|8h|4s)_POST")>;
725
726 def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteV],
727              (instrs LD3Rv1d,LD3Rv2d)>;
728 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteV],
729              (instrs LD3Rv2d_POST,LD3Rv2d_POST)>;
730
731 def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteV, WriteV],
732              (instregex "LD4Fourv(8b|4h|2s)$")>;
733 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteV, WriteV],
734              (instregex "LD4Fourv(8b|4h|2s)_POST")>;
735 def : InstRW<[WriteVLDPairShuffle, WriteVLDPairShuffle,
736               WriteVLDPairShuffle, WriteVLDPairShuffle],
737              (instregex "LD4Fourv(16b|8h|4s|2d)$")>;
738 def : InstRW<[WriteVLDPairShuffle, WriteAdr, WriteVLDPairShuffle,
739               WriteVLDPairShuffle, WriteVLDPairShuffle],
740              (instregex "LD4Fourv(16b|8h|4s|2d)_POST")>;
741
742 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteV, WriteV, WriteV],
743              (instregex "LD4i(8|16|32)$")>;
744 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteV, WriteV, WriteV],
745              (instregex "LD4i(8|16|32)_POST")>;
746
747
748 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteVLDShuffle, WriteV, WriteV],
749              (instrs LD4i64)>;
750 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteVLDShuffle, WriteV],
751              (instrs LD4i64_POST)>;
752
753 def : InstRW<[WriteVLDShuffle, WriteV, WriteV, WriteV],
754              (instregex "LD4Rv(8b|4h|2s|16b|8h|4s)$")>;
755 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteV, WriteV, WriteV],
756              (instregex "LD4Rv(8b|4h|2s|16b|8h|4s)_POST")>;
757
758 def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteV, WriteV],
759              (instrs LD4Rv1d,LD4Rv2d)>;
760 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteV, WriteV],
761              (instrs LD4Rv1d_POST,LD4Rv2d_POST)>;
762
763 //---
764 // 7.9.16 Store, element operations
765 //---
766
767 // Only the WriteAdr for writeback matches a def operands.
768 // Subsequent WriteVLDs only consume resources.
769
770 def : InstRW<[WriteVST],
771              (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
772 def : InstRW<[WriteAdr, WriteVST],
773              (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST")>;
774
775 def : InstRW<[WriteVSTShuffle],
776              (instregex "ST1Twov(8b|4h|2s|1d)$")>;
777 def : InstRW<[WriteAdr, WriteVSTShuffle],
778              (instregex "ST1Twov(8b|4h|2s|1d)_POST")>;
779 def : InstRW<[WriteVST, WriteVST],
780              (instregex "ST1Twov(16b|8h|4s|2d)$")>;
781 def : InstRW<[WriteAdr, WriteVST, WriteVST],
782              (instregex "ST1Twov(16b|8h|4s|2d)_POST")>;
783
784 def : InstRW<[WriteVSTShuffle, WriteVST],
785              (instregex "ST1Threev(8b|4h|2s|1d)$")>;
786 def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVST],
787              (instregex "ST1Threev(8b|4h|2s|1d)_POST")>;
788 def : InstRW<[WriteVST, WriteVST, WriteVST],
789              (instregex "ST1Threev(16b|8h|4s|2d)$")>;
790 def : InstRW<[WriteAdr, WriteVST, WriteVST, WriteVST],
791              (instregex "ST1Threev(16b|8h|4s|2d)_POST")>;
792
793 def : InstRW<[WriteVSTShuffle, WriteVSTShuffle],
794              (instregex "ST1Fourv(8b|4h|2s|1d)$")>;
795 def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle],
796              (instregex "ST1Fourv(8b|4h|2s|1d)_POST")>;
797 def : InstRW<[WriteVST, WriteVST, WriteVST, WriteVST],
798              (instregex "ST1Fourv(16b|8h|4s|2d)$")>;
799 def : InstRW<[WriteAdr, WriteVST, WriteVST, WriteVST, WriteVST],
800              (instregex "ST1Fourv(16b|8h|4s|2d)_POST")>;
801
802 def : InstRW<[WriteVSTShuffle],           (instregex "ST1i(8|16|32)$")>;
803 def : InstRW<[WriteAdr, WriteVSTShuffle], (instregex "ST1i(8|16|32)_POST")>;
804
805 def : InstRW<[WriteVSTShuffle],           (instrs ST1i64)>;
806 def : InstRW<[WriteAdr, WriteVSTShuffle], (instrs ST1i64_POST)>;
807
808 def : InstRW<[WriteVSTShuffle],
809              (instregex "ST2Twov(8b|4h|2s)$")>;
810 def : InstRW<[WriteAdr, WriteVSTShuffle],
811              (instregex "ST2Twov(8b|4h|2s)_POST")>;
812 def : InstRW<[WriteVSTShuffle, WriteVSTShuffle],
813              (instregex "ST2Twov(16b|8h|4s|2d)$")>;
814 def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle],
815              (instregex "ST2Twov(16b|8h|4s|2d)_POST")>;
816
817 def : InstRW<[WriteVSTShuffle],           (instregex "ST2i(8|16|32)$")>;
818 def : InstRW<[WriteAdr, WriteVSTShuffle], (instregex "ST2i(8|16|32)_POST")>;
819 def : InstRW<[WriteVSTShuffle],           (instrs ST2i64)>;
820 def : InstRW<[WriteAdr, WriteVSTShuffle], (instrs ST2i64_POST)>;
821
822 def : InstRW<[WriteVSTShuffle, WriteVSTShuffle],
823              (instregex "ST3Threev(8b|4h|2s)$")>;
824 def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle],
825              (instregex "ST3Threev(8b|4h|2s)_POST")>;
826 def : InstRW<[WriteVSTShuffle, WriteVSTShuffle, WriteVSTShuffle],
827              (instregex "ST3Threev(16b|8h|4s|2d)$")>;
828 def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle, WriteVSTShuffle],
829              (instregex "ST3Threev(16b|8h|4s|2d)_POST")>;
830
831 def : InstRW<[WriteVSTShuffle],           (instregex "ST3i(8|16|32)$")>;
832 def : InstRW<[WriteAdr, WriteVSTShuffle], (instregex "ST3i(8|16|32)_POST")>;
833
834 def :InstRW<[WriteVSTShuffle, WriteVSTShuffle],           (instrs ST3i64)>;
835 def :InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle], (instrs ST3i64_POST)>;
836
837 def : InstRW<[WriteVSTPairShuffle, WriteVSTPairShuffle],
838             (instregex "ST4Fourv(8b|4h|2s|1d)$")>;
839 def : InstRW<[WriteAdr, WriteVSTPairShuffle, WriteVSTPairShuffle],
840             (instregex "ST4Fourv(8b|4h|2s|1d)_POST")>;
841 def : InstRW<[WriteVSTPairShuffle, WriteVSTPairShuffle,
842               WriteVSTPairShuffle, WriteVSTPairShuffle],
843              (instregex "ST4Fourv(16b|8h|4s|2d)$")>;
844 def : InstRW<[WriteAdr, WriteVSTPairShuffle, WriteVSTPairShuffle,
845               WriteVSTPairShuffle, WriteVSTPairShuffle],
846              (instregex "ST4Fourv(16b|8h|4s|2d)_POST")>;
847
848 def : InstRW<[WriteVSTPairShuffle],           (instregex "ST4i(8|16|32)$")>;
849 def : InstRW<[WriteAdr, WriteVSTPairShuffle], (instregex "ST4i(8|16|32)_POST")>;
850
851 def : InstRW<[WriteVSTShuffle, WriteVSTShuffle],          (instrs ST4i64)>;
852 def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle],(instrs ST4i64_POST)>;
853
854 } // SchedModel = CycloneModel