Fix BXJ is undefined in AArch32.
[oota-llvm.git] / lib / Target / ARM / AsmParser / ARMAsmParser.cpp
1 //===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "ARMFPUName.h"
11 #include "ARMFeatures.h"
12 #include "MCTargetDesc/ARMAddressingModes.h"
13 #include "MCTargetDesc/ARMArchName.h"
14 #include "MCTargetDesc/ARMBaseInfo.h"
15 #include "MCTargetDesc/ARMMCExpr.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/ADT/StringSwitch.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/MC/MCAsmInfo.h"
22 #include "llvm/MC/MCAssembler.h"
23 #include "llvm/MC/MCContext.h"
24 #include "llvm/MC/MCDisassembler.h"
25 #include "llvm/MC/MCELFStreamer.h"
26 #include "llvm/MC/MCExpr.h"
27 #include "llvm/MC/MCInst.h"
28 #include "llvm/MC/MCInstrDesc.h"
29 #include "llvm/MC/MCInstrInfo.h"
30 #include "llvm/MC/MCObjectFileInfo.h"
31 #include "llvm/MC/MCParser/MCAsmLexer.h"
32 #include "llvm/MC/MCParser/MCAsmParser.h"
33 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
34 #include "llvm/MC/MCRegisterInfo.h"
35 #include "llvm/MC/MCSection.h"
36 #include "llvm/MC/MCStreamer.h"
37 #include "llvm/MC/MCSubtargetInfo.h"
38 #include "llvm/MC/MCSymbol.h"
39 #include "llvm/MC/MCTargetAsmParser.h"
40 #include "llvm/Support/ARMBuildAttributes.h"
41 #include "llvm/Support/ARMEHABI.h"
42 #include "llvm/Support/COFF.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ELF.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/SourceMgr.h"
47 #include "llvm/Support/TargetRegistry.h"
48 #include "llvm/Support/raw_ostream.h"
49
50 using namespace llvm;
51
52 namespace {
53
54 class ARMOperand;
55
56 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane };
57
58 class UnwindContext {
59   MCAsmParser &Parser;
60
61   typedef SmallVector<SMLoc, 4> Locs;
62
63   Locs FnStartLocs;
64   Locs CantUnwindLocs;
65   Locs PersonalityLocs;
66   Locs PersonalityIndexLocs;
67   Locs HandlerDataLocs;
68   int FPReg;
69
70 public:
71   UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {}
72
73   bool hasFnStart() const { return !FnStartLocs.empty(); }
74   bool cantUnwind() const { return !CantUnwindLocs.empty(); }
75   bool hasHandlerData() const { return !HandlerDataLocs.empty(); }
76   bool hasPersonality() const {
77     return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty());
78   }
79
80   void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); }
81   void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); }
82   void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); }
83   void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); }
84   void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); }
85
86   void saveFPReg(int Reg) { FPReg = Reg; }
87   int getFPReg() const { return FPReg; }
88
89   void emitFnStartLocNotes() const {
90     for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end();
91          FI != FE; ++FI)
92       Parser.Note(*FI, ".fnstart was specified here");
93   }
94   void emitCantUnwindLocNotes() const {
95     for (Locs::const_iterator UI = CantUnwindLocs.begin(),
96                               UE = CantUnwindLocs.end(); UI != UE; ++UI)
97       Parser.Note(*UI, ".cantunwind was specified here");
98   }
99   void emitHandlerDataLocNotes() const {
100     for (Locs::const_iterator HI = HandlerDataLocs.begin(),
101                               HE = HandlerDataLocs.end(); HI != HE; ++HI)
102       Parser.Note(*HI, ".handlerdata was specified here");
103   }
104   void emitPersonalityLocNotes() const {
105     for (Locs::const_iterator PI = PersonalityLocs.begin(),
106                               PE = PersonalityLocs.end(),
107                               PII = PersonalityIndexLocs.begin(),
108                               PIE = PersonalityIndexLocs.end();
109          PI != PE || PII != PIE;) {
110       if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer()))
111         Parser.Note(*PI++, ".personality was specified here");
112       else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer()))
113         Parser.Note(*PII++, ".personalityindex was specified here");
114       else
115         llvm_unreachable(".personality and .personalityindex cannot be "
116                          "at the same location");
117     }
118   }
119
120   void reset() {
121     FnStartLocs = Locs();
122     CantUnwindLocs = Locs();
123     PersonalityLocs = Locs();
124     HandlerDataLocs = Locs();
125     PersonalityIndexLocs = Locs();
126     FPReg = ARM::SP;
127   }
128 };
129
130 class ARMAsmParser : public MCTargetAsmParser {
131   MCSubtargetInfo &STI;
132   const MCInstrInfo &MII;
133   const MCRegisterInfo *MRI;
134   UnwindContext UC;
135
136   ARMTargetStreamer &getTargetStreamer() {
137     assert(getParser().getStreamer().getTargetStreamer() &&
138            "do not have a target streamer");
139     MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
140     return static_cast<ARMTargetStreamer &>(TS);
141   }
142
143   // Map of register aliases registers via the .req directive.
144   StringMap<unsigned> RegisterReqs;
145
146   bool NextSymbolIsThumb;
147
148   struct {
149     ARMCC::CondCodes Cond;    // Condition for IT block.
150     unsigned Mask:4;          // Condition mask for instructions.
151                               // Starting at first 1 (from lsb).
152                               //   '1'  condition as indicated in IT.
153                               //   '0'  inverse of condition (else).
154                               // Count of instructions in IT block is
155                               // 4 - trailingzeroes(mask)
156
157     bool FirstCond;           // Explicit flag for when we're parsing the
158                               // First instruction in the IT block. It's
159                               // implied in the mask, so needs special
160                               // handling.
161
162     unsigned CurPosition;     // Current position in parsing of IT
163                               // block. In range [0,3]. Initialized
164                               // according to count of instructions in block.
165                               // ~0U if no active IT block.
166   } ITState;
167   bool inITBlock() { return ITState.CurPosition != ~0U; }
168   bool lastInITBlock() {
169     return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask);
170   }
171   void forwardITPosition() {
172     if (!inITBlock()) return;
173     // Move to the next instruction in the IT block, if there is one. If not,
174     // mark the block as done.
175     unsigned TZ = countTrailingZeros(ITState.Mask);
176     if (++ITState.CurPosition == 5 - TZ)
177       ITState.CurPosition = ~0U; // Done with the IT block after this.
178   }
179
180   void Note(SMLoc L, const Twine &Msg, ArrayRef<SMRange> Ranges = None) {
181     return getParser().Note(L, Msg, Ranges);
182   }
183   bool Warning(SMLoc L, const Twine &Msg,
184                ArrayRef<SMRange> Ranges = None) {
185     return getParser().Warning(L, Msg, Ranges);
186   }
187   bool Error(SMLoc L, const Twine &Msg,
188              ArrayRef<SMRange> Ranges = None) {
189     return getParser().Error(L, Msg, Ranges);
190   }
191
192   bool validatetLDMRegList(MCInst Inst, const OperandVector &Operands,
193                            unsigned ListNo, bool IsARPop = false);
194   bool validatetSTMRegList(MCInst Inst, const OperandVector &Operands,
195                            unsigned ListNo);
196
197   int tryParseRegister();
198   bool tryParseRegisterWithWriteBack(OperandVector &);
199   int tryParseShiftRegister(OperandVector &);
200   bool parseRegisterList(OperandVector &);
201   bool parseMemory(OperandVector &);
202   bool parseOperand(OperandVector &, StringRef Mnemonic);
203   bool parsePrefix(ARMMCExpr::VariantKind &RefKind);
204   bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType,
205                               unsigned &ShiftAmount);
206   bool parseLiteralValues(unsigned Size, SMLoc L);
207   bool parseDirectiveThumb(SMLoc L);
208   bool parseDirectiveARM(SMLoc L);
209   bool parseDirectiveThumbFunc(SMLoc L);
210   bool parseDirectiveCode(SMLoc L);
211   bool parseDirectiveSyntax(SMLoc L);
212   bool parseDirectiveReq(StringRef Name, SMLoc L);
213   bool parseDirectiveUnreq(SMLoc L);
214   bool parseDirectiveArch(SMLoc L);
215   bool parseDirectiveEabiAttr(SMLoc L);
216   bool parseDirectiveCPU(SMLoc L);
217   bool parseDirectiveFPU(SMLoc L);
218   bool parseDirectiveFnStart(SMLoc L);
219   bool parseDirectiveFnEnd(SMLoc L);
220   bool parseDirectiveCantUnwind(SMLoc L);
221   bool parseDirectivePersonality(SMLoc L);
222   bool parseDirectiveHandlerData(SMLoc L);
223   bool parseDirectiveSetFP(SMLoc L);
224   bool parseDirectivePad(SMLoc L);
225   bool parseDirectiveRegSave(SMLoc L, bool IsVector);
226   bool parseDirectiveInst(SMLoc L, char Suffix = '\0');
227   bool parseDirectiveLtorg(SMLoc L);
228   bool parseDirectiveEven(SMLoc L);
229   bool parseDirectivePersonalityIndex(SMLoc L);
230   bool parseDirectiveUnwindRaw(SMLoc L);
231   bool parseDirectiveTLSDescSeq(SMLoc L);
232   bool parseDirectiveMovSP(SMLoc L);
233   bool parseDirectiveObjectArch(SMLoc L);
234   bool parseDirectiveArchExtension(SMLoc L);
235   bool parseDirectiveAlign(SMLoc L);
236   bool parseDirectiveThumbSet(SMLoc L);
237
238   StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode,
239                           bool &CarrySetting, unsigned &ProcessorIMod,
240                           StringRef &ITMask);
241   void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst,
242                              bool &CanAcceptCarrySet,
243                              bool &CanAcceptPredicationCode);
244
245   bool isThumb() const {
246     // FIXME: Can tablegen auto-generate this?
247     return (STI.getFeatureBits() & ARM::ModeThumb) != 0;
248   }
249   bool isThumbOne() const {
250     return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2) == 0;
251   }
252   bool isThumbTwo() const {
253     return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2);
254   }
255   bool hasThumb() const {
256     return STI.getFeatureBits() & ARM::HasV4TOps;
257   }
258   bool hasV6Ops() const {
259     return STI.getFeatureBits() & ARM::HasV6Ops;
260   }
261   bool hasV6MOps() const {
262     return STI.getFeatureBits() & ARM::HasV6MOps;
263   }
264   bool hasV7Ops() const {
265     return STI.getFeatureBits() & ARM::HasV7Ops;
266   }
267   bool hasV8Ops() const {
268     return STI.getFeatureBits() & ARM::HasV8Ops;
269   }
270   bool hasARM() const {
271     return !(STI.getFeatureBits() & ARM::FeatureNoARM);
272   }
273   bool hasThumb2DSP() const {
274     return STI.getFeatureBits() & ARM::FeatureDSPThumb2;
275   }
276   bool hasD16() const {
277     return STI.getFeatureBits() & ARM::FeatureD16;
278   }
279   bool hasV8_1aOps() const {
280     return STI.getFeatureBits() & ARM::HasV8_1aOps;
281   }
282
283   void SwitchMode() {
284     uint64_t FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
285     setAvailableFeatures(FB);
286   }
287   bool isMClass() const {
288     return STI.getFeatureBits() & ARM::FeatureMClass;
289   }
290
291   /// @name Auto-generated Match Functions
292   /// {
293
294 #define GET_ASSEMBLER_HEADER
295 #include "ARMGenAsmMatcher.inc"
296
297   /// }
298
299   OperandMatchResultTy parseITCondCode(OperandVector &);
300   OperandMatchResultTy parseCoprocNumOperand(OperandVector &);
301   OperandMatchResultTy parseCoprocRegOperand(OperandVector &);
302   OperandMatchResultTy parseCoprocOptionOperand(OperandVector &);
303   OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &);
304   OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &);
305   OperandMatchResultTy parseProcIFlagsOperand(OperandVector &);
306   OperandMatchResultTy parseMSRMaskOperand(OperandVector &);
307   OperandMatchResultTy parseBankedRegOperand(OperandVector &);
308   OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low,
309                                    int High);
310   OperandMatchResultTy parsePKHLSLImm(OperandVector &O) {
311     return parsePKHImm(O, "lsl", 0, 31);
312   }
313   OperandMatchResultTy parsePKHASRImm(OperandVector &O) {
314     return parsePKHImm(O, "asr", 1, 32);
315   }
316   OperandMatchResultTy parseSetEndImm(OperandVector &);
317   OperandMatchResultTy parseShifterImm(OperandVector &);
318   OperandMatchResultTy parseRotImm(OperandVector &);
319   OperandMatchResultTy parseModImm(OperandVector &);
320   OperandMatchResultTy parseBitfield(OperandVector &);
321   OperandMatchResultTy parsePostIdxReg(OperandVector &);
322   OperandMatchResultTy parseAM3Offset(OperandVector &);
323   OperandMatchResultTy parseFPImm(OperandVector &);
324   OperandMatchResultTy parseVectorList(OperandVector &);
325   OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index,
326                                        SMLoc &EndLoc);
327
328   // Asm Match Converter Methods
329   void cvtThumbMultiply(MCInst &Inst, const OperandVector &);
330   void cvtThumbBranches(MCInst &Inst, const OperandVector &);
331
332   bool validateInstruction(MCInst &Inst, const OperandVector &Ops);
333   bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out);
334   bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands);
335   bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands);
336
337 public:
338   enum ARMMatchResultTy {
339     Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY,
340     Match_RequiresNotITBlock,
341     Match_RequiresV6,
342     Match_RequiresThumb2,
343 #define GET_OPERAND_DIAGNOSTIC_TYPES
344 #include "ARMGenAsmMatcher.inc"
345
346   };
347
348   ARMAsmParser(MCSubtargetInfo &STI, MCAsmParser &Parser,
349                const MCInstrInfo &MII, const MCTargetOptions &Options)
350       : STI(STI), MII(MII), UC(Parser) {
351     MCAsmParserExtension::Initialize(Parser);
352
353     // Cache the MCRegisterInfo.
354     MRI = getContext().getRegisterInfo();
355
356     // Initialize the set of available features.
357     setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
358
359     // Not in an ITBlock to start with.
360     ITState.CurPosition = ~0U;
361
362     NextSymbolIsThumb = false;
363   }
364
365   // Implementation of the MCTargetAsmParser interface:
366   bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
367   bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
368                         SMLoc NameLoc, OperandVector &Operands) override;
369   bool ParseDirective(AsmToken DirectiveID) override;
370
371   unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
372                                       unsigned Kind) override;
373   unsigned checkTargetMatchPredicate(MCInst &Inst) override;
374
375   bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
376                                OperandVector &Operands, MCStreamer &Out,
377                                uint64_t &ErrorInfo,
378                                bool MatchingInlineAsm) override;
379   void onLabelParsed(MCSymbol *Symbol) override;
380 };
381 } // end anonymous namespace
382
383 namespace {
384
385 /// ARMOperand - Instances of this class represent a parsed ARM machine
386 /// operand.
387 class ARMOperand : public MCParsedAsmOperand {
388   enum KindTy {
389     k_CondCode,
390     k_CCOut,
391     k_ITCondMask,
392     k_CoprocNum,
393     k_CoprocReg,
394     k_CoprocOption,
395     k_Immediate,
396     k_MemBarrierOpt,
397     k_InstSyncBarrierOpt,
398     k_Memory,
399     k_PostIndexRegister,
400     k_MSRMask,
401     k_BankedReg,
402     k_ProcIFlags,
403     k_VectorIndex,
404     k_Register,
405     k_RegisterList,
406     k_DPRRegisterList,
407     k_SPRRegisterList,
408     k_VectorList,
409     k_VectorListAllLanes,
410     k_VectorListIndexed,
411     k_ShiftedRegister,
412     k_ShiftedImmediate,
413     k_ShifterImmediate,
414     k_RotateImmediate,
415     k_ModifiedImmediate,
416     k_BitfieldDescriptor,
417     k_Token
418   } Kind;
419
420   SMLoc StartLoc, EndLoc, AlignmentLoc;
421   SmallVector<unsigned, 8> Registers;
422
423   struct CCOp {
424     ARMCC::CondCodes Val;
425   };
426
427   struct CopOp {
428     unsigned Val;
429   };
430
431   struct CoprocOptionOp {
432     unsigned Val;
433   };
434
435   struct ITMaskOp {
436     unsigned Mask:4;
437   };
438
439   struct MBOptOp {
440     ARM_MB::MemBOpt Val;
441   };
442
443   struct ISBOptOp {
444     ARM_ISB::InstSyncBOpt Val;
445   };
446
447   struct IFlagsOp {
448     ARM_PROC::IFlags Val;
449   };
450
451   struct MMaskOp {
452     unsigned Val;
453   };
454
455   struct BankedRegOp {
456     unsigned Val;
457   };
458
459   struct TokOp {
460     const char *Data;
461     unsigned Length;
462   };
463
464   struct RegOp {
465     unsigned RegNum;
466   };
467
468   // A vector register list is a sequential list of 1 to 4 registers.
469   struct VectorListOp {
470     unsigned RegNum;
471     unsigned Count;
472     unsigned LaneIndex;
473     bool isDoubleSpaced;
474   };
475
476   struct VectorIndexOp {
477     unsigned Val;
478   };
479
480   struct ImmOp {
481     const MCExpr *Val;
482   };
483
484   /// Combined record for all forms of ARM address expressions.
485   struct MemoryOp {
486     unsigned BaseRegNum;
487     // Offset is in OffsetReg or OffsetImm. If both are zero, no offset
488     // was specified.
489     const MCConstantExpr *OffsetImm;  // Offset immediate value
490     unsigned OffsetRegNum;    // Offset register num, when OffsetImm == NULL
491     ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg
492     unsigned ShiftImm;        // shift for OffsetReg.
493     unsigned Alignment;       // 0 = no alignment specified
494     // n = alignment in bytes (2, 4, 8, 16, or 32)
495     unsigned isNegative : 1;  // Negated OffsetReg? (~'U' bit)
496   };
497
498   struct PostIdxRegOp {
499     unsigned RegNum;
500     bool isAdd;
501     ARM_AM::ShiftOpc ShiftTy;
502     unsigned ShiftImm;
503   };
504
505   struct ShifterImmOp {
506     bool isASR;
507     unsigned Imm;
508   };
509
510   struct RegShiftedRegOp {
511     ARM_AM::ShiftOpc ShiftTy;
512     unsigned SrcReg;
513     unsigned ShiftReg;
514     unsigned ShiftImm;
515   };
516
517   struct RegShiftedImmOp {
518     ARM_AM::ShiftOpc ShiftTy;
519     unsigned SrcReg;
520     unsigned ShiftImm;
521   };
522
523   struct RotImmOp {
524     unsigned Imm;
525   };
526
527   struct ModImmOp {
528     unsigned Bits;
529     unsigned Rot;
530   };
531
532   struct BitfieldOp {
533     unsigned LSB;
534     unsigned Width;
535   };
536
537   union {
538     struct CCOp CC;
539     struct CopOp Cop;
540     struct CoprocOptionOp CoprocOption;
541     struct MBOptOp MBOpt;
542     struct ISBOptOp ISBOpt;
543     struct ITMaskOp ITMask;
544     struct IFlagsOp IFlags;
545     struct MMaskOp MMask;
546     struct BankedRegOp BankedReg;
547     struct TokOp Tok;
548     struct RegOp Reg;
549     struct VectorListOp VectorList;
550     struct VectorIndexOp VectorIndex;
551     struct ImmOp Imm;
552     struct MemoryOp Memory;
553     struct PostIdxRegOp PostIdxReg;
554     struct ShifterImmOp ShifterImm;
555     struct RegShiftedRegOp RegShiftedReg;
556     struct RegShiftedImmOp RegShiftedImm;
557     struct RotImmOp RotImm;
558     struct ModImmOp ModImm;
559     struct BitfieldOp Bitfield;
560   };
561
562 public:
563   ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
564   ARMOperand(const ARMOperand &o) : MCParsedAsmOperand() {
565     Kind = o.Kind;
566     StartLoc = o.StartLoc;
567     EndLoc = o.EndLoc;
568     switch (Kind) {
569     case k_CondCode:
570       CC = o.CC;
571       break;
572     case k_ITCondMask:
573       ITMask = o.ITMask;
574       break;
575     case k_Token:
576       Tok = o.Tok;
577       break;
578     case k_CCOut:
579     case k_Register:
580       Reg = o.Reg;
581       break;
582     case k_RegisterList:
583     case k_DPRRegisterList:
584     case k_SPRRegisterList:
585       Registers = o.Registers;
586       break;
587     case k_VectorList:
588     case k_VectorListAllLanes:
589     case k_VectorListIndexed:
590       VectorList = o.VectorList;
591       break;
592     case k_CoprocNum:
593     case k_CoprocReg:
594       Cop = o.Cop;
595       break;
596     case k_CoprocOption:
597       CoprocOption = o.CoprocOption;
598       break;
599     case k_Immediate:
600       Imm = o.Imm;
601       break;
602     case k_MemBarrierOpt:
603       MBOpt = o.MBOpt;
604       break;
605     case k_InstSyncBarrierOpt:
606       ISBOpt = o.ISBOpt;
607     case k_Memory:
608       Memory = o.Memory;
609       break;
610     case k_PostIndexRegister:
611       PostIdxReg = o.PostIdxReg;
612       break;
613     case k_MSRMask:
614       MMask = o.MMask;
615       break;
616     case k_BankedReg:
617       BankedReg = o.BankedReg;
618       break;
619     case k_ProcIFlags:
620       IFlags = o.IFlags;
621       break;
622     case k_ShifterImmediate:
623       ShifterImm = o.ShifterImm;
624       break;
625     case k_ShiftedRegister:
626       RegShiftedReg = o.RegShiftedReg;
627       break;
628     case k_ShiftedImmediate:
629       RegShiftedImm = o.RegShiftedImm;
630       break;
631     case k_RotateImmediate:
632       RotImm = o.RotImm;
633       break;
634     case k_ModifiedImmediate:
635       ModImm = o.ModImm;
636       break;
637     case k_BitfieldDescriptor:
638       Bitfield = o.Bitfield;
639       break;
640     case k_VectorIndex:
641       VectorIndex = o.VectorIndex;
642       break;
643     }
644   }
645
646   /// getStartLoc - Get the location of the first token of this operand.
647   SMLoc getStartLoc() const override { return StartLoc; }
648   /// getEndLoc - Get the location of the last token of this operand.
649   SMLoc getEndLoc() const override { return EndLoc; }
650   /// getLocRange - Get the range between the first and last token of this
651   /// operand.
652   SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
653
654   /// getAlignmentLoc - Get the location of the Alignment token of this operand.
655   SMLoc getAlignmentLoc() const {
656     assert(Kind == k_Memory && "Invalid access!");
657     return AlignmentLoc;
658   }
659
660   ARMCC::CondCodes getCondCode() const {
661     assert(Kind == k_CondCode && "Invalid access!");
662     return CC.Val;
663   }
664
665   unsigned getCoproc() const {
666     assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!");
667     return Cop.Val;
668   }
669
670   StringRef getToken() const {
671     assert(Kind == k_Token && "Invalid access!");
672     return StringRef(Tok.Data, Tok.Length);
673   }
674
675   unsigned getReg() const override {
676     assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!");
677     return Reg.RegNum;
678   }
679
680   const SmallVectorImpl<unsigned> &getRegList() const {
681     assert((Kind == k_RegisterList || Kind == k_DPRRegisterList ||
682             Kind == k_SPRRegisterList) && "Invalid access!");
683     return Registers;
684   }
685
686   const MCExpr *getImm() const {
687     assert(isImm() && "Invalid access!");
688     return Imm.Val;
689   }
690
691   unsigned getVectorIndex() const {
692     assert(Kind == k_VectorIndex && "Invalid access!");
693     return VectorIndex.Val;
694   }
695
696   ARM_MB::MemBOpt getMemBarrierOpt() const {
697     assert(Kind == k_MemBarrierOpt && "Invalid access!");
698     return MBOpt.Val;
699   }
700
701   ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const {
702     assert(Kind == k_InstSyncBarrierOpt && "Invalid access!");
703     return ISBOpt.Val;
704   }
705
706   ARM_PROC::IFlags getProcIFlags() const {
707     assert(Kind == k_ProcIFlags && "Invalid access!");
708     return IFlags.Val;
709   }
710
711   unsigned getMSRMask() const {
712     assert(Kind == k_MSRMask && "Invalid access!");
713     return MMask.Val;
714   }
715
716   unsigned getBankedReg() const {
717     assert(Kind == k_BankedReg && "Invalid access!");
718     return BankedReg.Val;
719   }
720
721   bool isCoprocNum() const { return Kind == k_CoprocNum; }
722   bool isCoprocReg() const { return Kind == k_CoprocReg; }
723   bool isCoprocOption() const { return Kind == k_CoprocOption; }
724   bool isCondCode() const { return Kind == k_CondCode; }
725   bool isCCOut() const { return Kind == k_CCOut; }
726   bool isITMask() const { return Kind == k_ITCondMask; }
727   bool isITCondCode() const { return Kind == k_CondCode; }
728   bool isImm() const override { return Kind == k_Immediate; }
729   // checks whether this operand is an unsigned offset which fits is a field
730   // of specified width and scaled by a specific number of bits
731   template<unsigned width, unsigned scale>
732   bool isUnsignedOffset() const {
733     if (!isImm()) return false;
734     if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
735     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
736       int64_t Val = CE->getValue();
737       int64_t Align = 1LL << scale;
738       int64_t Max = Align * ((1LL << width) - 1);
739       return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max);
740     }
741     return false;
742   }
743   // checks whether this operand is an signed offset which fits is a field
744   // of specified width and scaled by a specific number of bits
745   template<unsigned width, unsigned scale>
746   bool isSignedOffset() const {
747     if (!isImm()) return false;
748     if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
749     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
750       int64_t Val = CE->getValue();
751       int64_t Align = 1LL << scale;
752       int64_t Max = Align * ((1LL << (width-1)) - 1);
753       int64_t Min = -Align * (1LL << (width-1));
754       return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max);
755     }
756     return false;
757   }
758
759   // checks whether this operand is a memory operand computed as an offset
760   // applied to PC. the offset may have 8 bits of magnitude and is represented
761   // with two bits of shift. textually it may be either [pc, #imm], #imm or 
762   // relocable expression...
763   bool isThumbMemPC() const {
764     int64_t Val = 0;
765     if (isImm()) {
766       if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
767       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val);
768       if (!CE) return false;
769       Val = CE->getValue();
770     }
771     else if (isMem()) {
772       if(!Memory.OffsetImm || Memory.OffsetRegNum) return false;
773       if(Memory.BaseRegNum != ARM::PC) return false;
774       Val = Memory.OffsetImm->getValue();
775     }
776     else return false;
777     return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020);
778   }
779   bool isFPImm() const {
780     if (!isImm()) return false;
781     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
782     if (!CE) return false;
783     int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
784     return Val != -1;
785   }
786   bool isFBits16() const {
787     if (!isImm()) return false;
788     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
789     if (!CE) return false;
790     int64_t Value = CE->getValue();
791     return Value >= 0 && Value <= 16;
792   }
793   bool isFBits32() const {
794     if (!isImm()) return false;
795     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
796     if (!CE) return false;
797     int64_t Value = CE->getValue();
798     return Value >= 1 && Value <= 32;
799   }
800   bool isImm8s4() const {
801     if (!isImm()) return false;
802     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
803     if (!CE) return false;
804     int64_t Value = CE->getValue();
805     return ((Value & 3) == 0) && Value >= -1020 && Value <= 1020;
806   }
807   bool isImm0_1020s4() const {
808     if (!isImm()) return false;
809     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
810     if (!CE) return false;
811     int64_t Value = CE->getValue();
812     return ((Value & 3) == 0) && Value >= 0 && Value <= 1020;
813   }
814   bool isImm0_508s4() const {
815     if (!isImm()) return false;
816     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
817     if (!CE) return false;
818     int64_t Value = CE->getValue();
819     return ((Value & 3) == 0) && Value >= 0 && Value <= 508;
820   }
821   bool isImm0_508s4Neg() const {
822     if (!isImm()) return false;
823     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
824     if (!CE) return false;
825     int64_t Value = -CE->getValue();
826     // explicitly exclude zero. we want that to use the normal 0_508 version.
827     return ((Value & 3) == 0) && Value > 0 && Value <= 508;
828   }
829   bool isImm0_239() const {
830     if (!isImm()) return false;
831     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
832     if (!CE) return false;
833     int64_t Value = CE->getValue();
834     return Value >= 0 && Value < 240;
835   }
836   bool isImm0_255() const {
837     if (!isImm()) return false;
838     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
839     if (!CE) return false;
840     int64_t Value = CE->getValue();
841     return Value >= 0 && Value < 256;
842   }
843   bool isImm0_4095() const {
844     if (!isImm()) return false;
845     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
846     if (!CE) return false;
847     int64_t Value = CE->getValue();
848     return Value >= 0 && Value < 4096;
849   }
850   bool isImm0_4095Neg() const {
851     if (!isImm()) return false;
852     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
853     if (!CE) return false;
854     int64_t Value = -CE->getValue();
855     return Value > 0 && Value < 4096;
856   }
857   bool isImm0_1() const {
858     if (!isImm()) return false;
859     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
860     if (!CE) return false;
861     int64_t Value = CE->getValue();
862     return Value >= 0 && Value < 2;
863   }
864   bool isImm0_3() const {
865     if (!isImm()) return false;
866     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
867     if (!CE) return false;
868     int64_t Value = CE->getValue();
869     return Value >= 0 && Value < 4;
870   }
871   bool isImm0_7() const {
872     if (!isImm()) return false;
873     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
874     if (!CE) return false;
875     int64_t Value = CE->getValue();
876     return Value >= 0 && Value < 8;
877   }
878   bool isImm0_15() const {
879     if (!isImm()) return false;
880     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
881     if (!CE) return false;
882     int64_t Value = CE->getValue();
883     return Value >= 0 && Value < 16;
884   }
885   bool isImm0_31() const {
886     if (!isImm()) return false;
887     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
888     if (!CE) return false;
889     int64_t Value = CE->getValue();
890     return Value >= 0 && Value < 32;
891   }
892   bool isImm0_63() const {
893     if (!isImm()) return false;
894     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
895     if (!CE) return false;
896     int64_t Value = CE->getValue();
897     return Value >= 0 && Value < 64;
898   }
899   bool isImm8() const {
900     if (!isImm()) return false;
901     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
902     if (!CE) return false;
903     int64_t Value = CE->getValue();
904     return Value == 8;
905   }
906   bool isImm16() const {
907     if (!isImm()) return false;
908     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
909     if (!CE) return false;
910     int64_t Value = CE->getValue();
911     return Value == 16;
912   }
913   bool isImm32() const {
914     if (!isImm()) return false;
915     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
916     if (!CE) return false;
917     int64_t Value = CE->getValue();
918     return Value == 32;
919   }
920   bool isShrImm8() const {
921     if (!isImm()) return false;
922     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
923     if (!CE) return false;
924     int64_t Value = CE->getValue();
925     return Value > 0 && Value <= 8;
926   }
927   bool isShrImm16() const {
928     if (!isImm()) return false;
929     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
930     if (!CE) return false;
931     int64_t Value = CE->getValue();
932     return Value > 0 && Value <= 16;
933   }
934   bool isShrImm32() const {
935     if (!isImm()) return false;
936     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
937     if (!CE) return false;
938     int64_t Value = CE->getValue();
939     return Value > 0 && Value <= 32;
940   }
941   bool isShrImm64() const {
942     if (!isImm()) return false;
943     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
944     if (!CE) return false;
945     int64_t Value = CE->getValue();
946     return Value > 0 && Value <= 64;
947   }
948   bool isImm1_7() const {
949     if (!isImm()) return false;
950     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
951     if (!CE) return false;
952     int64_t Value = CE->getValue();
953     return Value > 0 && Value < 8;
954   }
955   bool isImm1_15() const {
956     if (!isImm()) return false;
957     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
958     if (!CE) return false;
959     int64_t Value = CE->getValue();
960     return Value > 0 && Value < 16;
961   }
962   bool isImm1_31() const {
963     if (!isImm()) return false;
964     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
965     if (!CE) return false;
966     int64_t Value = CE->getValue();
967     return Value > 0 && Value < 32;
968   }
969   bool isImm1_16() const {
970     if (!isImm()) return false;
971     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
972     if (!CE) return false;
973     int64_t Value = CE->getValue();
974     return Value > 0 && Value < 17;
975   }
976   bool isImm1_32() const {
977     if (!isImm()) return false;
978     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
979     if (!CE) return false;
980     int64_t Value = CE->getValue();
981     return Value > 0 && Value < 33;
982   }
983   bool isImm0_32() const {
984     if (!isImm()) return false;
985     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
986     if (!CE) return false;
987     int64_t Value = CE->getValue();
988     return Value >= 0 && Value < 33;
989   }
990   bool isImm0_65535() const {
991     if (!isImm()) return false;
992     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
993     if (!CE) return false;
994     int64_t Value = CE->getValue();
995     return Value >= 0 && Value < 65536;
996   }
997   bool isImm256_65535Expr() const {
998     if (!isImm()) return false;
999     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1000     // If it's not a constant expression, it'll generate a fixup and be
1001     // handled later.
1002     if (!CE) return true;
1003     int64_t Value = CE->getValue();
1004     return Value >= 256 && Value < 65536;
1005   }
1006   bool isImm0_65535Expr() const {
1007     if (!isImm()) return false;
1008     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1009     // If it's not a constant expression, it'll generate a fixup and be
1010     // handled later.
1011     if (!CE) return true;
1012     int64_t Value = CE->getValue();
1013     return Value >= 0 && Value < 65536;
1014   }
1015   bool isImm24bit() const {
1016     if (!isImm()) return false;
1017     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1018     if (!CE) return false;
1019     int64_t Value = CE->getValue();
1020     return Value >= 0 && Value <= 0xffffff;
1021   }
1022   bool isImmThumbSR() const {
1023     if (!isImm()) return false;
1024     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1025     if (!CE) return false;
1026     int64_t Value = CE->getValue();
1027     return Value > 0 && Value < 33;
1028   }
1029   bool isPKHLSLImm() const {
1030     if (!isImm()) return false;
1031     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1032     if (!CE) return false;
1033     int64_t Value = CE->getValue();
1034     return Value >= 0 && Value < 32;
1035   }
1036   bool isPKHASRImm() const {
1037     if (!isImm()) return false;
1038     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1039     if (!CE) return false;
1040     int64_t Value = CE->getValue();
1041     return Value > 0 && Value <= 32;
1042   }
1043   bool isAdrLabel() const {
1044     // If we have an immediate that's not a constant, treat it as a label
1045     // reference needing a fixup.
1046     if (isImm() && !isa<MCConstantExpr>(getImm()))
1047       return true;
1048
1049     // If it is a constant, it must fit into a modified immediate encoding.
1050     if (!isImm()) return false;
1051     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1052     if (!CE) return false;
1053     int64_t Value = CE->getValue();
1054     return (ARM_AM::getSOImmVal(Value) != -1 ||
1055             ARM_AM::getSOImmVal(-Value) != -1);;
1056   }
1057   bool isT2SOImm() const {
1058     if (!isImm()) return false;
1059     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1060     if (!CE) return false;
1061     int64_t Value = CE->getValue();
1062     return ARM_AM::getT2SOImmVal(Value) != -1;
1063   }
1064   bool isT2SOImmNot() const {
1065     if (!isImm()) return false;
1066     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1067     if (!CE) return false;
1068     int64_t Value = CE->getValue();
1069     return ARM_AM::getT2SOImmVal(Value) == -1 &&
1070       ARM_AM::getT2SOImmVal(~Value) != -1;
1071   }
1072   bool isT2SOImmNeg() const {
1073     if (!isImm()) return false;
1074     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1075     if (!CE) return false;
1076     int64_t Value = CE->getValue();
1077     // Only use this when not representable as a plain so_imm.
1078     return ARM_AM::getT2SOImmVal(Value) == -1 &&
1079       ARM_AM::getT2SOImmVal(-Value) != -1;
1080   }
1081   bool isSetEndImm() const {
1082     if (!isImm()) return false;
1083     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1084     if (!CE) return false;
1085     int64_t Value = CE->getValue();
1086     return Value == 1 || Value == 0;
1087   }
1088   bool isReg() const override { return Kind == k_Register; }
1089   bool isRegList() const { return Kind == k_RegisterList; }
1090   bool isDPRRegList() const { return Kind == k_DPRRegisterList; }
1091   bool isSPRRegList() const { return Kind == k_SPRRegisterList; }
1092   bool isToken() const override { return Kind == k_Token; }
1093   bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; }
1094   bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; }
1095   bool isMem() const override { return Kind == k_Memory; }
1096   bool isShifterImm() const { return Kind == k_ShifterImmediate; }
1097   bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; }
1098   bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; }
1099   bool isRotImm() const { return Kind == k_RotateImmediate; }
1100   bool isModImm() const { return Kind == k_ModifiedImmediate; }
1101   bool isModImmNot() const {
1102     if (!isImm()) return false;
1103     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1104     if (!CE) return false;
1105     int64_t Value = CE->getValue();
1106     return ARM_AM::getSOImmVal(~Value) != -1;
1107   }
1108   bool isModImmNeg() const {
1109     if (!isImm()) return false;
1110     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1111     if (!CE) return false;
1112     int64_t Value = CE->getValue();
1113     return ARM_AM::getSOImmVal(Value) == -1 &&
1114       ARM_AM::getSOImmVal(-Value) != -1;
1115   }
1116   bool isBitfield() const { return Kind == k_BitfieldDescriptor; }
1117   bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; }
1118   bool isPostIdxReg() const {
1119     return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift;
1120   }
1121   bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const {
1122     if (!isMem())
1123       return false;
1124     // No offset of any kind.
1125     return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1126      (alignOK || Memory.Alignment == Alignment);
1127   }
1128   bool isMemPCRelImm12() const {
1129     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1130       return false;
1131     // Base register must be PC.
1132     if (Memory.BaseRegNum != ARM::PC)
1133       return false;
1134     // Immediate offset in range [-4095, 4095].
1135     if (!Memory.OffsetImm) return true;
1136     int64_t Val = Memory.OffsetImm->getValue();
1137     return (Val > -4096 && Val < 4096) || (Val == INT32_MIN);
1138   }
1139   bool isAlignedMemory() const {
1140     return isMemNoOffset(true);
1141   }
1142   bool isAlignedMemoryNone() const {
1143     return isMemNoOffset(false, 0);
1144   }
1145   bool isDupAlignedMemoryNone() const {
1146     return isMemNoOffset(false, 0);
1147   }
1148   bool isAlignedMemory16() const {
1149     if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1150       return true;
1151     return isMemNoOffset(false, 0);
1152   }
1153   bool isDupAlignedMemory16() const {
1154     if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1155       return true;
1156     return isMemNoOffset(false, 0);
1157   }
1158   bool isAlignedMemory32() const {
1159     if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1160       return true;
1161     return isMemNoOffset(false, 0);
1162   }
1163   bool isDupAlignedMemory32() const {
1164     if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1165       return true;
1166     return isMemNoOffset(false, 0);
1167   }
1168   bool isAlignedMemory64() const {
1169     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1170       return true;
1171     return isMemNoOffset(false, 0);
1172   }
1173   bool isDupAlignedMemory64() const {
1174     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1175       return true;
1176     return isMemNoOffset(false, 0);
1177   }
1178   bool isAlignedMemory64or128() const {
1179     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1180       return true;
1181     if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1182       return true;
1183     return isMemNoOffset(false, 0);
1184   }
1185   bool isDupAlignedMemory64or128() const {
1186     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1187       return true;
1188     if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1189       return true;
1190     return isMemNoOffset(false, 0);
1191   }
1192   bool isAlignedMemory64or128or256() const {
1193     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1194       return true;
1195     if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1196       return true;
1197     if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32.
1198       return true;
1199     return isMemNoOffset(false, 0);
1200   }
1201   bool isAddrMode2() const {
1202     if (!isMem() || Memory.Alignment != 0) return false;
1203     // Check for register offset.
1204     if (Memory.OffsetRegNum) return true;
1205     // Immediate offset in range [-4095, 4095].
1206     if (!Memory.OffsetImm) return true;
1207     int64_t Val = Memory.OffsetImm->getValue();
1208     return Val > -4096 && Val < 4096;
1209   }
1210   bool isAM2OffsetImm() const {
1211     if (!isImm()) return false;
1212     // Immediate offset in range [-4095, 4095].
1213     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1214     if (!CE) return false;
1215     int64_t Val = CE->getValue();
1216     return (Val == INT32_MIN) || (Val > -4096 && Val < 4096);
1217   }
1218   bool isAddrMode3() const {
1219     // If we have an immediate that's not a constant, treat it as a label
1220     // reference needing a fixup. If it is a constant, it's something else
1221     // and we reject it.
1222     if (isImm() && !isa<MCConstantExpr>(getImm()))
1223       return true;
1224     if (!isMem() || Memory.Alignment != 0) return false;
1225     // No shifts are legal for AM3.
1226     if (Memory.ShiftType != ARM_AM::no_shift) return false;
1227     // Check for register offset.
1228     if (Memory.OffsetRegNum) return true;
1229     // Immediate offset in range [-255, 255].
1230     if (!Memory.OffsetImm) return true;
1231     int64_t Val = Memory.OffsetImm->getValue();
1232     // The #-0 offset is encoded as INT32_MIN, and we have to check 
1233     // for this too.
1234     return (Val > -256 && Val < 256) || Val == INT32_MIN;
1235   }
1236   bool isAM3Offset() const {
1237     if (Kind != k_Immediate && Kind != k_PostIndexRegister)
1238       return false;
1239     if (Kind == k_PostIndexRegister)
1240       return PostIdxReg.ShiftTy == ARM_AM::no_shift;
1241     // Immediate offset in range [-255, 255].
1242     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1243     if (!CE) return false;
1244     int64_t Val = CE->getValue();
1245     // Special case, #-0 is INT32_MIN.
1246     return (Val > -256 && Val < 256) || Val == INT32_MIN;
1247   }
1248   bool isAddrMode5() const {
1249     // If we have an immediate that's not a constant, treat it as a label
1250     // reference needing a fixup. If it is a constant, it's something else
1251     // and we reject it.
1252     if (isImm() && !isa<MCConstantExpr>(getImm()))
1253       return true;
1254     if (!isMem() || Memory.Alignment != 0) return false;
1255     // Check for register offset.
1256     if (Memory.OffsetRegNum) return false;
1257     // Immediate offset in range [-1020, 1020] and a multiple of 4.
1258     if (!Memory.OffsetImm) return true;
1259     int64_t Val = Memory.OffsetImm->getValue();
1260     return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) ||
1261       Val == INT32_MIN;
1262   }
1263   bool isMemTBB() const {
1264     if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1265         Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1266       return false;
1267     return true;
1268   }
1269   bool isMemTBH() const {
1270     if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1271         Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 ||
1272         Memory.Alignment != 0 )
1273       return false;
1274     return true;
1275   }
1276   bool isMemRegOffset() const {
1277     if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0)
1278       return false;
1279     return true;
1280   }
1281   bool isT2MemRegOffset() const {
1282     if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1283         Memory.Alignment != 0)
1284       return false;
1285     // Only lsl #{0, 1, 2, 3} allowed.
1286     if (Memory.ShiftType == ARM_AM::no_shift)
1287       return true;
1288     if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3)
1289       return false;
1290     return true;
1291   }
1292   bool isMemThumbRR() const {
1293     // Thumb reg+reg addressing is simple. Just two registers, a base and
1294     // an offset. No shifts, negations or any other complicating factors.
1295     if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1296         Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1297       return false;
1298     return isARMLowRegister(Memory.BaseRegNum) &&
1299       (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum));
1300   }
1301   bool isMemThumbRIs4() const {
1302     if (!isMem() || Memory.OffsetRegNum != 0 ||
1303         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1304       return false;
1305     // Immediate offset, multiple of 4 in range [0, 124].
1306     if (!Memory.OffsetImm) return true;
1307     int64_t Val = Memory.OffsetImm->getValue();
1308     return Val >= 0 && Val <= 124 && (Val % 4) == 0;
1309   }
1310   bool isMemThumbRIs2() const {
1311     if (!isMem() || Memory.OffsetRegNum != 0 ||
1312         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1313       return false;
1314     // Immediate offset, multiple of 4 in range [0, 62].
1315     if (!Memory.OffsetImm) return true;
1316     int64_t Val = Memory.OffsetImm->getValue();
1317     return Val >= 0 && Val <= 62 && (Val % 2) == 0;
1318   }
1319   bool isMemThumbRIs1() const {
1320     if (!isMem() || Memory.OffsetRegNum != 0 ||
1321         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1322       return false;
1323     // Immediate offset in range [0, 31].
1324     if (!Memory.OffsetImm) return true;
1325     int64_t Val = Memory.OffsetImm->getValue();
1326     return Val >= 0 && Val <= 31;
1327   }
1328   bool isMemThumbSPI() const {
1329     if (!isMem() || Memory.OffsetRegNum != 0 ||
1330         Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0)
1331       return false;
1332     // Immediate offset, multiple of 4 in range [0, 1020].
1333     if (!Memory.OffsetImm) return true;
1334     int64_t Val = Memory.OffsetImm->getValue();
1335     return Val >= 0 && Val <= 1020 && (Val % 4) == 0;
1336   }
1337   bool isMemImm8s4Offset() const {
1338     // If we have an immediate that's not a constant, treat it as a label
1339     // reference needing a fixup. If it is a constant, it's something else
1340     // and we reject it.
1341     if (isImm() && !isa<MCConstantExpr>(getImm()))
1342       return true;
1343     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1344       return false;
1345     // Immediate offset a multiple of 4 in range [-1020, 1020].
1346     if (!Memory.OffsetImm) return true;
1347     int64_t Val = Memory.OffsetImm->getValue();
1348     // Special case, #-0 is INT32_MIN.
1349     return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || Val == INT32_MIN;
1350   }
1351   bool isMemImm0_1020s4Offset() const {
1352     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1353       return false;
1354     // Immediate offset a multiple of 4 in range [0, 1020].
1355     if (!Memory.OffsetImm) return true;
1356     int64_t Val = Memory.OffsetImm->getValue();
1357     return Val >= 0 && Val <= 1020 && (Val & 3) == 0;
1358   }
1359   bool isMemImm8Offset() const {
1360     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1361       return false;
1362     // Base reg of PC isn't allowed for these encodings.
1363     if (Memory.BaseRegNum == ARM::PC) return false;
1364     // Immediate offset in range [-255, 255].
1365     if (!Memory.OffsetImm) return true;
1366     int64_t Val = Memory.OffsetImm->getValue();
1367     return (Val == INT32_MIN) || (Val > -256 && Val < 256);
1368   }
1369   bool isMemPosImm8Offset() const {
1370     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1371       return false;
1372     // Immediate offset in range [0, 255].
1373     if (!Memory.OffsetImm) return true;
1374     int64_t Val = Memory.OffsetImm->getValue();
1375     return Val >= 0 && Val < 256;
1376   }
1377   bool isMemNegImm8Offset() const {
1378     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1379       return false;
1380     // Base reg of PC isn't allowed for these encodings.
1381     if (Memory.BaseRegNum == ARM::PC) return false;
1382     // Immediate offset in range [-255, -1].
1383     if (!Memory.OffsetImm) return false;
1384     int64_t Val = Memory.OffsetImm->getValue();
1385     return (Val == INT32_MIN) || (Val > -256 && Val < 0);
1386   }
1387   bool isMemUImm12Offset() const {
1388     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1389       return false;
1390     // Immediate offset in range [0, 4095].
1391     if (!Memory.OffsetImm) return true;
1392     int64_t Val = Memory.OffsetImm->getValue();
1393     return (Val >= 0 && Val < 4096);
1394   }
1395   bool isMemImm12Offset() const {
1396     // If we have an immediate that's not a constant, treat it as a label
1397     // reference needing a fixup. If it is a constant, it's something else
1398     // and we reject it.
1399     if (isImm() && !isa<MCConstantExpr>(getImm()))
1400       return true;
1401
1402     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1403       return false;
1404     // Immediate offset in range [-4095, 4095].
1405     if (!Memory.OffsetImm) return true;
1406     int64_t Val = Memory.OffsetImm->getValue();
1407     return (Val > -4096 && Val < 4096) || (Val == INT32_MIN);
1408   }
1409   bool isPostIdxImm8() const {
1410     if (!isImm()) return false;
1411     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1412     if (!CE) return false;
1413     int64_t Val = CE->getValue();
1414     return (Val > -256 && Val < 256) || (Val == INT32_MIN);
1415   }
1416   bool isPostIdxImm8s4() const {
1417     if (!isImm()) return false;
1418     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1419     if (!CE) return false;
1420     int64_t Val = CE->getValue();
1421     return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) ||
1422       (Val == INT32_MIN);
1423   }
1424
1425   bool isMSRMask() const { return Kind == k_MSRMask; }
1426   bool isBankedReg() const { return Kind == k_BankedReg; }
1427   bool isProcIFlags() const { return Kind == k_ProcIFlags; }
1428
1429   // NEON operands.
1430   bool isSingleSpacedVectorList() const {
1431     return Kind == k_VectorList && !VectorList.isDoubleSpaced;
1432   }
1433   bool isDoubleSpacedVectorList() const {
1434     return Kind == k_VectorList && VectorList.isDoubleSpaced;
1435   }
1436   bool isVecListOneD() const {
1437     if (!isSingleSpacedVectorList()) return false;
1438     return VectorList.Count == 1;
1439   }
1440
1441   bool isVecListDPair() const {
1442     if (!isSingleSpacedVectorList()) return false;
1443     return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1444               .contains(VectorList.RegNum));
1445   }
1446
1447   bool isVecListThreeD() const {
1448     if (!isSingleSpacedVectorList()) return false;
1449     return VectorList.Count == 3;
1450   }
1451
1452   bool isVecListFourD() const {
1453     if (!isSingleSpacedVectorList()) return false;
1454     return VectorList.Count == 4;
1455   }
1456
1457   bool isVecListDPairSpaced() const {
1458     if (Kind != k_VectorList) return false;
1459     if (isSingleSpacedVectorList()) return false;
1460     return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID]
1461               .contains(VectorList.RegNum));
1462   }
1463
1464   bool isVecListThreeQ() const {
1465     if (!isDoubleSpacedVectorList()) return false;
1466     return VectorList.Count == 3;
1467   }
1468
1469   bool isVecListFourQ() const {
1470     if (!isDoubleSpacedVectorList()) return false;
1471     return VectorList.Count == 4;
1472   }
1473
1474   bool isSingleSpacedVectorAllLanes() const {
1475     return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced;
1476   }
1477   bool isDoubleSpacedVectorAllLanes() const {
1478     return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced;
1479   }
1480   bool isVecListOneDAllLanes() const {
1481     if (!isSingleSpacedVectorAllLanes()) return false;
1482     return VectorList.Count == 1;
1483   }
1484
1485   bool isVecListDPairAllLanes() const {
1486     if (!isSingleSpacedVectorAllLanes()) return false;
1487     return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1488               .contains(VectorList.RegNum));
1489   }
1490
1491   bool isVecListDPairSpacedAllLanes() const {
1492     if (!isDoubleSpacedVectorAllLanes()) return false;
1493     return VectorList.Count == 2;
1494   }
1495
1496   bool isVecListThreeDAllLanes() const {
1497     if (!isSingleSpacedVectorAllLanes()) return false;
1498     return VectorList.Count == 3;
1499   }
1500
1501   bool isVecListThreeQAllLanes() const {
1502     if (!isDoubleSpacedVectorAllLanes()) return false;
1503     return VectorList.Count == 3;
1504   }
1505
1506   bool isVecListFourDAllLanes() const {
1507     if (!isSingleSpacedVectorAllLanes()) return false;
1508     return VectorList.Count == 4;
1509   }
1510
1511   bool isVecListFourQAllLanes() const {
1512     if (!isDoubleSpacedVectorAllLanes()) return false;
1513     return VectorList.Count == 4;
1514   }
1515
1516   bool isSingleSpacedVectorIndexed() const {
1517     return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced;
1518   }
1519   bool isDoubleSpacedVectorIndexed() const {
1520     return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced;
1521   }
1522   bool isVecListOneDByteIndexed() const {
1523     if (!isSingleSpacedVectorIndexed()) return false;
1524     return VectorList.Count == 1 && VectorList.LaneIndex <= 7;
1525   }
1526
1527   bool isVecListOneDHWordIndexed() const {
1528     if (!isSingleSpacedVectorIndexed()) return false;
1529     return VectorList.Count == 1 && VectorList.LaneIndex <= 3;
1530   }
1531
1532   bool isVecListOneDWordIndexed() const {
1533     if (!isSingleSpacedVectorIndexed()) return false;
1534     return VectorList.Count == 1 && VectorList.LaneIndex <= 1;
1535   }
1536
1537   bool isVecListTwoDByteIndexed() const {
1538     if (!isSingleSpacedVectorIndexed()) return false;
1539     return VectorList.Count == 2 && VectorList.LaneIndex <= 7;
1540   }
1541
1542   bool isVecListTwoDHWordIndexed() const {
1543     if (!isSingleSpacedVectorIndexed()) return false;
1544     return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
1545   }
1546
1547   bool isVecListTwoQWordIndexed() const {
1548     if (!isDoubleSpacedVectorIndexed()) return false;
1549     return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
1550   }
1551
1552   bool isVecListTwoQHWordIndexed() const {
1553     if (!isDoubleSpacedVectorIndexed()) return false;
1554     return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
1555   }
1556
1557   bool isVecListTwoDWordIndexed() const {
1558     if (!isSingleSpacedVectorIndexed()) return false;
1559     return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
1560   }
1561
1562   bool isVecListThreeDByteIndexed() const {
1563     if (!isSingleSpacedVectorIndexed()) return false;
1564     return VectorList.Count == 3 && VectorList.LaneIndex <= 7;
1565   }
1566
1567   bool isVecListThreeDHWordIndexed() const {
1568     if (!isSingleSpacedVectorIndexed()) return false;
1569     return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
1570   }
1571
1572   bool isVecListThreeQWordIndexed() const {
1573     if (!isDoubleSpacedVectorIndexed()) return false;
1574     return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
1575   }
1576
1577   bool isVecListThreeQHWordIndexed() const {
1578     if (!isDoubleSpacedVectorIndexed()) return false;
1579     return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
1580   }
1581
1582   bool isVecListThreeDWordIndexed() const {
1583     if (!isSingleSpacedVectorIndexed()) return false;
1584     return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
1585   }
1586
1587   bool isVecListFourDByteIndexed() const {
1588     if (!isSingleSpacedVectorIndexed()) return false;
1589     return VectorList.Count == 4 && VectorList.LaneIndex <= 7;
1590   }
1591
1592   bool isVecListFourDHWordIndexed() const {
1593     if (!isSingleSpacedVectorIndexed()) return false;
1594     return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
1595   }
1596
1597   bool isVecListFourQWordIndexed() const {
1598     if (!isDoubleSpacedVectorIndexed()) return false;
1599     return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
1600   }
1601
1602   bool isVecListFourQHWordIndexed() const {
1603     if (!isDoubleSpacedVectorIndexed()) return false;
1604     return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
1605   }
1606
1607   bool isVecListFourDWordIndexed() const {
1608     if (!isSingleSpacedVectorIndexed()) return false;
1609     return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
1610   }
1611
1612   bool isVectorIndex8() const {
1613     if (Kind != k_VectorIndex) return false;
1614     return VectorIndex.Val < 8;
1615   }
1616   bool isVectorIndex16() const {
1617     if (Kind != k_VectorIndex) return false;
1618     return VectorIndex.Val < 4;
1619   }
1620   bool isVectorIndex32() const {
1621     if (Kind != k_VectorIndex) return false;
1622     return VectorIndex.Val < 2;
1623   }
1624
1625   bool isNEONi8splat() const {
1626     if (!isImm()) return false;
1627     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1628     // Must be a constant.
1629     if (!CE) return false;
1630     int64_t Value = CE->getValue();
1631     // i8 value splatted across 8 bytes. The immediate is just the 8 byte
1632     // value.
1633     return Value >= 0 && Value < 256;
1634   }
1635
1636   bool isNEONi16splat() const {
1637     if (isNEONByteReplicate(2))
1638       return false; // Leave that for bytes replication and forbid by default.
1639     if (!isImm())
1640       return false;
1641     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1642     // Must be a constant.
1643     if (!CE) return false;
1644     unsigned Value = CE->getValue();
1645     return ARM_AM::isNEONi16splat(Value);
1646   }
1647
1648   bool isNEONi16splatNot() const {
1649     if (!isImm())
1650       return false;
1651     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1652     // Must be a constant.
1653     if (!CE) return false;
1654     unsigned Value = CE->getValue();
1655     return ARM_AM::isNEONi16splat(~Value & 0xffff);
1656   }
1657
1658   bool isNEONi32splat() const {
1659     if (isNEONByteReplicate(4))
1660       return false; // Leave that for bytes replication and forbid by default.
1661     if (!isImm())
1662       return false;
1663     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1664     // Must be a constant.
1665     if (!CE) return false;
1666     unsigned Value = CE->getValue();
1667     return ARM_AM::isNEONi32splat(Value);
1668   }
1669
1670   bool isNEONi32splatNot() const {
1671     if (!isImm())
1672       return false;
1673     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1674     // Must be a constant.
1675     if (!CE) return false;
1676     unsigned Value = CE->getValue();
1677     return ARM_AM::isNEONi32splat(~Value);
1678   }
1679
1680   bool isNEONByteReplicate(unsigned NumBytes) const {
1681     if (!isImm())
1682       return false;
1683     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1684     // Must be a constant.
1685     if (!CE)
1686       return false;
1687     int64_t Value = CE->getValue();
1688     if (!Value)
1689       return false; // Don't bother with zero.
1690
1691     unsigned char B = Value & 0xff;
1692     for (unsigned i = 1; i < NumBytes; ++i) {
1693       Value >>= 8;
1694       if ((Value & 0xff) != B)
1695         return false;
1696     }
1697     return true;
1698   }
1699   bool isNEONi16ByteReplicate() const { return isNEONByteReplicate(2); }
1700   bool isNEONi32ByteReplicate() const { return isNEONByteReplicate(4); }
1701   bool isNEONi32vmov() const {
1702     if (isNEONByteReplicate(4))
1703       return false; // Let it to be classified as byte-replicate case.
1704     if (!isImm())
1705       return false;
1706     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1707     // Must be a constant.
1708     if (!CE)
1709       return false;
1710     int64_t Value = CE->getValue();
1711     // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
1712     // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
1713     // FIXME: This is probably wrong and a copy and paste from previous example
1714     return (Value >= 0 && Value < 256) ||
1715       (Value >= 0x0100 && Value <= 0xff00) ||
1716       (Value >= 0x010000 && Value <= 0xff0000) ||
1717       (Value >= 0x01000000 && Value <= 0xff000000) ||
1718       (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) ||
1719       (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff);
1720   }
1721   bool isNEONi32vmovNeg() const {
1722     if (!isImm()) return false;
1723     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1724     // Must be a constant.
1725     if (!CE) return false;
1726     int64_t Value = ~CE->getValue();
1727     // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
1728     // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
1729     // FIXME: This is probably wrong and a copy and paste from previous example
1730     return (Value >= 0 && Value < 256) ||
1731       (Value >= 0x0100 && Value <= 0xff00) ||
1732       (Value >= 0x010000 && Value <= 0xff0000) ||
1733       (Value >= 0x01000000 && Value <= 0xff000000) ||
1734       (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) ||
1735       (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff);
1736   }
1737
1738   bool isNEONi64splat() const {
1739     if (!isImm()) return false;
1740     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1741     // Must be a constant.
1742     if (!CE) return false;
1743     uint64_t Value = CE->getValue();
1744     // i64 value with each byte being either 0 or 0xff.
1745     for (unsigned i = 0; i < 8; ++i)
1746       if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false;
1747     return true;
1748   }
1749
1750   void addExpr(MCInst &Inst, const MCExpr *Expr) const {
1751     // Add as immediates when possible.  Null MCExpr = 0.
1752     if (!Expr)
1753       Inst.addOperand(MCOperand::CreateImm(0));
1754     else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
1755       Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
1756     else
1757       Inst.addOperand(MCOperand::CreateExpr(Expr));
1758   }
1759
1760   void addCondCodeOperands(MCInst &Inst, unsigned N) const {
1761     assert(N == 2 && "Invalid number of operands!");
1762     Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
1763     unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
1764     Inst.addOperand(MCOperand::CreateReg(RegNum));
1765   }
1766
1767   void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
1768     assert(N == 1 && "Invalid number of operands!");
1769     Inst.addOperand(MCOperand::CreateImm(getCoproc()));
1770   }
1771
1772   void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
1773     assert(N == 1 && "Invalid number of operands!");
1774     Inst.addOperand(MCOperand::CreateImm(getCoproc()));
1775   }
1776
1777   void addCoprocOptionOperands(MCInst &Inst, unsigned N) const {
1778     assert(N == 1 && "Invalid number of operands!");
1779     Inst.addOperand(MCOperand::CreateImm(CoprocOption.Val));
1780   }
1781
1782   void addITMaskOperands(MCInst &Inst, unsigned N) const {
1783     assert(N == 1 && "Invalid number of operands!");
1784     Inst.addOperand(MCOperand::CreateImm(ITMask.Mask));
1785   }
1786
1787   void addITCondCodeOperands(MCInst &Inst, unsigned N) const {
1788     assert(N == 1 && "Invalid number of operands!");
1789     Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
1790   }
1791
1792   void addCCOutOperands(MCInst &Inst, unsigned N) const {
1793     assert(N == 1 && "Invalid number of operands!");
1794     Inst.addOperand(MCOperand::CreateReg(getReg()));
1795   }
1796
1797   void addRegOperands(MCInst &Inst, unsigned N) const {
1798     assert(N == 1 && "Invalid number of operands!");
1799     Inst.addOperand(MCOperand::CreateReg(getReg()));
1800   }
1801
1802   void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const {
1803     assert(N == 3 && "Invalid number of operands!");
1804     assert(isRegShiftedReg() &&
1805            "addRegShiftedRegOperands() on non-RegShiftedReg!");
1806     Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.SrcReg));
1807     Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.ShiftReg));
1808     Inst.addOperand(MCOperand::CreateImm(
1809       ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm)));
1810   }
1811
1812   void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const {
1813     assert(N == 2 && "Invalid number of operands!");
1814     assert(isRegShiftedImm() &&
1815            "addRegShiftedImmOperands() on non-RegShiftedImm!");
1816     Inst.addOperand(MCOperand::CreateReg(RegShiftedImm.SrcReg));
1817     // Shift of #32 is encoded as 0 where permitted
1818     unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm);
1819     Inst.addOperand(MCOperand::CreateImm(
1820       ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm)));
1821   }
1822
1823   void addShifterImmOperands(MCInst &Inst, unsigned N) const {
1824     assert(N == 1 && "Invalid number of operands!");
1825     Inst.addOperand(MCOperand::CreateImm((ShifterImm.isASR << 5) |
1826                                          ShifterImm.Imm));
1827   }
1828
1829   void addRegListOperands(MCInst &Inst, unsigned N) const {
1830     assert(N == 1 && "Invalid number of operands!");
1831     const SmallVectorImpl<unsigned> &RegList = getRegList();
1832     for (SmallVectorImpl<unsigned>::const_iterator
1833            I = RegList.begin(), E = RegList.end(); I != E; ++I)
1834       Inst.addOperand(MCOperand::CreateReg(*I));
1835   }
1836
1837   void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
1838     addRegListOperands(Inst, N);
1839   }
1840
1841   void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
1842     addRegListOperands(Inst, N);
1843   }
1844
1845   void addRotImmOperands(MCInst &Inst, unsigned N) const {
1846     assert(N == 1 && "Invalid number of operands!");
1847     // Encoded as val>>3. The printer handles display as 8, 16, 24.
1848     Inst.addOperand(MCOperand::CreateImm(RotImm.Imm >> 3));
1849   }
1850
1851   void addModImmOperands(MCInst &Inst, unsigned N) const {
1852     assert(N == 1 && "Invalid number of operands!");
1853
1854     // Support for fixups (MCFixup)
1855     if (isImm())
1856       return addImmOperands(Inst, N);
1857
1858     Inst.addOperand(MCOperand::CreateImm(ModImm.Bits | (ModImm.Rot << 7)));
1859   }
1860
1861   void addModImmNotOperands(MCInst &Inst, unsigned N) const {
1862     assert(N == 1 && "Invalid number of operands!");
1863     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1864     uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue());
1865     Inst.addOperand(MCOperand::CreateImm(Enc));
1866   }
1867
1868   void addModImmNegOperands(MCInst &Inst, unsigned N) const {
1869     assert(N == 1 && "Invalid number of operands!");
1870     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1871     uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue());
1872     Inst.addOperand(MCOperand::CreateImm(Enc));
1873   }
1874
1875   void addBitfieldOperands(MCInst &Inst, unsigned N) const {
1876     assert(N == 1 && "Invalid number of operands!");
1877     // Munge the lsb/width into a bitfield mask.
1878     unsigned lsb = Bitfield.LSB;
1879     unsigned width = Bitfield.Width;
1880     // Make a 32-bit mask w/ the referenced bits clear and all other bits set.
1881     uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >>
1882                       (32 - (lsb + width)));
1883     Inst.addOperand(MCOperand::CreateImm(Mask));
1884   }
1885
1886   void addImmOperands(MCInst &Inst, unsigned N) const {
1887     assert(N == 1 && "Invalid number of operands!");
1888     addExpr(Inst, getImm());
1889   }
1890
1891   void addFBits16Operands(MCInst &Inst, unsigned N) const {
1892     assert(N == 1 && "Invalid number of operands!");
1893     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1894     Inst.addOperand(MCOperand::CreateImm(16 - CE->getValue()));
1895   }
1896
1897   void addFBits32Operands(MCInst &Inst, unsigned N) const {
1898     assert(N == 1 && "Invalid number of operands!");
1899     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1900     Inst.addOperand(MCOperand::CreateImm(32 - CE->getValue()));
1901   }
1902
1903   void addFPImmOperands(MCInst &Inst, unsigned N) const {
1904     assert(N == 1 && "Invalid number of operands!");
1905     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1906     int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
1907     Inst.addOperand(MCOperand::CreateImm(Val));
1908   }
1909
1910   void addImm8s4Operands(MCInst &Inst, unsigned N) const {
1911     assert(N == 1 && "Invalid number of operands!");
1912     // FIXME: We really want to scale the value here, but the LDRD/STRD
1913     // instruction don't encode operands that way yet.
1914     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1915     Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
1916   }
1917
1918   void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const {
1919     assert(N == 1 && "Invalid number of operands!");
1920     // The immediate is scaled by four in the encoding and is stored
1921     // in the MCInst as such. Lop off the low two bits here.
1922     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1923     Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4));
1924   }
1925
1926   void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const {
1927     assert(N == 1 && "Invalid number of operands!");
1928     // The immediate is scaled by four in the encoding and is stored
1929     // in the MCInst as such. Lop off the low two bits here.
1930     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1931     Inst.addOperand(MCOperand::CreateImm(-(CE->getValue() / 4)));
1932   }
1933
1934   void addImm0_508s4Operands(MCInst &Inst, unsigned N) const {
1935     assert(N == 1 && "Invalid number of operands!");
1936     // The immediate is scaled by four in the encoding and is stored
1937     // in the MCInst as such. Lop off the low two bits here.
1938     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1939     Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4));
1940   }
1941
1942   void addImm1_16Operands(MCInst &Inst, unsigned N) const {
1943     assert(N == 1 && "Invalid number of operands!");
1944     // The constant encodes as the immediate-1, and we store in the instruction
1945     // the bits as encoded, so subtract off one here.
1946     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1947     Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
1948   }
1949
1950   void addImm1_32Operands(MCInst &Inst, unsigned N) const {
1951     assert(N == 1 && "Invalid number of operands!");
1952     // The constant encodes as the immediate-1, and we store in the instruction
1953     // the bits as encoded, so subtract off one here.
1954     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1955     Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
1956   }
1957
1958   void addImmThumbSROperands(MCInst &Inst, unsigned N) const {
1959     assert(N == 1 && "Invalid number of operands!");
1960     // The constant encodes as the immediate, except for 32, which encodes as
1961     // zero.
1962     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1963     unsigned Imm = CE->getValue();
1964     Inst.addOperand(MCOperand::CreateImm((Imm == 32 ? 0 : Imm)));
1965   }
1966
1967   void addPKHASRImmOperands(MCInst &Inst, unsigned N) const {
1968     assert(N == 1 && "Invalid number of operands!");
1969     // An ASR value of 32 encodes as 0, so that's how we want to add it to
1970     // the instruction as well.
1971     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1972     int Val = CE->getValue();
1973     Inst.addOperand(MCOperand::CreateImm(Val == 32 ? 0 : Val));
1974   }
1975
1976   void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const {
1977     assert(N == 1 && "Invalid number of operands!");
1978     // The operand is actually a t2_so_imm, but we have its bitwise
1979     // negation in the assembly source, so twiddle it here.
1980     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1981     Inst.addOperand(MCOperand::CreateImm(~CE->getValue()));
1982   }
1983
1984   void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const {
1985     assert(N == 1 && "Invalid number of operands!");
1986     // The operand is actually a t2_so_imm, but we have its
1987     // negation in the assembly source, so twiddle it here.
1988     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1989     Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
1990   }
1991
1992   void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const {
1993     assert(N == 1 && "Invalid number of operands!");
1994     // The operand is actually an imm0_4095, but we have its
1995     // negation in the assembly source, so twiddle it here.
1996     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1997     Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
1998   }
1999
2000   void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const {
2001     if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) {
2002       Inst.addOperand(MCOperand::CreateImm(CE->getValue() >> 2));
2003       return;
2004     }
2005
2006     const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val);
2007     assert(SR && "Unknown value type!");
2008     Inst.addOperand(MCOperand::CreateExpr(SR));
2009   }
2010
2011   void addThumbMemPCOperands(MCInst &Inst, unsigned N) const {
2012     assert(N == 1 && "Invalid number of operands!");
2013     if (isImm()) {
2014       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2015       if (CE) {
2016         Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
2017         return;
2018       }
2019
2020       const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val);
2021       assert(SR && "Unknown value type!");
2022       Inst.addOperand(MCOperand::CreateExpr(SR));
2023       return;
2024     }
2025
2026     assert(isMem()  && "Unknown value type!");
2027     assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!");
2028     Inst.addOperand(MCOperand::CreateImm(Memory.OffsetImm->getValue()));
2029   }
2030
2031   void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
2032     assert(N == 1 && "Invalid number of operands!");
2033     Inst.addOperand(MCOperand::CreateImm(unsigned(getMemBarrierOpt())));
2034   }
2035
2036   void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
2037     assert(N == 1 && "Invalid number of operands!");
2038     Inst.addOperand(MCOperand::CreateImm(unsigned(getInstSyncBarrierOpt())));
2039   }
2040
2041   void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const {
2042     assert(N == 1 && "Invalid number of operands!");
2043     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2044   }
2045
2046   void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const {
2047     assert(N == 1 && "Invalid number of operands!");
2048     int32_t Imm = Memory.OffsetImm->getValue();
2049     Inst.addOperand(MCOperand::CreateImm(Imm));
2050   }
2051
2052   void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
2053     assert(N == 1 && "Invalid number of operands!");
2054     assert(isImm() && "Not an immediate!");
2055
2056     // If we have an immediate that's not a constant, treat it as a label
2057     // reference needing a fixup. 
2058     if (!isa<MCConstantExpr>(getImm())) {
2059       Inst.addOperand(MCOperand::CreateExpr(getImm()));
2060       return;
2061     }
2062
2063     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2064     int Val = CE->getValue();
2065     Inst.addOperand(MCOperand::CreateImm(Val));
2066   }
2067
2068   void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const {
2069     assert(N == 2 && "Invalid number of operands!");
2070     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2071     Inst.addOperand(MCOperand::CreateImm(Memory.Alignment));
2072   }
2073
2074   void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
2075     addAlignedMemoryOperands(Inst, N);
2076   }
2077
2078   void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
2079     addAlignedMemoryOperands(Inst, N);
2080   }
2081
2082   void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
2083     addAlignedMemoryOperands(Inst, N);
2084   }
2085
2086   void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
2087     addAlignedMemoryOperands(Inst, N);
2088   }
2089
2090   void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
2091     addAlignedMemoryOperands(Inst, N);
2092   }
2093
2094   void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
2095     addAlignedMemoryOperands(Inst, N);
2096   }
2097
2098   void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
2099     addAlignedMemoryOperands(Inst, N);
2100   }
2101
2102   void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
2103     addAlignedMemoryOperands(Inst, N);
2104   }
2105
2106   void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
2107     addAlignedMemoryOperands(Inst, N);
2108   }
2109
2110   void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
2111     addAlignedMemoryOperands(Inst, N);
2112   }
2113
2114   void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const {
2115     addAlignedMemoryOperands(Inst, N);
2116   }
2117
2118   void addAddrMode2Operands(MCInst &Inst, unsigned N) const {
2119     assert(N == 3 && "Invalid number of operands!");
2120     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2121     if (!Memory.OffsetRegNum) {
2122       ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2123       // Special case for #-0
2124       if (Val == INT32_MIN) Val = 0;
2125       if (Val < 0) Val = -Val;
2126       Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
2127     } else {
2128       // For register offset, we encode the shift type and negation flag
2129       // here.
2130       Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
2131                               Memory.ShiftImm, Memory.ShiftType);
2132     }
2133     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2134     Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
2135     Inst.addOperand(MCOperand::CreateImm(Val));
2136   }
2137
2138   void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const {
2139     assert(N == 2 && "Invalid number of operands!");
2140     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2141     assert(CE && "non-constant AM2OffsetImm operand!");
2142     int32_t Val = CE->getValue();
2143     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2144     // Special case for #-0
2145     if (Val == INT32_MIN) Val = 0;
2146     if (Val < 0) Val = -Val;
2147     Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
2148     Inst.addOperand(MCOperand::CreateReg(0));
2149     Inst.addOperand(MCOperand::CreateImm(Val));
2150   }
2151
2152   void addAddrMode3Operands(MCInst &Inst, unsigned N) const {
2153     assert(N == 3 && "Invalid number of operands!");
2154     // If we have an immediate that's not a constant, treat it as a label
2155     // reference needing a fixup. If it is a constant, it's something else
2156     // and we reject it.
2157     if (isImm()) {
2158       Inst.addOperand(MCOperand::CreateExpr(getImm()));
2159       Inst.addOperand(MCOperand::CreateReg(0));
2160       Inst.addOperand(MCOperand::CreateImm(0));
2161       return;
2162     }
2163
2164     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2165     if (!Memory.OffsetRegNum) {
2166       ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2167       // Special case for #-0
2168       if (Val == INT32_MIN) Val = 0;
2169       if (Val < 0) Val = -Val;
2170       Val = ARM_AM::getAM3Opc(AddSub, Val);
2171     } else {
2172       // For register offset, we encode the shift type and negation flag
2173       // here.
2174       Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0);
2175     }
2176     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2177     Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
2178     Inst.addOperand(MCOperand::CreateImm(Val));
2179   }
2180
2181   void addAM3OffsetOperands(MCInst &Inst, unsigned N) const {
2182     assert(N == 2 && "Invalid number of operands!");
2183     if (Kind == k_PostIndexRegister) {
2184       int32_t Val =
2185         ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0);
2186       Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
2187       Inst.addOperand(MCOperand::CreateImm(Val));
2188       return;
2189     }
2190
2191     // Constant offset.
2192     const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm());
2193     int32_t Val = CE->getValue();
2194     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2195     // Special case for #-0
2196     if (Val == INT32_MIN) Val = 0;
2197     if (Val < 0) Val = -Val;
2198     Val = ARM_AM::getAM3Opc(AddSub, Val);
2199     Inst.addOperand(MCOperand::CreateReg(0));
2200     Inst.addOperand(MCOperand::CreateImm(Val));
2201   }
2202
2203   void addAddrMode5Operands(MCInst &Inst, unsigned N) const {
2204     assert(N == 2 && "Invalid number of operands!");
2205     // If we have an immediate that's not a constant, treat it as a label
2206     // reference needing a fixup. If it is a constant, it's something else
2207     // and we reject it.
2208     if (isImm()) {
2209       Inst.addOperand(MCOperand::CreateExpr(getImm()));
2210       Inst.addOperand(MCOperand::CreateImm(0));
2211       return;
2212     }
2213
2214     // The lower two bits are always zero and as such are not encoded.
2215     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
2216     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2217     // Special case for #-0
2218     if (Val == INT32_MIN) Val = 0;
2219     if (Val < 0) Val = -Val;
2220     Val = ARM_AM::getAM5Opc(AddSub, Val);
2221     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2222     Inst.addOperand(MCOperand::CreateImm(Val));
2223   }
2224
2225   void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const {
2226     assert(N == 2 && "Invalid number of operands!");
2227     // If we have an immediate that's not a constant, treat it as a label
2228     // reference needing a fixup. If it is a constant, it's something else
2229     // and we reject it.
2230     if (isImm()) {
2231       Inst.addOperand(MCOperand::CreateExpr(getImm()));
2232       Inst.addOperand(MCOperand::CreateImm(0));
2233       return;
2234     }
2235
2236     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2237     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2238     Inst.addOperand(MCOperand::CreateImm(Val));
2239   }
2240
2241   void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const {
2242     assert(N == 2 && "Invalid number of operands!");
2243     // The lower two bits are always zero and as such are not encoded.
2244     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
2245     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2246     Inst.addOperand(MCOperand::CreateImm(Val));
2247   }
2248
2249   void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const {
2250     assert(N == 2 && "Invalid number of operands!");
2251     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2252     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2253     Inst.addOperand(MCOperand::CreateImm(Val));
2254   }
2255
2256   void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const {
2257     addMemImm8OffsetOperands(Inst, N);
2258   }
2259
2260   void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const {
2261     addMemImm8OffsetOperands(Inst, N);
2262   }
2263
2264   void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
2265     assert(N == 2 && "Invalid number of operands!");
2266     // If this is an immediate, it's a label reference.
2267     if (isImm()) {
2268       addExpr(Inst, getImm());
2269       Inst.addOperand(MCOperand::CreateImm(0));
2270       return;
2271     }
2272
2273     // Otherwise, it's a normal memory reg+offset.
2274     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2275     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2276     Inst.addOperand(MCOperand::CreateImm(Val));
2277   }
2278
2279   void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const {
2280     assert(N == 2 && "Invalid number of operands!");
2281     // If this is an immediate, it's a label reference.
2282     if (isImm()) {
2283       addExpr(Inst, getImm());
2284       Inst.addOperand(MCOperand::CreateImm(0));
2285       return;
2286     }
2287
2288     // Otherwise, it's a normal memory reg+offset.
2289     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2290     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2291     Inst.addOperand(MCOperand::CreateImm(Val));
2292   }
2293
2294   void addMemTBBOperands(MCInst &Inst, unsigned N) const {
2295     assert(N == 2 && "Invalid number of operands!");
2296     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2297     Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
2298   }
2299
2300   void addMemTBHOperands(MCInst &Inst, unsigned N) const {
2301     assert(N == 2 && "Invalid number of operands!");
2302     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2303     Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
2304   }
2305
2306   void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const {
2307     assert(N == 3 && "Invalid number of operands!");
2308     unsigned Val =
2309       ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
2310                         Memory.ShiftImm, Memory.ShiftType);
2311     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2312     Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
2313     Inst.addOperand(MCOperand::CreateImm(Val));
2314   }
2315
2316   void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const {
2317     assert(N == 3 && "Invalid number of operands!");
2318     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2319     Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
2320     Inst.addOperand(MCOperand::CreateImm(Memory.ShiftImm));
2321   }
2322
2323   void addMemThumbRROperands(MCInst &Inst, unsigned N) const {
2324     assert(N == 2 && "Invalid number of operands!");
2325     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2326     Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
2327   }
2328
2329   void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const {
2330     assert(N == 2 && "Invalid number of operands!");
2331     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
2332     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2333     Inst.addOperand(MCOperand::CreateImm(Val));
2334   }
2335
2336   void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const {
2337     assert(N == 2 && "Invalid number of operands!");
2338     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0;
2339     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2340     Inst.addOperand(MCOperand::CreateImm(Val));
2341   }
2342
2343   void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const {
2344     assert(N == 2 && "Invalid number of operands!");
2345     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0;
2346     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2347     Inst.addOperand(MCOperand::CreateImm(Val));
2348   }
2349
2350   void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const {
2351     assert(N == 2 && "Invalid number of operands!");
2352     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
2353     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2354     Inst.addOperand(MCOperand::CreateImm(Val));
2355   }
2356
2357   void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const {
2358     assert(N == 1 && "Invalid number of operands!");
2359     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2360     assert(CE && "non-constant post-idx-imm8 operand!");
2361     int Imm = CE->getValue();
2362     bool isAdd = Imm >= 0;
2363     if (Imm == INT32_MIN) Imm = 0;
2364     Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8;
2365     Inst.addOperand(MCOperand::CreateImm(Imm));
2366   }
2367
2368   void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const {
2369     assert(N == 1 && "Invalid number of operands!");
2370     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2371     assert(CE && "non-constant post-idx-imm8s4 operand!");
2372     int Imm = CE->getValue();
2373     bool isAdd = Imm >= 0;
2374     if (Imm == INT32_MIN) Imm = 0;
2375     // Immediate is scaled by 4.
2376     Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8;
2377     Inst.addOperand(MCOperand::CreateImm(Imm));
2378   }
2379
2380   void addPostIdxRegOperands(MCInst &Inst, unsigned N) const {
2381     assert(N == 2 && "Invalid number of operands!");
2382     Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
2383     Inst.addOperand(MCOperand::CreateImm(PostIdxReg.isAdd));
2384   }
2385
2386   void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const {
2387     assert(N == 2 && "Invalid number of operands!");
2388     Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
2389     // The sign, shift type, and shift amount are encoded in a single operand
2390     // using the AM2 encoding helpers.
2391     ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub;
2392     unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm,
2393                                      PostIdxReg.ShiftTy);
2394     Inst.addOperand(MCOperand::CreateImm(Imm));
2395   }
2396
2397   void addMSRMaskOperands(MCInst &Inst, unsigned N) const {
2398     assert(N == 1 && "Invalid number of operands!");
2399     Inst.addOperand(MCOperand::CreateImm(unsigned(getMSRMask())));
2400   }
2401
2402   void addBankedRegOperands(MCInst &Inst, unsigned N) const {
2403     assert(N == 1 && "Invalid number of operands!");
2404     Inst.addOperand(MCOperand::CreateImm(unsigned(getBankedReg())));
2405   }
2406
2407   void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
2408     assert(N == 1 && "Invalid number of operands!");
2409     Inst.addOperand(MCOperand::CreateImm(unsigned(getProcIFlags())));
2410   }
2411
2412   void addVecListOperands(MCInst &Inst, unsigned N) const {
2413     assert(N == 1 && "Invalid number of operands!");
2414     Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
2415   }
2416
2417   void addVecListIndexedOperands(MCInst &Inst, unsigned N) const {
2418     assert(N == 2 && "Invalid number of operands!");
2419     Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
2420     Inst.addOperand(MCOperand::CreateImm(VectorList.LaneIndex));
2421   }
2422
2423   void addVectorIndex8Operands(MCInst &Inst, unsigned N) const {
2424     assert(N == 1 && "Invalid number of operands!");
2425     Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
2426   }
2427
2428   void addVectorIndex16Operands(MCInst &Inst, unsigned N) const {
2429     assert(N == 1 && "Invalid number of operands!");
2430     Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
2431   }
2432
2433   void addVectorIndex32Operands(MCInst &Inst, unsigned N) const {
2434     assert(N == 1 && "Invalid number of operands!");
2435     Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
2436   }
2437
2438   void addNEONi8splatOperands(MCInst &Inst, unsigned N) const {
2439     assert(N == 1 && "Invalid number of operands!");
2440     // The immediate encodes the type of constant as well as the value.
2441     // Mask in that this is an i8 splat.
2442     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2443     Inst.addOperand(MCOperand::CreateImm(CE->getValue() | 0xe00));
2444   }
2445
2446   void addNEONi16splatOperands(MCInst &Inst, unsigned N) const {
2447     assert(N == 1 && "Invalid number of operands!");
2448     // The immediate encodes the type of constant as well as the value.
2449     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2450     unsigned Value = CE->getValue();
2451     Value = ARM_AM::encodeNEONi16splat(Value);
2452     Inst.addOperand(MCOperand::CreateImm(Value));
2453   }
2454
2455   void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const {
2456     assert(N == 1 && "Invalid number of operands!");
2457     // The immediate encodes the type of constant as well as the value.
2458     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2459     unsigned Value = CE->getValue();
2460     Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff);
2461     Inst.addOperand(MCOperand::CreateImm(Value));
2462   }
2463
2464   void addNEONi32splatOperands(MCInst &Inst, unsigned N) const {
2465     assert(N == 1 && "Invalid number of operands!");
2466     // The immediate encodes the type of constant as well as the value.
2467     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2468     unsigned Value = CE->getValue();
2469     Value = ARM_AM::encodeNEONi32splat(Value);
2470     Inst.addOperand(MCOperand::CreateImm(Value));
2471   }
2472
2473   void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const {
2474     assert(N == 1 && "Invalid number of operands!");
2475     // The immediate encodes the type of constant as well as the value.
2476     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2477     unsigned Value = CE->getValue();
2478     Value = ARM_AM::encodeNEONi32splat(~Value);
2479     Inst.addOperand(MCOperand::CreateImm(Value));
2480   }
2481
2482   void addNEONinvByteReplicateOperands(MCInst &Inst, unsigned N) const {
2483     assert(N == 1 && "Invalid number of operands!");
2484     // The immediate encodes the type of constant as well as the value.
2485     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2486     unsigned Value = CE->getValue();
2487     assert((Inst.getOpcode() == ARM::VMOVv8i8 ||
2488             Inst.getOpcode() == ARM::VMOVv16i8) &&
2489            "All vmvn instructions that wants to replicate non-zero byte "
2490            "always must be replaced with VMOVv8i8 or VMOVv16i8.");
2491     unsigned B = ((~Value) & 0xff);
2492     B |= 0xe00; // cmode = 0b1110
2493     Inst.addOperand(MCOperand::CreateImm(B));
2494   }
2495   void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const {
2496     assert(N == 1 && "Invalid number of operands!");
2497     // The immediate encodes the type of constant as well as the value.
2498     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2499     unsigned Value = CE->getValue();
2500     if (Value >= 256 && Value <= 0xffff)
2501       Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
2502     else if (Value > 0xffff && Value <= 0xffffff)
2503       Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
2504     else if (Value > 0xffffff)
2505       Value = (Value >> 24) | 0x600;
2506     Inst.addOperand(MCOperand::CreateImm(Value));
2507   }
2508
2509   void addNEONvmovByteReplicateOperands(MCInst &Inst, unsigned N) const {
2510     assert(N == 1 && "Invalid number of operands!");
2511     // The immediate encodes the type of constant as well as the value.
2512     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2513     unsigned Value = CE->getValue();
2514     assert((Inst.getOpcode() == ARM::VMOVv8i8 ||
2515             Inst.getOpcode() == ARM::VMOVv16i8) &&
2516            "All instructions that wants to replicate non-zero byte "
2517            "always must be replaced with VMOVv8i8 or VMOVv16i8.");
2518     unsigned B = Value & 0xff;
2519     B |= 0xe00; // cmode = 0b1110
2520     Inst.addOperand(MCOperand::CreateImm(B));
2521   }
2522   void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const {
2523     assert(N == 1 && "Invalid number of operands!");
2524     // The immediate encodes the type of constant as well as the value.
2525     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2526     unsigned Value = ~CE->getValue();
2527     if (Value >= 256 && Value <= 0xffff)
2528       Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
2529     else if (Value > 0xffff && Value <= 0xffffff)
2530       Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
2531     else if (Value > 0xffffff)
2532       Value = (Value >> 24) | 0x600;
2533     Inst.addOperand(MCOperand::CreateImm(Value));
2534   }
2535
2536   void addNEONi64splatOperands(MCInst &Inst, unsigned N) const {
2537     assert(N == 1 && "Invalid number of operands!");
2538     // The immediate encodes the type of constant as well as the value.
2539     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2540     uint64_t Value = CE->getValue();
2541     unsigned Imm = 0;
2542     for (unsigned i = 0; i < 8; ++i, Value >>= 8) {
2543       Imm |= (Value & 1) << i;
2544     }
2545     Inst.addOperand(MCOperand::CreateImm(Imm | 0x1e00));
2546   }
2547
2548   void print(raw_ostream &OS) const override;
2549
2550   static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) {
2551     auto Op = make_unique<ARMOperand>(k_ITCondMask);
2552     Op->ITMask.Mask = Mask;
2553     Op->StartLoc = S;
2554     Op->EndLoc = S;
2555     return Op;
2556   }
2557
2558   static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC,
2559                                                     SMLoc S) {
2560     auto Op = make_unique<ARMOperand>(k_CondCode);
2561     Op->CC.Val = CC;
2562     Op->StartLoc = S;
2563     Op->EndLoc = S;
2564     return Op;
2565   }
2566
2567   static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) {
2568     auto Op = make_unique<ARMOperand>(k_CoprocNum);
2569     Op->Cop.Val = CopVal;
2570     Op->StartLoc = S;
2571     Op->EndLoc = S;
2572     return Op;
2573   }
2574
2575   static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) {
2576     auto Op = make_unique<ARMOperand>(k_CoprocReg);
2577     Op->Cop.Val = CopVal;
2578     Op->StartLoc = S;
2579     Op->EndLoc = S;
2580     return Op;
2581   }
2582
2583   static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S,
2584                                                         SMLoc E) {
2585     auto Op = make_unique<ARMOperand>(k_CoprocOption);
2586     Op->Cop.Val = Val;
2587     Op->StartLoc = S;
2588     Op->EndLoc = E;
2589     return Op;
2590   }
2591
2592   static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) {
2593     auto Op = make_unique<ARMOperand>(k_CCOut);
2594     Op->Reg.RegNum = RegNum;
2595     Op->StartLoc = S;
2596     Op->EndLoc = S;
2597     return Op;
2598   }
2599
2600   static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) {
2601     auto Op = make_unique<ARMOperand>(k_Token);
2602     Op->Tok.Data = Str.data();
2603     Op->Tok.Length = Str.size();
2604     Op->StartLoc = S;
2605     Op->EndLoc = S;
2606     return Op;
2607   }
2608
2609   static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S,
2610                                                SMLoc E) {
2611     auto Op = make_unique<ARMOperand>(k_Register);
2612     Op->Reg.RegNum = RegNum;
2613     Op->StartLoc = S;
2614     Op->EndLoc = E;
2615     return Op;
2616   }
2617
2618   static std::unique_ptr<ARMOperand>
2619   CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
2620                         unsigned ShiftReg, unsigned ShiftImm, SMLoc S,
2621                         SMLoc E) {
2622     auto Op = make_unique<ARMOperand>(k_ShiftedRegister);
2623     Op->RegShiftedReg.ShiftTy = ShTy;
2624     Op->RegShiftedReg.SrcReg = SrcReg;
2625     Op->RegShiftedReg.ShiftReg = ShiftReg;
2626     Op->RegShiftedReg.ShiftImm = ShiftImm;
2627     Op->StartLoc = S;
2628     Op->EndLoc = E;
2629     return Op;
2630   }
2631
2632   static std::unique_ptr<ARMOperand>
2633   CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
2634                          unsigned ShiftImm, SMLoc S, SMLoc E) {
2635     auto Op = make_unique<ARMOperand>(k_ShiftedImmediate);
2636     Op->RegShiftedImm.ShiftTy = ShTy;
2637     Op->RegShiftedImm.SrcReg = SrcReg;
2638     Op->RegShiftedImm.ShiftImm = ShiftImm;
2639     Op->StartLoc = S;
2640     Op->EndLoc = E;
2641     return Op;
2642   }
2643
2644   static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm,
2645                                                       SMLoc S, SMLoc E) {
2646     auto Op = make_unique<ARMOperand>(k_ShifterImmediate);
2647     Op->ShifterImm.isASR = isASR;
2648     Op->ShifterImm.Imm = Imm;
2649     Op->StartLoc = S;
2650     Op->EndLoc = E;
2651     return Op;
2652   }
2653
2654   static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S,
2655                                                   SMLoc E) {
2656     auto Op = make_unique<ARMOperand>(k_RotateImmediate);
2657     Op->RotImm.Imm = Imm;
2658     Op->StartLoc = S;
2659     Op->EndLoc = E;
2660     return Op;
2661   }
2662
2663   static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot,
2664                                                   SMLoc S, SMLoc E) {
2665     auto Op = make_unique<ARMOperand>(k_ModifiedImmediate);
2666     Op->ModImm.Bits = Bits;
2667     Op->ModImm.Rot = Rot;
2668     Op->StartLoc = S;
2669     Op->EndLoc = E;
2670     return Op;
2671   }
2672
2673   static std::unique_ptr<ARMOperand>
2674   CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) {
2675     auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor);
2676     Op->Bitfield.LSB = LSB;
2677     Op->Bitfield.Width = Width;
2678     Op->StartLoc = S;
2679     Op->EndLoc = E;
2680     return Op;
2681   }
2682
2683   static std::unique_ptr<ARMOperand>
2684   CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
2685                 SMLoc StartLoc, SMLoc EndLoc) {
2686     assert (Regs.size() > 0 && "RegList contains no registers?");
2687     KindTy Kind = k_RegisterList;
2688
2689     if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second))
2690       Kind = k_DPRRegisterList;
2691     else if (ARMMCRegisterClasses[ARM::SPRRegClassID].
2692              contains(Regs.front().second))
2693       Kind = k_SPRRegisterList;
2694
2695     // Sort based on the register encoding values.
2696     array_pod_sort(Regs.begin(), Regs.end());
2697
2698     auto Op = make_unique<ARMOperand>(Kind);
2699     for (SmallVectorImpl<std::pair<unsigned, unsigned> >::const_iterator
2700            I = Regs.begin(), E = Regs.end(); I != E; ++I)
2701       Op->Registers.push_back(I->second);
2702     Op->StartLoc = StartLoc;
2703     Op->EndLoc = EndLoc;
2704     return Op;
2705   }
2706
2707   static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum,
2708                                                       unsigned Count,
2709                                                       bool isDoubleSpaced,
2710                                                       SMLoc S, SMLoc E) {
2711     auto Op = make_unique<ARMOperand>(k_VectorList);
2712     Op->VectorList.RegNum = RegNum;
2713     Op->VectorList.Count = Count;
2714     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
2715     Op->StartLoc = S;
2716     Op->EndLoc = E;
2717     return Op;
2718   }
2719
2720   static std::unique_ptr<ARMOperand>
2721   CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced,
2722                            SMLoc S, SMLoc E) {
2723     auto Op = make_unique<ARMOperand>(k_VectorListAllLanes);
2724     Op->VectorList.RegNum = RegNum;
2725     Op->VectorList.Count = Count;
2726     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
2727     Op->StartLoc = S;
2728     Op->EndLoc = E;
2729     return Op;
2730   }
2731
2732   static std::unique_ptr<ARMOperand>
2733   CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index,
2734                           bool isDoubleSpaced, SMLoc S, SMLoc E) {
2735     auto Op = make_unique<ARMOperand>(k_VectorListIndexed);
2736     Op->VectorList.RegNum = RegNum;
2737     Op->VectorList.Count = Count;
2738     Op->VectorList.LaneIndex = Index;
2739     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
2740     Op->StartLoc = S;
2741     Op->EndLoc = E;
2742     return Op;
2743   }
2744
2745   static std::unique_ptr<ARMOperand>
2746   CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) {
2747     auto Op = make_unique<ARMOperand>(k_VectorIndex);
2748     Op->VectorIndex.Val = Idx;
2749     Op->StartLoc = S;
2750     Op->EndLoc = E;
2751     return Op;
2752   }
2753
2754   static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S,
2755                                                SMLoc E) {
2756     auto Op = make_unique<ARMOperand>(k_Immediate);
2757     Op->Imm.Val = Val;
2758     Op->StartLoc = S;
2759     Op->EndLoc = E;
2760     return Op;
2761   }
2762
2763   static std::unique_ptr<ARMOperand>
2764   CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm,
2765             unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType,
2766             unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S,
2767             SMLoc E, SMLoc AlignmentLoc = SMLoc()) {
2768     auto Op = make_unique<ARMOperand>(k_Memory);
2769     Op->Memory.BaseRegNum = BaseRegNum;
2770     Op->Memory.OffsetImm = OffsetImm;
2771     Op->Memory.OffsetRegNum = OffsetRegNum;
2772     Op->Memory.ShiftType = ShiftType;
2773     Op->Memory.ShiftImm = ShiftImm;
2774     Op->Memory.Alignment = Alignment;
2775     Op->Memory.isNegative = isNegative;
2776     Op->StartLoc = S;
2777     Op->EndLoc = E;
2778     Op->AlignmentLoc = AlignmentLoc;
2779     return Op;
2780   }
2781
2782   static std::unique_ptr<ARMOperand>
2783   CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy,
2784                    unsigned ShiftImm, SMLoc S, SMLoc E) {
2785     auto Op = make_unique<ARMOperand>(k_PostIndexRegister);
2786     Op->PostIdxReg.RegNum = RegNum;
2787     Op->PostIdxReg.isAdd = isAdd;
2788     Op->PostIdxReg.ShiftTy = ShiftTy;
2789     Op->PostIdxReg.ShiftImm = ShiftImm;
2790     Op->StartLoc = S;
2791     Op->EndLoc = E;
2792     return Op;
2793   }
2794
2795   static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt,
2796                                                          SMLoc S) {
2797     auto Op = make_unique<ARMOperand>(k_MemBarrierOpt);
2798     Op->MBOpt.Val = Opt;
2799     Op->StartLoc = S;
2800     Op->EndLoc = S;
2801     return Op;
2802   }
2803
2804   static std::unique_ptr<ARMOperand>
2805   CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) {
2806     auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt);
2807     Op->ISBOpt.Val = Opt;
2808     Op->StartLoc = S;
2809     Op->EndLoc = S;
2810     return Op;
2811   }
2812
2813   static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags,
2814                                                       SMLoc S) {
2815     auto Op = make_unique<ARMOperand>(k_ProcIFlags);
2816     Op->IFlags.Val = IFlags;
2817     Op->StartLoc = S;
2818     Op->EndLoc = S;
2819     return Op;
2820   }
2821
2822   static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) {
2823     auto Op = make_unique<ARMOperand>(k_MSRMask);
2824     Op->MMask.Val = MMask;
2825     Op->StartLoc = S;
2826     Op->EndLoc = S;
2827     return Op;
2828   }
2829
2830   static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) {
2831     auto Op = make_unique<ARMOperand>(k_BankedReg);
2832     Op->BankedReg.Val = Reg;
2833     Op->StartLoc = S;
2834     Op->EndLoc = S;
2835     return Op;
2836   }
2837 };
2838
2839 } // end anonymous namespace.
2840
2841 void ARMOperand::print(raw_ostream &OS) const {
2842   switch (Kind) {
2843   case k_CondCode:
2844     OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
2845     break;
2846   case k_CCOut:
2847     OS << "<ccout " << getReg() << ">";
2848     break;
2849   case k_ITCondMask: {
2850     static const char *const MaskStr[] = {
2851       "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)",
2852       "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)"
2853     };
2854     assert((ITMask.Mask & 0xf) == ITMask.Mask);
2855     OS << "<it-mask " << MaskStr[ITMask.Mask] << ">";
2856     break;
2857   }
2858   case k_CoprocNum:
2859     OS << "<coprocessor number: " << getCoproc() << ">";
2860     break;
2861   case k_CoprocReg:
2862     OS << "<coprocessor register: " << getCoproc() << ">";
2863     break;
2864   case k_CoprocOption:
2865     OS << "<coprocessor option: " << CoprocOption.Val << ">";
2866     break;
2867   case k_MSRMask:
2868     OS << "<mask: " << getMSRMask() << ">";
2869     break;
2870   case k_BankedReg:
2871     OS << "<banked reg: " << getBankedReg() << ">";
2872     break;
2873   case k_Immediate:
2874     getImm()->print(OS);
2875     break;
2876   case k_MemBarrierOpt:
2877     OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">";
2878     break;
2879   case k_InstSyncBarrierOpt:
2880     OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">";
2881     break;
2882   case k_Memory:
2883     OS << "<memory "
2884        << " base:" << Memory.BaseRegNum;
2885     OS << ">";
2886     break;
2887   case k_PostIndexRegister:
2888     OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-")
2889        << PostIdxReg.RegNum;
2890     if (PostIdxReg.ShiftTy != ARM_AM::no_shift)
2891       OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " "
2892          << PostIdxReg.ShiftImm;
2893     OS << ">";
2894     break;
2895   case k_ProcIFlags: {
2896     OS << "<ARM_PROC::";
2897     unsigned IFlags = getProcIFlags();
2898     for (int i=2; i >= 0; --i)
2899       if (IFlags & (1 << i))
2900         OS << ARM_PROC::IFlagsToString(1 << i);
2901     OS << ">";
2902     break;
2903   }
2904   case k_Register:
2905     OS << "<register " << getReg() << ">";
2906     break;
2907   case k_ShifterImmediate:
2908     OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl")
2909        << " #" << ShifterImm.Imm << ">";
2910     break;
2911   case k_ShiftedRegister:
2912     OS << "<so_reg_reg "
2913        << RegShiftedReg.SrcReg << " "
2914        << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy)
2915        << " " << RegShiftedReg.ShiftReg << ">";
2916     break;
2917   case k_ShiftedImmediate:
2918     OS << "<so_reg_imm "
2919        << RegShiftedImm.SrcReg << " "
2920        << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy)
2921        << " #" << RegShiftedImm.ShiftImm << ">";
2922     break;
2923   case k_RotateImmediate:
2924     OS << "<ror " << " #" << (RotImm.Imm * 8) << ">";
2925     break;
2926   case k_ModifiedImmediate:
2927     OS << "<mod_imm #" << ModImm.Bits << ", #"
2928        <<  ModImm.Rot << ")>";
2929     break;
2930   case k_BitfieldDescriptor:
2931     OS << "<bitfield " << "lsb: " << Bitfield.LSB
2932        << ", width: " << Bitfield.Width << ">";
2933     break;
2934   case k_RegisterList:
2935   case k_DPRRegisterList:
2936   case k_SPRRegisterList: {
2937     OS << "<register_list ";
2938
2939     const SmallVectorImpl<unsigned> &RegList = getRegList();
2940     for (SmallVectorImpl<unsigned>::const_iterator
2941            I = RegList.begin(), E = RegList.end(); I != E; ) {
2942       OS << *I;
2943       if (++I < E) OS << ", ";
2944     }
2945
2946     OS << ">";
2947     break;
2948   }
2949   case k_VectorList:
2950     OS << "<vector_list " << VectorList.Count << " * "
2951        << VectorList.RegNum << ">";
2952     break;
2953   case k_VectorListAllLanes:
2954     OS << "<vector_list(all lanes) " << VectorList.Count << " * "
2955        << VectorList.RegNum << ">";
2956     break;
2957   case k_VectorListIndexed:
2958     OS << "<vector_list(lane " << VectorList.LaneIndex << ") "
2959        << VectorList.Count << " * " << VectorList.RegNum << ">";
2960     break;
2961   case k_Token:
2962     OS << "'" << getToken() << "'";
2963     break;
2964   case k_VectorIndex:
2965     OS << "<vectorindex " << getVectorIndex() << ">";
2966     break;
2967   }
2968 }
2969
2970 /// @name Auto-generated Match Functions
2971 /// {
2972
2973 static unsigned MatchRegisterName(StringRef Name);
2974
2975 /// }
2976
2977 bool ARMAsmParser::ParseRegister(unsigned &RegNo,
2978                                  SMLoc &StartLoc, SMLoc &EndLoc) {
2979   const AsmToken &Tok = getParser().getTok();
2980   StartLoc = Tok.getLoc();
2981   EndLoc = Tok.getEndLoc();
2982   RegNo = tryParseRegister();
2983
2984   return (RegNo == (unsigned)-1);
2985 }
2986
2987 /// Try to parse a register name.  The token must be an Identifier when called,
2988 /// and if it is a register name the token is eaten and the register number is
2989 /// returned.  Otherwise return -1.
2990 ///
2991 int ARMAsmParser::tryParseRegister() {
2992   MCAsmParser &Parser = getParser();
2993   const AsmToken &Tok = Parser.getTok();
2994   if (Tok.isNot(AsmToken::Identifier)) return -1;
2995
2996   std::string lowerCase = Tok.getString().lower();
2997   unsigned RegNum = MatchRegisterName(lowerCase);
2998   if (!RegNum) {
2999     RegNum = StringSwitch<unsigned>(lowerCase)
3000       .Case("r13", ARM::SP)
3001       .Case("r14", ARM::LR)
3002       .Case("r15", ARM::PC)
3003       .Case("ip", ARM::R12)
3004       // Additional register name aliases for 'gas' compatibility.
3005       .Case("a1", ARM::R0)
3006       .Case("a2", ARM::R1)
3007       .Case("a3", ARM::R2)
3008       .Case("a4", ARM::R3)
3009       .Case("v1", ARM::R4)
3010       .Case("v2", ARM::R5)
3011       .Case("v3", ARM::R6)
3012       .Case("v4", ARM::R7)
3013       .Case("v5", ARM::R8)
3014       .Case("v6", ARM::R9)
3015       .Case("v7", ARM::R10)
3016       .Case("v8", ARM::R11)
3017       .Case("sb", ARM::R9)
3018       .Case("sl", ARM::R10)
3019       .Case("fp", ARM::R11)
3020       .Default(0);
3021   }
3022   if (!RegNum) {
3023     // Check for aliases registered via .req. Canonicalize to lower case.
3024     // That's more consistent since register names are case insensitive, and
3025     // it's how the original entry was passed in from MC/MCParser/AsmParser.
3026     StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase);
3027     // If no match, return failure.
3028     if (Entry == RegisterReqs.end())
3029       return -1;
3030     Parser.Lex(); // Eat identifier token.
3031     return Entry->getValue();
3032   }
3033
3034   // Some FPUs only have 16 D registers, so D16-D31 are invalid
3035   if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31)
3036     return -1;
3037
3038   Parser.Lex(); // Eat identifier token.
3039
3040   return RegNum;
3041 }
3042
3043 // Try to parse a shifter  (e.g., "lsl <amt>"). On success, return 0.
3044 // If a recoverable error occurs, return 1. If an irrecoverable error
3045 // occurs, return -1. An irrecoverable error is one where tokens have been
3046 // consumed in the process of trying to parse the shifter (i.e., when it is
3047 // indeed a shifter operand, but malformed).
3048 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) {
3049   MCAsmParser &Parser = getParser();
3050   SMLoc S = Parser.getTok().getLoc();
3051   const AsmToken &Tok = Parser.getTok();
3052   if (Tok.isNot(AsmToken::Identifier))
3053     return -1; 
3054
3055   std::string lowerCase = Tok.getString().lower();
3056   ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase)
3057       .Case("asl", ARM_AM::lsl)
3058       .Case("lsl", ARM_AM::lsl)
3059       .Case("lsr", ARM_AM::lsr)
3060       .Case("asr", ARM_AM::asr)
3061       .Case("ror", ARM_AM::ror)
3062       .Case("rrx", ARM_AM::rrx)
3063       .Default(ARM_AM::no_shift);
3064
3065   if (ShiftTy == ARM_AM::no_shift)
3066     return 1;
3067
3068   Parser.Lex(); // Eat the operator.
3069
3070   // The source register for the shift has already been added to the
3071   // operand list, so we need to pop it off and combine it into the shifted
3072   // register operand instead.
3073   std::unique_ptr<ARMOperand> PrevOp(
3074       (ARMOperand *)Operands.pop_back_val().release());
3075   if (!PrevOp->isReg())
3076     return Error(PrevOp->getStartLoc(), "shift must be of a register");
3077   int SrcReg = PrevOp->getReg();
3078
3079   SMLoc EndLoc;
3080   int64_t Imm = 0;
3081   int ShiftReg = 0;
3082   if (ShiftTy == ARM_AM::rrx) {
3083     // RRX Doesn't have an explicit shift amount. The encoder expects
3084     // the shift register to be the same as the source register. Seems odd,
3085     // but OK.
3086     ShiftReg = SrcReg;
3087   } else {
3088     // Figure out if this is shifted by a constant or a register (for non-RRX).
3089     if (Parser.getTok().is(AsmToken::Hash) ||
3090         Parser.getTok().is(AsmToken::Dollar)) {
3091       Parser.Lex(); // Eat hash.
3092       SMLoc ImmLoc = Parser.getTok().getLoc();
3093       const MCExpr *ShiftExpr = nullptr;
3094       if (getParser().parseExpression(ShiftExpr, EndLoc)) {
3095         Error(ImmLoc, "invalid immediate shift value");
3096         return -1;
3097       }
3098       // The expression must be evaluatable as an immediate.
3099       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr);
3100       if (!CE) {
3101         Error(ImmLoc, "invalid immediate shift value");
3102         return -1;
3103       }
3104       // Range check the immediate.
3105       // lsl, ror: 0 <= imm <= 31
3106       // lsr, asr: 0 <= imm <= 32
3107       Imm = CE->getValue();
3108       if (Imm < 0 ||
3109           ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) ||
3110           ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) {
3111         Error(ImmLoc, "immediate shift value out of range");
3112         return -1;
3113       }
3114       // shift by zero is a nop. Always send it through as lsl.
3115       // ('as' compatibility)
3116       if (Imm == 0)
3117         ShiftTy = ARM_AM::lsl;
3118     } else if (Parser.getTok().is(AsmToken::Identifier)) {
3119       SMLoc L = Parser.getTok().getLoc();
3120       EndLoc = Parser.getTok().getEndLoc();
3121       ShiftReg = tryParseRegister();
3122       if (ShiftReg == -1) {
3123         Error(L, "expected immediate or register in shift operand");
3124         return -1;
3125       }
3126     } else {
3127       Error(Parser.getTok().getLoc(),
3128             "expected immediate or register in shift operand");
3129       return -1;
3130     }
3131   }
3132
3133   if (ShiftReg && ShiftTy != ARM_AM::rrx)
3134     Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg,
3135                                                          ShiftReg, Imm,
3136                                                          S, EndLoc));
3137   else
3138     Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm,
3139                                                           S, EndLoc));
3140
3141   return 0;
3142 }
3143
3144
3145 /// Try to parse a register name.  The token must be an Identifier when called.
3146 /// If it's a register, an AsmOperand is created. Another AsmOperand is created
3147 /// if there is a "writeback". 'true' if it's not a register.
3148 ///
3149 /// TODO this is likely to change to allow different register types and or to
3150 /// parse for a specific register type.
3151 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) {
3152   MCAsmParser &Parser = getParser();
3153   const AsmToken &RegTok = Parser.getTok();
3154   int RegNo = tryParseRegister();
3155   if (RegNo == -1)
3156     return true;
3157
3158   Operands.push_back(ARMOperand::CreateReg(RegNo, RegTok.getLoc(),
3159                                            RegTok.getEndLoc()));
3160
3161   const AsmToken &ExclaimTok = Parser.getTok();
3162   if (ExclaimTok.is(AsmToken::Exclaim)) {
3163     Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
3164                                                ExclaimTok.getLoc()));
3165     Parser.Lex(); // Eat exclaim token
3166     return false;
3167   }
3168
3169   // Also check for an index operand. This is only legal for vector registers,
3170   // but that'll get caught OK in operand matching, so we don't need to
3171   // explicitly filter everything else out here.
3172   if (Parser.getTok().is(AsmToken::LBrac)) {
3173     SMLoc SIdx = Parser.getTok().getLoc();
3174     Parser.Lex(); // Eat left bracket token.
3175
3176     const MCExpr *ImmVal;
3177     if (getParser().parseExpression(ImmVal))
3178       return true;
3179     const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
3180     if (!MCE)
3181       return TokError("immediate value expected for vector index");
3182
3183     if (Parser.getTok().isNot(AsmToken::RBrac))
3184       return Error(Parser.getTok().getLoc(), "']' expected");
3185
3186     SMLoc E = Parser.getTok().getEndLoc();
3187     Parser.Lex(); // Eat right bracket token.
3188
3189     Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(),
3190                                                      SIdx, E,
3191                                                      getContext()));
3192   }
3193
3194   return false;
3195 }
3196
3197 /// MatchCoprocessorOperandName - Try to parse an coprocessor related
3198 /// instruction with a symbolic operand name.
3199 /// We accept "crN" syntax for GAS compatibility.
3200 /// <operand-name> ::= <prefix><number>
3201 /// If CoprocOp is 'c', then:
3202 ///   <prefix> ::= c | cr
3203 /// If CoprocOp is 'p', then :
3204 ///   <prefix> ::= p
3205 /// <number> ::= integer in range [0, 15]
3206 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
3207   // Use the same layout as the tablegen'erated register name matcher. Ugly,
3208   // but efficient.
3209   if (Name.size() < 2 || Name[0] != CoprocOp)
3210     return -1;
3211   Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front();
3212
3213   switch (Name.size()) {
3214   default: return -1;
3215   case 1:
3216     switch (Name[0]) {
3217     default:  return -1;
3218     case '0': return 0;
3219     case '1': return 1;
3220     case '2': return 2;
3221     case '3': return 3;
3222     case '4': return 4;
3223     case '5': return 5;
3224     case '6': return 6;
3225     case '7': return 7;
3226     case '8': return 8;
3227     case '9': return 9;
3228     }
3229   case 2:
3230     if (Name[0] != '1')
3231       return -1;
3232     switch (Name[1]) {
3233     default:  return -1;
3234     // CP10 and CP11 are VFP/NEON and so vector instructions should be used.
3235     // However, old cores (v5/v6) did use them in that way.
3236     case '0': return 10;
3237     case '1': return 11;
3238     case '2': return 12;
3239     case '3': return 13;
3240     case '4': return 14;
3241     case '5': return 15;
3242     }
3243   }
3244 }
3245
3246 /// parseITCondCode - Try to parse a condition code for an IT instruction.
3247 ARMAsmParser::OperandMatchResultTy
3248 ARMAsmParser::parseITCondCode(OperandVector &Operands) {
3249   MCAsmParser &Parser = getParser();
3250   SMLoc S = Parser.getTok().getLoc();
3251   const AsmToken &Tok = Parser.getTok();
3252   if (!Tok.is(AsmToken::Identifier))
3253     return MatchOperand_NoMatch;
3254   unsigned CC = StringSwitch<unsigned>(Tok.getString().lower())
3255     .Case("eq", ARMCC::EQ)
3256     .Case("ne", ARMCC::NE)
3257     .Case("hs", ARMCC::HS)
3258     .Case("cs", ARMCC::HS)
3259     .Case("lo", ARMCC::LO)
3260     .Case("cc", ARMCC::LO)
3261     .Case("mi", ARMCC::MI)
3262     .Case("pl", ARMCC::PL)
3263     .Case("vs", ARMCC::VS)
3264     .Case("vc", ARMCC::VC)
3265     .Case("hi", ARMCC::HI)
3266     .Case("ls", ARMCC::LS)
3267     .Case("ge", ARMCC::GE)
3268     .Case("lt", ARMCC::LT)
3269     .Case("gt", ARMCC::GT)
3270     .Case("le", ARMCC::LE)
3271     .Case("al", ARMCC::AL)
3272     .Default(~0U);
3273   if (CC == ~0U)
3274     return MatchOperand_NoMatch;
3275   Parser.Lex(); // Eat the token.
3276
3277   Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S));
3278
3279   return MatchOperand_Success;
3280 }
3281
3282 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
3283 /// token must be an Identifier when called, and if it is a coprocessor
3284 /// number, the token is eaten and the operand is added to the operand list.
3285 ARMAsmParser::OperandMatchResultTy
3286 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) {
3287   MCAsmParser &Parser = getParser();
3288   SMLoc S = Parser.getTok().getLoc();
3289   const AsmToken &Tok = Parser.getTok();
3290   if (Tok.isNot(AsmToken::Identifier))
3291     return MatchOperand_NoMatch;
3292
3293   int Num = MatchCoprocessorOperandName(Tok.getString(), 'p');
3294   if (Num == -1)
3295     return MatchOperand_NoMatch;
3296   // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions
3297   if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11))
3298     return MatchOperand_NoMatch;
3299
3300   Parser.Lex(); // Eat identifier token.
3301   Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
3302   return MatchOperand_Success;
3303 }
3304
3305 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
3306 /// token must be an Identifier when called, and if it is a coprocessor
3307 /// number, the token is eaten and the operand is added to the operand list.
3308 ARMAsmParser::OperandMatchResultTy
3309 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) {
3310   MCAsmParser &Parser = getParser();
3311   SMLoc S = Parser.getTok().getLoc();
3312   const AsmToken &Tok = Parser.getTok();
3313   if (Tok.isNot(AsmToken::Identifier))
3314     return MatchOperand_NoMatch;
3315
3316   int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c');
3317   if (Reg == -1)
3318     return MatchOperand_NoMatch;
3319
3320   Parser.Lex(); // Eat identifier token.
3321   Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
3322   return MatchOperand_Success;
3323 }
3324
3325 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
3326 /// coproc_option : '{' imm0_255 '}'
3327 ARMAsmParser::OperandMatchResultTy
3328 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) {
3329   MCAsmParser &Parser = getParser();
3330   SMLoc S = Parser.getTok().getLoc();
3331
3332   // If this isn't a '{', this isn't a coprocessor immediate operand.
3333   if (Parser.getTok().isNot(AsmToken::LCurly))
3334     return MatchOperand_NoMatch;
3335   Parser.Lex(); // Eat the '{'
3336
3337   const MCExpr *Expr;
3338   SMLoc Loc = Parser.getTok().getLoc();
3339   if (getParser().parseExpression(Expr)) {
3340     Error(Loc, "illegal expression");
3341     return MatchOperand_ParseFail;
3342   }
3343   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
3344   if (!CE || CE->getValue() < 0 || CE->getValue() > 255) {
3345     Error(Loc, "coprocessor option must be an immediate in range [0, 255]");
3346     return MatchOperand_ParseFail;
3347   }
3348   int Val = CE->getValue();
3349
3350   // Check for and consume the closing '}'
3351   if (Parser.getTok().isNot(AsmToken::RCurly))
3352     return MatchOperand_ParseFail;
3353   SMLoc E = Parser.getTok().getEndLoc();
3354   Parser.Lex(); // Eat the '}'
3355
3356   Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E));
3357   return MatchOperand_Success;
3358 }
3359
3360 // For register list parsing, we need to map from raw GPR register numbering
3361 // to the enumeration values. The enumeration values aren't sorted by
3362 // register number due to our using "sp", "lr" and "pc" as canonical names.
3363 static unsigned getNextRegister(unsigned Reg) {
3364   // If this is a GPR, we need to do it manually, otherwise we can rely
3365   // on the sort ordering of the enumeration since the other reg-classes
3366   // are sane.
3367   if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
3368     return Reg + 1;
3369   switch(Reg) {
3370   default: llvm_unreachable("Invalid GPR number!");
3371   case ARM::R0:  return ARM::R1;  case ARM::R1:  return ARM::R2;
3372   case ARM::R2:  return ARM::R3;  case ARM::R3:  return ARM::R4;
3373   case ARM::R4:  return ARM::R5;  case ARM::R5:  return ARM::R6;
3374   case ARM::R6:  return ARM::R7;  case ARM::R7:  return ARM::R8;
3375   case ARM::R8:  return ARM::R9;  case ARM::R9:  return ARM::R10;
3376   case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12;
3377   case ARM::R12: return ARM::SP;  case ARM::SP:  return ARM::LR;
3378   case ARM::LR:  return ARM::PC;  case ARM::PC:  return ARM::R0;
3379   }
3380 }
3381
3382 // Return the low-subreg of a given Q register.
3383 static unsigned getDRegFromQReg(unsigned QReg) {
3384   switch (QReg) {
3385   default: llvm_unreachable("expected a Q register!");
3386   case ARM::Q0:  return ARM::D0;
3387   case ARM::Q1:  return ARM::D2;
3388   case ARM::Q2:  return ARM::D4;
3389   case ARM::Q3:  return ARM::D6;
3390   case ARM::Q4:  return ARM::D8;
3391   case ARM::Q5:  return ARM::D10;
3392   case ARM::Q6:  return ARM::D12;
3393   case ARM::Q7:  return ARM::D14;
3394   case ARM::Q8:  return ARM::D16;
3395   case ARM::Q9:  return ARM::D18;
3396   case ARM::Q10: return ARM::D20;
3397   case ARM::Q11: return ARM::D22;
3398   case ARM::Q12: return ARM::D24;
3399   case ARM::Q13: return ARM::D26;
3400   case ARM::Q14: return ARM::D28;
3401   case ARM::Q15: return ARM::D30;
3402   }
3403 }
3404
3405 /// Parse a register list.
3406 bool ARMAsmParser::parseRegisterList(OperandVector &Operands) {
3407   MCAsmParser &Parser = getParser();
3408   assert(Parser.getTok().is(AsmToken::LCurly) &&
3409          "Token is not a Left Curly Brace");
3410   SMLoc S = Parser.getTok().getLoc();
3411   Parser.Lex(); // Eat '{' token.
3412   SMLoc RegLoc = Parser.getTok().getLoc();
3413
3414   // Check the first register in the list to see what register class
3415   // this is a list of.
3416   int Reg = tryParseRegister();
3417   if (Reg == -1)
3418     return Error(RegLoc, "register expected");
3419
3420   // The reglist instructions have at most 16 registers, so reserve
3421   // space for that many.
3422   int EReg = 0;
3423   SmallVector<std::pair<unsigned, unsigned>, 16> Registers;
3424
3425   // Allow Q regs and just interpret them as the two D sub-registers.
3426   if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3427     Reg = getDRegFromQReg(Reg);
3428     EReg = MRI->getEncodingValue(Reg);
3429     Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3430     ++Reg;
3431   }
3432   const MCRegisterClass *RC;
3433   if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
3434     RC = &ARMMCRegisterClasses[ARM::GPRRegClassID];
3435   else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg))
3436     RC = &ARMMCRegisterClasses[ARM::DPRRegClassID];
3437   else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg))
3438     RC = &ARMMCRegisterClasses[ARM::SPRRegClassID];
3439   else
3440     return Error(RegLoc, "invalid register in register list");
3441
3442   // Store the register.
3443   EReg = MRI->getEncodingValue(Reg);
3444   Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3445
3446   // This starts immediately after the first register token in the list,
3447   // so we can see either a comma or a minus (range separator) as a legal
3448   // next token.
3449   while (Parser.getTok().is(AsmToken::Comma) ||
3450          Parser.getTok().is(AsmToken::Minus)) {
3451     if (Parser.getTok().is(AsmToken::Minus)) {
3452       Parser.Lex(); // Eat the minus.
3453       SMLoc AfterMinusLoc = Parser.getTok().getLoc();
3454       int EndReg = tryParseRegister();
3455       if (EndReg == -1)
3456         return Error(AfterMinusLoc, "register expected");
3457       // Allow Q regs and just interpret them as the two D sub-registers.
3458       if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
3459         EndReg = getDRegFromQReg(EndReg) + 1;
3460       // If the register is the same as the start reg, there's nothing
3461       // more to do.
3462       if (Reg == EndReg)
3463         continue;
3464       // The register must be in the same register class as the first.
3465       if (!RC->contains(EndReg))
3466         return Error(AfterMinusLoc, "invalid register in register list");
3467       // Ranges must go from low to high.
3468       if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg))
3469         return Error(AfterMinusLoc, "bad range in register list");
3470
3471       // Add all the registers in the range to the register list.
3472       while (Reg != EndReg) {
3473         Reg = getNextRegister(Reg);
3474         EReg = MRI->getEncodingValue(Reg);
3475         Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3476       }
3477       continue;
3478     }
3479     Parser.Lex(); // Eat the comma.
3480     RegLoc = Parser.getTok().getLoc();
3481     int OldReg = Reg;
3482     const AsmToken RegTok = Parser.getTok();
3483     Reg = tryParseRegister();
3484     if (Reg == -1)
3485       return Error(RegLoc, "register expected");
3486     // Allow Q regs and just interpret them as the two D sub-registers.
3487     bool isQReg = false;
3488     if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3489       Reg = getDRegFromQReg(Reg);
3490       isQReg = true;
3491     }
3492     // The register must be in the same register class as the first.
3493     if (!RC->contains(Reg))
3494       return Error(RegLoc, "invalid register in register list");
3495     // List must be monotonically increasing.
3496     if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) {
3497       if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
3498         Warning(RegLoc, "register list not in ascending order");
3499       else
3500         return Error(RegLoc, "register list not in ascending order");
3501     }
3502     if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) {
3503       Warning(RegLoc, "duplicated register (" + RegTok.getString() +
3504               ") in register list");
3505       continue;
3506     }
3507     // VFP register lists must also be contiguous.
3508     if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] &&
3509         Reg != OldReg + 1)
3510       return Error(RegLoc, "non-contiguous register range");
3511     EReg = MRI->getEncodingValue(Reg);
3512     Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3513     if (isQReg) {
3514       EReg = MRI->getEncodingValue(++Reg);
3515       Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3516     }
3517   }
3518
3519   if (Parser.getTok().isNot(AsmToken::RCurly))
3520     return Error(Parser.getTok().getLoc(), "'}' expected");
3521   SMLoc E = Parser.getTok().getEndLoc();
3522   Parser.Lex(); // Eat '}' token.
3523
3524   // Push the register list operand.
3525   Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
3526
3527   // The ARM system instruction variants for LDM/STM have a '^' token here.
3528   if (Parser.getTok().is(AsmToken::Caret)) {
3529     Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc()));
3530     Parser.Lex(); // Eat '^' token.
3531   }
3532
3533   return false;
3534 }
3535
3536 // Helper function to parse the lane index for vector lists.
3537 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3538 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) {
3539   MCAsmParser &Parser = getParser();
3540   Index = 0; // Always return a defined index value.
3541   if (Parser.getTok().is(AsmToken::LBrac)) {
3542     Parser.Lex(); // Eat the '['.
3543     if (Parser.getTok().is(AsmToken::RBrac)) {
3544       // "Dn[]" is the 'all lanes' syntax.
3545       LaneKind = AllLanes;
3546       EndLoc = Parser.getTok().getEndLoc();
3547       Parser.Lex(); // Eat the ']'.
3548       return MatchOperand_Success;
3549     }
3550
3551     // There's an optional '#' token here. Normally there wouldn't be, but
3552     // inline assemble puts one in, and it's friendly to accept that.
3553     if (Parser.getTok().is(AsmToken::Hash))
3554       Parser.Lex(); // Eat '#' or '$'.
3555
3556     const MCExpr *LaneIndex;
3557     SMLoc Loc = Parser.getTok().getLoc();
3558     if (getParser().parseExpression(LaneIndex)) {
3559       Error(Loc, "illegal expression");
3560       return MatchOperand_ParseFail;
3561     }
3562     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex);
3563     if (!CE) {
3564       Error(Loc, "lane index must be empty or an integer");
3565       return MatchOperand_ParseFail;
3566     }
3567     if (Parser.getTok().isNot(AsmToken::RBrac)) {
3568       Error(Parser.getTok().getLoc(), "']' expected");
3569       return MatchOperand_ParseFail;
3570     }
3571     EndLoc = Parser.getTok().getEndLoc();
3572     Parser.Lex(); // Eat the ']'.
3573     int64_t Val = CE->getValue();
3574
3575     // FIXME: Make this range check context sensitive for .8, .16, .32.
3576     if (Val < 0 || Val > 7) {
3577       Error(Parser.getTok().getLoc(), "lane index out of range");
3578       return MatchOperand_ParseFail;
3579     }
3580     Index = Val;
3581     LaneKind = IndexedLane;
3582     return MatchOperand_Success;
3583   }
3584   LaneKind = NoLanes;
3585   return MatchOperand_Success;
3586 }
3587
3588 // parse a vector register list
3589 ARMAsmParser::OperandMatchResultTy
3590 ARMAsmParser::parseVectorList(OperandVector &Operands) {
3591   MCAsmParser &Parser = getParser();
3592   VectorLaneTy LaneKind;
3593   unsigned LaneIndex;
3594   SMLoc S = Parser.getTok().getLoc();
3595   // As an extension (to match gas), support a plain D register or Q register
3596   // (without encosing curly braces) as a single or double entry list,
3597   // respectively.
3598   if (Parser.getTok().is(AsmToken::Identifier)) {
3599     SMLoc E = Parser.getTok().getEndLoc();
3600     int Reg = tryParseRegister();
3601     if (Reg == -1)
3602       return MatchOperand_NoMatch;
3603     if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
3604       OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
3605       if (Res != MatchOperand_Success)
3606         return Res;
3607       switch (LaneKind) {
3608       case NoLanes:
3609         Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E));
3610         break;
3611       case AllLanes:
3612         Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false,
3613                                                                 S, E));
3614         break;
3615       case IndexedLane:
3616         Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1,
3617                                                                LaneIndex,
3618                                                                false, S, E));
3619         break;
3620       }
3621       return MatchOperand_Success;
3622     }
3623     if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3624       Reg = getDRegFromQReg(Reg);
3625       OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
3626       if (Res != MatchOperand_Success)
3627         return Res;
3628       switch (LaneKind) {
3629       case NoLanes:
3630         Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
3631                                    &ARMMCRegisterClasses[ARM::DPairRegClassID]);
3632         Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E));
3633         break;
3634       case AllLanes:
3635         Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
3636                                    &ARMMCRegisterClasses[ARM::DPairRegClassID]);
3637         Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false,
3638                                                                 S, E));
3639         break;
3640       case IndexedLane:
3641         Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2,
3642                                                                LaneIndex,
3643                                                                false, S, E));
3644         break;
3645       }
3646       return MatchOperand_Success;
3647     }
3648     Error(S, "vector register expected");
3649     return MatchOperand_ParseFail;
3650   }
3651
3652   if (Parser.getTok().isNot(AsmToken::LCurly))
3653     return MatchOperand_NoMatch;
3654
3655   Parser.Lex(); // Eat '{' token.
3656   SMLoc RegLoc = Parser.getTok().getLoc();
3657
3658   int Reg = tryParseRegister();
3659   if (Reg == -1) {
3660     Error(RegLoc, "register expected");
3661     return MatchOperand_ParseFail;
3662   }
3663   unsigned Count = 1;
3664   int Spacing = 0;
3665   unsigned FirstReg = Reg;
3666   // The list is of D registers, but we also allow Q regs and just interpret
3667   // them as the two D sub-registers.
3668   if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3669     FirstReg = Reg = getDRegFromQReg(Reg);
3670     Spacing = 1; // double-spacing requires explicit D registers, otherwise
3671                  // it's ambiguous with four-register single spaced.
3672     ++Reg;
3673     ++Count;
3674   }
3675
3676   SMLoc E;
3677   if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success)
3678     return MatchOperand_ParseFail;
3679
3680   while (Parser.getTok().is(AsmToken::Comma) ||
3681          Parser.getTok().is(AsmToken::Minus)) {
3682     if (Parser.getTok().is(AsmToken::Minus)) {
3683       if (!Spacing)
3684         Spacing = 1; // Register range implies a single spaced list.
3685       else if (Spacing == 2) {
3686         Error(Parser.getTok().getLoc(),
3687               "sequential registers in double spaced list");
3688         return MatchOperand_ParseFail;
3689       }
3690       Parser.Lex(); // Eat the minus.
3691       SMLoc AfterMinusLoc = Parser.getTok().getLoc();
3692       int EndReg = tryParseRegister();
3693       if (EndReg == -1) {
3694         Error(AfterMinusLoc, "register expected");
3695         return MatchOperand_ParseFail;
3696       }
3697       // Allow Q regs and just interpret them as the two D sub-registers.
3698       if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
3699         EndReg = getDRegFromQReg(EndReg) + 1;
3700       // If the register is the same as the start reg, there's nothing
3701       // more to do.
3702       if (Reg == EndReg)
3703         continue;
3704       // The register must be in the same register class as the first.
3705       if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) {
3706         Error(AfterMinusLoc, "invalid register in register list");
3707         return MatchOperand_ParseFail;
3708       }
3709       // Ranges must go from low to high.
3710       if (Reg > EndReg) {
3711         Error(AfterMinusLoc, "bad range in register list");
3712         return MatchOperand_ParseFail;
3713       }
3714       // Parse the lane specifier if present.
3715       VectorLaneTy NextLaneKind;
3716       unsigned NextLaneIndex;
3717       if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
3718           MatchOperand_Success)
3719         return MatchOperand_ParseFail;
3720       if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
3721         Error(AfterMinusLoc, "mismatched lane index in register list");
3722         return MatchOperand_ParseFail;
3723       }
3724
3725       // Add all the registers in the range to the register list.
3726       Count += EndReg - Reg;
3727       Reg = EndReg;
3728       continue;
3729     }
3730     Parser.Lex(); // Eat the comma.
3731     RegLoc = Parser.getTok().getLoc();
3732     int OldReg = Reg;
3733     Reg = tryParseRegister();
3734     if (Reg == -1) {
3735       Error(RegLoc, "register expected");
3736       return MatchOperand_ParseFail;
3737     }
3738     // vector register lists must be contiguous.
3739     // It's OK to use the enumeration values directly here rather, as the
3740     // VFP register classes have the enum sorted properly.
3741     //
3742     // The list is of D registers, but we also allow Q regs and just interpret
3743     // them as the two D sub-registers.
3744     if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3745       if (!Spacing)
3746         Spacing = 1; // Register range implies a single spaced list.
3747       else if (Spacing == 2) {
3748         Error(RegLoc,
3749               "invalid register in double-spaced list (must be 'D' register')");
3750         return MatchOperand_ParseFail;
3751       }
3752       Reg = getDRegFromQReg(Reg);
3753       if (Reg != OldReg + 1) {
3754         Error(RegLoc, "non-contiguous register range");
3755         return MatchOperand_ParseFail;
3756       }
3757       ++Reg;
3758       Count += 2;
3759       // Parse the lane specifier if present.
3760       VectorLaneTy NextLaneKind;
3761       unsigned NextLaneIndex;
3762       SMLoc LaneLoc = Parser.getTok().getLoc();
3763       if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
3764           MatchOperand_Success)
3765         return MatchOperand_ParseFail;
3766       if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
3767         Error(LaneLoc, "mismatched lane index in register list");
3768         return MatchOperand_ParseFail;
3769       }
3770       continue;
3771     }
3772     // Normal D register.
3773     // Figure out the register spacing (single or double) of the list if
3774     // we don't know it already.
3775     if (!Spacing)
3776       Spacing = 1 + (Reg == OldReg + 2);
3777
3778     // Just check that it's contiguous and keep going.
3779     if (Reg != OldReg + Spacing) {
3780       Error(RegLoc, "non-contiguous register range");
3781       return MatchOperand_ParseFail;
3782     }
3783     ++Count;
3784     // Parse the lane specifier if present.
3785     VectorLaneTy NextLaneKind;
3786     unsigned NextLaneIndex;
3787     SMLoc EndLoc = Parser.getTok().getLoc();
3788     if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success)
3789       return MatchOperand_ParseFail;
3790     if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
3791       Error(EndLoc, "mismatched lane index in register list");
3792       return MatchOperand_ParseFail;
3793     }
3794   }
3795
3796   if (Parser.getTok().isNot(AsmToken::RCurly)) {
3797     Error(Parser.getTok().getLoc(), "'}' expected");
3798     return MatchOperand_ParseFail;
3799   }
3800   E = Parser.getTok().getEndLoc();
3801   Parser.Lex(); // Eat '}' token.
3802
3803   switch (LaneKind) {
3804   case NoLanes:
3805     // Two-register operands have been converted to the
3806     // composite register classes.
3807     if (Count == 2) {
3808       const MCRegisterClass *RC = (Spacing == 1) ?
3809         &ARMMCRegisterClasses[ARM::DPairRegClassID] :
3810         &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
3811       FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
3812     }
3813
3814     Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count,
3815                                                     (Spacing == 2), S, E));
3816     break;
3817   case AllLanes:
3818     // Two-register operands have been converted to the
3819     // composite register classes.
3820     if (Count == 2) {
3821       const MCRegisterClass *RC = (Spacing == 1) ?
3822         &ARMMCRegisterClasses[ARM::DPairRegClassID] :
3823         &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
3824       FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
3825     }
3826     Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count,
3827                                                             (Spacing == 2),
3828                                                             S, E));
3829     break;
3830   case IndexedLane:
3831     Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count,
3832                                                            LaneIndex,
3833                                                            (Spacing == 2),
3834                                                            S, E));
3835     break;
3836   }
3837   return MatchOperand_Success;
3838 }
3839
3840 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
3841 ARMAsmParser::OperandMatchResultTy
3842 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) {
3843   MCAsmParser &Parser = getParser();
3844   SMLoc S = Parser.getTok().getLoc();
3845   const AsmToken &Tok = Parser.getTok();
3846   unsigned Opt;
3847
3848   if (Tok.is(AsmToken::Identifier)) {
3849     StringRef OptStr = Tok.getString();
3850
3851     Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower())
3852       .Case("sy",    ARM_MB::SY)
3853       .Case("st",    ARM_MB::ST)
3854       .Case("ld",    ARM_MB::LD)
3855       .Case("sh",    ARM_MB::ISH)
3856       .Case("ish",   ARM_MB::ISH)
3857       .Case("shst",  ARM_MB::ISHST)
3858       .Case("ishst", ARM_MB::ISHST)
3859       .Case("ishld", ARM_MB::ISHLD)
3860       .Case("nsh",   ARM_MB::NSH)
3861       .Case("un",    ARM_MB::NSH)
3862       .Case("nshst", ARM_MB::NSHST)
3863       .Case("nshld", ARM_MB::NSHLD)
3864       .Case("unst",  ARM_MB::NSHST)
3865       .Case("osh",   ARM_MB::OSH)
3866       .Case("oshst", ARM_MB::OSHST)
3867       .Case("oshld", ARM_MB::OSHLD)
3868       .Default(~0U);
3869
3870     // ishld, oshld, nshld and ld are only available from ARMv8.
3871     if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD ||
3872                         Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD))
3873       Opt = ~0U;
3874
3875     if (Opt == ~0U)
3876       return MatchOperand_NoMatch;
3877
3878     Parser.Lex(); // Eat identifier token.
3879   } else if (Tok.is(AsmToken::Hash) ||
3880              Tok.is(AsmToken::Dollar) ||
3881              Tok.is(AsmToken::Integer)) {
3882     if (Parser.getTok().isNot(AsmToken::Integer))
3883       Parser.Lex(); // Eat '#' or '$'.
3884     SMLoc Loc = Parser.getTok().getLoc();
3885
3886     const MCExpr *MemBarrierID;
3887     if (getParser().parseExpression(MemBarrierID)) {
3888       Error(Loc, "illegal expression");
3889       return MatchOperand_ParseFail;
3890     }
3891
3892     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID);
3893     if (!CE) {
3894       Error(Loc, "constant expression expected");
3895       return MatchOperand_ParseFail;
3896     }
3897
3898     int Val = CE->getValue();
3899     if (Val & ~0xf) {
3900       Error(Loc, "immediate value out of range");
3901       return MatchOperand_ParseFail;
3902     }
3903
3904     Opt = ARM_MB::RESERVED_0 + Val;
3905   } else
3906     return MatchOperand_ParseFail;
3907
3908   Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
3909   return MatchOperand_Success;
3910 }
3911
3912 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options.
3913 ARMAsmParser::OperandMatchResultTy
3914 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) {
3915   MCAsmParser &Parser = getParser();
3916   SMLoc S = Parser.getTok().getLoc();
3917   const AsmToken &Tok = Parser.getTok();
3918   unsigned Opt;
3919
3920   if (Tok.is(AsmToken::Identifier)) {
3921     StringRef OptStr = Tok.getString();
3922
3923     if (OptStr.equals_lower("sy"))
3924       Opt = ARM_ISB::SY;
3925     else
3926       return MatchOperand_NoMatch;
3927
3928     Parser.Lex(); // Eat identifier token.
3929   } else if (Tok.is(AsmToken::Hash) ||
3930              Tok.is(AsmToken::Dollar) ||
3931              Tok.is(AsmToken::Integer)) {
3932     if (Parser.getTok().isNot(AsmToken::Integer))
3933       Parser.Lex(); // Eat '#' or '$'.
3934     SMLoc Loc = Parser.getTok().getLoc();
3935
3936     const MCExpr *ISBarrierID;
3937     if (getParser().parseExpression(ISBarrierID)) {
3938       Error(Loc, "illegal expression");
3939       return MatchOperand_ParseFail;
3940     }
3941
3942     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID);
3943     if (!CE) {
3944       Error(Loc, "constant expression expected");
3945       return MatchOperand_ParseFail;
3946     }
3947
3948     int Val = CE->getValue();
3949     if (Val & ~0xf) {
3950       Error(Loc, "immediate value out of range");
3951       return MatchOperand_ParseFail;
3952     }
3953
3954     Opt = ARM_ISB::RESERVED_0 + Val;
3955   } else
3956     return MatchOperand_ParseFail;
3957
3958   Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt(
3959           (ARM_ISB::InstSyncBOpt)Opt, S));
3960   return MatchOperand_Success;
3961 }
3962
3963
3964 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
3965 ARMAsmParser::OperandMatchResultTy
3966 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) {
3967   MCAsmParser &Parser = getParser();
3968   SMLoc S = Parser.getTok().getLoc();
3969   const AsmToken &Tok = Parser.getTok();
3970   if (!Tok.is(AsmToken::Identifier)) 
3971     return MatchOperand_NoMatch;
3972   StringRef IFlagsStr = Tok.getString();
3973
3974   // An iflags string of "none" is interpreted to mean that none of the AIF
3975   // bits are set.  Not a terribly useful instruction, but a valid encoding.
3976   unsigned IFlags = 0;
3977   if (IFlagsStr != "none") {
3978         for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
3979       unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1))
3980         .Case("a", ARM_PROC::A)
3981         .Case("i", ARM_PROC::I)
3982         .Case("f", ARM_PROC::F)
3983         .Default(~0U);
3984
3985       // If some specific iflag is already set, it means that some letter is
3986       // present more than once, this is not acceptable.
3987       if (Flag == ~0U || (IFlags & Flag))
3988         return MatchOperand_NoMatch;
3989
3990       IFlags |= Flag;
3991     }
3992   }
3993
3994   Parser.Lex(); // Eat identifier token.
3995   Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
3996   return MatchOperand_Success;
3997 }
3998
3999 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
4000 ARMAsmParser::OperandMatchResultTy
4001 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) {
4002   MCAsmParser &Parser = getParser();
4003   SMLoc S = Parser.getTok().getLoc();
4004   const AsmToken &Tok = Parser.getTok();
4005   if (!Tok.is(AsmToken::Identifier))
4006     return MatchOperand_NoMatch;
4007   StringRef Mask = Tok.getString();
4008
4009   if (isMClass()) {
4010     // See ARMv6-M 10.1.1
4011     std::string Name = Mask.lower();
4012     unsigned FlagsVal = StringSwitch<unsigned>(Name)
4013       // Note: in the documentation:
4014       //  ARM deprecates using MSR APSR without a _<bits> qualifier as an alias
4015       //  for MSR APSR_nzcvq.
4016       // but we do make it an alias here.  This is so to get the "mask encoding"
4017       // bits correct on MSR APSR writes.
4018       //
4019       // FIXME: Note the 0xc00 "mask encoding" bits version of the registers
4020       // should really only be allowed when writing a special register.  Note
4021       // they get dropped in the MRS instruction reading a special register as
4022       // the SYSm field is only 8 bits.
4023       .Case("apsr", 0x800)
4024       .Case("apsr_nzcvq", 0x800)
4025       .Case("apsr_g", 0x400)
4026       .Case("apsr_nzcvqg", 0xc00)
4027       .Case("iapsr", 0x801)
4028       .Case("iapsr_nzcvq", 0x801)
4029       .Case("iapsr_g", 0x401)
4030       .Case("iapsr_nzcvqg", 0xc01)
4031       .Case("eapsr", 0x802)
4032       .Case("eapsr_nzcvq", 0x802)
4033       .Case("eapsr_g", 0x402)
4034       .Case("eapsr_nzcvqg", 0xc02)
4035       .Case("xpsr", 0x803)
4036       .Case("xpsr_nzcvq", 0x803)
4037       .Case("xpsr_g", 0x403)
4038       .Case("xpsr_nzcvqg", 0xc03)
4039       .Case("ipsr", 0x805)
4040       .Case("epsr", 0x806)
4041       .Case("iepsr", 0x807)
4042       .Case("msp", 0x808)
4043       .Case("psp", 0x809)
4044       .Case("primask", 0x810)
4045       .Case("basepri", 0x811)
4046       .Case("basepri_max", 0x812)
4047       .Case("faultmask", 0x813)
4048       .Case("control", 0x814)
4049       .Default(~0U);
4050
4051     if (FlagsVal == ~0U)
4052       return MatchOperand_NoMatch;
4053
4054     if (!hasThumb2DSP() && (FlagsVal & 0x400))
4055       // The _g and _nzcvqg versions are only valid if the DSP extension is
4056       // available.
4057       return MatchOperand_NoMatch;
4058
4059     if (!hasV7Ops() && FlagsVal >= 0x811 && FlagsVal <= 0x813)
4060       // basepri, basepri_max and faultmask only valid for V7m.
4061       return MatchOperand_NoMatch;
4062
4063     Parser.Lex(); // Eat identifier token.
4064     Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
4065     return MatchOperand_Success;
4066   }
4067
4068   // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
4069   size_t Start = 0, Next = Mask.find('_');
4070   StringRef Flags = "";
4071   std::string SpecReg = Mask.slice(Start, Next).lower();
4072   if (Next != StringRef::npos)
4073     Flags = Mask.slice(Next+1, Mask.size());
4074
4075   // FlagsVal contains the complete mask:
4076   // 3-0: Mask
4077   // 4: Special Reg (cpsr, apsr => 0; spsr => 1)
4078   unsigned FlagsVal = 0;
4079
4080   if (SpecReg == "apsr") {
4081     FlagsVal = StringSwitch<unsigned>(Flags)
4082     .Case("nzcvq",  0x8) // same as CPSR_f
4083     .Case("g",      0x4) // same as CPSR_s
4084     .Case("nzcvqg", 0xc) // same as CPSR_fs
4085     .Default(~0U);
4086
4087     if (FlagsVal == ~0U) {
4088       if (!Flags.empty())
4089         return MatchOperand_NoMatch;
4090       else
4091         FlagsVal = 8; // No flag
4092     }
4093   } else if (SpecReg == "cpsr" || SpecReg == "spsr") {
4094     // cpsr_all is an alias for cpsr_fc, as is plain cpsr.
4095     if (Flags == "all" || Flags == "")
4096       Flags = "fc";
4097     for (int i = 0, e = Flags.size(); i != e; ++i) {
4098       unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1))
4099       .Case("c", 1)
4100       .Case("x", 2)
4101       .Case("s", 4)
4102       .Case("f", 8)
4103       .Default(~0U);
4104
4105       // If some specific flag is already set, it means that some letter is
4106       // present more than once, this is not acceptable.
4107       if (FlagsVal == ~0U || (FlagsVal & Flag))
4108         return MatchOperand_NoMatch;
4109       FlagsVal |= Flag;
4110     }
4111   } else // No match for special register.
4112     return MatchOperand_NoMatch;
4113
4114   // Special register without flags is NOT equivalent to "fc" flags.
4115   // NOTE: This is a divergence from gas' behavior.  Uncommenting the following
4116   // two lines would enable gas compatibility at the expense of breaking
4117   // round-tripping.
4118   //
4119   // if (!FlagsVal)
4120   //  FlagsVal = 0x9;
4121
4122   // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
4123   if (SpecReg == "spsr")
4124     FlagsVal |= 16;
4125
4126   Parser.Lex(); // Eat identifier token.
4127   Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
4128   return MatchOperand_Success;
4129 }
4130
4131 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for
4132 /// use in the MRS/MSR instructions added to support virtualization.
4133 ARMAsmParser::OperandMatchResultTy
4134 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) {
4135   MCAsmParser &Parser = getParser();
4136   SMLoc S = Parser.getTok().getLoc();
4137   const AsmToken &Tok = Parser.getTok();
4138   if (!Tok.is(AsmToken::Identifier))
4139     return MatchOperand_NoMatch;
4140   StringRef RegName = Tok.getString();
4141
4142   // The values here come from B9.2.3 of the ARM ARM, where bits 4-0 are SysM
4143   // and bit 5 is R.
4144   unsigned Encoding = StringSwitch<unsigned>(RegName.lower())
4145                           .Case("r8_usr", 0x00)
4146                           .Case("r9_usr", 0x01)
4147                           .Case("r10_usr", 0x02)
4148                           .Case("r11_usr", 0x03)
4149                           .Case("r12_usr", 0x04)
4150                           .Case("sp_usr", 0x05)
4151                           .Case("lr_usr", 0x06)
4152                           .Case("r8_fiq", 0x08)
4153                           .Case("r9_fiq", 0x09)
4154                           .Case("r10_fiq", 0x0a)
4155                           .Case("r11_fiq", 0x0b)
4156                           .Case("r12_fiq", 0x0c)
4157                           .Case("sp_fiq", 0x0d)
4158                           .Case("lr_fiq", 0x0e)
4159                           .Case("lr_irq", 0x10)
4160                           .Case("sp_irq", 0x11)
4161                           .Case("lr_svc", 0x12)
4162                           .Case("sp_svc", 0x13)
4163                           .Case("lr_abt", 0x14)
4164                           .Case("sp_abt", 0x15)
4165                           .Case("lr_und", 0x16)
4166                           .Case("sp_und", 0x17)
4167                           .Case("lr_mon", 0x1c)
4168                           .Case("sp_mon", 0x1d)
4169                           .Case("elr_hyp", 0x1e)
4170                           .Case("sp_hyp", 0x1f)
4171                           .Case("spsr_fiq", 0x2e)
4172                           .Case("spsr_irq", 0x30)
4173                           .Case("spsr_svc", 0x32)
4174                           .Case("spsr_abt", 0x34)
4175                           .Case("spsr_und", 0x36)
4176                           .Case("spsr_mon", 0x3c)
4177                           .Case("spsr_hyp", 0x3e)
4178                           .Default(~0U);
4179
4180   if (Encoding == ~0U)
4181     return MatchOperand_NoMatch;
4182
4183   Parser.Lex(); // Eat identifier token.
4184   Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S));
4185   return MatchOperand_Success;
4186 }
4187
4188 ARMAsmParser::OperandMatchResultTy
4189 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low,
4190                           int High) {
4191   MCAsmParser &Parser = getParser();
4192   const AsmToken &Tok = Parser.getTok();
4193   if (Tok.isNot(AsmToken::Identifier)) {
4194     Error(Parser.getTok().getLoc(), Op + " operand expected.");
4195     return MatchOperand_ParseFail;
4196   }
4197   StringRef ShiftName = Tok.getString();
4198   std::string LowerOp = Op.lower();
4199   std::string UpperOp = Op.upper();
4200   if (ShiftName != LowerOp && ShiftName != UpperOp) {
4201     Error(Parser.getTok().getLoc(), Op + " operand expected.");
4202     return MatchOperand_ParseFail;
4203   }
4204   Parser.Lex(); // Eat shift type token.
4205
4206   // There must be a '#' and a shift amount.
4207   if (Parser.getTok().isNot(AsmToken::Hash) &&
4208       Parser.getTok().isNot(AsmToken::Dollar)) {
4209     Error(Parser.getTok().getLoc(), "'#' expected");
4210     return MatchOperand_ParseFail;
4211   }
4212   Parser.Lex(); // Eat hash token.
4213
4214   const MCExpr *ShiftAmount;
4215   SMLoc Loc = Parser.getTok().getLoc();
4216   SMLoc EndLoc;
4217   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
4218     Error(Loc, "illegal expression");
4219     return MatchOperand_ParseFail;
4220   }
4221   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
4222   if (!CE) {
4223     Error(Loc, "constant expression expected");
4224     return MatchOperand_ParseFail;
4225   }
4226   int Val = CE->getValue();
4227   if (Val < Low || Val > High) {
4228     Error(Loc, "immediate value out of range");
4229     return MatchOperand_ParseFail;
4230   }
4231
4232   Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc));
4233
4234   return MatchOperand_Success;
4235 }
4236
4237 ARMAsmParser::OperandMatchResultTy
4238 ARMAsmParser::parseSetEndImm(OperandVector &Operands) {
4239   MCAsmParser &Parser = getParser();
4240   const AsmToken &Tok = Parser.getTok();
4241   SMLoc S = Tok.getLoc();
4242   if (Tok.isNot(AsmToken::Identifier)) {
4243     Error(S, "'be' or 'le' operand expected");
4244     return MatchOperand_ParseFail;
4245   }
4246   int Val = StringSwitch<int>(Tok.getString().lower())
4247     .Case("be", 1)
4248     .Case("le", 0)
4249     .Default(-1);
4250   Parser.Lex(); // Eat the token.
4251
4252   if (Val == -1) {
4253     Error(S, "'be' or 'le' operand expected");
4254     return MatchOperand_ParseFail;
4255   }
4256   Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::Create(Val,
4257                                                                   getContext()),
4258                                            S, Tok.getEndLoc()));
4259   return MatchOperand_Success;
4260 }
4261
4262 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
4263 /// instructions. Legal values are:
4264 ///     lsl #n  'n' in [0,31]
4265 ///     asr #n  'n' in [1,32]
4266 ///             n == 32 encoded as n == 0.
4267 ARMAsmParser::OperandMatchResultTy
4268 ARMAsmParser::parseShifterImm(OperandVector &Operands) {
4269   MCAsmParser &Parser = getParser();
4270   const AsmToken &Tok = Parser.getTok();
4271   SMLoc S = Tok.getLoc();
4272   if (Tok.isNot(AsmToken::Identifier)) {
4273     Error(S, "shift operator 'asr' or 'lsl' expected");
4274     return MatchOperand_ParseFail;
4275   }
4276   StringRef ShiftName = Tok.getString();
4277   bool isASR;
4278   if (ShiftName == "lsl" || ShiftName == "LSL")
4279     isASR = false;
4280   else if (ShiftName == "asr" || ShiftName == "ASR")
4281     isASR = true;
4282   else {
4283     Error(S, "shift operator 'asr' or 'lsl' expected");
4284     return MatchOperand_ParseFail;
4285   }
4286   Parser.Lex(); // Eat the operator.
4287
4288   // A '#' and a shift amount.
4289   if (Parser.getTok().isNot(AsmToken::Hash) &&
4290       Parser.getTok().isNot(AsmToken::Dollar)) {
4291     Error(Parser.getTok().getLoc(), "'#' expected");
4292     return MatchOperand_ParseFail;
4293   }
4294   Parser.Lex(); // Eat hash token.
4295   SMLoc ExLoc = Parser.getTok().getLoc();
4296
4297   const MCExpr *ShiftAmount;
4298   SMLoc EndLoc;
4299   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
4300     Error(ExLoc, "malformed shift expression");
4301     return MatchOperand_ParseFail;
4302   }
4303   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
4304   if (!CE) {
4305     Error(ExLoc, "shift amount must be an immediate");
4306     return MatchOperand_ParseFail;
4307   }
4308
4309   int64_t Val = CE->getValue();
4310   if (isASR) {
4311     // Shift amount must be in [1,32]
4312     if (Val < 1 || Val > 32) {
4313       Error(ExLoc, "'asr' shift amount must be in range [1,32]");
4314       return MatchOperand_ParseFail;
4315     }
4316     // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
4317     if (isThumb() && Val == 32) {
4318       Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode");
4319       return MatchOperand_ParseFail;
4320     }
4321     if (Val == 32) Val = 0;
4322   } else {
4323     // Shift amount must be in [1,32]
4324     if (Val < 0 || Val > 31) {
4325       Error(ExLoc, "'lsr' shift amount must be in range [0,31]");
4326       return MatchOperand_ParseFail;
4327     }
4328   }
4329
4330   Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc));
4331
4332   return MatchOperand_Success;
4333 }
4334
4335 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
4336 /// of instructions. Legal values are:
4337 ///     ror #n  'n' in {0, 8, 16, 24}
4338 ARMAsmParser::OperandMatchResultTy
4339 ARMAsmParser::parseRotImm(OperandVector &Operands) {
4340   MCAsmParser &Parser = getParser();
4341   const AsmToken &Tok = Parser.getTok();
4342   SMLoc S = Tok.getLoc();
4343   if (Tok.isNot(AsmToken::Identifier))
4344     return MatchOperand_NoMatch;
4345   StringRef ShiftName = Tok.getString();
4346   if (ShiftName != "ror" && ShiftName != "ROR")
4347     return MatchOperand_NoMatch;
4348   Parser.Lex(); // Eat the operator.
4349
4350   // A '#' and a rotate amount.
4351   if (Parser.getTok().isNot(AsmToken::Hash) &&
4352       Parser.getTok().isNot(AsmToken::Dollar)) {
4353     Error(Parser.getTok().getLoc(), "'#' expected");
4354     return MatchOperand_ParseFail;
4355   }
4356   Parser.Lex(); // Eat hash token.
4357   SMLoc ExLoc = Parser.getTok().getLoc();
4358
4359   const MCExpr *ShiftAmount;
4360   SMLoc EndLoc;
4361   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
4362     Error(ExLoc, "malformed rotate expression");
4363     return MatchOperand_ParseFail;
4364   }
4365   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
4366   if (!CE) {
4367     Error(ExLoc, "rotate amount must be an immediate");
4368     return MatchOperand_ParseFail;
4369   }
4370
4371   int64_t Val = CE->getValue();
4372   // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
4373   // normally, zero is represented in asm by omitting the rotate operand
4374   // entirely.
4375   if (Val != 8 && Val != 16 && Val != 24 && Val != 0) {
4376     Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24");
4377     return MatchOperand_ParseFail;
4378   }
4379
4380   Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc));
4381
4382   return MatchOperand_Success;
4383 }
4384
4385 ARMAsmParser::OperandMatchResultTy
4386 ARMAsmParser::parseModImm(OperandVector &Operands) {
4387   MCAsmParser &Parser = getParser();
4388   MCAsmLexer &Lexer = getLexer();
4389   int64_t Imm1, Imm2;
4390
4391   SMLoc S = Parser.getTok().getLoc();
4392
4393   // 1) A mod_imm operand can appear in the place of a register name:
4394   //   add r0, #mod_imm
4395   //   add r0, r0, #mod_imm
4396   // to correctly handle the latter, we bail out as soon as we see an
4397   // identifier.
4398   //
4399   // 2) Similarly, we do not want to parse into complex operands:
4400   //   mov r0, #mod_imm
4401   //   mov r0, :lower16:(_foo)
4402   if (Parser.getTok().is(AsmToken::Identifier) ||
4403       Parser.getTok().is(AsmToken::Colon))
4404     return MatchOperand_NoMatch;
4405
4406   // Hash (dollar) is optional as per the ARMARM
4407   if (Parser.getTok().is(AsmToken::Hash) ||
4408       Parser.getTok().is(AsmToken::Dollar)) {
4409     // Avoid parsing into complex operands (#:)
4410     if (Lexer.peekTok().is(AsmToken::Colon))
4411       return MatchOperand_NoMatch;
4412
4413     // Eat the hash (dollar)
4414     Parser.Lex();
4415   }
4416
4417   SMLoc Sx1, Ex1;
4418   Sx1 = Parser.getTok().getLoc();
4419   const MCExpr *Imm1Exp;
4420   if (getParser().parseExpression(Imm1Exp, Ex1)) {
4421     Error(Sx1, "malformed expression");
4422     return MatchOperand_ParseFail;
4423   }
4424
4425   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp);
4426
4427   if (CE) {
4428     // Immediate must fit within 32-bits
4429     Imm1 = CE->getValue();
4430     int Enc = ARM_AM::getSOImmVal(Imm1);
4431     if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) {
4432       // We have a match!
4433       Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF),
4434                                                   (Enc & 0xF00) >> 7,
4435                                                   Sx1, Ex1));
4436       return MatchOperand_Success;
4437     }
4438
4439     // We have parsed an immediate which is not for us, fallback to a plain
4440     // immediate. This can happen for instruction aliases. For an example,
4441     // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform
4442     // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite
4443     // instruction with a mod_imm operand. The alias is defined such that the
4444     // parser method is shared, that's why we have to do this here.
4445     if (Parser.getTok().is(AsmToken::EndOfStatement)) {
4446       Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
4447       return MatchOperand_Success;
4448     }
4449   } else {
4450     // Operands like #(l1 - l2) can only be evaluated at a later stage (via an
4451     // MCFixup). Fallback to a plain immediate.
4452     Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
4453     return MatchOperand_Success;
4454   }
4455
4456   // From this point onward, we expect the input to be a (#bits, #rot) pair
4457   if (Parser.getTok().isNot(AsmToken::Comma)) {
4458     Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]");
4459     return MatchOperand_ParseFail;
4460   }
4461
4462   if (Imm1 & ~0xFF) {
4463     Error(Sx1, "immediate operand must a number in the range [0, 255]");
4464     return MatchOperand_ParseFail;
4465   }
4466
4467   // Eat the comma
4468   Parser.Lex();
4469
4470   // Repeat for #rot
4471   SMLoc Sx2, Ex2;
4472   Sx2 = Parser.getTok().getLoc();
4473
4474   // Eat the optional hash (dollar)
4475   if (Parser.getTok().is(AsmToken::Hash) ||
4476       Parser.getTok().is(AsmToken::Dollar))
4477     Parser.Lex();
4478
4479   const MCExpr *Imm2Exp;
4480   if (getParser().parseExpression(Imm2Exp, Ex2)) {
4481     Error(Sx2, "malformed expression");
4482     return MatchOperand_ParseFail;
4483   }
4484
4485   CE = dyn_cast<MCConstantExpr>(Imm2Exp);
4486
4487   if (CE) {
4488     Imm2 = CE->getValue();
4489     if (!(Imm2 & ~0x1E)) {
4490       // We have a match!
4491       Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2));
4492       return MatchOperand_Success;
4493     }
4494     Error(Sx2, "immediate operand must an even number in the range [0, 30]");
4495     return MatchOperand_ParseFail;
4496   } else {
4497     Error(Sx2, "constant expression expected");
4498     return MatchOperand_ParseFail;
4499   }
4500 }
4501
4502 ARMAsmParser::OperandMatchResultTy
4503 ARMAsmParser::parseBitfield(OperandVector &Operands) {
4504   MCAsmParser &Parser = getParser();
4505   SMLoc S = Parser.getTok().getLoc();
4506   // The bitfield descriptor is really two operands, the LSB and the width.
4507   if (Parser.getTok().isNot(AsmToken::Hash) &&
4508       Parser.getTok().isNot(AsmToken::Dollar)) {
4509     Error(Parser.getTok().getLoc(), "'#' expected");
4510     return MatchOperand_ParseFail;
4511   }
4512   Parser.Lex(); // Eat hash token.
4513
4514   const MCExpr *LSBExpr;
4515   SMLoc E = Parser.getTok().getLoc();
4516   if (getParser().parseExpression(LSBExpr)) {
4517     Error(E, "malformed immediate expression");
4518     return MatchOperand_ParseFail;
4519   }
4520   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr);
4521   if (!CE) {
4522     Error(E, "'lsb' operand must be an immediate");
4523     return MatchOperand_ParseFail;
4524   }
4525
4526   int64_t LSB = CE->getValue();
4527   // The LSB must be in the range [0,31]
4528   if (LSB < 0 || LSB > 31) {
4529     Error(E, "'lsb' operand must be in the range [0,31]");
4530     return MatchOperand_ParseFail;
4531   }
4532   E = Parser.getTok().getLoc();
4533
4534   // Expect another immediate operand.
4535   if (Parser.getTok().isNot(AsmToken::Comma)) {
4536     Error(Parser.getTok().getLoc(), "too few operands");
4537     return MatchOperand_ParseFail;
4538   }
4539   Parser.Lex(); // Eat hash token.
4540   if (Parser.getTok().isNot(AsmToken::Hash) &&
4541       Parser.getTok().isNot(AsmToken::Dollar)) {
4542     Error(Parser.getTok().getLoc(), "'#' expected");
4543     return MatchOperand_ParseFail;
4544   }
4545   Parser.Lex(); // Eat hash token.
4546
4547   const MCExpr *WidthExpr;
4548   SMLoc EndLoc;
4549   if (getParser().parseExpression(WidthExpr, EndLoc)) {
4550     Error(E, "malformed immediate expression");
4551     return MatchOperand_ParseFail;
4552   }
4553   CE = dyn_cast<MCConstantExpr>(WidthExpr);
4554   if (!CE) {
4555     Error(E, "'width' operand must be an immediate");
4556     return MatchOperand_ParseFail;
4557   }
4558
4559   int64_t Width = CE->getValue();
4560   // The LSB must be in the range [1,32-lsb]
4561   if (Width < 1 || Width > 32 - LSB) {
4562     Error(E, "'width' operand must be in the range [1,32-lsb]");
4563     return MatchOperand_ParseFail;
4564   }
4565
4566   Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc));
4567
4568   return MatchOperand_Success;
4569 }
4570
4571 ARMAsmParser::OperandMatchResultTy
4572 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) {
4573   // Check for a post-index addressing register operand. Specifically:
4574   // postidx_reg := '+' register {, shift}
4575   //              | '-' register {, shift}
4576   //              | register {, shift}
4577
4578   // This method must return MatchOperand_NoMatch without consuming any tokens
4579   // in the case where there is no match, as other alternatives take other
4580   // parse methods.
4581   MCAsmParser &Parser = getParser();
4582   AsmToken Tok = Parser.getTok();
4583   SMLoc S = Tok.getLoc();
4584   bool haveEaten = false;
4585   bool isAdd = true;
4586   if (Tok.is(AsmToken::Plus)) {
4587     Parser.Lex(); // Eat the '+' token.
4588     haveEaten = true;
4589   } else if (Tok.is(AsmToken::Minus)) {
4590     Parser.Lex(); // Eat the '-' token.
4591     isAdd = false;
4592     haveEaten = true;
4593   }
4594
4595   SMLoc E = Parser.getTok().getEndLoc();
4596   int Reg = tryParseRegister();
4597   if (Reg == -1) {
4598     if (!haveEaten)
4599       return MatchOperand_NoMatch;
4600     Error(Parser.getTok().getLoc(), "register expected");
4601     return MatchOperand_ParseFail;
4602   }
4603
4604   ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift;
4605   unsigned ShiftImm = 0;
4606   if (Parser.getTok().is(AsmToken::Comma)) {
4607     Parser.Lex(); // Eat the ','.
4608     if (parseMemRegOffsetShift(ShiftTy, ShiftImm))
4609       return MatchOperand_ParseFail;
4610
4611     // FIXME: Only approximates end...may include intervening whitespace.
4612     E = Parser.getTok().getLoc();
4613   }
4614
4615   Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy,
4616                                                   ShiftImm, S, E));
4617
4618   return MatchOperand_Success;
4619 }
4620
4621 ARMAsmParser::OperandMatchResultTy
4622 ARMAsmParser::parseAM3Offset(OperandVector &Operands) {
4623   // Check for a post-index addressing register operand. Specifically:
4624   // am3offset := '+' register
4625   //              | '-' register
4626   //              | register
4627   //              | # imm
4628   //              | # + imm
4629   //              | # - imm
4630
4631   // This method must return MatchOperand_NoMatch without consuming any tokens
4632   // in the case where there is no match, as other alternatives take other
4633   // parse methods.
4634   MCAsmParser &Parser = getParser();
4635   AsmToken Tok = Parser.getTok();
4636   SMLoc S = Tok.getLoc();
4637
4638   // Do immediates first, as we always parse those if we have a '#'.
4639   if (Parser.getTok().is(AsmToken::Hash) ||
4640       Parser.getTok().is(AsmToken::Dollar)) {
4641     Parser.Lex(); // Eat '#' or '$'.
4642     // Explicitly look for a '-', as we need to encode negative zero
4643     // differently.
4644     bool isNegative = Parser.getTok().is(AsmToken::Minus);
4645     const MCExpr *Offset;
4646     SMLoc E;
4647     if (getParser().parseExpression(Offset, E))
4648       return MatchOperand_ParseFail;
4649     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
4650     if (!CE) {
4651       Error(S, "constant expression expected");
4652       return MatchOperand_ParseFail;
4653     }
4654     // Negative zero is encoded as the flag value INT32_MIN.
4655     int32_t Val = CE->getValue();
4656     if (isNegative && Val == 0)
4657       Val = INT32_MIN;
4658
4659     Operands.push_back(
4660       ARMOperand::CreateImm(MCConstantExpr::Create(Val, getContext()), S, E));
4661
4662     return MatchOperand_Success;
4663   }
4664
4665
4666   bool haveEaten = false;
4667   bool isAdd = true;
4668   if (Tok.is(AsmToken::Plus)) {
4669     Parser.Lex(); // Eat the '+' token.
4670     haveEaten = true;
4671   } else if (Tok.is(AsmToken::Minus)) {
4672     Parser.Lex(); // Eat the '-' token.
4673     isAdd = false;
4674     haveEaten = true;
4675   }
4676
4677   Tok = Parser.getTok();
4678   int Reg = tryParseRegister();
4679   if (Reg == -1) {
4680     if (!haveEaten)
4681       return MatchOperand_NoMatch;
4682     Error(Tok.getLoc(), "register expected");
4683     return MatchOperand_ParseFail;
4684   }
4685
4686   Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift,
4687                                                   0, S, Tok.getEndLoc()));
4688
4689   return MatchOperand_Success;
4690 }
4691
4692 /// Convert parsed operands to MCInst.  Needed here because this instruction
4693 /// only has two register operands, but multiplication is commutative so
4694 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN".
4695 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst,
4696                                     const OperandVector &Operands) {
4697   ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1);
4698   ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1);
4699   // If we have a three-operand form, make sure to set Rn to be the operand
4700   // that isn't the same as Rd.
4701   unsigned RegOp = 4;
4702   if (Operands.size() == 6 &&
4703       ((ARMOperand &)*Operands[4]).getReg() ==
4704           ((ARMOperand &)*Operands[3]).getReg())
4705     RegOp = 5;
4706   ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1);
4707   Inst.addOperand(Inst.getOperand(0));
4708   ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2);
4709 }
4710
4711 void ARMAsmParser::cvtThumbBranches(MCInst &Inst,
4712                                     const OperandVector &Operands) {
4713   int CondOp = -1, ImmOp = -1;
4714   switch(Inst.getOpcode()) {
4715     case ARM::tB:
4716     case ARM::tBcc:  CondOp = 1; ImmOp = 2; break;
4717
4718     case ARM::t2B:
4719     case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break;
4720
4721     default: llvm_unreachable("Unexpected instruction in cvtThumbBranches");
4722   }
4723   // first decide whether or not the branch should be conditional
4724   // by looking at it's location relative to an IT block
4725   if(inITBlock()) {
4726     // inside an IT block we cannot have any conditional branches. any 
4727     // such instructions needs to be converted to unconditional form
4728     switch(Inst.getOpcode()) {
4729       case ARM::tBcc: Inst.setOpcode(ARM::tB); break;
4730       case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break;
4731     }
4732   } else {
4733     // outside IT blocks we can only have unconditional branches with AL
4734     // condition code or conditional branches with non-AL condition code
4735     unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode();
4736     switch(Inst.getOpcode()) {
4737       case ARM::tB:
4738       case ARM::tBcc: 
4739         Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 
4740         break;
4741       case ARM::t2B:
4742       case ARM::t2Bcc: 
4743         Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc);
4744         break;
4745     }
4746   }
4747
4748   // now decide on encoding size based on branch target range
4749   switch(Inst.getOpcode()) {
4750     // classify tB as either t2B or t1B based on range of immediate operand
4751     case ARM::tB: {
4752       ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
4753       if (!op.isSignedOffset<11, 1>() && isThumbTwo())
4754         Inst.setOpcode(ARM::t2B);
4755       break;
4756     }
4757     // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand
4758     case ARM::tBcc: {
4759       ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
4760       if (!op.isSignedOffset<8, 1>() && isThumbTwo())
4761         Inst.setOpcode(ARM::t2Bcc);
4762       break;
4763     }
4764   }
4765   ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1);
4766   ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2);
4767 }
4768
4769 /// Parse an ARM memory expression, return false if successful else return true
4770 /// or an error.  The first token must be a '[' when called.
4771 bool ARMAsmParser::parseMemory(OperandVector &Operands) {
4772   MCAsmParser &Parser = getParser();
4773   SMLoc S, E;
4774   assert(Parser.getTok().is(AsmToken::LBrac) &&
4775          "Token is not a Left Bracket");
4776   S = Parser.getTok().getLoc();
4777   Parser.Lex(); // Eat left bracket token.
4778
4779   const AsmToken &BaseRegTok = Parser.getTok();
4780   int BaseRegNum = tryParseRegister();
4781   if (BaseRegNum == -1)
4782     return Error(BaseRegTok.getLoc(), "register expected");
4783
4784   // The next token must either be a comma, a colon or a closing bracket.
4785   const AsmToken &Tok = Parser.getTok();
4786   if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) &&
4787       !Tok.is(AsmToken::RBrac))
4788     return Error(Tok.getLoc(), "malformed memory operand");
4789
4790   if (Tok.is(AsmToken::RBrac)) {
4791     E = Tok.getEndLoc();
4792     Parser.Lex(); // Eat right bracket token.
4793
4794     Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
4795                                              ARM_AM::no_shift, 0, 0, false,
4796                                              S, E));
4797
4798     // If there's a pre-indexing writeback marker, '!', just add it as a token
4799     // operand. It's rather odd, but syntactically valid.
4800     if (Parser.getTok().is(AsmToken::Exclaim)) {
4801       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4802       Parser.Lex(); // Eat the '!'.
4803     }
4804
4805     return false;
4806   }
4807
4808   assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) &&
4809          "Lost colon or comma in memory operand?!");
4810   if (Tok.is(AsmToken::Comma)) {
4811     Parser.Lex(); // Eat the comma.
4812   }
4813
4814   // If we have a ':', it's an alignment specifier.
4815   if (Parser.getTok().is(AsmToken::Colon)) {
4816     Parser.Lex(); // Eat the ':'.
4817     E = Parser.getTok().getLoc();
4818     SMLoc AlignmentLoc = Tok.getLoc();
4819
4820     const MCExpr *Expr;
4821     if (getParser().parseExpression(Expr))
4822      return true;
4823
4824     // The expression has to be a constant. Memory references with relocations
4825     // don't come through here, as they use the <label> forms of the relevant
4826     // instructions.
4827     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
4828     if (!CE)
4829       return Error (E, "constant expression expected");
4830
4831     unsigned Align = 0;
4832     switch (CE->getValue()) {
4833     default:
4834       return Error(E,
4835                    "alignment specifier must be 16, 32, 64, 128, or 256 bits");
4836     case 16:  Align = 2; break;
4837     case 32:  Align = 4; break;
4838     case 64:  Align = 8; break;
4839     case 128: Align = 16; break;
4840     case 256: Align = 32; break;
4841     }
4842
4843     // Now we should have the closing ']'
4844     if (Parser.getTok().isNot(AsmToken::RBrac))
4845       return Error(Parser.getTok().getLoc(), "']' expected");
4846     E = Parser.getTok().getEndLoc();
4847     Parser.Lex(); // Eat right bracket token.
4848
4849     // Don't worry about range checking the value here. That's handled by
4850     // the is*() predicates.
4851     Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
4852                                              ARM_AM::no_shift, 0, Align,
4853                                              false, S, E, AlignmentLoc));
4854
4855     // If there's a pre-indexing writeback marker, '!', just add it as a token
4856     // operand.
4857     if (Parser.getTok().is(AsmToken::Exclaim)) {
4858       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4859       Parser.Lex(); // Eat the '!'.
4860     }
4861
4862     return false;
4863   }
4864
4865   // If we have a '#', it's an immediate offset, else assume it's a register
4866   // offset. Be friendly and also accept a plain integer (without a leading
4867   // hash) for gas compatibility.
4868   if (Parser.getTok().is(AsmToken::Hash) ||
4869       Parser.getTok().is(AsmToken::Dollar) ||
4870       Parser.getTok().is(AsmToken::Integer)) {
4871     if (Parser.getTok().isNot(AsmToken::Integer))
4872       Parser.Lex(); // Eat '#' or '$'.
4873     E = Parser.getTok().getLoc();
4874
4875     bool isNegative = getParser().getTok().is(AsmToken::Minus);
4876     const MCExpr *Offset;
4877     if (getParser().parseExpression(Offset))
4878      return true;
4879
4880     // The expression has to be a constant. Memory references with relocations
4881     // don't come through here, as they use the <label> forms of the relevant
4882     // instructions.
4883     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
4884     if (!CE)
4885       return Error (E, "constant expression expected");
4886
4887     // If the constant was #-0, represent it as INT32_MIN.
4888     int32_t Val = CE->getValue();
4889     if (isNegative && Val == 0)
4890       CE = MCConstantExpr::Create(INT32_MIN, getContext());
4891
4892     // Now we should have the closing ']'
4893     if (Parser.getTok().isNot(AsmToken::RBrac))
4894       return Error(Parser.getTok().getLoc(), "']' expected");
4895     E = Parser.getTok().getEndLoc();
4896     Parser.Lex(); // Eat right bracket token.
4897
4898     // Don't worry about range checking the value here. That's handled by
4899     // the is*() predicates.
4900     Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0,
4901                                              ARM_AM::no_shift, 0, 0,
4902                                              false, S, E));
4903
4904     // If there's a pre-indexing writeback marker, '!', just add it as a token
4905     // operand.
4906     if (Parser.getTok().is(AsmToken::Exclaim)) {
4907       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4908       Parser.Lex(); // Eat the '!'.
4909     }
4910
4911     return false;
4912   }
4913
4914   // The register offset is optionally preceded by a '+' or '-'
4915   bool isNegative = false;
4916   if (Parser.getTok().is(AsmToken::Minus)) {
4917     isNegative = true;
4918     Parser.Lex(); // Eat the '-'.
4919   } else if (Parser.getTok().is(AsmToken::Plus)) {
4920     // Nothing to do.
4921     Parser.Lex(); // Eat the '+'.
4922   }
4923
4924   E = Parser.getTok().getLoc();
4925   int OffsetRegNum = tryParseRegister();
4926   if (OffsetRegNum == -1)
4927     return Error(E, "register expected");
4928
4929   // If there's a shift operator, handle it.
4930   ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift;
4931   unsigned ShiftImm = 0;
4932   if (Parser.getTok().is(AsmToken::Comma)) {
4933     Parser.Lex(); // Eat the ','.
4934     if (parseMemRegOffsetShift(ShiftType, ShiftImm))
4935       return true;
4936   }
4937
4938   // Now we should have the closing ']'
4939   if (Parser.getTok().isNot(AsmToken::RBrac))
4940     return Error(Parser.getTok().getLoc(), "']' expected");
4941   E = Parser.getTok().getEndLoc();
4942   Parser.Lex(); // Eat right bracket token.
4943
4944   Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum,
4945                                            ShiftType, ShiftImm, 0, isNegative,
4946                                            S, E));
4947
4948   // If there's a pre-indexing writeback marker, '!', just add it as a token
4949   // operand.
4950   if (Parser.getTok().is(AsmToken::Exclaim)) {
4951     Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4952     Parser.Lex(); // Eat the '!'.
4953   }
4954
4955   return false;
4956 }
4957
4958 /// parseMemRegOffsetShift - one of these two:
4959 ///   ( lsl | lsr | asr | ror ) , # shift_amount
4960 ///   rrx
4961 /// return true if it parses a shift otherwise it returns false.
4962 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
4963                                           unsigned &Amount) {
4964   MCAsmParser &Parser = getParser();
4965   SMLoc Loc = Parser.getTok().getLoc();
4966   const AsmToken &Tok = Parser.getTok();
4967   if (Tok.isNot(AsmToken::Identifier))
4968     return true;
4969   StringRef ShiftName = Tok.getString();
4970   if (ShiftName == "lsl" || ShiftName == "LSL" ||
4971       ShiftName == "asl" || ShiftName == "ASL")
4972     St = ARM_AM::lsl;
4973   else if (ShiftName == "lsr" || ShiftName == "LSR")
4974     St = ARM_AM::lsr;
4975   else if (ShiftName == "asr" || ShiftName == "ASR")
4976     St = ARM_AM::asr;
4977   else if (ShiftName == "ror" || ShiftName == "ROR")
4978     St = ARM_AM::ror;
4979   else if (ShiftName == "rrx" || ShiftName == "RRX")
4980     St = ARM_AM::rrx;
4981   else
4982     return Error(Loc, "illegal shift operator");
4983   Parser.Lex(); // Eat shift type token.
4984
4985   // rrx stands alone.
4986   Amount = 0;
4987   if (St != ARM_AM::rrx) {
4988     Loc = Parser.getTok().getLoc();
4989     // A '#' and a shift amount.
4990     const AsmToken &HashTok = Parser.getTok();
4991     if (HashTok.isNot(AsmToken::Hash) &&
4992         HashTok.isNot(AsmToken::Dollar))
4993       return Error(HashTok.getLoc(), "'#' expected");
4994     Parser.Lex(); // Eat hash token.
4995
4996     const MCExpr *Expr;
4997     if (getParser().parseExpression(Expr))
4998       return true;
4999     // Range check the immediate.
5000     // lsl, ror: 0 <= imm <= 31
5001     // lsr, asr: 0 <= imm <= 32
5002     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
5003     if (!CE)
5004       return Error(Loc, "shift amount must be an immediate");
5005     int64_t Imm = CE->getValue();
5006     if (Imm < 0 ||
5007         ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) ||
5008         ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32))
5009       return Error(Loc, "immediate shift value out of range");
5010     // If <ShiftTy> #0, turn it into a no_shift.
5011     if (Imm == 0)
5012       St = ARM_AM::lsl;
5013     // For consistency, treat lsr #32 and asr #32 as having immediate value 0.
5014     if (Imm == 32)
5015       Imm = 0;
5016     Amount = Imm;
5017   }
5018
5019   return false;
5020 }
5021
5022 /// parseFPImm - A floating point immediate expression operand.
5023 ARMAsmParser::OperandMatchResultTy
5024 ARMAsmParser::parseFPImm(OperandVector &Operands) {
5025   MCAsmParser &Parser = getParser();
5026   // Anything that can accept a floating point constant as an operand
5027   // needs to go through here, as the regular parseExpression is
5028   // integer only.
5029   //
5030   // This routine still creates a generic Immediate operand, containing
5031   // a bitcast of the 64-bit floating point value. The various operands
5032   // that accept floats can check whether the value is valid for them
5033   // via the standard is*() predicates.
5034
5035   SMLoc S = Parser.getTok().getLoc();
5036
5037   if (Parser.getTok().isNot(AsmToken::Hash) &&
5038       Parser.getTok().isNot(AsmToken::Dollar))
5039     return MatchOperand_NoMatch;
5040
5041   // Disambiguate the VMOV forms that can accept an FP immediate.
5042   // vmov.f32 <sreg>, #imm
5043   // vmov.f64 <dreg>, #imm
5044   // vmov.f32 <dreg>, #imm  @ vector f32x2
5045   // vmov.f32 <qreg>, #imm  @ vector f32x4
5046   //
5047   // There are also the NEON VMOV instructions which expect an
5048   // integer constant. Make sure we don't try to parse an FPImm
5049   // for these:
5050   // vmov.i{8|16|32|64} <dreg|qreg>, #imm
5051   ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]);
5052   bool isVmovf = TyOp.isToken() &&
5053                  (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64");
5054   ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]);
5055   bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" ||
5056                                          Mnemonic.getToken() == "fconsts");
5057   if (!(isVmovf || isFconst))
5058     return MatchOperand_NoMatch;
5059
5060   Parser.Lex(); // Eat '#' or '$'.
5061
5062   // Handle negation, as that still comes through as a separate token.
5063   bool isNegative = false;
5064   if (Parser.getTok().is(AsmToken::Minus)) {
5065     isNegative = true;
5066     Parser.Lex();
5067   }
5068   const AsmToken &Tok = Parser.getTok();
5069   SMLoc Loc = Tok.getLoc();
5070   if (Tok.is(AsmToken::Real) && isVmovf) {
5071     APFloat RealVal(APFloat::IEEEsingle, Tok.getString());
5072     uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
5073     // If we had a '-' in front, toggle the sign bit.
5074     IntVal ^= (uint64_t)isNegative << 31;
5075     Parser.Lex(); // Eat the token.
5076     Operands.push_back(ARMOperand::CreateImm(
5077           MCConstantExpr::Create(IntVal, getContext()),
5078           S, Parser.getTok().getLoc()));
5079     return MatchOperand_Success;
5080   }
5081   // Also handle plain integers. Instructions which allow floating point
5082   // immediates also allow a raw encoded 8-bit value.
5083   if (Tok.is(AsmToken::Integer) && isFconst) {
5084     int64_t Val = Tok.getIntVal();
5085     Parser.Lex(); // Eat the token.
5086     if (Val > 255 || Val < 0) {
5087       Error(Loc, "encoded floating point value out of range");
5088       return MatchOperand_ParseFail;
5089     }
5090     float RealVal = ARM_AM::getFPImmFloat(Val);
5091     Val = APFloat(RealVal).bitcastToAPInt().getZExtValue();
5092
5093     Operands.push_back(ARMOperand::CreateImm(
5094         MCConstantExpr::Create(Val, getContext()), S,
5095         Parser.getTok().getLoc()));
5096     return MatchOperand_Success;
5097   }
5098
5099   Error(Loc, "invalid floating point immediate");
5100   return MatchOperand_ParseFail;
5101 }
5102
5103 /// Parse a arm instruction operand.  For now this parses the operand regardless
5104 /// of the mnemonic.
5105 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
5106   MCAsmParser &Parser = getParser();
5107   SMLoc S, E;
5108
5109   // Check if the current operand has a custom associated parser, if so, try to
5110   // custom parse the operand, or fallback to the general approach.
5111   OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
5112   if (ResTy == MatchOperand_Success)
5113     return false;
5114   // If there wasn't a custom match, try the generic matcher below. Otherwise,
5115   // there was a match, but an error occurred, in which case, just return that
5116   // the operand parsing failed.
5117   if (ResTy == MatchOperand_ParseFail)
5118     return true;
5119
5120   switch (getLexer().getKind()) {
5121   default:
5122     Error(Parser.getTok().getLoc(), "unexpected token in operand");
5123     return true;
5124   case AsmToken::Identifier: {
5125     // If we've seen a branch mnemonic, the next operand must be a label.  This
5126     // is true even if the label is a register name.  So "br r1" means branch to
5127     // label "r1".
5128     bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl";
5129     if (!ExpectLabel) {
5130       if (!tryParseRegisterWithWriteBack(Operands))
5131         return false;
5132       int Res = tryParseShiftRegister(Operands);
5133       if (Res == 0) // success
5134         return false;
5135       else if (Res == -1) // irrecoverable error
5136         return true;
5137       // If this is VMRS, check for the apsr_nzcv operand.
5138       if (Mnemonic == "vmrs" &&
5139           Parser.getTok().getString().equals_lower("apsr_nzcv")) {
5140         S = Parser.getTok().getLoc();
5141         Parser.Lex();
5142         Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S));
5143         return false;
5144       }
5145     }
5146
5147     // Fall though for the Identifier case that is not a register or a
5148     // special name.
5149   }
5150   case AsmToken::LParen:  // parenthesized expressions like (_strcmp-4)
5151   case AsmToken::Integer: // things like 1f and 2b as a branch targets
5152   case AsmToken::String:  // quoted label names.
5153   case AsmToken::Dot: {   // . as a branch target
5154     // This was not a register so parse other operands that start with an
5155     // identifier (like labels) as expressions and create them as immediates.
5156     const MCExpr *IdVal;
5157     S = Parser.getTok().getLoc();
5158     if (getParser().parseExpression(IdVal))
5159       return true;
5160     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
5161     Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
5162     return false;
5163   }
5164   case AsmToken::LBrac:
5165     return parseMemory(Operands);
5166   case AsmToken::LCurly:
5167     return parseRegisterList(Operands);
5168   case AsmToken::Dollar:
5169   case AsmToken::Hash: {
5170     // #42 -> immediate.
5171     S = Parser.getTok().getLoc();
5172     Parser.Lex();
5173
5174     if (Parser.getTok().isNot(AsmToken::Colon)) {
5175       bool isNegative = Parser.getTok().is(AsmToken::Minus);
5176       const MCExpr *ImmVal;
5177       if (getParser().parseExpression(ImmVal))
5178         return true;
5179       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal);
5180       if (CE) {
5181         int32_t Val = CE->getValue();
5182         if (isNegative && Val == 0)
5183           ImmVal = MCConstantExpr::Create(INT32_MIN, getContext());
5184       }
5185       E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
5186       Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
5187
5188       // There can be a trailing '!' on operands that we want as a separate
5189       // '!' Token operand. Handle that here. For example, the compatibility
5190       // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'.
5191       if (Parser.getTok().is(AsmToken::Exclaim)) {
5192         Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(),
5193                                                    Parser.getTok().getLoc()));
5194         Parser.Lex(); // Eat exclaim token
5195       }
5196       return false;
5197     }
5198     // w/ a ':' after the '#', it's just like a plain ':'.
5199     // FALLTHROUGH
5200   }
5201   case AsmToken::Colon: {
5202     // ":lower16:" and ":upper16:" expression prefixes
5203     // FIXME: Check it's an expression prefix,
5204     // e.g. (FOO - :lower16:BAR) isn't legal.
5205     ARMMCExpr::VariantKind RefKind;
5206     if (parsePrefix(RefKind))
5207       return true;
5208
5209     const MCExpr *SubExprVal;
5210     if (getParser().parseExpression(SubExprVal))
5211       return true;
5212
5213     const MCExpr *ExprVal = ARMMCExpr::Create(RefKind, SubExprVal,
5214                                               getContext());
5215     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
5216     Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
5217     return false;
5218   }
5219   case AsmToken::Equal: {
5220     if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val)
5221       return Error(Parser.getTok().getLoc(), "unexpected token in operand");
5222
5223     Parser.Lex(); // Eat '='
5224     const MCExpr *SubExprVal;
5225     if (getParser().parseExpression(SubExprVal))
5226       return true;
5227     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
5228
5229     const MCExpr *CPLoc = getTargetStreamer().addConstantPoolEntry(SubExprVal);
5230     Operands.push_back(ARMOperand::CreateImm(CPLoc, S, E));
5231     return false;
5232   }
5233   }
5234 }
5235
5236 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
5237 //  :lower16: and :upper16:.
5238 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
5239   MCAsmParser &Parser = getParser();
5240   RefKind = ARMMCExpr::VK_ARM_None;
5241
5242   // consume an optional '#' (GNU compatibility)
5243   if (getLexer().is(AsmToken::Hash))
5244     Parser.Lex();
5245
5246   // :lower16: and :upper16: modifiers
5247   assert(getLexer().is(AsmToken::Colon) && "expected a :");
5248   Parser.Lex(); // Eat ':'
5249
5250   if (getLexer().isNot(AsmToken::Identifier)) {
5251     Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
5252     return true;
5253   }
5254
5255   enum {
5256     COFF = (1 << MCObjectFileInfo::IsCOFF),
5257     ELF = (1 << MCObjectFileInfo::IsELF),
5258     MACHO = (1 << MCObjectFileInfo::IsMachO)
5259   };
5260   static const struct PrefixEntry {
5261     const char *Spelling;
5262     ARMMCExpr::VariantKind VariantKind;
5263     uint8_t SupportedFormats;
5264   } PrefixEntries[] = {
5265     { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO },
5266     { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO },
5267   };
5268
5269   StringRef IDVal = Parser.getTok().getIdentifier();
5270
5271   const auto &Prefix =
5272       std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries),
5273                    [&IDVal](const PrefixEntry &PE) {
5274                       return PE.Spelling == IDVal;
5275                    });
5276   if (Prefix == std::end(PrefixEntries)) {
5277     Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
5278     return true;
5279   }
5280
5281   uint8_t CurrentFormat;
5282   switch (getContext().getObjectFileInfo()->getObjectFileType()) {
5283   case MCObjectFileInfo::IsMachO:
5284     CurrentFormat = MACHO;
5285     break;
5286   case MCObjectFileInfo::IsELF:
5287     CurrentFormat = ELF;
5288     break;
5289   case MCObjectFileInfo::IsCOFF:
5290     CurrentFormat = COFF;
5291     break;
5292   }
5293
5294   if (~Prefix->SupportedFormats & CurrentFormat) {
5295     Error(Parser.getTok().getLoc(),
5296           "cannot represent relocation in the current file format");
5297     return true;
5298   }
5299
5300   RefKind = Prefix->VariantKind;
5301   Parser.Lex();
5302
5303   if (getLexer().isNot(AsmToken::Colon)) {
5304     Error(Parser.getTok().getLoc(), "unexpected token after prefix");
5305     return true;
5306   }
5307   Parser.Lex(); // Eat the last ':'
5308
5309   return false;
5310 }
5311
5312 /// \brief Given a mnemonic, split out possible predication code and carry
5313 /// setting letters to form a canonical mnemonic and flags.
5314 //
5315 // FIXME: Would be nice to autogen this.
5316 // FIXME: This is a bit of a maze of special cases.
5317 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic,
5318                                       unsigned &PredicationCode,
5319                                       bool &CarrySetting,
5320                                       unsigned &ProcessorIMod,
5321                                       StringRef &ITMask) {
5322   PredicationCode = ARMCC::AL;
5323   CarrySetting = false;
5324   ProcessorIMod = 0;
5325
5326   // Ignore some mnemonics we know aren't predicated forms.
5327   //
5328   // FIXME: Would be nice to autogen this.
5329   if ((Mnemonic == "movs" && isThumb()) ||
5330       Mnemonic == "teq"   || Mnemonic == "vceq"   || Mnemonic == "svc"   ||
5331       Mnemonic == "mls"   || Mnemonic == "smmls"  || Mnemonic == "vcls"  ||
5332       Mnemonic == "vmls"  || Mnemonic == "vnmls"  || Mnemonic == "vacge" ||
5333       Mnemonic == "vcge"  || Mnemonic == "vclt"   || Mnemonic == "vacgt" ||
5334       Mnemonic == "vaclt" || Mnemonic == "vacle"  || Mnemonic == "hlt" ||
5335       Mnemonic == "vcgt"  || Mnemonic == "vcle"   || Mnemonic == "smlal" ||
5336       Mnemonic == "umaal" || Mnemonic == "umlal"  || Mnemonic == "vabal" ||
5337       Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" ||
5338       Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" ||
5339       Mnemonic == "vcvta" || Mnemonic == "vcvtn"  || Mnemonic == "vcvtp" ||
5340       Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" ||
5341       Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" ||
5342       Mnemonic.startswith("vsel"))
5343     return Mnemonic;
5344
5345   // First, split out any predication code. Ignore mnemonics we know aren't
5346   // predicated but do have a carry-set and so weren't caught above.
5347   if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" &&
5348       Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" &&
5349       Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" &&
5350       Mnemonic != "sbcs" && Mnemonic != "rscs") {
5351     unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2))
5352       .Case("eq", ARMCC::EQ)
5353       .Case("ne", ARMCC::NE)
5354       .Case("hs", ARMCC::HS)
5355       .Case("cs", ARMCC::HS)
5356       .Case("lo", ARMCC::LO)
5357       .Case("cc", ARMCC::LO)
5358       .Case("mi", ARMCC::MI)
5359       .Case("pl", ARMCC::PL)
5360       .Case("vs", ARMCC::VS)
5361       .Case("vc", ARMCC::VC)
5362       .Case("hi", ARMCC::HI)
5363       .Case("ls", ARMCC::LS)
5364       .Case("ge", ARMCC::GE)
5365       .Case("lt", ARMCC::LT)
5366       .Case("gt", ARMCC::GT)
5367       .Case("le", ARMCC::LE)
5368       .Case("al", ARMCC::AL)
5369       .Default(~0U);
5370     if (CC != ~0U) {
5371       Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
5372       PredicationCode = CC;
5373     }
5374   }
5375
5376   // Next, determine if we have a carry setting bit. We explicitly ignore all
5377   // the instructions we know end in 's'.
5378   if (Mnemonic.endswith("s") &&
5379       !(Mnemonic == "cps" || Mnemonic == "mls" ||
5380         Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" ||
5381         Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" ||
5382         Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" ||
5383         Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" ||
5384         Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" ||
5385         Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" ||
5386         Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" ||
5387         Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" ||
5388         (Mnemonic == "movs" && isThumb()))) {
5389     Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
5390     CarrySetting = true;
5391   }
5392
5393   // The "cps" instruction can have a interrupt mode operand which is glued into
5394   // the mnemonic. Check if this is the case, split it and parse the imod op
5395   if (Mnemonic.startswith("cps")) {
5396     // Split out any imod code.
5397     unsigned IMod =
5398       StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
5399       .Case("ie", ARM_PROC::IE)
5400       .Case("id", ARM_PROC::ID)
5401       .Default(~0U);
5402     if (IMod != ~0U) {
5403       Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
5404       ProcessorIMod = IMod;
5405     }
5406   }
5407
5408   // The "it" instruction has the condition mask on the end of the mnemonic.
5409   if (Mnemonic.startswith("it")) {
5410     ITMask = Mnemonic.slice(2, Mnemonic.size());
5411     Mnemonic = Mnemonic.slice(0, 2);
5412   }
5413
5414   return Mnemonic;
5415 }
5416
5417 /// \brief Given a canonical mnemonic, determine if the instruction ever allows
5418 /// inclusion of carry set or predication code operands.
5419 //
5420 // FIXME: It would be nice to autogen this.
5421 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst,
5422                                          bool &CanAcceptCarrySet,
5423                                          bool &CanAcceptPredicationCode) {
5424   CanAcceptCarrySet =
5425       Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
5426       Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
5427       Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" ||
5428       Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" ||
5429       Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" ||
5430       Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" ||
5431       Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" ||
5432       (!isThumb() &&
5433        (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" ||
5434         Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull"));
5435
5436   if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" ||
5437       Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" ||
5438       Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" ||
5439       Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") ||
5440       Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" ||
5441       Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" ||
5442       Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" ||
5443       Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" ||
5444       Mnemonic.startswith("aes") || Mnemonic == "hvc" ||
5445       Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") ||
5446       (FullInst.startswith("vmull") && FullInst.endswith(".p64"))) {
5447     // These mnemonics are never predicable
5448     CanAcceptPredicationCode = false;
5449   } else if (!isThumb()) {
5450     // Some instructions are only predicable in Thumb mode
5451     CanAcceptPredicationCode =
5452         Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" &&
5453         Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" &&
5454         Mnemonic != "dmb" && Mnemonic != "dsb" && Mnemonic != "isb" &&
5455         Mnemonic != "pld" && Mnemonic != "pli" && Mnemonic != "pldw" &&
5456         Mnemonic != "ldc2" && Mnemonic != "ldc2l" && Mnemonic != "stc2" &&
5457         Mnemonic != "stc2l" && !Mnemonic.startswith("rfe") &&
5458         !Mnemonic.startswith("srs");
5459   } else if (isThumbOne()) {
5460     if (hasV6MOps())
5461       CanAcceptPredicationCode = Mnemonic != "movs";
5462     else
5463       CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs";
5464   } else
5465     CanAcceptPredicationCode = true;
5466 }
5467
5468 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic,
5469                                           OperandVector &Operands) {
5470   // FIXME: This is all horribly hacky. We really need a better way to deal
5471   // with optional operands like this in the matcher table.
5472
5473   // The 'mov' mnemonic is special. One variant has a cc_out operand, while
5474   // another does not. Specifically, the MOVW instruction does not. So we
5475   // special case it here and remove the defaulted (non-setting) cc_out
5476   // operand if that's the instruction we're trying to match.
5477   //
5478   // We do this as post-processing of the explicit operands rather than just
5479   // conditionally adding the cc_out in the first place because we need
5480   // to check the type of the parsed immediate operand.
5481   if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() &&
5482       !static_cast<ARMOperand &>(*Operands[4]).isModImm() &&
5483       static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() &&
5484       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
5485     return true;
5486
5487   // Register-register 'add' for thumb does not have a cc_out operand
5488   // when there are only two register operands.
5489   if (isThumb() && Mnemonic == "add" && Operands.size() == 5 &&
5490       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5491       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
5492       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
5493     return true;
5494   // Register-register 'add' for thumb does not have a cc_out operand
5495   // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
5496   // have to check the immediate range here since Thumb2 has a variant
5497   // that can handle a different range and has a cc_out operand.
5498   if (((isThumb() && Mnemonic == "add") ||
5499        (isThumbTwo() && Mnemonic == "sub")) &&
5500       Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5501       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
5502       static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP &&
5503       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
5504       ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) ||
5505        static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4()))
5506     return true;
5507   // For Thumb2, add/sub immediate does not have a cc_out operand for the
5508   // imm0_4095 variant. That's the least-preferred variant when
5509   // selecting via the generic "add" mnemonic, so to know that we
5510   // should remove the cc_out operand, we have to explicitly check that
5511   // it's not one of the other variants. Ugh.
5512   if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
5513       Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5514       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
5515       static_cast<ARMOperand &>(*Operands[5]).isImm()) {
5516     // Nest conditions rather than one big 'if' statement for readability.
5517     //
5518     // If both registers are low, we're in an IT block, and the immediate is
5519     // in range, we should use encoding T1 instead, which has a cc_out.
5520     if (inITBlock() &&
5521         isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) &&
5522         isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) &&
5523         static_cast<ARMOperand &>(*Operands[5]).isImm0_7())
5524       return false;
5525     // Check against T3. If the second register is the PC, this is an
5526     // alternate form of ADR, which uses encoding T4, so check for that too.
5527     if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC &&
5528         static_cast<ARMOperand &>(*Operands[5]).isT2SOImm())
5529       return false;
5530
5531     // Otherwise, we use encoding T4, which does not have a cc_out
5532     // operand.
5533     return true;
5534   }
5535
5536   // The thumb2 multiply instruction doesn't have a CCOut register, so
5537   // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
5538   // use the 16-bit encoding or not.
5539   if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 &&
5540       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
5541       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5542       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
5543       static_cast<ARMOperand &>(*Operands[5]).isReg() &&
5544       // If the registers aren't low regs, the destination reg isn't the
5545       // same as one of the source regs, or the cc_out operand is zero
5546       // outside of an IT block, we have to use the 32-bit encoding, so
5547       // remove the cc_out operand.
5548       (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
5549        !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
5550        !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) ||
5551        !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() !=
5552                             static_cast<ARMOperand &>(*Operands[5]).getReg() &&
5553                         static_cast<ARMOperand &>(*Operands[3]).getReg() !=
5554                             static_cast<ARMOperand &>(*Operands[4]).getReg())))
5555     return true;
5556
5557   // Also check the 'mul' syntax variant that doesn't specify an explicit
5558   // destination register.
5559   if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 &&
5560       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
5561       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5562       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
5563       // If the registers aren't low regs  or the cc_out operand is zero
5564       // outside of an IT block, we have to use the 32-bit encoding, so
5565       // remove the cc_out operand.
5566       (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
5567        !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
5568        !inITBlock()))
5569     return true;
5570
5571
5572
5573   // Register-register 'add/sub' for thumb does not have a cc_out operand
5574   // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
5575   // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
5576   // right, this will result in better diagnostics (which operand is off)
5577   // anyway.
5578   if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") &&
5579       (Operands.size() == 5 || Operands.size() == 6) &&
5580       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5581       static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP &&
5582       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
5583       (static_cast<ARMOperand &>(*Operands[4]).isImm() ||
5584        (Operands.size() == 6 &&
5585         static_cast<ARMOperand &>(*Operands[5]).isImm())))
5586     return true;
5587
5588   return false;
5589 }
5590
5591 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic,
5592                                               OperandVector &Operands) {
5593   // VRINT{Z, R, X} have a predicate operand in VFP, but not in NEON
5594   unsigned RegIdx = 3;
5595   if ((Mnemonic == "vrintz" || Mnemonic == "vrintx" || Mnemonic == "vrintr") &&
5596       static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32") {
5597     if (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
5598         static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32")
5599       RegIdx = 4;
5600
5601     if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() &&
5602         (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
5603              static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) ||
5604          ARMMCRegisterClasses[ARM::QPRRegClassID].contains(
5605              static_cast<ARMOperand &>(*Operands[RegIdx]).getReg())))
5606       return true;
5607   }
5608   return false;
5609 }
5610
5611 static bool isDataTypeToken(StringRef Tok) {
5612   return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" ||
5613     Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" ||
5614     Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" ||
5615     Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" ||
5616     Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" ||
5617     Tok == ".f" || Tok == ".d";
5618 }
5619
5620 // FIXME: This bit should probably be handled via an explicit match class
5621 // in the .td files that matches the suffix instead of having it be
5622 // a literal string token the way it is now.
5623 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) {
5624   return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm");
5625 }
5626 static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features,
5627                                  unsigned VariantID);
5628
5629 static bool RequiresVFPRegListValidation(StringRef Inst,
5630                                          bool &AcceptSinglePrecisionOnly,
5631                                          bool &AcceptDoublePrecisionOnly) {
5632   if (Inst.size() < 7)
5633     return false;
5634
5635   if (Inst.startswith("fldm") || Inst.startswith("fstm")) {
5636     StringRef AddressingMode = Inst.substr(4, 2);
5637     if (AddressingMode == "ia" || AddressingMode == "db" ||
5638         AddressingMode == "ea" || AddressingMode == "fd") {
5639       AcceptSinglePrecisionOnly = Inst[6] == 's';
5640       AcceptDoublePrecisionOnly = Inst[6] == 'd' || Inst[6] == 'x';
5641       return true;
5642     }
5643   }
5644
5645   return false;
5646 }
5647
5648 /// Parse an arm instruction mnemonic followed by its operands.
5649 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
5650                                     SMLoc NameLoc, OperandVector &Operands) {
5651   MCAsmParser &Parser = getParser();
5652   // FIXME: Can this be done via tablegen in some fashion?
5653   bool RequireVFPRegisterListCheck;
5654   bool AcceptSinglePrecisionOnly;
5655   bool AcceptDoublePrecisionOnly;
5656   RequireVFPRegisterListCheck =
5657     RequiresVFPRegListValidation(Name, AcceptSinglePrecisionOnly,
5658                                  AcceptDoublePrecisionOnly);
5659
5660   // Apply mnemonic aliases before doing anything else, as the destination
5661   // mnemonic may include suffices and we want to handle them normally.
5662   // The generic tblgen'erated code does this later, at the start of
5663   // MatchInstructionImpl(), but that's too late for aliases that include
5664   // any sort of suffix.
5665   uint64_t AvailableFeatures = getAvailableFeatures();
5666   unsigned AssemblerDialect = getParser().getAssemblerDialect();
5667   applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect);
5668
5669   // First check for the ARM-specific .req directive.
5670   if (Parser.getTok().is(AsmToken::Identifier) &&
5671       Parser.getTok().getIdentifier() == ".req") {
5672     parseDirectiveReq(Name, NameLoc);
5673     // We always return 'error' for this, as we're done with this
5674     // statement and don't need to match the 'instruction."
5675     return true;
5676   }
5677
5678   // Create the leading tokens for the mnemonic, split by '.' characters.
5679   size_t Start = 0, Next = Name.find('.');
5680   StringRef Mnemonic = Name.slice(Start, Next);
5681
5682   // Split out the predication code and carry setting flag from the mnemonic.
5683   unsigned PredicationCode;
5684   unsigned ProcessorIMod;
5685   bool CarrySetting;
5686   StringRef ITMask;
5687   Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting,
5688                            ProcessorIMod, ITMask);
5689
5690   // In Thumb1, only the branch (B) instruction can be predicated.
5691   if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") {
5692     Parser.eatToEndOfStatement();
5693     return Error(NameLoc, "conditional execution not supported in Thumb1");
5694   }
5695
5696   Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc));
5697
5698   // Handle the IT instruction ITMask. Convert it to a bitmask. This
5699   // is the mask as it will be for the IT encoding if the conditional
5700   // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case
5701   // where the conditional bit0 is zero, the instruction post-processing
5702   // will adjust the mask accordingly.
5703   if (Mnemonic == "it") {
5704     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2);
5705     if (ITMask.size() > 3) {
5706       Parser.eatToEndOfStatement();
5707       return Error(Loc, "too many conditions on IT instruction");
5708     }
5709     unsigned Mask = 8;
5710     for (unsigned i = ITMask.size(); i != 0; --i) {
5711       char pos = ITMask[i - 1];
5712       if (pos != 't' && pos != 'e') {
5713         Parser.eatToEndOfStatement();
5714         return Error(Loc, "illegal IT block condition mask '" + ITMask + "'");
5715       }
5716       Mask >>= 1;
5717       if (ITMask[i - 1] == 't')
5718         Mask |= 8;
5719     }
5720     Operands.push_back(ARMOperand::CreateITMask(Mask, Loc));
5721   }
5722
5723   // FIXME: This is all a pretty gross hack. We should automatically handle
5724   // optional operands like this via tblgen.
5725
5726   // Next, add the CCOut and ConditionCode operands, if needed.
5727   //
5728   // For mnemonics which can ever incorporate a carry setting bit or predication
5729   // code, our matching model involves us always generating CCOut and
5730   // ConditionCode operands to match the mnemonic "as written" and then we let
5731   // the matcher deal with finding the right instruction or generating an
5732   // appropriate error.
5733   bool CanAcceptCarrySet, CanAcceptPredicationCode;
5734   getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode);
5735
5736   // If we had a carry-set on an instruction that can't do that, issue an
5737   // error.
5738   if (!CanAcceptCarrySet && CarrySetting) {
5739     Parser.eatToEndOfStatement();
5740     return Error(NameLoc, "instruction '" + Mnemonic +
5741                  "' can not set flags, but 's' suffix specified");
5742   }
5743   // If we had a predication code on an instruction that can't do that, issue an
5744   // error.
5745   if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) {
5746     Parser.eatToEndOfStatement();
5747     return Error(NameLoc, "instruction '" + Mnemonic +
5748                  "' is not predicable, but condition code specified");
5749   }
5750
5751   // Add the carry setting operand, if necessary.
5752   if (CanAcceptCarrySet) {
5753     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size());
5754     Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
5755                                                Loc));
5756   }
5757
5758   // Add the predication code operand, if necessary.
5759   if (CanAcceptPredicationCode) {
5760     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
5761                                       CarrySetting);
5762     Operands.push_back(ARMOperand::CreateCondCode(
5763                          ARMCC::CondCodes(PredicationCode), Loc));
5764   }
5765
5766   // Add the processor imod operand, if necessary.
5767   if (ProcessorIMod) {
5768     Operands.push_back(ARMOperand::CreateImm(
5769           MCConstantExpr::Create(ProcessorIMod, getContext()),
5770                                  NameLoc, NameLoc));
5771   } else if (Mnemonic == "cps" && isMClass()) {
5772     return Error(NameLoc, "instruction 'cps' requires effect for M-class");
5773   }
5774
5775   // Add the remaining tokens in the mnemonic.
5776   while (Next != StringRef::npos) {
5777     Start = Next;
5778     Next = Name.find('.', Start + 1);
5779     StringRef ExtraToken = Name.slice(Start, Next);
5780
5781     // Some NEON instructions have an optional datatype suffix that is
5782     // completely ignored. Check for that.
5783     if (isDataTypeToken(ExtraToken) &&
5784         doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken))
5785       continue;
5786
5787     // For for ARM mode generate an error if the .n qualifier is used.
5788     if (ExtraToken == ".n" && !isThumb()) {
5789       SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
5790       Parser.eatToEndOfStatement();
5791       return Error(Loc, "instruction with .n (narrow) qualifier not allowed in "
5792                    "arm mode");
5793     }
5794
5795     // The .n qualifier is always discarded as that is what the tables
5796     // and matcher expect.  In ARM mode the .w qualifier has no effect,
5797     // so discard it to avoid errors that can be caused by the matcher.
5798     if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) {
5799       SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
5800       Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc));
5801     }
5802   }
5803
5804   // Read the remaining operands.
5805   if (getLexer().isNot(AsmToken::EndOfStatement)) {
5806     // Read the first operand.
5807     if (parseOperand(Operands, Mnemonic)) {
5808       Parser.eatToEndOfStatement();
5809       return true;
5810     }
5811
5812     while (getLexer().is(AsmToken::Comma)) {
5813       Parser.Lex();  // Eat the comma.
5814
5815       // Parse and remember the operand.
5816       if (parseOperand(Operands, Mnemonic)) {
5817         Parser.eatToEndOfStatement();
5818         return true;
5819       }
5820     }
5821   }
5822
5823   if (getLexer().isNot(AsmToken::EndOfStatement)) {
5824     SMLoc Loc = getLexer().getLoc();
5825     Parser.eatToEndOfStatement();
5826     return Error(Loc, "unexpected token in argument list");
5827   }
5828
5829   Parser.Lex(); // Consume the EndOfStatement
5830
5831   if (RequireVFPRegisterListCheck) {
5832     ARMOperand &Op = static_cast<ARMOperand &>(*Operands.back());
5833     if (AcceptSinglePrecisionOnly && !Op.isSPRRegList())
5834       return Error(Op.getStartLoc(),
5835                    "VFP/Neon single precision register expected");
5836     if (AcceptDoublePrecisionOnly && !Op.isDPRRegList())
5837       return Error(Op.getStartLoc(),
5838                    "VFP/Neon double precision register expected");
5839   }
5840
5841   // Some instructions, mostly Thumb, have forms for the same mnemonic that
5842   // do and don't have a cc_out optional-def operand. With some spot-checks
5843   // of the operand list, we can figure out which variant we're trying to
5844   // parse and adjust accordingly before actually matching. We shouldn't ever
5845   // try to remove a cc_out operand that was explicitly set on the the
5846   // mnemonic, of course (CarrySetting == true). Reason number #317 the
5847   // table driven matcher doesn't fit well with the ARM instruction set.
5848   if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands))
5849     Operands.erase(Operands.begin() + 1);
5850
5851   // Some instructions have the same mnemonic, but don't always
5852   // have a predicate. Distinguish them here and delete the
5853   // predicate if needed.
5854   if (shouldOmitPredicateOperand(Mnemonic, Operands))
5855     Operands.erase(Operands.begin() + 1);
5856
5857   // ARM mode 'blx' need special handling, as the register operand version
5858   // is predicable, but the label operand version is not. So, we can't rely
5859   // on the Mnemonic based checking to correctly figure out when to put
5860   // a k_CondCode operand in the list. If we're trying to match the label
5861   // version, remove the k_CondCode operand here.
5862   if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 &&
5863       static_cast<ARMOperand &>(*Operands[2]).isImm())
5864     Operands.erase(Operands.begin() + 1);
5865
5866   // Adjust operands of ldrexd/strexd to MCK_GPRPair.
5867   // ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
5868   // a single GPRPair reg operand is used in the .td file to replace the two
5869   // GPRs. However, when parsing from asm, the two GRPs cannot be automatically
5870   // expressed as a GPRPair, so we have to manually merge them.
5871   // FIXME: We would really like to be able to tablegen'erate this.
5872   if (!isThumb() && Operands.size() > 4 &&
5873       (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" ||
5874        Mnemonic == "stlexd")) {
5875     bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd");
5876     unsigned Idx = isLoad ? 2 : 3;
5877     ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]);
5878     ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]);
5879
5880     const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID);
5881     // Adjust only if Op1 and Op2 are GPRs.
5882     if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) &&
5883         MRC.contains(Op2.getReg())) {
5884       unsigned Reg1 = Op1.getReg();
5885       unsigned Reg2 = Op2.getReg();
5886       unsigned Rt = MRI->getEncodingValue(Reg1);
5887       unsigned Rt2 = MRI->getEncodingValue(Reg2);
5888
5889       // Rt2 must be Rt + 1 and Rt must be even.
5890       if (Rt + 1 != Rt2 || (Rt & 1)) {
5891         Error(Op2.getStartLoc(), isLoad
5892                                      ? "destination operands must be sequential"
5893                                      : "source operands must be sequential");
5894         return true;
5895       }
5896       unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0,
5897           &(MRI->getRegClass(ARM::GPRPairRegClassID)));
5898       Operands[Idx] =
5899           ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc());
5900       Operands.erase(Operands.begin() + Idx + 1);
5901     }
5902   }
5903
5904   // If first 2 operands of a 3 operand instruction are the same
5905   // then transform to 2 operand version of the same instruction
5906   // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1'
5907   // FIXME: We would really like to be able to tablegen'erate this.
5908   if (isThumbOne() && Operands.size() == 6 &&
5909        (Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" ||
5910         Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
5911         Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" ||
5912         Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) {
5913       ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]);
5914       ARMOperand &Op4 = static_cast<ARMOperand &>(*Operands[4]);
5915       ARMOperand &Op5 = static_cast<ARMOperand &>(*Operands[5]);
5916
5917       // If both registers are the same then remove one of them from
5918       // the operand list.
5919       if (Op3.isReg() && Op4.isReg() && Op3.getReg() == Op4.getReg()) {
5920           // If 3rd operand (variable Op5) is a register and the instruction is adds/sub
5921           // then do not transform as the backend already handles this instruction
5922           // correctly.
5923           if (!Op5.isReg() || !((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub")) {
5924               Operands.erase(Operands.begin() + 3);
5925               if (Mnemonic == "add" && !CarrySetting) {
5926                   // Special case for 'add' (not 'adds') instruction must
5927                   // remove the CCOut operand as well.
5928                   Operands.erase(Operands.begin() + 1);
5929               }
5930           }
5931       }
5932   }
5933
5934   // If instruction is 'add' and first two register operands
5935   // use SP register, then remove one of the SP registers from
5936   // the instruction.
5937   // FIXME: We would really like to be able to tablegen'erate this.
5938   if (isThumbOne() && Operands.size() == 5 && Mnemonic == "add" && !CarrySetting) {
5939       ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]);
5940       ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]);
5941       if (Op2.isReg() && Op3.isReg() && Op2.getReg() == ARM::SP && Op3.getReg() == ARM::SP) {
5942           Operands.erase(Operands.begin() + 2);
5943       }
5944   }
5945
5946   // GNU Assembler extension (compatibility)
5947   if ((Mnemonic == "ldrd" || Mnemonic == "strd")) {
5948     ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]);
5949     ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]);
5950     if (Op3.isMem()) {
5951       assert(Op2.isReg() && "expected register argument");
5952
5953       unsigned SuperReg = MRI->getMatchingSuperReg(
5954           Op2.getReg(), ARM::gsub_0, &MRI->getRegClass(ARM::GPRPairRegClassID));
5955
5956       assert(SuperReg && "expected register pair");
5957
5958       unsigned PairedReg = MRI->getSubReg(SuperReg, ARM::gsub_1);
5959
5960       Operands.insert(
5961           Operands.begin() + 3,
5962           ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc()));
5963     }
5964   }
5965
5966   // FIXME: As said above, this is all a pretty gross hack.  This instruction
5967   // does not fit with other "subs" and tblgen.
5968   // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction
5969   // so the Mnemonic is the original name "subs" and delete the predicate
5970   // operand so it will match the table entry.
5971   if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 &&
5972       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5973       static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC &&
5974       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
5975       static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR &&
5976       static_cast<ARMOperand &>(*Operands[5]).isImm()) {
5977     Operands.front() = ARMOperand::CreateToken(Name, NameLoc);
5978     Operands.erase(Operands.begin() + 1);
5979   }
5980   return false;
5981 }
5982
5983 // Validate context-sensitive operand constraints.
5984
5985 // return 'true' if register list contains non-low GPR registers,
5986 // 'false' otherwise. If Reg is in the register list or is HiReg, set
5987 // 'containsReg' to true.
5988 static bool checkLowRegisterList(MCInst Inst, unsigned OpNo, unsigned Reg,
5989                                  unsigned HiReg, bool &containsReg) {
5990   containsReg = false;
5991   for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
5992     unsigned OpReg = Inst.getOperand(i).getReg();
5993     if (OpReg == Reg)
5994       containsReg = true;
5995     // Anything other than a low register isn't legal here.
5996     if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg))
5997       return true;
5998   }
5999   return false;
6000 }
6001
6002 // Check if the specified regisgter is in the register list of the inst,
6003 // starting at the indicated operand number.
6004 static bool listContainsReg(MCInst &Inst, unsigned OpNo, unsigned Reg) {
6005   for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
6006     unsigned OpReg = Inst.getOperand(i).getReg();
6007     if (OpReg == Reg)
6008       return true;
6009   }
6010   return false;
6011 }
6012
6013 // Return true if instruction has the interesting property of being
6014 // allowed in IT blocks, but not being predicable.
6015 static bool instIsBreakpoint(const MCInst &Inst) {
6016     return Inst.getOpcode() == ARM::tBKPT ||
6017            Inst.getOpcode() == ARM::BKPT ||
6018            Inst.getOpcode() == ARM::tHLT ||
6019            Inst.getOpcode() == ARM::HLT;
6020
6021 }
6022
6023 bool ARMAsmParser::validatetLDMRegList(MCInst Inst,
6024                                        const OperandVector &Operands,
6025                                        unsigned ListNo, bool IsARPop) {
6026   const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
6027   bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
6028
6029   bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
6030   bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR);
6031   bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
6032
6033   if (!IsARPop && ListContainsSP)
6034     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
6035                  "SP may not be in the register list");
6036   else if (ListContainsPC && ListContainsLR)
6037     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
6038                  "PC and LR may not be in the register list simultaneously");
6039   else if (inITBlock() && !lastInITBlock() && ListContainsPC)
6040     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
6041                  "instruction must be outside of IT block or the last "
6042                  "instruction in an IT block");
6043   return false;
6044 }
6045
6046 bool ARMAsmParser::validatetSTMRegList(MCInst Inst,
6047                                        const OperandVector &Operands,
6048                                        unsigned ListNo) {
6049   const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
6050   bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
6051
6052   bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
6053   bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
6054
6055   if (ListContainsSP && ListContainsPC)
6056     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
6057                  "SP and PC may not be in the register list");
6058   else if (ListContainsSP)
6059     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
6060                  "SP may not be in the register list");
6061   else if (ListContainsPC)
6062     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
6063                  "PC may not be in the register list");
6064   return false;
6065 }
6066
6067 // FIXME: We would really like to be able to tablegen'erate this.
6068 bool ARMAsmParser::validateInstruction(MCInst &Inst,
6069                                        const OperandVector &Operands) {
6070   const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
6071   SMLoc Loc = Operands[0]->getStartLoc();
6072
6073   // Check the IT block state first.
6074   // NOTE: BKPT and HLT instructions have the interesting property of being
6075   // allowed in IT blocks, but not being predicable. They just always execute.
6076   if (inITBlock() && !instIsBreakpoint(Inst)) {
6077     unsigned Bit = 1;
6078     if (ITState.FirstCond)
6079       ITState.FirstCond = false;
6080     else
6081       Bit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1;
6082     // The instruction must be predicable.
6083     if (!MCID.isPredicable())
6084       return Error(Loc, "instructions in IT block must be predicable");
6085     unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm();
6086     unsigned ITCond = Bit ? ITState.Cond :
6087       ARMCC::getOppositeCondition(ITState.Cond);
6088     if (Cond != ITCond) {
6089       // Find the condition code Operand to get its SMLoc information.
6090       SMLoc CondLoc;
6091       for (unsigned I = 1; I < Operands.size(); ++I)
6092         if (static_cast<ARMOperand &>(*Operands[I]).isCondCode())
6093           CondLoc = Operands[I]->getStartLoc();
6094       return Error(CondLoc, "incorrect condition in IT block; got '" +
6095                    StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) +
6096                    "', but expected '" +
6097                    ARMCondCodeToString(ARMCC::CondCodes(ITCond)) + "'");
6098     }
6099   // Check for non-'al' condition codes outside of the IT block.
6100   } else if (isThumbTwo() && MCID.isPredicable() &&
6101              Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
6102              ARMCC::AL && Inst.getOpcode() != ARM::tBcc &&
6103              Inst.getOpcode() != ARM::t2Bcc)
6104     return Error(Loc, "predicated instructions must be in IT block");
6105
6106   const unsigned Opcode = Inst.getOpcode();
6107   switch (Opcode) {
6108   case ARM::LDRD:
6109   case ARM::LDRD_PRE:
6110   case ARM::LDRD_POST: {
6111     const unsigned RtReg = Inst.getOperand(0).getReg();
6112
6113     // Rt can't be R14.
6114     if (RtReg == ARM::LR)
6115       return Error(Operands[3]->getStartLoc(),
6116                    "Rt can't be R14");
6117
6118     const unsigned Rt = MRI->getEncodingValue(RtReg);
6119     // Rt must be even-numbered.
6120     if ((Rt & 1) == 1)
6121       return Error(Operands[3]->getStartLoc(),
6122                    "Rt must be even-numbered");
6123
6124     // Rt2 must be Rt + 1.
6125     const unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
6126     if (Rt2 != Rt + 1)
6127       return Error(Operands[3]->getStartLoc(),
6128                    "destination operands must be sequential");
6129
6130     if (Opcode == ARM::LDRD_PRE || Opcode == ARM::LDRD_POST) {
6131       const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg());
6132       // For addressing modes with writeback, the base register needs to be
6133       // different from the destination registers.
6134       if (Rn == Rt || Rn == Rt2)
6135         return Error(Operands[3]->getStartLoc(),
6136                      "base register needs to be different from destination "
6137                      "registers");
6138     }
6139
6140     return false;
6141   }
6142   case ARM::t2LDRDi8:
6143   case ARM::t2LDRD_PRE:
6144   case ARM::t2LDRD_POST: {
6145     // Rt2 must be different from Rt.
6146     unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
6147     unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
6148     if (Rt2 == Rt)
6149       return Error(Operands[3]->getStartLoc(),
6150                    "destination operands can't be identical");
6151     return false;
6152   }
6153   case ARM::t2BXJ: {
6154     const unsigned RmReg = Inst.getOperand(0).getReg();
6155     // Rm = SP is no longer unpredictable in v8-A
6156     if (RmReg == ARM::SP && !hasV8Ops())
6157       return Error(Operands[2]->getStartLoc(),
6158                    "r13 (SP) is an unpredictable operand to BXJ");
6159     return false;
6160   }
6161   case ARM::STRD: {
6162     // Rt2 must be Rt + 1.
6163     unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
6164     unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
6165     if (Rt2 != Rt + 1)
6166       return Error(Operands[3]->getStartLoc(),
6167                    "source operands must be sequential");
6168     return false;
6169   }
6170   case ARM::STRD_PRE:
6171   case ARM::STRD_POST: {
6172     // Rt2 must be Rt + 1.
6173     unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg());
6174     unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg());
6175     if (Rt2 != Rt + 1)
6176       return Error(Operands[3]->getStartLoc(),
6177                    "source operands must be sequential");
6178     return false;
6179   }
6180   case ARM::STR_PRE_IMM:
6181   case ARM::STR_PRE_REG:
6182   case ARM::STR_POST_IMM:
6183   case ARM::STR_POST_REG:
6184   case ARM::STRH_PRE:
6185   case ARM::STRH_POST:
6186   case ARM::STRB_PRE_IMM:
6187   case ARM::STRB_PRE_REG:
6188   case ARM::STRB_POST_IMM:
6189   case ARM::STRB_POST_REG: {
6190     // Rt must be different from Rn.
6191     const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg());
6192     const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
6193
6194     if (Rt == Rn)
6195       return Error(Operands[3]->getStartLoc(),
6196                    "source register and base register can't be identical");
6197     return false;
6198   }
6199   case ARM::LDR_PRE_IMM:
6200   case ARM::LDR_PRE_REG:
6201   case ARM::LDR_POST_IMM:
6202   case ARM::LDR_POST_REG:
6203   case ARM::LDRH_PRE:
6204   case ARM::LDRH_POST:
6205   case ARM::LDRSH_PRE:
6206   case ARM::LDRSH_POST:
6207   case ARM::LDRB_PRE_IMM:
6208   case ARM::LDRB_PRE_REG:
6209   case ARM::LDRB_POST_IMM:
6210   case ARM::LDRB_POST_REG:
6211   case ARM::LDRSB_PRE:
6212   case ARM::LDRSB_POST: {
6213     // Rt must be different from Rn.
6214     const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
6215     const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
6216
6217     if (Rt == Rn)
6218       return Error(Operands[3]->getStartLoc(),
6219                    "destination register and base register can't be identical");
6220     return false;
6221   }
6222   case ARM::SBFX:
6223   case ARM::UBFX: {
6224     // Width must be in range [1, 32-lsb].
6225     unsigned LSB = Inst.getOperand(2).getImm();
6226     unsigned Widthm1 = Inst.getOperand(3).getImm();
6227     if (Widthm1 >= 32 - LSB)
6228       return Error(Operands[5]->getStartLoc(),
6229                    "bitfield width must be in range [1,32-lsb]");
6230     return false;
6231   }
6232   // Notionally handles ARM::tLDMIA_UPD too.
6233   case ARM::tLDMIA: {
6234     // If we're parsing Thumb2, the .w variant is available and handles
6235     // most cases that are normally illegal for a Thumb1 LDM instruction.
6236     // We'll make the transformation in processInstruction() if necessary.
6237     //
6238     // Thumb LDM instructions are writeback iff the base register is not
6239     // in the register list.
6240     unsigned Rn = Inst.getOperand(0).getReg();
6241     bool HasWritebackToken =
6242         (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
6243          static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
6244     bool ListContainsBase;
6245     if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo())
6246       return Error(Operands[3 + HasWritebackToken]->getStartLoc(),
6247                    "registers must be in range r0-r7");
6248     // If we should have writeback, then there should be a '!' token.
6249     if (!ListContainsBase && !HasWritebackToken && !isThumbTwo())
6250       return Error(Operands[2]->getStartLoc(),
6251                    "writeback operator '!' expected");
6252     // If we should not have writeback, there must not be a '!'. This is
6253     // true even for the 32-bit wide encodings.
6254     if (ListContainsBase && HasWritebackToken)
6255       return Error(Operands[3]->getStartLoc(),
6256                    "writeback operator '!' not allowed when base register "
6257                    "in register list");
6258
6259     if (validatetLDMRegList(Inst, Operands, 3))
6260       return true;
6261     break;
6262   }
6263   case ARM::LDMIA_UPD:
6264   case ARM::LDMDB_UPD:
6265   case ARM::LDMIB_UPD:
6266   case ARM::LDMDA_UPD:
6267     // ARM variants loading and updating the same register are only officially
6268     // UNPREDICTABLE on v7 upwards. Goodness knows what they did before.
6269     if (!hasV7Ops())
6270       break;
6271     if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
6272       return Error(Operands.back()->getStartLoc(),
6273                    "writeback register not allowed in register list");
6274     break;
6275   case ARM::t2LDMIA:
6276   case ARM::t2LDMDB:
6277     if (validatetLDMRegList(Inst, Operands, 3))
6278       return true;
6279     break;
6280   case ARM::t2STMIA:
6281   case ARM::t2STMDB:
6282     if (validatetSTMRegList(Inst, Operands, 3))
6283       return true;
6284     break;
6285   case ARM::t2LDMIA_UPD:
6286   case ARM::t2LDMDB_UPD:
6287   case ARM::t2STMIA_UPD:
6288   case ARM::t2STMDB_UPD: {
6289     if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
6290       return Error(Operands.back()->getStartLoc(),
6291                    "writeback register not allowed in register list");
6292
6293     if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) {
6294       if (validatetLDMRegList(Inst, Operands, 3))
6295         return true;
6296     } else {
6297       if (validatetSTMRegList(Inst, Operands, 3))
6298         return true;
6299     }
6300     break;
6301   }
6302   case ARM::sysLDMIA_UPD:
6303   case ARM::sysLDMDA_UPD:
6304   case ARM::sysLDMDB_UPD:
6305   case ARM::sysLDMIB_UPD:
6306     if (!listContainsReg(Inst, 3, ARM::PC))
6307       return Error(Operands[4]->getStartLoc(),
6308                    "writeback register only allowed on system LDM "
6309                    "if PC in register-list");
6310     break;
6311   case ARM::sysSTMIA_UPD:
6312   case ARM::sysSTMDA_UPD:
6313   case ARM::sysSTMDB_UPD:
6314   case ARM::sysSTMIB_UPD:
6315     return Error(Operands[2]->getStartLoc(),
6316                  "system STM cannot have writeback register");
6317   case ARM::tMUL: {
6318     // The second source operand must be the same register as the destination
6319     // operand.
6320     //
6321     // In this case, we must directly check the parsed operands because the
6322     // cvtThumbMultiply() function is written in such a way that it guarantees
6323     // this first statement is always true for the new Inst.  Essentially, the
6324     // destination is unconditionally copied into the second source operand
6325     // without checking to see if it matches what we actually parsed.
6326     if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() !=
6327                                  ((ARMOperand &)*Operands[5]).getReg()) &&
6328         (((ARMOperand &)*Operands[3]).getReg() !=
6329          ((ARMOperand &)*Operands[4]).getReg())) {
6330       return Error(Operands[3]->getStartLoc(),
6331                    "destination register must match source register");
6332     }
6333     break;
6334   }
6335   // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
6336   // so only issue a diagnostic for thumb1. The instructions will be
6337   // switched to the t2 encodings in processInstruction() if necessary.
6338   case ARM::tPOP: {
6339     bool ListContainsBase;
6340     if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) &&
6341         !isThumbTwo())
6342       return Error(Operands[2]->getStartLoc(),
6343                    "registers must be in range r0-r7 or pc");
6344     if (validatetLDMRegList(Inst, Operands, 2, !isMClass()))
6345       return true;
6346     break;
6347   }
6348   case ARM::tPUSH: {
6349     bool ListContainsBase;
6350     if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) &&
6351         !isThumbTwo())
6352       return Error(Operands[2]->getStartLoc(),
6353                    "registers must be in range r0-r7 or lr");
6354     if (validatetSTMRegList(Inst, Operands, 2))
6355       return true;
6356     break;
6357   }
6358   case ARM::tSTMIA_UPD: {
6359     bool ListContainsBase, InvalidLowList;
6360     InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(),
6361                                           0, ListContainsBase);
6362     if (InvalidLowList && !isThumbTwo())
6363       return Error(Operands[4]->getStartLoc(),
6364                    "registers must be in range r0-r7");
6365
6366     // This would be converted to a 32-bit stm, but that's not valid if the
6367     // writeback register is in the list.
6368     if (InvalidLowList && ListContainsBase)
6369       return Error(Operands[4]->getStartLoc(),
6370                    "writeback operator '!' not allowed when base register "
6371                    "in register list");
6372
6373     if (validatetSTMRegList(Inst, Operands, 4))
6374       return true;
6375     break;
6376   }
6377   case ARM::tADDrSP: {
6378     // If the non-SP source operand and the destination operand are not the
6379     // same, we need thumb2 (for the wide encoding), or we have an error.
6380     if (!isThumbTwo() &&
6381         Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
6382       return Error(Operands[4]->getStartLoc(),
6383                    "source register must be the same as destination");
6384     }
6385     break;
6386   }
6387   // Final range checking for Thumb unconditional branch instructions.
6388   case ARM::tB:
6389     if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>())
6390       return Error(Operands[2]->getStartLoc(), "branch target out of range");
6391     break;
6392   case ARM::t2B: {
6393     int op = (Operands[2]->isImm()) ? 2 : 3;
6394     if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>())
6395       return Error(Operands[op]->getStartLoc(), "branch target out of range");
6396     break;
6397   }
6398   // Final range checking for Thumb conditional branch instructions.
6399   case ARM::tBcc:
6400     if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>())
6401       return Error(Operands[2]->getStartLoc(), "branch target out of range");
6402     break;
6403   case ARM::t2Bcc: {
6404     int Op = (Operands[2]->isImm()) ? 2 : 3;
6405     if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>())
6406       return Error(Operands[Op]->getStartLoc(), "branch target out of range");
6407     break;
6408   }
6409   case ARM::MOVi16:
6410   case ARM::t2MOVi16:
6411   case ARM::t2MOVTi16:
6412     {
6413     // We want to avoid misleadingly allowing something like "mov r0, <symbol>"
6414     // especially when we turn it into a movw and the expression <symbol> does
6415     // not have a :lower16: or :upper16 as part of the expression.  We don't
6416     // want the behavior of silently truncating, which can be unexpected and
6417     // lead to bugs that are difficult to find since this is an easy mistake
6418     // to make.
6419     int i = (Operands[3]->isImm()) ? 3 : 4;
6420     ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]);
6421     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm());
6422     if (CE) break;
6423     const MCExpr *E = dyn_cast<MCExpr>(Op.getImm());
6424     if (!E) break;
6425     const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E);
6426     if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
6427                        ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16))
6428       return Error(
6429           Op.getStartLoc(),
6430           "immediate expression for mov requires :lower16: or :upper16");
6431     break;
6432   }
6433   }
6434
6435   return false;
6436 }
6437
6438 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) {
6439   switch(Opc) {
6440   default: llvm_unreachable("unexpected opcode!");
6441   // VST1LN
6442   case ARM::VST1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
6443   case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
6444   case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
6445   case ARM::VST1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
6446   case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
6447   case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
6448   case ARM::VST1LNdAsm_8:  Spacing = 1; return ARM::VST1LNd8;
6449   case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16;
6450   case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32;
6451
6452   // VST2LN
6453   case ARM::VST2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
6454   case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
6455   case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
6456   case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
6457   case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
6458
6459   case ARM::VST2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
6460   case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
6461   case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
6462   case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
6463   case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
6464
6465   case ARM::VST2LNdAsm_8:  Spacing = 1; return ARM::VST2LNd8;
6466   case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16;
6467   case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32;
6468   case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16;
6469   case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32;
6470
6471   // VST3LN
6472   case ARM::VST3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
6473   case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
6474   case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
6475   case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD;
6476   case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
6477   case ARM::VST3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
6478   case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
6479   case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
6480   case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD;
6481   case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
6482   case ARM::VST3LNdAsm_8:  Spacing = 1; return ARM::VST3LNd8;
6483   case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16;
6484   case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32;
6485   case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16;
6486   case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32;
6487
6488   // VST3
6489   case ARM::VST3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
6490   case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
6491   case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
6492   case ARM::VST3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
6493   case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
6494   case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
6495   case ARM::VST3dWB_register_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
6496   case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
6497   case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
6498   case ARM::VST3qWB_register_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
6499   case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
6500   case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
6501   case ARM::VST3dAsm_8:  Spacing = 1; return ARM::VST3d8;
6502   case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16;
6503   case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32;
6504   case ARM::VST3qAsm_8:  Spacing = 2; return ARM::VST3q8;
6505   case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16;
6506   case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32;
6507
6508   // VST4LN
6509   case ARM::VST4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
6510   case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
6511   case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
6512   case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD;
6513   case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
6514   case ARM::VST4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
6515   case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
6516   case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
6517   case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD;
6518   case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
6519   case ARM::VST4LNdAsm_8:  Spacing = 1; return ARM::VST4LNd8;
6520   case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16;
6521   case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32;
6522   case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16;
6523   case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32;
6524
6525   // VST4
6526   case ARM::VST4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
6527   case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
6528   case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
6529   case ARM::VST4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
6530   case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
6531   case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
6532   case ARM::VST4dWB_register_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
6533   case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
6534   case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
6535   case ARM::VST4qWB_register_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
6536   case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
6537   case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
6538   case ARM::VST4dAsm_8:  Spacing = 1; return ARM::VST4d8;
6539   case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16;
6540   case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32;
6541   case ARM::VST4qAsm_8:  Spacing = 2; return ARM::VST4q8;
6542   case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16;
6543   case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32;
6544   }
6545 }
6546
6547 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) {
6548   switch(Opc) {
6549   default: llvm_unreachable("unexpected opcode!");
6550   // VLD1LN
6551   case ARM::VLD1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
6552   case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
6553   case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
6554   case ARM::VLD1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
6555   case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
6556   case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
6557   case ARM::VLD1LNdAsm_8:  Spacing = 1; return ARM::VLD1LNd8;
6558   case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16;
6559   case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32;
6560
6561   // VLD2LN
6562   case ARM::VLD2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
6563   case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
6564   case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
6565   case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD;
6566   case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
6567   case ARM::VLD2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
6568   case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
6569   case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
6570   case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD;
6571   case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
6572   case ARM::VLD2LNdAsm_8:  Spacing = 1; return ARM::VLD2LNd8;
6573   case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16;
6574   case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32;
6575   case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16;
6576   case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32;
6577
6578   // VLD3DUP
6579   case ARM::VLD3DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
6580   case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
6581   case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
6582   case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD;
6583   case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
6584   case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
6585   case ARM::VLD3DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
6586   case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
6587   case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
6588   case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD;
6589   case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
6590   case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
6591   case ARM::VLD3DUPdAsm_8:  Spacing = 1; return ARM::VLD3DUPd8;
6592   case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16;
6593   case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32;
6594   case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8;
6595   case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16;
6596   case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32;
6597
6598   // VLD3LN
6599   case ARM::VLD3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
6600   case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
6601   case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
6602   case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD;
6603   case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
6604   case ARM::VLD3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
6605   case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
6606   case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
6607   case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD;
6608   case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
6609   case ARM::VLD3LNdAsm_8:  Spacing = 1; return ARM::VLD3LNd8;
6610   case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16;
6611   case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32;
6612   case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16;
6613   case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32;
6614
6615   // VLD3
6616   case ARM::VLD3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
6617   case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
6618   case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
6619   case ARM::VLD3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
6620   case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
6621   case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
6622   case ARM::VLD3dWB_register_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
6623   case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
6624   case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
6625   case ARM::VLD3qWB_register_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
6626   case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
6627   case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
6628   case ARM::VLD3dAsm_8:  Spacing = 1; return ARM::VLD3d8;
6629   case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16;
6630   case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32;
6631   case ARM::VLD3qAsm_8:  Spacing = 2; return ARM::VLD3q8;
6632   case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16;
6633   case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32;
6634
6635   // VLD4LN
6636   case ARM::VLD4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
6637   case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
6638   case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
6639   case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
6640   case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
6641   case ARM::VLD4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
6642   case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
6643   case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
6644   case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
6645   case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
6646   case ARM::VLD4LNdAsm_8:  Spacing = 1; return ARM::VLD4LNd8;
6647   case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16;
6648   case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32;
6649   case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16;
6650   case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32;
6651
6652   // VLD4DUP
6653   case ARM::VLD4DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
6654   case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
6655   case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
6656   case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD;
6657   case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD;
6658   case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
6659   case ARM::VLD4DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
6660   case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
6661   case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
6662   case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD;
6663   case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD;
6664   case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
6665   case ARM::VLD4DUPdAsm_8:  Spacing = 1; return ARM::VLD4DUPd8;
6666   case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16;
6667   case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32;
6668   case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8;
6669   case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16;
6670   case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32;
6671
6672   // VLD4
6673   case ARM::VLD4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
6674   case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
6675   case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
6676   case ARM::VLD4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
6677   case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
6678   case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
6679   case ARM::VLD4dWB_register_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
6680   case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
6681   case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
6682   case ARM::VLD4qWB_register_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
6683   case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
6684   case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
6685   case ARM::VLD4dAsm_8:  Spacing = 1; return ARM::VLD4d8;
6686   case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16;
6687   case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32;
6688   case ARM::VLD4qAsm_8:  Spacing = 2; return ARM::VLD4q8;
6689   case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16;
6690   case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32;
6691   }
6692 }
6693
6694 bool ARMAsmParser::processInstruction(MCInst &Inst,
6695                                       const OperandVector &Operands,
6696                                       MCStreamer &Out) {
6697   switch (Inst.getOpcode()) {
6698   // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction.
6699   case ARM::LDRT_POST:
6700   case ARM::LDRBT_POST: {
6701     const unsigned Opcode =
6702       (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM
6703                                            : ARM::LDRBT_POST_IMM;
6704     MCInst TmpInst;
6705     TmpInst.setOpcode(Opcode);
6706     TmpInst.addOperand(Inst.getOperand(0));
6707     TmpInst.addOperand(Inst.getOperand(1));
6708     TmpInst.addOperand(Inst.getOperand(1));
6709     TmpInst.addOperand(MCOperand::CreateReg(0));
6710     TmpInst.addOperand(MCOperand::CreateImm(0));
6711     TmpInst.addOperand(Inst.getOperand(2));
6712     TmpInst.addOperand(Inst.getOperand(3));
6713     Inst = TmpInst;
6714     return true;
6715   }
6716   // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction.
6717   case ARM::STRT_POST:
6718   case ARM::STRBT_POST: {
6719     const unsigned Opcode =
6720       (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM
6721                                            : ARM::STRBT_POST_IMM;
6722     MCInst TmpInst;
6723     TmpInst.setOpcode(Opcode);
6724     TmpInst.addOperand(Inst.getOperand(1));
6725     TmpInst.addOperand(Inst.getOperand(0));
6726     TmpInst.addOperand(Inst.getOperand(1));
6727     TmpInst.addOperand(MCOperand::CreateReg(0));
6728     TmpInst.addOperand(MCOperand::CreateImm(0));
6729     TmpInst.addOperand(Inst.getOperand(2));
6730     TmpInst.addOperand(Inst.getOperand(3));
6731     Inst = TmpInst;
6732     return true;
6733   }
6734   // Alias for alternate form of 'ADR Rd, #imm' instruction.
6735   case ARM::ADDri: {
6736     if (Inst.getOperand(1).getReg() != ARM::PC ||
6737         Inst.getOperand(5).getReg() != 0 ||
6738         !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm()))
6739       return false;
6740     MCInst TmpInst;
6741     TmpInst.setOpcode(ARM::ADR);
6742     TmpInst.addOperand(Inst.getOperand(0));
6743     if (Inst.getOperand(2).isImm()) {
6744       // Immediate (mod_imm) will be in its encoded form, we must unencode it
6745       // before passing it to the ADR instruction.
6746       unsigned Enc = Inst.getOperand(2).getImm();
6747       TmpInst.addOperand(MCOperand::CreateImm(
6748         ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7)));
6749     } else {
6750       // Turn PC-relative expression into absolute expression.
6751       // Reading PC provides the start of the current instruction + 8 and
6752       // the transform to adr is biased by that.
6753       MCSymbol *Dot = getContext().CreateTempSymbol();
6754       Out.EmitLabel(Dot);
6755       const MCExpr *OpExpr = Inst.getOperand(2).getExpr();
6756       const MCExpr *InstPC = MCSymbolRefExpr::Create(Dot,
6757                                                      MCSymbolRefExpr::VK_None,
6758                                                      getContext());
6759       const MCExpr *Const8 = MCConstantExpr::Create(8, getContext());
6760       const MCExpr *ReadPC = MCBinaryExpr::CreateAdd(InstPC, Const8,
6761                                                      getContext());
6762       const MCExpr *FixupAddr = MCBinaryExpr::CreateAdd(ReadPC, OpExpr,
6763                                                         getContext());
6764       TmpInst.addOperand(MCOperand::CreateExpr(FixupAddr));
6765     }
6766     TmpInst.addOperand(Inst.getOperand(3));
6767     TmpInst.addOperand(Inst.getOperand(4));
6768     Inst = TmpInst;
6769     return true;
6770   }
6771   // Aliases for alternate PC+imm syntax of LDR instructions.
6772   case ARM::t2LDRpcrel:
6773     // Select the narrow version if the immediate will fit.
6774     if (Inst.getOperand(1).getImm() > 0 &&
6775         Inst.getOperand(1).getImm() <= 0xff &&
6776         !(static_cast<ARMOperand &>(*Operands[2]).isToken() &&
6777           static_cast<ARMOperand &>(*Operands[2]).getToken() == ".w"))
6778       Inst.setOpcode(ARM::tLDRpci);
6779     else
6780       Inst.setOpcode(ARM::t2LDRpci);
6781     return true;
6782   case ARM::t2LDRBpcrel:
6783     Inst.setOpcode(ARM::t2LDRBpci);
6784     return true;
6785   case ARM::t2LDRHpcrel:
6786     Inst.setOpcode(ARM::t2LDRHpci);
6787     return true;
6788   case ARM::t2LDRSBpcrel:
6789     Inst.setOpcode(ARM::t2LDRSBpci);
6790     return true;
6791   case ARM::t2LDRSHpcrel:
6792     Inst.setOpcode(ARM::t2LDRSHpci);
6793     return true;
6794   // Handle NEON VST complex aliases.
6795   case ARM::VST1LNdWB_register_Asm_8:
6796   case ARM::VST1LNdWB_register_Asm_16:
6797   case ARM::VST1LNdWB_register_Asm_32: {
6798     MCInst TmpInst;
6799     // Shuffle the operands around so the lane index operand is in the
6800     // right place.
6801     unsigned Spacing;
6802     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6803     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6804     TmpInst.addOperand(Inst.getOperand(2)); // Rn
6805     TmpInst.addOperand(Inst.getOperand(3)); // alignment
6806     TmpInst.addOperand(Inst.getOperand(4)); // Rm
6807     TmpInst.addOperand(Inst.getOperand(0)); // Vd
6808     TmpInst.addOperand(Inst.getOperand(1)); // lane
6809     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6810     TmpInst.addOperand(Inst.getOperand(6));
6811     Inst = TmpInst;
6812     return true;
6813   }
6814
6815   case ARM::VST2LNdWB_register_Asm_8:
6816   case ARM::VST2LNdWB_register_Asm_16:
6817   case ARM::VST2LNdWB_register_Asm_32:
6818   case ARM::VST2LNqWB_register_Asm_16:
6819   case ARM::VST2LNqWB_register_Asm_32: {
6820     MCInst TmpInst;
6821     // Shuffle the operands around so the lane index operand is in the
6822     // right place.
6823     unsigned Spacing;
6824     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6825     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6826     TmpInst.addOperand(Inst.getOperand(2)); // Rn
6827     TmpInst.addOperand(Inst.getOperand(3)); // alignment
6828     TmpInst.addOperand(Inst.getOperand(4)); // Rm
6829     TmpInst.addOperand(Inst.getOperand(0)); // Vd
6830     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6831                                             Spacing));
6832     TmpInst.addOperand(Inst.getOperand(1)); // lane
6833     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6834     TmpInst.addOperand(Inst.getOperand(6));
6835     Inst = TmpInst;
6836     return true;
6837   }
6838
6839   case ARM::VST3LNdWB_register_Asm_8:
6840   case ARM::VST3LNdWB_register_Asm_16:
6841   case ARM::VST3LNdWB_register_Asm_32:
6842   case ARM::VST3LNqWB_register_Asm_16:
6843   case ARM::VST3LNqWB_register_Asm_32: {
6844     MCInst TmpInst;
6845     // Shuffle the operands around so the lane index operand is in the
6846     // right place.
6847     unsigned Spacing;
6848     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6849     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6850     TmpInst.addOperand(Inst.getOperand(2)); // Rn
6851     TmpInst.addOperand(Inst.getOperand(3)); // alignment
6852     TmpInst.addOperand(Inst.getOperand(4)); // Rm
6853     TmpInst.addOperand(Inst.getOperand(0)); // Vd
6854     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6855                                             Spacing));
6856     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6857                                             Spacing * 2));
6858     TmpInst.addOperand(Inst.getOperand(1)); // lane
6859     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6860     TmpInst.addOperand(Inst.getOperand(6));
6861     Inst = TmpInst;
6862     return true;
6863   }
6864
6865   case ARM::VST4LNdWB_register_Asm_8:
6866   case ARM::VST4LNdWB_register_Asm_16:
6867   case ARM::VST4LNdWB_register_Asm_32:
6868   case ARM::VST4LNqWB_register_Asm_16:
6869   case ARM::VST4LNqWB_register_Asm_32: {
6870     MCInst TmpInst;
6871     // Shuffle the operands around so the lane index operand is in the
6872     // right place.
6873     unsigned Spacing;
6874     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6875     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6876     TmpInst.addOperand(Inst.getOperand(2)); // Rn
6877     TmpInst.addOperand(Inst.getOperand(3)); // alignment
6878     TmpInst.addOperand(Inst.getOperand(4)); // Rm
6879     TmpInst.addOperand(Inst.getOperand(0)); // Vd
6880     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6881                                             Spacing));
6882     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6883                                             Spacing * 2));
6884     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6885                                             Spacing * 3));
6886     TmpInst.addOperand(Inst.getOperand(1)); // lane
6887     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6888     TmpInst.addOperand(Inst.getOperand(6));
6889     Inst = TmpInst;
6890     return true;
6891   }
6892
6893   case ARM::VST1LNdWB_fixed_Asm_8:
6894   case ARM::VST1LNdWB_fixed_Asm_16:
6895   case ARM::VST1LNdWB_fixed_Asm_32: {
6896     MCInst TmpInst;
6897     // Shuffle the operands around so the lane index operand is in the
6898     // right place.
6899     unsigned Spacing;
6900     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6901     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6902     TmpInst.addOperand(Inst.getOperand(2)); // Rn
6903     TmpInst.addOperand(Inst.getOperand(3)); // alignment
6904     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6905     TmpInst.addOperand(Inst.getOperand(0)); // Vd
6906     TmpInst.addOperand(Inst.getOperand(1)); // lane
6907     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6908     TmpInst.addOperand(Inst.getOperand(5));
6909     Inst = TmpInst;
6910     return true;
6911   }
6912
6913   case ARM::VST2LNdWB_fixed_Asm_8:
6914   case ARM::VST2LNdWB_fixed_Asm_16:
6915   case ARM::VST2LNdWB_fixed_Asm_32:
6916   case ARM::VST2LNqWB_fixed_Asm_16:
6917   case ARM::VST2LNqWB_fixed_Asm_32: {
6918     MCInst TmpInst;
6919     // Shuffle the operands around so the lane index operand is in the
6920     // right place.
6921     unsigned Spacing;
6922     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6923     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6924     TmpInst.addOperand(Inst.getOperand(2)); // Rn
6925     TmpInst.addOperand(Inst.getOperand(3)); // alignment
6926     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6927     TmpInst.addOperand(Inst.getOperand(0)); // Vd
6928     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6929                                             Spacing));
6930     TmpInst.addOperand(Inst.getOperand(1)); // lane
6931     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6932     TmpInst.addOperand(Inst.getOperand(5));
6933     Inst = TmpInst;
6934     return true;
6935   }
6936
6937   case ARM::VST3LNdWB_fixed_Asm_8:
6938   case ARM::VST3LNdWB_fixed_Asm_16:
6939   case ARM::VST3LNdWB_fixed_Asm_32:
6940   case ARM::VST3LNqWB_fixed_Asm_16:
6941   case ARM::VST3LNqWB_fixed_Asm_32: {
6942     MCInst TmpInst;
6943     // Shuffle the operands around so the lane index operand is in the
6944     // right place.
6945     unsigned Spacing;
6946     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6947     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6948     TmpInst.addOperand(Inst.getOperand(2)); // Rn
6949     TmpInst.addOperand(Inst.getOperand(3)); // alignment
6950     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6951     TmpInst.addOperand(Inst.getOperand(0)); // Vd
6952     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6953                                             Spacing));
6954     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6955                                             Spacing * 2));
6956     TmpInst.addOperand(Inst.getOperand(1)); // lane
6957     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6958     TmpInst.addOperand(Inst.getOperand(5));
6959     Inst = TmpInst;
6960     return true;
6961   }
6962
6963   case ARM::VST4LNdWB_fixed_Asm_8:
6964   case ARM::VST4LNdWB_fixed_Asm_16:
6965   case ARM::VST4LNdWB_fixed_Asm_32:
6966   case ARM::VST4LNqWB_fixed_Asm_16:
6967   case ARM::VST4LNqWB_fixed_Asm_32: {
6968     MCInst TmpInst;
6969     // Shuffle the operands around so the lane index operand is in the
6970     // right place.
6971     unsigned Spacing;
6972     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6973     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6974     TmpInst.addOperand(Inst.getOperand(2)); // Rn
6975     TmpInst.addOperand(Inst.getOperand(3)); // alignment
6976     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6977     TmpInst.addOperand(Inst.getOperand(0)); // Vd
6978     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6979                                             Spacing));
6980     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6981                                             Spacing * 2));
6982     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6983                                             Spacing * 3));
6984     TmpInst.addOperand(Inst.getOperand(1)); // lane
6985     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6986     TmpInst.addOperand(Inst.getOperand(5));
6987     Inst = TmpInst;
6988     return true;
6989   }
6990
6991   case ARM::VST1LNdAsm_8:
6992   case ARM::VST1LNdAsm_16:
6993   case ARM::VST1LNdAsm_32: {
6994     MCInst TmpInst;
6995     // Shuffle the operands around so the lane index operand is in the
6996     // right place.
6997     unsigned Spacing;
6998     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6999     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7000     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7001     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7002     TmpInst.addOperand(Inst.getOperand(1)); // lane
7003     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7004     TmpInst.addOperand(Inst.getOperand(5));
7005     Inst = TmpInst;
7006     return true;
7007   }
7008
7009   case ARM::VST2LNdAsm_8:
7010   case ARM::VST2LNdAsm_16:
7011   case ARM::VST2LNdAsm_32:
7012   case ARM::VST2LNqAsm_16:
7013   case ARM::VST2LNqAsm_32: {
7014     MCInst TmpInst;
7015     // Shuffle the operands around so the lane index operand is in the
7016     // right place.
7017     unsigned Spacing;
7018     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7019     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7020     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7021     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7022     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7023                                             Spacing));
7024     TmpInst.addOperand(Inst.getOperand(1)); // lane
7025     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7026     TmpInst.addOperand(Inst.getOperand(5));
7027     Inst = TmpInst;
7028     return true;
7029   }
7030
7031   case ARM::VST3LNdAsm_8:
7032   case ARM::VST3LNdAsm_16:
7033   case ARM::VST3LNdAsm_32:
7034   case ARM::VST3LNqAsm_16:
7035   case ARM::VST3LNqAsm_32: {
7036     MCInst TmpInst;
7037     // Shuffle the operands around so the lane index operand is in the
7038     // right place.
7039     unsigned Spacing;
7040     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7041     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7042     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7043     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7044     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7045                                             Spacing));
7046     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7047                                             Spacing * 2));
7048     TmpInst.addOperand(Inst.getOperand(1)); // lane
7049     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7050     TmpInst.addOperand(Inst.getOperand(5));
7051     Inst = TmpInst;
7052     return true;
7053   }
7054
7055   case ARM::VST4LNdAsm_8:
7056   case ARM::VST4LNdAsm_16:
7057   case ARM::VST4LNdAsm_32:
7058   case ARM::VST4LNqAsm_16:
7059   case ARM::VST4LNqAsm_32: {
7060     MCInst TmpInst;
7061     // Shuffle the operands around so the lane index operand is in the
7062     // right place.
7063     unsigned Spacing;
7064     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7065     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7066     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7067     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7068     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7069                                             Spacing));
7070     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7071                                             Spacing * 2));
7072     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7073                                             Spacing * 3));
7074     TmpInst.addOperand(Inst.getOperand(1)); // lane
7075     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7076     TmpInst.addOperand(Inst.getOperand(5));
7077     Inst = TmpInst;
7078     return true;
7079   }
7080
7081   // Handle NEON VLD complex aliases.
7082   case ARM::VLD1LNdWB_register_Asm_8:
7083   case ARM::VLD1LNdWB_register_Asm_16:
7084   case ARM::VLD1LNdWB_register_Asm_32: {
7085     MCInst TmpInst;
7086     // Shuffle the operands around so the lane index operand is in the
7087     // right place.
7088     unsigned Spacing;
7089     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7090     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7091     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7092     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7093     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7094     TmpInst.addOperand(Inst.getOperand(4)); // Rm
7095     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7096     TmpInst.addOperand(Inst.getOperand(1)); // lane
7097     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7098     TmpInst.addOperand(Inst.getOperand(6));
7099     Inst = TmpInst;
7100     return true;
7101   }
7102
7103   case ARM::VLD2LNdWB_register_Asm_8:
7104   case ARM::VLD2LNdWB_register_Asm_16:
7105   case ARM::VLD2LNdWB_register_Asm_32:
7106   case ARM::VLD2LNqWB_register_Asm_16:
7107   case ARM::VLD2LNqWB_register_Asm_32: {
7108     MCInst TmpInst;
7109     // Shuffle the operands around so the lane index operand is in the
7110     // right place.
7111     unsigned Spacing;
7112     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7113     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7114     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7115                                             Spacing));
7116     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7117     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7118     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7119     TmpInst.addOperand(Inst.getOperand(4)); // Rm
7120     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7121     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7122                                             Spacing));
7123     TmpInst.addOperand(Inst.getOperand(1)); // lane
7124     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7125     TmpInst.addOperand(Inst.getOperand(6));
7126     Inst = TmpInst;
7127     return true;
7128   }
7129
7130   case ARM::VLD3LNdWB_register_Asm_8:
7131   case ARM::VLD3LNdWB_register_Asm_16:
7132   case ARM::VLD3LNdWB_register_Asm_32:
7133   case ARM::VLD3LNqWB_register_Asm_16:
7134   case ARM::VLD3LNqWB_register_Asm_32: {
7135     MCInst TmpInst;
7136     // Shuffle the operands around so the lane index operand is in the
7137     // right place.
7138     unsigned Spacing;
7139     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7140     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7141     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7142                                             Spacing));
7143     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7144                                             Spacing * 2));
7145     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7146     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7147     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7148     TmpInst.addOperand(Inst.getOperand(4)); // Rm
7149     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7150     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7151                                             Spacing));
7152     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7153                                             Spacing * 2));
7154     TmpInst.addOperand(Inst.getOperand(1)); // lane
7155     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7156     TmpInst.addOperand(Inst.getOperand(6));
7157     Inst = TmpInst;
7158     return true;
7159   }
7160
7161   case ARM::VLD4LNdWB_register_Asm_8:
7162   case ARM::VLD4LNdWB_register_Asm_16:
7163   case ARM::VLD4LNdWB_register_Asm_32:
7164   case ARM::VLD4LNqWB_register_Asm_16:
7165   case ARM::VLD4LNqWB_register_Asm_32: {
7166     MCInst TmpInst;
7167     // Shuffle the operands around so the lane index operand is in the
7168     // right place.
7169     unsigned Spacing;
7170     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7171     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7172     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7173                                             Spacing));
7174     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7175                                             Spacing * 2));
7176     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7177                                             Spacing * 3));
7178     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7179     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7180     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7181     TmpInst.addOperand(Inst.getOperand(4)); // Rm
7182     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7183     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7184                                             Spacing));
7185     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7186                                             Spacing * 2));
7187     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7188                                             Spacing * 3));
7189     TmpInst.addOperand(Inst.getOperand(1)); // lane
7190     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7191     TmpInst.addOperand(Inst.getOperand(6));
7192     Inst = TmpInst;
7193     return true;
7194   }
7195
7196   case ARM::VLD1LNdWB_fixed_Asm_8:
7197   case ARM::VLD1LNdWB_fixed_Asm_16:
7198   case ARM::VLD1LNdWB_fixed_Asm_32: {
7199     MCInst TmpInst;
7200     // Shuffle the operands around so the lane index operand is in the
7201     // right place.
7202     unsigned Spacing;
7203     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7204     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7205     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7206     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7207     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7208     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
7209     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7210     TmpInst.addOperand(Inst.getOperand(1)); // lane
7211     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7212     TmpInst.addOperand(Inst.getOperand(5));
7213     Inst = TmpInst;
7214     return true;
7215   }
7216
7217   case ARM::VLD2LNdWB_fixed_Asm_8:
7218   case ARM::VLD2LNdWB_fixed_Asm_16:
7219   case ARM::VLD2LNdWB_fixed_Asm_32:
7220   case ARM::VLD2LNqWB_fixed_Asm_16:
7221   case ARM::VLD2LNqWB_fixed_Asm_32: {
7222     MCInst TmpInst;
7223     // Shuffle the operands around so the lane index operand is in the
7224     // right place.
7225     unsigned Spacing;
7226     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7227     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7228     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7229                                             Spacing));
7230     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7231     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7232     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7233     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
7234     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7235     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7236                                             Spacing));
7237     TmpInst.addOperand(Inst.getOperand(1)); // lane
7238     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7239     TmpInst.addOperand(Inst.getOperand(5));
7240     Inst = TmpInst;
7241     return true;
7242   }
7243
7244   case ARM::VLD3LNdWB_fixed_Asm_8:
7245   case ARM::VLD3LNdWB_fixed_Asm_16:
7246   case ARM::VLD3LNdWB_fixed_Asm_32:
7247   case ARM::VLD3LNqWB_fixed_Asm_16:
7248   case ARM::VLD3LNqWB_fixed_Asm_32: {
7249     MCInst TmpInst;
7250     // Shuffle the operands around so the lane index operand is in the
7251     // right place.
7252     unsigned Spacing;
7253     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7254     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7255     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7256                                             Spacing));
7257     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7258                                             Spacing * 2));
7259     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7260     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7261     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7262     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
7263     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7264     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7265                                             Spacing));
7266     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7267                                             Spacing * 2));
7268     TmpInst.addOperand(Inst.getOperand(1)); // lane
7269     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7270     TmpInst.addOperand(Inst.getOperand(5));
7271     Inst = TmpInst;
7272     return true;
7273   }
7274
7275   case ARM::VLD4LNdWB_fixed_Asm_8:
7276   case ARM::VLD4LNdWB_fixed_Asm_16:
7277   case ARM::VLD4LNdWB_fixed_Asm_32:
7278   case ARM::VLD4LNqWB_fixed_Asm_16:
7279   case ARM::VLD4LNqWB_fixed_Asm_32: {
7280     MCInst TmpInst;
7281     // Shuffle the operands around so the lane index operand is in the
7282     // right place.
7283     unsigned Spacing;
7284     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7285     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7286     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7287                                             Spacing));
7288     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7289                                             Spacing * 2));
7290     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7291                                             Spacing * 3));
7292     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7293     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7294     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7295     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
7296     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7297     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7298                                             Spacing));
7299     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7300                                             Spacing * 2));
7301     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7302                                             Spacing * 3));
7303     TmpInst.addOperand(Inst.getOperand(1)); // lane
7304     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7305     TmpInst.addOperand(Inst.getOperand(5));
7306     Inst = TmpInst;
7307     return true;
7308   }
7309
7310   case ARM::VLD1LNdAsm_8:
7311   case ARM::VLD1LNdAsm_16:
7312   case ARM::VLD1LNdAsm_32: {
7313     MCInst TmpInst;
7314     // Shuffle the operands around so the lane index operand is in the
7315     // right place.
7316     unsigned Spacing;
7317     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7318     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7319     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7320     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7321     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7322     TmpInst.addOperand(Inst.getOperand(1)); // lane
7323     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7324     TmpInst.addOperand(Inst.getOperand(5));
7325     Inst = TmpInst;
7326     return true;
7327   }
7328
7329   case ARM::VLD2LNdAsm_8:
7330   case ARM::VLD2LNdAsm_16:
7331   case ARM::VLD2LNdAsm_32:
7332   case ARM::VLD2LNqAsm_16:
7333   case ARM::VLD2LNqAsm_32: {
7334     MCInst TmpInst;
7335     // Shuffle the operands around so the lane index operand is in the
7336     // right place.
7337     unsigned Spacing;
7338     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7339     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7340     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7341                                             Spacing));
7342     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7343     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7344     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7345     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7346                                             Spacing));
7347     TmpInst.addOperand(Inst.getOperand(1)); // lane
7348     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7349     TmpInst.addOperand(Inst.getOperand(5));
7350     Inst = TmpInst;
7351     return true;
7352   }
7353
7354   case ARM::VLD3LNdAsm_8:
7355   case ARM::VLD3LNdAsm_16:
7356   case ARM::VLD3LNdAsm_32:
7357   case ARM::VLD3LNqAsm_16:
7358   case ARM::VLD3LNqAsm_32: {
7359     MCInst TmpInst;
7360     // Shuffle the operands around so the lane index operand is in the
7361     // right place.
7362     unsigned Spacing;
7363     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7364     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7365     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7366                                             Spacing));
7367     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7368                                             Spacing * 2));
7369     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7370     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7371     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7372     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7373                                             Spacing));
7374     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7375                                             Spacing * 2));
7376     TmpInst.addOperand(Inst.getOperand(1)); // lane
7377     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7378     TmpInst.addOperand(Inst.getOperand(5));
7379     Inst = TmpInst;
7380     return true;
7381   }
7382
7383   case ARM::VLD4LNdAsm_8:
7384   case ARM::VLD4LNdAsm_16:
7385   case ARM::VLD4LNdAsm_32:
7386   case ARM::VLD4LNqAsm_16:
7387   case ARM::VLD4LNqAsm_32: {
7388     MCInst TmpInst;
7389     // Shuffle the operands around so the lane index operand is in the
7390     // right place.
7391     unsigned Spacing;
7392     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7393     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7394     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7395                                             Spacing));
7396     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7397                                             Spacing * 2));
7398     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7399                                             Spacing * 3));
7400     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7401     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7402     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7403     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7404                                             Spacing));
7405     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7406                                             Spacing * 2));
7407     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7408                                             Spacing * 3));
7409     TmpInst.addOperand(Inst.getOperand(1)); // lane
7410     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7411     TmpInst.addOperand(Inst.getOperand(5));
7412     Inst = TmpInst;
7413     return true;
7414   }
7415
7416   // VLD3DUP single 3-element structure to all lanes instructions.
7417   case ARM::VLD3DUPdAsm_8:
7418   case ARM::VLD3DUPdAsm_16:
7419   case ARM::VLD3DUPdAsm_32:
7420   case ARM::VLD3DUPqAsm_8:
7421   case ARM::VLD3DUPqAsm_16:
7422   case ARM::VLD3DUPqAsm_32: {
7423     MCInst TmpInst;
7424     unsigned Spacing;
7425     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7426     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7427     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7428                                             Spacing));
7429     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7430                                             Spacing * 2));
7431     TmpInst.addOperand(Inst.getOperand(1)); // Rn
7432     TmpInst.addOperand(Inst.getOperand(2)); // alignment
7433     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7434     TmpInst.addOperand(Inst.getOperand(4));
7435     Inst = TmpInst;
7436     return true;
7437   }
7438
7439   case ARM::VLD3DUPdWB_fixed_Asm_8:
7440   case ARM::VLD3DUPdWB_fixed_Asm_16:
7441   case ARM::VLD3DUPdWB_fixed_Asm_32:
7442   case ARM::VLD3DUPqWB_fixed_Asm_8:
7443   case ARM::VLD3DUPqWB_fixed_Asm_16:
7444   case ARM::VLD3DUPqWB_fixed_Asm_32: {
7445     MCInst TmpInst;
7446     unsigned Spacing;
7447     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7448     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7449     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7450                                             Spacing));
7451     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7452                                             Spacing * 2));
7453     TmpInst.addOperand(Inst.getOperand(1)); // Rn
7454     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
7455     TmpInst.addOperand(Inst.getOperand(2)); // alignment
7456     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
7457     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7458     TmpInst.addOperand(Inst.getOperand(4));
7459     Inst = TmpInst;
7460     return true;
7461   }
7462
7463   case ARM::VLD3DUPdWB_register_Asm_8:
7464   case ARM::VLD3DUPdWB_register_Asm_16:
7465   case ARM::VLD3DUPdWB_register_Asm_32:
7466   case ARM::VLD3DUPqWB_register_Asm_8:
7467   case ARM::VLD3DUPqWB_register_Asm_16:
7468   case ARM::VLD3DUPqWB_register_Asm_32: {
7469     MCInst TmpInst;
7470     unsigned Spacing;
7471     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7472     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7473     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7474                                             Spacing));
7475     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7476                                             Spacing * 2));
7477     TmpInst.addOperand(Inst.getOperand(1)); // Rn
7478     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
7479     TmpInst.addOperand(Inst.getOperand(2)); // alignment
7480     TmpInst.addOperand(Inst.getOperand(3)); // Rm
7481     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7482     TmpInst.addOperand(Inst.getOperand(5));
7483     Inst = TmpInst;
7484     return true;
7485   }
7486
7487   // VLD3 multiple 3-element structure instructions.
7488   case ARM::VLD3dAsm_8:
7489   case ARM::VLD3dAsm_16:
7490   case ARM::VLD3dAsm_32:
7491   case ARM::VLD3qAsm_8:
7492   case ARM::VLD3qAsm_16:
7493   case ARM::VLD3qAsm_32: {
7494     MCInst TmpInst;
7495     unsigned Spacing;
7496     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7497     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7498     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7499                                             Spacing));
7500     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7501                                             Spacing * 2));
7502     TmpInst.addOperand(Inst.getOperand(1)); // Rn
7503     TmpInst.addOperand(Inst.getOperand(2)); // alignment
7504     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7505     TmpInst.addOperand(Inst.getOperand(4));
7506     Inst = TmpInst;
7507     return true;
7508   }
7509
7510   case ARM::VLD3dWB_fixed_Asm_8:
7511   case ARM::VLD3dWB_fixed_Asm_16:
7512   case ARM::VLD3dWB_fixed_Asm_32:
7513   case ARM::VLD3qWB_fixed_Asm_8:
7514   case ARM::VLD3qWB_fixed_Asm_16:
7515   case ARM::VLD3qWB_fixed_Asm_32: {
7516     MCInst TmpInst;
7517     unsigned Spacing;
7518     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7519     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7520     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7521                                             Spacing));
7522     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7523                                             Spacing * 2));
7524     TmpInst.addOperand(Inst.getOperand(1)); // Rn
7525     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
7526     TmpInst.addOperand(Inst.getOperand(2)); // alignment
7527     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
7528     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7529     TmpInst.addOperand(Inst.getOperand(4));
7530     Inst = TmpInst;
7531     return true;
7532   }
7533
7534   case ARM::VLD3dWB_register_Asm_8:
7535   case ARM::VLD3dWB_register_Asm_16:
7536   case ARM::VLD3dWB_register_Asm_32:
7537   case ARM::VLD3qWB_register_Asm_8:
7538   case ARM::VLD3qWB_register_Asm_16:
7539   case ARM::VLD3qWB_register_Asm_32: {
7540     MCInst TmpInst;
7541     unsigned Spacing;
7542     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7543     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7544     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7545                                             Spacing));
7546     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7547                                             Spacing * 2));
7548     TmpInst.addOperand(Inst.getOperand(1)); // Rn
7549     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
7550     TmpInst.addOperand(Inst.getOperand(2)); // alignment
7551     TmpInst.addOperand(Inst.getOperand(3)); // Rm
7552     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7553     TmpInst.addOperand(Inst.getOperand(5));
7554     Inst = TmpInst;
7555     return true;
7556   }
7557
7558   // VLD4DUP single 3-element structure to all lanes instructions.
7559   case ARM::VLD4DUPdAsm_8:
7560   case ARM::VLD4DUPdAsm_16:
7561   case ARM::VLD4DUPdAsm_32:
7562   case ARM::VLD4DUPqAsm_8:
7563   case ARM::VLD4DUPqAsm_16:
7564   case ARM::VLD4DUPqAsm_32: {
7565     MCInst TmpInst;
7566     unsigned Spacing;
7567     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7568     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7569     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7570                                             Spacing));
7571     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7572                                             Spacing * 2));
7573     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7574                                             Spacing * 3));
7575     TmpInst.addOperand(Inst.getOperand(1)); // Rn
7576     TmpInst.addOperand(Inst.getOperand(2)); // alignment
7577     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7578     TmpInst.addOperand(Inst.getOperand(4));
7579     Inst = TmpInst;
7580     return true;
7581   }
7582
7583   case ARM::VLD4DUPdWB_fixed_Asm_8:
7584   case ARM::VLD4DUPdWB_fixed_Asm_16:
7585   case ARM::VLD4DUPdWB_fixed_Asm_32:
7586   case ARM::VLD4DUPqWB_fixed_Asm_8:
7587   case ARM::VLD4DUPqWB_fixed_Asm_16:
7588   case ARM::VLD4DUPqWB_fixed_Asm_32: {
7589     MCInst TmpInst;
7590     unsigned Spacing;
7591     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7592     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7593     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7594                                             Spacing));
7595     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7596                                             Spacing * 2));
7597     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7598                                             Spacing * 3));
7599     TmpInst.addOperand(Inst.getOperand(1)); // Rn
7600     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
7601     TmpInst.addOperand(Inst.getOperand(2)); // alignment
7602     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
7603     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7604     TmpInst.addOperand(Inst.getOperand(4));
7605     Inst = TmpInst;
7606     return true;
7607   }
7608
7609   case ARM::VLD4DUPdWB_register_Asm_8:
7610   case ARM::VLD4DUPdWB_register_Asm_16:
7611   case ARM::VLD4DUPdWB_register_Asm_32:
7612   case ARM::VLD4DUPqWB_register_Asm_8:
7613   case ARM::VLD4DUPqWB_register_Asm_16:
7614   case ARM::VLD4DUPqWB_register_Asm_32: {
7615     MCInst TmpInst;
7616     unsigned Spacing;
7617     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7618     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7619     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7620                                             Spacing));
7621     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7622                                             Spacing * 2));
7623     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7624                                             Spacing * 3));
7625     TmpInst.addOperand(Inst.getOperand(1)); // Rn
7626     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
7627     TmpInst.addOperand(Inst.getOperand(2)); // alignment
7628     TmpInst.addOperand(Inst.getOperand(3)); // Rm
7629     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7630     TmpInst.addOperand(Inst.getOperand(5));
7631     Inst = TmpInst;
7632     return true;
7633   }
7634
7635   // VLD4 multiple 4-element structure instructions.
7636   case ARM::VLD4dAsm_8:
7637   case ARM::VLD4dAsm_16:
7638   case ARM::VLD4dAsm_32:
7639   case ARM::VLD4qAsm_8:
7640   case ARM::VLD4qAsm_16:
7641   case ARM::VLD4qAsm_32: {
7642     MCInst TmpInst;
7643     unsigned Spacing;
7644     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7645     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7646     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7647                                             Spacing));
7648     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7649                                             Spacing * 2));
7650     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7651                                             Spacing * 3));
7652     TmpInst.addOperand(Inst.getOperand(1)); // Rn
7653     TmpInst.addOperand(Inst.getOperand(2)); // alignment
7654     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7655     TmpInst.addOperand(Inst.getOperand(4));
7656     Inst = TmpInst;
7657     return true;
7658   }
7659
7660   case ARM::VLD4dWB_fixed_Asm_8:
7661   case ARM::VLD4dWB_fixed_Asm_16:
7662   case ARM::VLD4dWB_fixed_Asm_32:
7663   case ARM::VLD4qWB_fixed_Asm_8:
7664   case ARM::VLD4qWB_fixed_Asm_16:
7665   case ARM::VLD4qWB_fixed_Asm_32: {
7666     MCInst TmpInst;
7667     unsigned Spacing;
7668     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7669     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7670     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7671                                             Spacing));
7672     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7673                                             Spacing * 2));
7674     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7675                                             Spacing * 3));
7676     TmpInst.addOperand(Inst.getOperand(1)); // Rn
7677     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
7678     TmpInst.addOperand(Inst.getOperand(2)); // alignment
7679     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
7680     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7681     TmpInst.addOperand(Inst.getOperand(4));
7682     Inst = TmpInst;
7683     return true;
7684   }
7685
7686   case ARM::VLD4dWB_register_Asm_8:
7687   case ARM::VLD4dWB_register_Asm_16:
7688   case ARM::VLD4dWB_register_Asm_32:
7689   case ARM::VLD4qWB_register_Asm_8:
7690   case ARM::VLD4qWB_register_Asm_16:
7691   case ARM::VLD4qWB_register_Asm_32: {
7692     MCInst TmpInst;
7693     unsigned Spacing;
7694     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7695     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7696     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7697                                             Spacing));
7698     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7699                                             Spacing * 2));
7700     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7701                                             Spacing * 3));
7702     TmpInst.addOperand(Inst.getOperand(1)); // Rn
7703     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
7704     TmpInst.addOperand(Inst.getOperand(2)); // alignment
7705     TmpInst.addOperand(Inst.getOperand(3)); // Rm
7706     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7707     TmpInst.addOperand(Inst.getOperand(5));
7708     Inst = TmpInst;
7709     return true;
7710   }
7711
7712   // VST3 multiple 3-element structure instructions.
7713   case ARM::VST3dAsm_8:
7714   case ARM::VST3dAsm_16:
7715   case ARM::VST3dAsm_32:
7716   case ARM::VST3qAsm_8:
7717   case ARM::VST3qAsm_16:
7718   case ARM::VST3qAsm_32: {
7719     MCInst TmpInst;
7720     unsigned Spacing;
7721     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7722     TmpInst.addOperand(Inst.getOperand(1)); // Rn
7723     TmpInst.addOperand(Inst.getOperand(2)); // alignment
7724     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7725     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7726                                             Spacing));
7727     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7728                                             Spacing * 2));
7729     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7730     TmpInst.addOperand(Inst.getOperand(4));
7731     Inst = TmpInst;
7732     return true;
7733   }
7734
7735   case ARM::VST3dWB_fixed_Asm_8:
7736   case ARM::VST3dWB_fixed_Asm_16:
7737   case ARM::VST3dWB_fixed_Asm_32:
7738   case ARM::VST3qWB_fixed_Asm_8:
7739   case ARM::VST3qWB_fixed_Asm_16:
7740   case ARM::VST3qWB_fixed_Asm_32: {
7741     MCInst TmpInst;
7742     unsigned Spacing;
7743     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7744     TmpInst.addOperand(Inst.getOperand(1)); // Rn
7745     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
7746     TmpInst.addOperand(Inst.getOperand(2)); // alignment
7747     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
7748     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7749     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7750                                             Spacing));
7751     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7752                                             Spacing * 2));
7753     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7754     TmpInst.addOperand(Inst.getOperand(4));
7755     Inst = TmpInst;
7756     return true;
7757   }
7758
7759   case ARM::VST3dWB_register_Asm_8:
7760   case ARM::VST3dWB_register_Asm_16:
7761   case ARM::VST3dWB_register_Asm_32:
7762   case ARM::VST3qWB_register_Asm_8:
7763   case ARM::VST3qWB_register_Asm_16:
7764   case ARM::VST3qWB_register_Asm_32: {
7765     MCInst TmpInst;
7766     unsigned Spacing;
7767     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7768     TmpInst.addOperand(Inst.getOperand(1)); // Rn
7769     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
7770     TmpInst.addOperand(Inst.getOperand(2)); // alignment
7771     TmpInst.addOperand(Inst.getOperand(3)); // Rm
7772     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7773     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7774                                             Spacing));
7775     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7776                                             Spacing * 2));
7777     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7778     TmpInst.addOperand(Inst.getOperand(5));
7779     Inst = TmpInst;
7780     return true;
7781   }
7782
7783   // VST4 multiple 3-element structure instructions.
7784   case ARM::VST4dAsm_8:
7785   case ARM::VST4dAsm_16:
7786   case ARM::VST4dAsm_32:
7787   case ARM::VST4qAsm_8:
7788   case ARM::VST4qAsm_16:
7789   case ARM::VST4qAsm_32: {
7790     MCInst TmpInst;
7791     unsigned Spacing;
7792     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7793     TmpInst.addOperand(Inst.getOperand(1)); // Rn
7794     TmpInst.addOperand(Inst.getOperand(2)); // alignment
7795     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7796     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7797                                             Spacing));
7798     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7799                                             Spacing * 2));
7800     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7801                                             Spacing * 3));
7802     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7803     TmpInst.addOperand(Inst.getOperand(4));
7804     Inst = TmpInst;
7805     return true;
7806   }
7807
7808   case ARM::VST4dWB_fixed_Asm_8:
7809   case ARM::VST4dWB_fixed_Asm_16:
7810   case ARM::VST4dWB_fixed_Asm_32:
7811   case ARM::VST4qWB_fixed_Asm_8:
7812   case ARM::VST4qWB_fixed_Asm_16:
7813   case ARM::VST4qWB_fixed_Asm_32: {
7814     MCInst TmpInst;
7815     unsigned Spacing;
7816     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7817     TmpInst.addOperand(Inst.getOperand(1)); // Rn
7818     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
7819     TmpInst.addOperand(Inst.getOperand(2)); // alignment
7820     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
7821     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7822     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7823                                             Spacing));
7824     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7825                                             Spacing * 2));
7826     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7827                                             Spacing * 3));
7828     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7829     TmpInst.addOperand(Inst.getOperand(4));
7830     Inst = TmpInst;
7831     return true;
7832   }
7833
7834   case ARM::VST4dWB_register_Asm_8:
7835   case ARM::VST4dWB_register_Asm_16:
7836   case ARM::VST4dWB_register_Asm_32:
7837   case ARM::VST4qWB_register_Asm_8:
7838   case ARM::VST4qWB_register_Asm_16:
7839   case ARM::VST4qWB_register_Asm_32: {
7840     MCInst TmpInst;
7841     unsigned Spacing;
7842     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7843     TmpInst.addOperand(Inst.getOperand(1)); // Rn
7844     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
7845     TmpInst.addOperand(Inst.getOperand(2)); // alignment
7846     TmpInst.addOperand(Inst.getOperand(3)); // Rm
7847     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7848     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7849                                             Spacing));
7850     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7851                                             Spacing * 2));
7852     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7853                                             Spacing * 3));
7854     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7855     TmpInst.addOperand(Inst.getOperand(5));
7856     Inst = TmpInst;
7857     return true;
7858   }
7859
7860   // Handle encoding choice for the shift-immediate instructions.
7861   case ARM::t2LSLri:
7862   case ARM::t2LSRri:
7863   case ARM::t2ASRri: {
7864     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
7865         Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
7866         Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
7867         !(static_cast<ARMOperand &>(*Operands[3]).isToken() &&
7868           static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) {
7869       unsigned NewOpc;
7870       switch (Inst.getOpcode()) {
7871       default: llvm_unreachable("unexpected opcode");
7872       case ARM::t2LSLri: NewOpc = ARM::tLSLri; break;
7873       case ARM::t2LSRri: NewOpc = ARM::tLSRri; break;
7874       case ARM::t2ASRri: NewOpc = ARM::tASRri; break;
7875       }
7876       // The Thumb1 operands aren't in the same order. Awesome, eh?
7877       MCInst TmpInst;
7878       TmpInst.setOpcode(NewOpc);
7879       TmpInst.addOperand(Inst.getOperand(0));
7880       TmpInst.addOperand(Inst.getOperand(5));
7881       TmpInst.addOperand(Inst.getOperand(1));
7882       TmpInst.addOperand(Inst.getOperand(2));
7883       TmpInst.addOperand(Inst.getOperand(3));
7884       TmpInst.addOperand(Inst.getOperand(4));
7885       Inst = TmpInst;
7886       return true;
7887     }
7888     return false;
7889   }
7890
7891   // Handle the Thumb2 mode MOV complex aliases.
7892   case ARM::t2MOVsr:
7893   case ARM::t2MOVSsr: {
7894     // Which instruction to expand to depends on the CCOut operand and
7895     // whether we're in an IT block if the register operands are low
7896     // registers.
7897     bool isNarrow = false;
7898     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
7899         isARMLowRegister(Inst.getOperand(1).getReg()) &&
7900         isARMLowRegister(Inst.getOperand(2).getReg()) &&
7901         Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
7902         inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr))
7903       isNarrow = true;
7904     MCInst TmpInst;
7905     unsigned newOpc;
7906     switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) {
7907     default: llvm_unreachable("unexpected opcode!");
7908     case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break;
7909     case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break;
7910     case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break;
7911     case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR   : ARM::t2RORrr; break;
7912     }
7913     TmpInst.setOpcode(newOpc);
7914     TmpInst.addOperand(Inst.getOperand(0)); // Rd
7915     if (isNarrow)
7916       TmpInst.addOperand(MCOperand::CreateReg(
7917           Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
7918     TmpInst.addOperand(Inst.getOperand(1)); // Rn
7919     TmpInst.addOperand(Inst.getOperand(2)); // Rm
7920     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7921     TmpInst.addOperand(Inst.getOperand(5));
7922     if (!isNarrow)
7923       TmpInst.addOperand(MCOperand::CreateReg(
7924           Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
7925     Inst = TmpInst;
7926     return true;
7927   }
7928   case ARM::t2MOVsi:
7929   case ARM::t2MOVSsi: {
7930     // Which instruction to expand to depends on the CCOut operand and
7931     // whether we're in an IT block if the register operands are low
7932     // registers.
7933     bool isNarrow = false;
7934     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
7935         isARMLowRegister(Inst.getOperand(1).getReg()) &&
7936         inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi))
7937       isNarrow = true;
7938     MCInst TmpInst;
7939     unsigned newOpc;
7940     switch(ARM_AM::getSORegShOp(Inst.getOperand(2).getImm())) {
7941     default: llvm_unreachable("unexpected opcode!");
7942     case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break;
7943     case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break;
7944     case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break;
7945     case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break;
7946     case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break;
7947     }
7948     unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm());
7949     if (Amount == 32) Amount = 0;
7950     TmpInst.setOpcode(newOpc);
7951     TmpInst.addOperand(Inst.getOperand(0)); // Rd
7952     if (isNarrow)
7953       TmpInst.addOperand(MCOperand::CreateReg(
7954           Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
7955     TmpInst.addOperand(Inst.getOperand(1)); // Rn
7956     if (newOpc != ARM::t2RRX)
7957       TmpInst.addOperand(MCOperand::CreateImm(Amount));
7958     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7959     TmpInst.addOperand(Inst.getOperand(4));
7960     if (!isNarrow)
7961       TmpInst.addOperand(MCOperand::CreateReg(
7962           Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
7963     Inst = TmpInst;
7964     return true;
7965   }
7966   // Handle the ARM mode MOV complex aliases.
7967   case ARM::ASRr:
7968   case ARM::LSRr:
7969   case ARM::LSLr:
7970   case ARM::RORr: {
7971     ARM_AM::ShiftOpc ShiftTy;
7972     switch(Inst.getOpcode()) {
7973     default: llvm_unreachable("unexpected opcode!");
7974     case ARM::ASRr: ShiftTy = ARM_AM::asr; break;
7975     case ARM::LSRr: ShiftTy = ARM_AM::lsr; break;
7976     case ARM::LSLr: ShiftTy = ARM_AM::lsl; break;
7977     case ARM::RORr: ShiftTy = ARM_AM::ror; break;
7978     }
7979     unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0);
7980     MCInst TmpInst;
7981     TmpInst.setOpcode(ARM::MOVsr);
7982     TmpInst.addOperand(Inst.getOperand(0)); // Rd
7983     TmpInst.addOperand(Inst.getOperand(1)); // Rn
7984     TmpInst.addOperand(Inst.getOperand(2)); // Rm
7985     TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
7986     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7987     TmpInst.addOperand(Inst.getOperand(4));
7988     TmpInst.addOperand(Inst.getOperand(5)); // cc_out
7989     Inst = TmpInst;
7990     return true;
7991   }
7992   case ARM::ASRi:
7993   case ARM::LSRi:
7994   case ARM::LSLi:
7995   case ARM::RORi: {
7996     ARM_AM::ShiftOpc ShiftTy;
7997     switch(Inst.getOpcode()) {
7998     default: llvm_unreachable("unexpected opcode!");
7999     case ARM::ASRi: ShiftTy = ARM_AM::asr; break;
8000     case ARM::LSRi: ShiftTy = ARM_AM::lsr; break;
8001     case ARM::LSLi: ShiftTy = ARM_AM::lsl; break;
8002     case ARM::RORi: ShiftTy = ARM_AM::ror; break;
8003     }
8004     // A shift by zero is a plain MOVr, not a MOVsi.
8005     unsigned Amt = Inst.getOperand(2).getImm();
8006     unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi;
8007     // A shift by 32 should be encoded as 0 when permitted
8008     if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr))
8009       Amt = 0;
8010     unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt);
8011     MCInst TmpInst;
8012     TmpInst.setOpcode(Opc);
8013     TmpInst.addOperand(Inst.getOperand(0)); // Rd
8014     TmpInst.addOperand(Inst.getOperand(1)); // Rn
8015     if (Opc == ARM::MOVsi)
8016       TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
8017     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8018     TmpInst.addOperand(Inst.getOperand(4));
8019     TmpInst.addOperand(Inst.getOperand(5)); // cc_out
8020     Inst = TmpInst;
8021     return true;
8022   }
8023   case ARM::RRXi: {
8024     unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0);
8025     MCInst TmpInst;
8026     TmpInst.setOpcode(ARM::MOVsi);
8027     TmpInst.addOperand(Inst.getOperand(0)); // Rd
8028     TmpInst.addOperand(Inst.getOperand(1)); // Rn
8029     TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
8030     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8031     TmpInst.addOperand(Inst.getOperand(3));
8032     TmpInst.addOperand(Inst.getOperand(4)); // cc_out
8033     Inst = TmpInst;
8034     return true;
8035   }
8036   case ARM::t2LDMIA_UPD: {
8037     // If this is a load of a single register, then we should use
8038     // a post-indexed LDR instruction instead, per the ARM ARM.
8039     if (Inst.getNumOperands() != 5)
8040       return false;
8041     MCInst TmpInst;
8042     TmpInst.setOpcode(ARM::t2LDR_POST);
8043     TmpInst.addOperand(Inst.getOperand(4)); // Rt
8044     TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
8045     TmpInst.addOperand(Inst.getOperand(1)); // Rn
8046     TmpInst.addOperand(MCOperand::CreateImm(4));
8047     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8048     TmpInst.addOperand(Inst.getOperand(3));
8049     Inst = TmpInst;
8050     return true;
8051   }
8052   case ARM::t2STMDB_UPD: {
8053     // If this is a store of a single register, then we should use
8054     // a pre-indexed STR instruction instead, per the ARM ARM.
8055     if (Inst.getNumOperands() != 5)
8056       return false;
8057     MCInst TmpInst;
8058     TmpInst.setOpcode(ARM::t2STR_PRE);
8059     TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
8060     TmpInst.addOperand(Inst.getOperand(4)); // Rt
8061     TmpInst.addOperand(Inst.getOperand(1)); // Rn
8062     TmpInst.addOperand(MCOperand::CreateImm(-4));
8063     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8064     TmpInst.addOperand(Inst.getOperand(3));
8065     Inst = TmpInst;
8066     return true;
8067   }
8068   case ARM::LDMIA_UPD:
8069     // If this is a load of a single register via a 'pop', then we should use
8070     // a post-indexed LDR instruction instead, per the ARM ARM.
8071     if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" &&
8072         Inst.getNumOperands() == 5) {
8073       MCInst TmpInst;
8074       TmpInst.setOpcode(ARM::LDR_POST_IMM);
8075       TmpInst.addOperand(Inst.getOperand(4)); // Rt
8076       TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
8077       TmpInst.addOperand(Inst.getOperand(1)); // Rn
8078       TmpInst.addOperand(MCOperand::CreateReg(0));  // am2offset
8079       TmpInst.addOperand(MCOperand::CreateImm(4));
8080       TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8081       TmpInst.addOperand(Inst.getOperand(3));
8082       Inst = TmpInst;
8083       return true;
8084     }
8085     break;
8086   case ARM::STMDB_UPD:
8087     // If this is a store of a single register via a 'push', then we should use
8088     // a pre-indexed STR instruction instead, per the ARM ARM.
8089     if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" &&
8090         Inst.getNumOperands() == 5) {
8091       MCInst TmpInst;
8092       TmpInst.setOpcode(ARM::STR_PRE_IMM);
8093       TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
8094       TmpInst.addOperand(Inst.getOperand(4)); // Rt
8095       TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12
8096       TmpInst.addOperand(MCOperand::CreateImm(-4));
8097       TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8098       TmpInst.addOperand(Inst.getOperand(3));
8099       Inst = TmpInst;
8100     }
8101     break;
8102   case ARM::t2ADDri12:
8103     // If the immediate fits for encoding T3 (t2ADDri) and the generic "add"
8104     // mnemonic was used (not "addw"), encoding T3 is preferred.
8105     if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" ||
8106         ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
8107       break;
8108     Inst.setOpcode(ARM::t2ADDri);
8109     Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
8110     break;
8111   case ARM::t2SUBri12:
8112     // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub"
8113     // mnemonic was used (not "subw"), encoding T3 is preferred.
8114     if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" ||
8115         ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
8116       break;
8117     Inst.setOpcode(ARM::t2SUBri);
8118     Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
8119     break;
8120   case ARM::tADDi8:
8121     // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
8122     // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
8123     // to encoding T2 if <Rd> is specified and encoding T2 is preferred
8124     // to encoding T1 if <Rd> is omitted."
8125     if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
8126       Inst.setOpcode(ARM::tADDi3);
8127       return true;
8128     }
8129     break;
8130   case ARM::tSUBi8:
8131     // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
8132     // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
8133     // to encoding T2 if <Rd> is specified and encoding T2 is preferred
8134     // to encoding T1 if <Rd> is omitted."
8135     if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
8136       Inst.setOpcode(ARM::tSUBi3);
8137       return true;
8138     }
8139     break;
8140   case ARM::t2ADDri:
8141   case ARM::t2SUBri: {
8142     // If the destination and first source operand are the same, and
8143     // the flags are compatible with the current IT status, use encoding T2
8144     // instead of T3. For compatibility with the system 'as'. Make sure the
8145     // wide encoding wasn't explicit.
8146     if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
8147         !isARMLowRegister(Inst.getOperand(0).getReg()) ||
8148         (unsigned)Inst.getOperand(2).getImm() > 255 ||
8149         ((!inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR) ||
8150          (inITBlock() && Inst.getOperand(5).getReg() != 0)) ||
8151         (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
8152          static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w"))
8153       break;
8154     MCInst TmpInst;
8155     TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ?
8156                       ARM::tADDi8 : ARM::tSUBi8);
8157     TmpInst.addOperand(Inst.getOperand(0));
8158     TmpInst.addOperand(Inst.getOperand(5));
8159     TmpInst.addOperand(Inst.getOperand(0));
8160     TmpInst.addOperand(Inst.getOperand(2));
8161     TmpInst.addOperand(Inst.getOperand(3));
8162     TmpInst.addOperand(Inst.getOperand(4));
8163     Inst = TmpInst;
8164     return true;
8165   }
8166   case ARM::t2ADDrr: {
8167     // If the destination and first source operand are the same, and
8168     // there's no setting of the flags, use encoding T2 instead of T3.
8169     // Note that this is only for ADD, not SUB. This mirrors the system
8170     // 'as' behaviour. Make sure the wide encoding wasn't explicit.
8171     if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
8172         Inst.getOperand(5).getReg() != 0 ||
8173         (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
8174          static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w"))
8175       break;
8176     MCInst TmpInst;
8177     TmpInst.setOpcode(ARM::tADDhirr);
8178     TmpInst.addOperand(Inst.getOperand(0));
8179     TmpInst.addOperand(Inst.getOperand(0));
8180     TmpInst.addOperand(Inst.getOperand(2));
8181     TmpInst.addOperand(Inst.getOperand(3));
8182     TmpInst.addOperand(Inst.getOperand(4));
8183     Inst = TmpInst;
8184     return true;
8185   }
8186   case ARM::tADDrSP: {
8187     // If the non-SP source operand and the destination operand are not the
8188     // same, we need to use the 32-bit encoding if it's available.
8189     if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
8190       Inst.setOpcode(ARM::t2ADDrr);
8191       Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
8192       return true;
8193     }
8194     break;
8195   }
8196   case ARM::tB:
8197     // A Thumb conditional branch outside of an IT block is a tBcc.
8198     if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) {
8199       Inst.setOpcode(ARM::tBcc);
8200       return true;
8201     }
8202     break;
8203   case ARM::t2B:
8204     // A Thumb2 conditional branch outside of an IT block is a t2Bcc.
8205     if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){
8206       Inst.setOpcode(ARM::t2Bcc);
8207       return true;
8208     }
8209     break;
8210   case ARM::t2Bcc:
8211     // If the conditional is AL or we're in an IT block, we really want t2B.
8212     if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) {
8213       Inst.setOpcode(ARM::t2B);
8214       return true;
8215     }
8216     break;
8217   case ARM::tBcc:
8218     // If the conditional is AL, we really want tB.
8219     if (Inst.getOperand(1).getImm() == ARMCC::AL) {
8220       Inst.setOpcode(ARM::tB);
8221       return true;
8222     }
8223     break;
8224   case ARM::tLDMIA: {
8225     // If the register list contains any high registers, or if the writeback
8226     // doesn't match what tLDMIA can do, we need to use the 32-bit encoding
8227     // instead if we're in Thumb2. Otherwise, this should have generated
8228     // an error in validateInstruction().
8229     unsigned Rn = Inst.getOperand(0).getReg();
8230     bool hasWritebackToken =
8231         (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
8232          static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
8233     bool listContainsBase;
8234     if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) ||
8235         (!listContainsBase && !hasWritebackToken) ||
8236         (listContainsBase && hasWritebackToken)) {
8237       // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
8238       assert (isThumbTwo());
8239       Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA);
8240       // If we're switching to the updating version, we need to insert
8241       // the writeback tied operand.
8242       if (hasWritebackToken)
8243         Inst.insert(Inst.begin(),
8244                     MCOperand::CreateReg(Inst.getOperand(0).getReg()));
8245       return true;
8246     }
8247     break;
8248   }
8249   case ARM::tSTMIA_UPD: {
8250     // If the register list contains any high registers, we need to use
8251     // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
8252     // should have generated an error in validateInstruction().
8253     unsigned Rn = Inst.getOperand(0).getReg();
8254     bool listContainsBase;
8255     if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) {
8256       // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
8257       assert (isThumbTwo());
8258       Inst.setOpcode(ARM::t2STMIA_UPD);
8259       return true;
8260     }
8261     break;
8262   }
8263   case ARM::tPOP: {
8264     bool listContainsBase;
8265     // If the register list contains any high registers, we need to use
8266     // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
8267     // should have generated an error in validateInstruction().
8268     if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase))
8269       return false;
8270     assert (isThumbTwo());
8271     Inst.setOpcode(ARM::t2LDMIA_UPD);
8272     // Add the base register and writeback operands.
8273     Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
8274     Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
8275     return true;
8276   }
8277   case ARM::tPUSH: {
8278     bool listContainsBase;
8279     if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase))
8280       return false;
8281     assert (isThumbTwo());
8282     Inst.setOpcode(ARM::t2STMDB_UPD);
8283     // Add the base register and writeback operands.
8284     Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
8285     Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
8286     return true;
8287   }
8288   case ARM::t2MOVi: {
8289     // If we can use the 16-bit encoding and the user didn't explicitly
8290     // request the 32-bit variant, transform it here.
8291     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8292         (unsigned)Inst.getOperand(1).getImm() <= 255 &&
8293         ((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL &&
8294           Inst.getOperand(4).getReg() == ARM::CPSR) ||
8295          (inITBlock() && Inst.getOperand(4).getReg() == 0)) &&
8296         (!static_cast<ARMOperand &>(*Operands[2]).isToken() ||
8297          static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) {
8298       // The operands aren't in the same order for tMOVi8...
8299       MCInst TmpInst;
8300       TmpInst.setOpcode(ARM::tMOVi8);
8301       TmpInst.addOperand(Inst.getOperand(0));
8302       TmpInst.addOperand(Inst.getOperand(4));
8303       TmpInst.addOperand(Inst.getOperand(1));
8304       TmpInst.addOperand(Inst.getOperand(2));
8305       TmpInst.addOperand(Inst.getOperand(3));
8306       Inst = TmpInst;
8307       return true;
8308     }
8309     break;
8310   }
8311   case ARM::t2MOVr: {
8312     // If we can use the 16-bit encoding and the user didn't explicitly
8313     // request the 32-bit variant, transform it here.
8314     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8315         isARMLowRegister(Inst.getOperand(1).getReg()) &&
8316         Inst.getOperand(2).getImm() == ARMCC::AL &&
8317         Inst.getOperand(4).getReg() == ARM::CPSR &&
8318         (!static_cast<ARMOperand &>(*Operands[2]).isToken() ||
8319          static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) {
8320       // The operands aren't the same for tMOV[S]r... (no cc_out)
8321       MCInst TmpInst;
8322       TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr);
8323       TmpInst.addOperand(Inst.getOperand(0));
8324       TmpInst.addOperand(Inst.getOperand(1));
8325       TmpInst.addOperand(Inst.getOperand(2));
8326       TmpInst.addOperand(Inst.getOperand(3));
8327       Inst = TmpInst;
8328       return true;
8329     }
8330     break;
8331   }
8332   case ARM::t2SXTH:
8333   case ARM::t2SXTB:
8334   case ARM::t2UXTH:
8335   case ARM::t2UXTB: {
8336     // If we can use the 16-bit encoding and the user didn't explicitly
8337     // request the 32-bit variant, transform it here.
8338     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8339         isARMLowRegister(Inst.getOperand(1).getReg()) &&
8340         Inst.getOperand(2).getImm() == 0 &&
8341         (!static_cast<ARMOperand &>(*Operands[2]).isToken() ||
8342          static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) {
8343       unsigned NewOpc;
8344       switch (Inst.getOpcode()) {
8345       default: llvm_unreachable("Illegal opcode!");
8346       case ARM::t2SXTH: NewOpc = ARM::tSXTH; break;
8347       case ARM::t2SXTB: NewOpc = ARM::tSXTB; break;
8348       case ARM::t2UXTH: NewOpc = ARM::tUXTH; break;
8349       case ARM::t2UXTB: NewOpc = ARM::tUXTB; break;
8350       }
8351       // The operands aren't the same for thumb1 (no rotate operand).
8352       MCInst TmpInst;
8353       TmpInst.setOpcode(NewOpc);
8354       TmpInst.addOperand(Inst.getOperand(0));
8355       TmpInst.addOperand(Inst.getOperand(1));
8356       TmpInst.addOperand(Inst.getOperand(3));
8357       TmpInst.addOperand(Inst.getOperand(4));
8358       Inst = TmpInst;
8359       return true;
8360     }
8361     break;
8362   }
8363   case ARM::MOVsi: {
8364     ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
8365     // rrx shifts and asr/lsr of #32 is encoded as 0
8366     if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 
8367       return false;
8368     if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) {
8369       // Shifting by zero is accepted as a vanilla 'MOVr'
8370       MCInst TmpInst;
8371       TmpInst.setOpcode(ARM::MOVr);
8372       TmpInst.addOperand(Inst.getOperand(0));
8373       TmpInst.addOperand(Inst.getOperand(1));
8374       TmpInst.addOperand(Inst.getOperand(3));
8375       TmpInst.addOperand(Inst.getOperand(4));
8376       TmpInst.addOperand(Inst.getOperand(5));
8377       Inst = TmpInst;
8378       return true;
8379     }
8380     return false;
8381   }
8382   case ARM::ANDrsi:
8383   case ARM::ORRrsi:
8384   case ARM::EORrsi:
8385   case ARM::BICrsi:
8386   case ARM::SUBrsi:
8387   case ARM::ADDrsi: {
8388     unsigned newOpc;
8389     ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm());
8390     if (SOpc == ARM_AM::rrx) return false;
8391     switch (Inst.getOpcode()) {
8392     default: llvm_unreachable("unexpected opcode!");
8393     case ARM::ANDrsi: newOpc = ARM::ANDrr; break;
8394     case ARM::ORRrsi: newOpc = ARM::ORRrr; break;
8395     case ARM::EORrsi: newOpc = ARM::EORrr; break;
8396     case ARM::BICrsi: newOpc = ARM::BICrr; break;
8397     case ARM::SUBrsi: newOpc = ARM::SUBrr; break;
8398     case ARM::ADDrsi: newOpc = ARM::ADDrr; break;
8399     }
8400     // If the shift is by zero, use the non-shifted instruction definition.
8401     // The exception is for right shifts, where 0 == 32
8402     if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 &&
8403         !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) {
8404       MCInst TmpInst;
8405       TmpInst.setOpcode(newOpc);
8406       TmpInst.addOperand(Inst.getOperand(0));
8407       TmpInst.addOperand(Inst.getOperand(1));
8408       TmpInst.addOperand(Inst.getOperand(2));
8409       TmpInst.addOperand(Inst.getOperand(4));
8410       TmpInst.addOperand(Inst.getOperand(5));
8411       TmpInst.addOperand(Inst.getOperand(6));
8412       Inst = TmpInst;
8413       return true;
8414     }
8415     return false;
8416   }
8417   case ARM::ITasm:
8418   case ARM::t2IT: {
8419     // The mask bits for all but the first condition are represented as
8420     // the low bit of the condition code value implies 't'. We currently
8421     // always have 1 implies 't', so XOR toggle the bits if the low bit
8422     // of the condition code is zero. 
8423     MCOperand &MO = Inst.getOperand(1);
8424     unsigned Mask = MO.getImm();
8425     unsigned OrigMask = Mask;
8426     unsigned TZ = countTrailingZeros(Mask);
8427     if ((Inst.getOperand(0).getImm() & 1) == 0) {
8428       assert(Mask && TZ <= 3 && "illegal IT mask value!");
8429       Mask ^= (0xE << TZ) & 0xF;
8430     }
8431     MO.setImm(Mask);
8432
8433     // Set up the IT block state according to the IT instruction we just
8434     // matched.
8435     assert(!inITBlock() && "nested IT blocks?!");
8436     ITState.Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm());
8437     ITState.Mask = OrigMask; // Use the original mask, not the updated one.
8438     ITState.CurPosition = 0;
8439     ITState.FirstCond = true;
8440     break;
8441   }
8442   case ARM::t2LSLrr:
8443   case ARM::t2LSRrr:
8444   case ARM::t2ASRrr:
8445   case ARM::t2SBCrr:
8446   case ARM::t2RORrr:
8447   case ARM::t2BICrr:
8448   {
8449     // Assemblers should use the narrow encodings of these instructions when permissible.
8450     if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
8451          isARMLowRegister(Inst.getOperand(2).getReg())) &&
8452         Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
8453         ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) ||
8454          (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) &&
8455         (!static_cast<ARMOperand &>(*Operands[3]).isToken() ||
8456          !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower(
8457              ".w"))) {
8458       unsigned NewOpc;
8459       switch (Inst.getOpcode()) {
8460         default: llvm_unreachable("unexpected opcode");
8461         case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break;
8462         case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break;
8463         case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break;
8464         case ARM::t2SBCrr: NewOpc = ARM::tSBC; break;
8465         case ARM::t2RORrr: NewOpc = ARM::tROR; break;
8466         case ARM::t2BICrr: NewOpc = ARM::tBIC; break;
8467       }
8468       MCInst TmpInst;
8469       TmpInst.setOpcode(NewOpc);
8470       TmpInst.addOperand(Inst.getOperand(0));
8471       TmpInst.addOperand(Inst.getOperand(5));
8472       TmpInst.addOperand(Inst.getOperand(1));
8473       TmpInst.addOperand(Inst.getOperand(2));
8474       TmpInst.addOperand(Inst.getOperand(3));
8475       TmpInst.addOperand(Inst.getOperand(4));
8476       Inst = TmpInst;
8477       return true;
8478     }
8479     return false;
8480   }
8481   case ARM::t2ANDrr:
8482   case ARM::t2EORrr:
8483   case ARM::t2ADCrr:
8484   case ARM::t2ORRrr:
8485   {
8486     // Assemblers should use the narrow encodings of these instructions when permissible.
8487     // These instructions are special in that they are commutable, so shorter encodings
8488     // are available more often.
8489     if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
8490          isARMLowRegister(Inst.getOperand(2).getReg())) &&
8491         (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() ||
8492          Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) &&
8493         ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) ||
8494          (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) &&
8495         (!static_cast<ARMOperand &>(*Operands[3]).isToken() ||
8496          !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower(
8497              ".w"))) {
8498       unsigned NewOpc;
8499       switch (Inst.getOpcode()) {
8500         default: llvm_unreachable("unexpected opcode");
8501         case ARM::t2ADCrr: NewOpc = ARM::tADC; break;
8502         case ARM::t2ANDrr: NewOpc = ARM::tAND; break;
8503         case ARM::t2EORrr: NewOpc = ARM::tEOR; break;
8504         case ARM::t2ORRrr: NewOpc = ARM::tORR; break;
8505       }
8506       MCInst TmpInst;
8507       TmpInst.setOpcode(NewOpc);
8508       TmpInst.addOperand(Inst.getOperand(0));
8509       TmpInst.addOperand(Inst.getOperand(5));
8510       if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) {
8511         TmpInst.addOperand(Inst.getOperand(1));
8512         TmpInst.addOperand(Inst.getOperand(2));
8513       } else {
8514         TmpInst.addOperand(Inst.getOperand(2));
8515         TmpInst.addOperand(Inst.getOperand(1));
8516       }
8517       TmpInst.addOperand(Inst.getOperand(3));
8518       TmpInst.addOperand(Inst.getOperand(4));
8519       Inst = TmpInst;
8520       return true;
8521     }
8522     return false;
8523   }
8524   }
8525   return false;
8526 }
8527
8528 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
8529   // 16-bit thumb arithmetic instructions either require or preclude the 'S'
8530   // suffix depending on whether they're in an IT block or not.
8531   unsigned Opc = Inst.getOpcode();
8532   const MCInstrDesc &MCID = MII.get(Opc);
8533   if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
8534     assert(MCID.hasOptionalDef() &&
8535            "optionally flag setting instruction missing optional def operand");
8536     assert(MCID.NumOperands == Inst.getNumOperands() &&
8537            "operand count mismatch!");
8538     // Find the optional-def operand (cc_out).
8539     unsigned OpNo;
8540     for (OpNo = 0;
8541          !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands;
8542          ++OpNo)
8543       ;
8544     // If we're parsing Thumb1, reject it completely.
8545     if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR)
8546       return Match_MnemonicFail;
8547     // If we're parsing Thumb2, which form is legal depends on whether we're
8548     // in an IT block.
8549     if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR &&
8550         !inITBlock())
8551       return Match_RequiresITBlock;
8552     if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR &&
8553         inITBlock())
8554       return Match_RequiresNotITBlock;
8555   }
8556   // Some high-register supporting Thumb1 encodings only allow both registers
8557   // to be from r0-r7 when in Thumb2.
8558   else if (Opc == ARM::tADDhirr && isThumbOne() && !hasV6MOps() &&
8559            isARMLowRegister(Inst.getOperand(1).getReg()) &&
8560            isARMLowRegister(Inst.getOperand(2).getReg()))
8561     return Match_RequiresThumb2;
8562   // Others only require ARMv6 or later.
8563   else if (Opc == ARM::tMOVr && isThumbOne() && !hasV6Ops() &&
8564            isARMLowRegister(Inst.getOperand(0).getReg()) &&
8565            isARMLowRegister(Inst.getOperand(1).getReg()))
8566     return Match_RequiresV6;
8567   return Match_Success;
8568 }
8569
8570 namespace llvm {
8571 template <> inline bool IsCPSRDead<MCInst>(MCInst *Instr) {
8572   return true; // In an assembly source, no need to second-guess
8573 }
8574 }
8575
8576 static const char *getSubtargetFeatureName(uint64_t Val);
8577 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
8578                                            OperandVector &Operands,
8579                                            MCStreamer &Out, uint64_t &ErrorInfo,
8580                                            bool MatchingInlineAsm) {
8581   MCInst Inst;
8582   unsigned MatchResult;
8583
8584   MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
8585                                      MatchingInlineAsm);
8586   switch (MatchResult) {
8587   case Match_Success:
8588     // Context sensitive operand constraints aren't handled by the matcher,
8589     // so check them here.
8590     if (validateInstruction(Inst, Operands)) {
8591       // Still progress the IT block, otherwise one wrong condition causes
8592       // nasty cascading errors.
8593       forwardITPosition();
8594       return true;
8595     }
8596
8597     { // processInstruction() updates inITBlock state, we need to save it away
8598       bool wasInITBlock = inITBlock();
8599
8600       // Some instructions need post-processing to, for example, tweak which
8601       // encoding is selected. Loop on it while changes happen so the
8602       // individual transformations can chain off each other. E.g.,
8603       // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
8604       while (processInstruction(Inst, Operands, Out))
8605         ;
8606
8607       // Only after the instruction is fully processed, we can validate it
8608       if (wasInITBlock && hasV8Ops() && isThumb() &&
8609           !isV8EligibleForIT(&Inst)) {
8610         Warning(IDLoc, "deprecated instruction in IT block");
8611       }
8612     }
8613
8614     // Only move forward at the very end so that everything in validate
8615     // and process gets a consistent answer about whether we're in an IT
8616     // block.
8617     forwardITPosition();
8618
8619     // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
8620     // doesn't actually encode.
8621     if (Inst.getOpcode() == ARM::ITasm)
8622       return false;
8623
8624     Inst.setLoc(IDLoc);
8625     Out.EmitInstruction(Inst, STI);
8626     return false;
8627   case Match_MissingFeature: {
8628     assert(ErrorInfo && "Unknown missing feature!");
8629     // Special case the error message for the very common case where only
8630     // a single subtarget feature is missing (Thumb vs. ARM, e.g.).
8631     std::string Msg = "instruction requires:";
8632     uint64_t Mask = 1;
8633     for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
8634       if (ErrorInfo & Mask) {
8635         Msg += " ";
8636         Msg += getSubtargetFeatureName(ErrorInfo & Mask);
8637       }
8638       Mask <<= 1;
8639     }
8640     return Error(IDLoc, Msg);
8641   }
8642   case Match_InvalidOperand: {
8643     SMLoc ErrorLoc = IDLoc;
8644     if (ErrorInfo != ~0ULL) {
8645       if (ErrorInfo >= Operands.size())
8646         return Error(IDLoc, "too few operands for instruction");
8647
8648       ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc();
8649       if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
8650     }
8651
8652     return Error(ErrorLoc, "invalid operand for instruction");
8653   }
8654   case Match_MnemonicFail:
8655     return Error(IDLoc, "invalid instruction",
8656                  ((ARMOperand &)*Operands[0]).getLocRange());
8657   case Match_RequiresNotITBlock:
8658     return Error(IDLoc, "flag setting instruction only valid outside IT block");
8659   case Match_RequiresITBlock:
8660     return Error(IDLoc, "instruction only valid inside IT block");
8661   case Match_RequiresV6:
8662     return Error(IDLoc, "instruction variant requires ARMv6 or later");
8663   case Match_RequiresThumb2:
8664     return Error(IDLoc, "instruction variant requires Thumb2");
8665   case Match_ImmRange0_15: {
8666     SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc();
8667     if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
8668     return Error(ErrorLoc, "immediate operand must be in the range [0,15]");
8669   }
8670   case Match_ImmRange0_239: {
8671     SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc();
8672     if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
8673     return Error(ErrorLoc, "immediate operand must be in the range [0,239]");
8674   }
8675   case Match_AlignedMemoryRequiresNone:
8676   case Match_DupAlignedMemoryRequiresNone:
8677   case Match_AlignedMemoryRequires16:
8678   case Match_DupAlignedMemoryRequires16:
8679   case Match_AlignedMemoryRequires32:
8680   case Match_DupAlignedMemoryRequires32:
8681   case Match_AlignedMemoryRequires64:
8682   case Match_DupAlignedMemoryRequires64:
8683   case Match_AlignedMemoryRequires64or128:
8684   case Match_DupAlignedMemoryRequires64or128:
8685   case Match_AlignedMemoryRequires64or128or256:
8686   {
8687     SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getAlignmentLoc();
8688     if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
8689     switch (MatchResult) {
8690       default:
8691         llvm_unreachable("Missing Match_Aligned type");
8692       case Match_AlignedMemoryRequiresNone:
8693       case Match_DupAlignedMemoryRequiresNone:
8694         return Error(ErrorLoc, "alignment must be omitted");
8695       case Match_AlignedMemoryRequires16:
8696       case Match_DupAlignedMemoryRequires16:
8697         return Error(ErrorLoc, "alignment must be 16 or omitted");
8698       case Match_AlignedMemoryRequires32:
8699       case Match_DupAlignedMemoryRequires32:
8700         return Error(ErrorLoc, "alignment must be 32 or omitted");
8701       case Match_AlignedMemoryRequires64:
8702       case Match_DupAlignedMemoryRequires64:
8703         return Error(ErrorLoc, "alignment must be 64 or omitted");
8704       case Match_AlignedMemoryRequires64or128:
8705       case Match_DupAlignedMemoryRequires64or128:
8706         return Error(ErrorLoc, "alignment must be 64, 128 or omitted");
8707       case Match_AlignedMemoryRequires64or128or256:
8708         return Error(ErrorLoc, "alignment must be 64, 128, 256 or omitted");
8709     }
8710   }
8711   }
8712
8713   llvm_unreachable("Implement any new match types added!");
8714 }
8715
8716 /// parseDirective parses the arm specific directives
8717 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
8718   const MCObjectFileInfo::Environment Format =
8719     getContext().getObjectFileInfo()->getObjectFileType();
8720   bool IsMachO = Format == MCObjectFileInfo::IsMachO;
8721   bool IsCOFF = Format == MCObjectFileInfo::IsCOFF;
8722
8723   StringRef IDVal = DirectiveID.getIdentifier();
8724   if (IDVal == ".word")
8725     return parseLiteralValues(4, DirectiveID.getLoc());
8726   else if (IDVal == ".short" || IDVal == ".hword")
8727     return parseLiteralValues(2, DirectiveID.getLoc());
8728   else if (IDVal == ".thumb")
8729     return parseDirectiveThumb(DirectiveID.getLoc());
8730   else if (IDVal == ".arm")
8731     return parseDirectiveARM(DirectiveID.getLoc());
8732   else if (IDVal == ".thumb_func")
8733     return parseDirectiveThumbFunc(DirectiveID.getLoc());
8734   else if (IDVal == ".code")
8735     return parseDirectiveCode(DirectiveID.getLoc());
8736   else if (IDVal == ".syntax")
8737     return parseDirectiveSyntax(DirectiveID.getLoc());
8738   else if (IDVal == ".unreq")
8739     return parseDirectiveUnreq(DirectiveID.getLoc());
8740   else if (IDVal == ".fnend")
8741     return parseDirectiveFnEnd(DirectiveID.getLoc());
8742   else if (IDVal == ".cantunwind")
8743     return parseDirectiveCantUnwind(DirectiveID.getLoc());
8744   else if (IDVal == ".personality")
8745     return parseDirectivePersonality(DirectiveID.getLoc());
8746   else if (IDVal == ".handlerdata")
8747     return parseDirectiveHandlerData(DirectiveID.getLoc());
8748   else if (IDVal == ".setfp")
8749     return parseDirectiveSetFP(DirectiveID.getLoc());
8750   else if (IDVal == ".pad")
8751     return parseDirectivePad(DirectiveID.getLoc());
8752   else if (IDVal == ".save")
8753     return parseDirectiveRegSave(DirectiveID.getLoc(), false);
8754   else if (IDVal == ".vsave")
8755     return parseDirectiveRegSave(DirectiveID.getLoc(), true);
8756   else if (IDVal == ".ltorg" || IDVal == ".pool")
8757     return parseDirectiveLtorg(DirectiveID.getLoc());
8758   else if (IDVal == ".even")
8759     return parseDirectiveEven(DirectiveID.getLoc());
8760   else if (IDVal == ".personalityindex")
8761     return parseDirectivePersonalityIndex(DirectiveID.getLoc());
8762   else if (IDVal == ".unwind_raw")
8763     return parseDirectiveUnwindRaw(DirectiveID.getLoc());
8764   else if (IDVal == ".movsp")
8765     return parseDirectiveMovSP(DirectiveID.getLoc());
8766   else if (IDVal == ".arch_extension")
8767     return parseDirectiveArchExtension(DirectiveID.getLoc());
8768   else if (IDVal == ".align")
8769     return parseDirectiveAlign(DirectiveID.getLoc());
8770   else if (IDVal == ".thumb_set")
8771     return parseDirectiveThumbSet(DirectiveID.getLoc());
8772
8773   if (!IsMachO && !IsCOFF) {
8774     if (IDVal == ".arch")
8775       return parseDirectiveArch(DirectiveID.getLoc());
8776     else if (IDVal == ".cpu")
8777       return parseDirectiveCPU(DirectiveID.getLoc());
8778     else if (IDVal == ".eabi_attribute")
8779       return parseDirectiveEabiAttr(DirectiveID.getLoc());
8780     else if (IDVal == ".fpu")
8781       return parseDirectiveFPU(DirectiveID.getLoc());
8782     else if (IDVal == ".fnstart")
8783       return parseDirectiveFnStart(DirectiveID.getLoc());
8784     else if (IDVal == ".inst")
8785       return parseDirectiveInst(DirectiveID.getLoc());
8786     else if (IDVal == ".inst.n")
8787       return parseDirectiveInst(DirectiveID.getLoc(), 'n');
8788     else if (IDVal == ".inst.w")
8789       return parseDirectiveInst(DirectiveID.getLoc(), 'w');
8790     else if (IDVal == ".object_arch")
8791       return parseDirectiveObjectArch(DirectiveID.getLoc());
8792     else if (IDVal == ".tlsdescseq")
8793       return parseDirectiveTLSDescSeq(DirectiveID.getLoc());
8794   }
8795
8796   return true;
8797 }
8798
8799 /// parseLiteralValues
8800 ///  ::= .hword expression [, expression]*
8801 ///  ::= .short expression [, expression]*
8802 ///  ::= .word expression [, expression]*
8803 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) {
8804   MCAsmParser &Parser = getParser();
8805   if (getLexer().isNot(AsmToken::EndOfStatement)) {
8806     for (;;) {
8807       const MCExpr *Value;
8808       if (getParser().parseExpression(Value)) {
8809         Parser.eatToEndOfStatement();
8810         return false;
8811       }
8812
8813       getParser().getStreamer().EmitValue(Value, Size);
8814
8815       if (getLexer().is(AsmToken::EndOfStatement))
8816         break;
8817
8818       // FIXME: Improve diagnostic.
8819       if (getLexer().isNot(AsmToken::Comma)) {
8820         Error(L, "unexpected token in directive");
8821         return false;
8822       }
8823       Parser.Lex();
8824     }
8825   }
8826
8827   Parser.Lex();
8828   return false;
8829 }
8830
8831 /// parseDirectiveThumb
8832 ///  ::= .thumb
8833 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
8834   MCAsmParser &Parser = getParser();
8835   if (getLexer().isNot(AsmToken::EndOfStatement)) {
8836     Error(L, "unexpected token in directive");
8837     return false;
8838   }
8839   Parser.Lex();
8840
8841   if (!hasThumb()) {
8842     Error(L, "target does not support Thumb mode");
8843     return false;
8844   }
8845
8846   if (!isThumb())
8847     SwitchMode();
8848
8849   getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
8850   return false;
8851 }
8852
8853 /// parseDirectiveARM
8854 ///  ::= .arm
8855 bool ARMAsmParser::parseDirectiveARM(SMLoc L) {
8856   MCAsmParser &Parser = getParser();
8857   if (getLexer().isNot(AsmToken::EndOfStatement)) {
8858     Error(L, "unexpected token in directive");
8859     return false;
8860   }
8861   Parser.Lex();
8862
8863   if (!hasARM()) {
8864     Error(L, "target does not support ARM mode");
8865     return false;
8866   }
8867
8868   if (isThumb())
8869     SwitchMode();
8870
8871   getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
8872   return false;
8873 }
8874
8875 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) {
8876   if (NextSymbolIsThumb) {
8877     getParser().getStreamer().EmitThumbFunc(Symbol);
8878     NextSymbolIsThumb = false;
8879   }
8880 }
8881
8882 /// parseDirectiveThumbFunc
8883 ///  ::= .thumbfunc symbol_name
8884 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
8885   MCAsmParser &Parser = getParser();
8886   const auto Format = getContext().getObjectFileInfo()->getObjectFileType();
8887   bool IsMachO = Format == MCObjectFileInfo::IsMachO;
8888
8889   // Darwin asm has (optionally) function name after .thumb_func direction
8890   // ELF doesn't
8891   if (IsMachO) {
8892     const AsmToken &Tok = Parser.getTok();
8893     if (Tok.isNot(AsmToken::EndOfStatement)) {
8894       if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String)) {
8895         Error(L, "unexpected token in .thumb_func directive");
8896         return false;
8897       }
8898
8899       MCSymbol *Func =
8900           getParser().getContext().GetOrCreateSymbol(Tok.getIdentifier());
8901       getParser().getStreamer().EmitThumbFunc(Func);
8902       Parser.Lex(); // Consume the identifier token.
8903       return false;
8904     }
8905   }
8906
8907   if (getLexer().isNot(AsmToken::EndOfStatement)) {
8908     Error(Parser.getTok().getLoc(), "unexpected token in directive");
8909     Parser.eatToEndOfStatement();
8910     return false;
8911   }
8912
8913   NextSymbolIsThumb = true;
8914   return false;
8915 }
8916
8917 /// parseDirectiveSyntax
8918 ///  ::= .syntax unified | divided
8919 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
8920   MCAsmParser &Parser = getParser();
8921   const AsmToken &Tok = Parser.getTok();
8922   if (Tok.isNot(AsmToken::Identifier)) {
8923     Error(L, "unexpected token in .syntax directive");
8924     return false;
8925   }
8926
8927   StringRef Mode = Tok.getString();
8928   if (Mode == "unified" || Mode == "UNIFIED") {
8929     Parser.Lex();
8930   } else if (Mode == "divided" || Mode == "DIVIDED") {
8931     Error(L, "'.syntax divided' arm asssembly not supported");
8932     return false;
8933   } else {
8934     Error(L, "unrecognized syntax mode in .syntax directive");
8935     return false;
8936   }
8937
8938   if (getLexer().isNot(AsmToken::EndOfStatement)) {
8939     Error(Parser.getTok().getLoc(), "unexpected token in directive");
8940     return false;
8941   }
8942   Parser.Lex();
8943
8944   // TODO tell the MC streamer the mode
8945   // getParser().getStreamer().Emit???();
8946   return false;
8947 }
8948
8949 /// parseDirectiveCode
8950 ///  ::= .code 16 | 32
8951 bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
8952   MCAsmParser &Parser = getParser();
8953   const AsmToken &Tok = Parser.getTok();
8954   if (Tok.isNot(AsmToken::Integer)) {
8955     Error(L, "unexpected token in .code directive");
8956     return false;
8957   }
8958   int64_t Val = Parser.getTok().getIntVal();
8959   if (Val != 16 && Val != 32) {
8960     Error(L, "invalid operand to .code directive");
8961     return false;
8962   }
8963   Parser.Lex();
8964
8965   if (getLexer().isNot(AsmToken::EndOfStatement)) {
8966     Error(Parser.getTok().getLoc(), "unexpected token in directive");
8967     return false;
8968   }
8969   Parser.Lex();
8970
8971   if (Val == 16) {
8972     if (!hasThumb()) {
8973       Error(L, "target does not support Thumb mode");
8974       return false;
8975     }
8976
8977     if (!isThumb())
8978       SwitchMode();
8979     getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
8980   } else {
8981     if (!hasARM()) {
8982       Error(L, "target does not support ARM mode");
8983       return false;
8984     }
8985
8986     if (isThumb())
8987       SwitchMode();
8988     getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
8989   }
8990
8991   return false;
8992 }
8993
8994 /// parseDirectiveReq
8995 ///  ::= name .req registername
8996 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
8997   MCAsmParser &Parser = getParser();
8998   Parser.Lex(); // Eat the '.req' token.
8999   unsigned Reg;
9000   SMLoc SRegLoc, ERegLoc;
9001   if (ParseRegister(Reg, SRegLoc, ERegLoc)) {
9002     Parser.eatToEndOfStatement();
9003     Error(SRegLoc, "register name expected");
9004     return false;
9005   }
9006
9007   // Shouldn't be anything else.
9008   if (Parser.getTok().isNot(AsmToken::EndOfStatement)) {
9009     Parser.eatToEndOfStatement();
9010     Error(Parser.getTok().getLoc(), "unexpected input in .req directive.");
9011     return false;
9012   }
9013
9014   Parser.Lex(); // Consume the EndOfStatement
9015
9016   if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) {
9017     Error(SRegLoc, "redefinition of '" + Name + "' does not match original.");
9018     return false;
9019   }
9020
9021   return false;
9022 }
9023
9024 /// parseDirectiveUneq
9025 ///  ::= .unreq registername
9026 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) {
9027   MCAsmParser &Parser = getParser();
9028   if (Parser.getTok().isNot(AsmToken::Identifier)) {
9029     Parser.eatToEndOfStatement();
9030     Error(L, "unexpected input in .unreq directive.");
9031     return false;
9032   }
9033   RegisterReqs.erase(Parser.getTok().getIdentifier().lower());
9034   Parser.Lex(); // Eat the identifier.
9035   return false;
9036 }
9037
9038 /// parseDirectiveArch
9039 ///  ::= .arch token
9040 bool ARMAsmParser::parseDirectiveArch(SMLoc L) {
9041   StringRef Arch = getParser().parseStringToEndOfStatement().trim();
9042
9043   unsigned ID = StringSwitch<unsigned>(Arch)
9044 #define ARM_ARCH_NAME(NAME, ID, DEFAULT_CPU_NAME, DEFAULT_CPU_ARCH) \
9045     .Case(NAME, ARM::ID)
9046 #define ARM_ARCH_ALIAS(NAME, ID) \
9047     .Case(NAME, ARM::ID)
9048 #include "MCTargetDesc/ARMArchName.def"
9049     .Default(ARM::INVALID_ARCH);
9050
9051   if (ID == ARM::INVALID_ARCH) {
9052     Error(L, "Unknown arch name");
9053     return false;
9054   }
9055
9056   getTargetStreamer().emitArch(ID);
9057   return false;
9058 }
9059
9060 /// parseDirectiveEabiAttr
9061 ///  ::= .eabi_attribute int, int [, "str"]
9062 ///  ::= .eabi_attribute Tag_name, int [, "str"]
9063 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) {
9064   MCAsmParser &Parser = getParser();
9065   int64_t Tag;
9066   SMLoc TagLoc;
9067   TagLoc = Parser.getTok().getLoc();
9068   if (Parser.getTok().is(AsmToken::Identifier)) {
9069     StringRef Name = Parser.getTok().getIdentifier();
9070     Tag = ARMBuildAttrs::AttrTypeFromString(Name);
9071     if (Tag == -1) {
9072       Error(TagLoc, "attribute name not recognised: " + Name);
9073       Parser.eatToEndOfStatement();
9074       return false;
9075     }
9076     Parser.Lex();
9077   } else {
9078     const MCExpr *AttrExpr;
9079
9080     TagLoc = Parser.getTok().getLoc();
9081     if (Parser.parseExpression(AttrExpr)) {
9082       Parser.eatToEndOfStatement();
9083       return false;
9084     }
9085
9086     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr);
9087     if (!CE) {
9088       Error(TagLoc, "expected numeric constant");
9089       Parser.eatToEndOfStatement();
9090       return false;
9091     }
9092
9093     Tag = CE->getValue();
9094   }
9095
9096   if (Parser.getTok().isNot(AsmToken::Comma)) {
9097     Error(Parser.getTok().getLoc(), "comma expected");
9098     Parser.eatToEndOfStatement();
9099     return false;
9100   }
9101   Parser.Lex(); // skip comma
9102
9103   StringRef StringValue = "";
9104   bool IsStringValue = false;
9105
9106   int64_t IntegerValue = 0;
9107   bool IsIntegerValue = false;
9108
9109   if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name)
9110     IsStringValue = true;
9111   else if (Tag == ARMBuildAttrs::compatibility) {
9112     IsStringValue = true;
9113     IsIntegerValue = true;
9114   } else if (Tag < 32 || Tag % 2 == 0)
9115     IsIntegerValue = true;
9116   else if (Tag % 2 == 1)
9117     IsStringValue = true;
9118   else
9119     llvm_unreachable("invalid tag type");
9120
9121   if (IsIntegerValue) {
9122     const MCExpr *ValueExpr;
9123     SMLoc ValueExprLoc = Parser.getTok().getLoc();
9124     if (Parser.parseExpression(ValueExpr)) {
9125       Parser.eatToEndOfStatement();
9126       return false;
9127     }
9128
9129     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr);
9130     if (!CE) {
9131       Error(ValueExprLoc, "expected numeric constant");
9132       Parser.eatToEndOfStatement();
9133       return false;
9134     }
9135
9136     IntegerValue = CE->getValue();
9137   }
9138
9139   if (Tag == ARMBuildAttrs::compatibility) {
9140     if (Parser.getTok().isNot(AsmToken::Comma))
9141       IsStringValue = false;
9142     if (Parser.getTok().isNot(AsmToken::Comma)) {
9143       Error(Parser.getTok().getLoc(), "comma expected");
9144       Parser.eatToEndOfStatement();
9145       return false;
9146     } else {
9147        Parser.Lex();
9148     }
9149   }
9150
9151   if (IsStringValue) {
9152     if (Parser.getTok().isNot(AsmToken::String)) {
9153       Error(Parser.getTok().getLoc(), "bad string constant");
9154       Parser.eatToEndOfStatement();
9155       return false;
9156     }
9157
9158     StringValue = Parser.getTok().getStringContents();
9159     Parser.Lex();
9160   }
9161
9162   if (IsIntegerValue && IsStringValue) {
9163     assert(Tag == ARMBuildAttrs::compatibility);
9164     getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue);
9165   } else if (IsIntegerValue)
9166     getTargetStreamer().emitAttribute(Tag, IntegerValue);
9167   else if (IsStringValue)
9168     getTargetStreamer().emitTextAttribute(Tag, StringValue);
9169   return false;
9170 }
9171
9172 /// parseDirectiveCPU
9173 ///  ::= .cpu str
9174 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) {
9175   StringRef CPU = getParser().parseStringToEndOfStatement().trim();
9176   getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU);
9177
9178   if (!STI.isCPUStringValid(CPU)) {
9179     Error(L, "Unknown CPU name");
9180     return false;
9181   }
9182
9183   // FIXME: This switches the CPU features globally, therefore it might
9184   // happen that code you would not expect to assemble will. For details
9185   // see: http://llvm.org/bugs/show_bug.cgi?id=20757
9186   STI.InitMCProcessorInfo(CPU, "");
9187   STI.InitCPUSchedModel(CPU);
9188   setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
9189
9190   return false;
9191 }
9192
9193 // FIXME: This is duplicated in getARMFPUFeatures() in
9194 // tools/clang/lib/Driver/Tools.cpp
9195 static const struct {
9196   const unsigned ID;
9197   const uint64_t Enabled;
9198   const uint64_t Disabled;
9199 } FPUs[] = {
9200     {/* ID */ ARM::VFP,
9201      /* Enabled */ ARM::FeatureVFP2,
9202      /* Disabled */ ARM::FeatureNEON},
9203     {/* ID */ ARM::VFPV2,
9204      /* Enabled */ ARM::FeatureVFP2,
9205      /* Disabled */ ARM::FeatureNEON},
9206     {/* ID */ ARM::VFPV3,
9207      /* Enabled */ ARM::FeatureVFP2 | ARM::FeatureVFP3,
9208      /* Disabled */ ARM::FeatureNEON | ARM::FeatureD16},
9209     {/* ID */ ARM::VFPV3_D16,
9210      /* Enable */ ARM::FeatureVFP2 | ARM::FeatureVFP3 | ARM::FeatureD16,
9211      /* Disabled */ ARM::FeatureNEON},
9212     {/* ID */ ARM::VFPV4,
9213      /* Enabled */ ARM::FeatureVFP2 | ARM::FeatureVFP3 | ARM::FeatureVFP4,
9214      /* Disabled */ ARM::FeatureNEON | ARM::FeatureD16},
9215     {/* ID */ ARM::VFPV4_D16,
9216      /* Enabled */ ARM::FeatureVFP2 | ARM::FeatureVFP3 | ARM::FeatureVFP4 |
9217          ARM::FeatureD16,
9218      /* Disabled */ ARM::FeatureNEON},
9219     {/* ID */ ARM::FPV5_D16,
9220      /* Enabled */ ARM::FeatureVFP2 | ARM::FeatureVFP3 | ARM::FeatureVFP4 |
9221          ARM::FeatureFPARMv8 | ARM::FeatureD16,
9222      /* Disabled */ ARM::FeatureNEON | ARM::FeatureCrypto},
9223     {/* ID */ ARM::FP_ARMV8,
9224      /* Enabled */ ARM::FeatureVFP2 | ARM::FeatureVFP3 | ARM::FeatureVFP4 |
9225          ARM::FeatureFPARMv8,
9226      /* Disabled */ ARM::FeatureNEON | ARM::FeatureCrypto | ARM::FeatureD16},
9227     {/* ID */ ARM::NEON,
9228      /* Enabled */ ARM::FeatureVFP2 | ARM::FeatureVFP3 | ARM::FeatureNEON,
9229      /* Disabled */ ARM::FeatureD16},
9230     {/* ID */ ARM::NEON_VFPV4,
9231      /* Enabled */ ARM::FeatureVFP2 | ARM::FeatureVFP3 | ARM::FeatureVFP4 |
9232          ARM::FeatureNEON,
9233      /* Disabled */ ARM::FeatureD16},
9234     {/* ID */ ARM::NEON_FP_ARMV8,
9235      /* Enabled */ ARM::FeatureVFP2 | ARM::FeatureVFP3 | ARM::FeatureVFP4 |
9236          ARM::FeatureFPARMv8 | ARM::FeatureNEON,
9237      /* Disabled */ ARM::FeatureCrypto | ARM::FeatureD16},
9238     {/* ID */ ARM::CRYPTO_NEON_FP_ARMV8,
9239      /* Enabled */ ARM::FeatureVFP2 | ARM::FeatureVFP3 | ARM::FeatureVFP4 |
9240          ARM::FeatureFPARMv8 | ARM::FeatureNEON | ARM::FeatureCrypto,
9241      /* Disabled */ ARM::FeatureD16},
9242     {ARM::SOFTVFP, 0, 0},
9243 };
9244
9245 /// parseDirectiveFPU
9246 ///  ::= .fpu str
9247 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) {
9248   SMLoc FPUNameLoc = getTok().getLoc();
9249   StringRef FPU = getParser().parseStringToEndOfStatement().trim();
9250
9251   unsigned ID = StringSwitch<unsigned>(FPU)
9252 #define ARM_FPU_NAME(NAME, ID) .Case(NAME, ARM::ID)
9253 #include "ARMFPUName.def"
9254     .Default(ARM::INVALID_FPU);
9255
9256   if (ID == ARM::INVALID_FPU) {
9257     Error(FPUNameLoc, "Unknown FPU name");
9258     return false;
9259   }
9260
9261   for (const auto &Entry : FPUs) {
9262     if (Entry.ID != ID)
9263       continue;
9264
9265     // Need to toggle features that should be on but are off and that
9266     // should off but are on.
9267     uint64_t Toggle = (Entry.Enabled & ~STI.getFeatureBits()) |
9268                       (Entry.Disabled & STI.getFeatureBits());
9269     setAvailableFeatures(ComputeAvailableFeatures(STI.ToggleFeature(Toggle)));
9270     break;
9271   }
9272
9273   getTargetStreamer().emitFPU(ID);
9274   return false;
9275 }
9276
9277 /// parseDirectiveFnStart
9278 ///  ::= .fnstart
9279 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) {
9280   if (UC.hasFnStart()) {
9281     Error(L, ".fnstart starts before the end of previous one");
9282     UC.emitFnStartLocNotes();
9283     return false;
9284   }
9285
9286   // Reset the unwind directives parser state
9287   UC.reset();
9288
9289   getTargetStreamer().emitFnStart();
9290
9291   UC.recordFnStart(L);
9292   return false;
9293 }
9294
9295 /// parseDirectiveFnEnd
9296 ///  ::= .fnend
9297 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) {
9298   // Check the ordering of unwind directives
9299   if (!UC.hasFnStart()) {
9300     Error(L, ".fnstart must precede .fnend directive");
9301     return false;
9302   }
9303
9304   // Reset the unwind directives parser state
9305   getTargetStreamer().emitFnEnd();
9306
9307   UC.reset();
9308   return false;
9309 }
9310
9311 /// parseDirectiveCantUnwind
9312 ///  ::= .cantunwind
9313 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) {
9314   UC.recordCantUnwind(L);
9315
9316   // Check the ordering of unwind directives
9317   if (!UC.hasFnStart()) {
9318     Error(L, ".fnstart must precede .cantunwind directive");
9319     return false;
9320   }
9321   if (UC.hasHandlerData()) {
9322     Error(L, ".cantunwind can't be used with .handlerdata directive");
9323     UC.emitHandlerDataLocNotes();
9324     return false;
9325   }
9326   if (UC.hasPersonality()) {
9327     Error(L, ".cantunwind can't be used with .personality directive");
9328     UC.emitPersonalityLocNotes();
9329     return false;
9330   }
9331
9332   getTargetStreamer().emitCantUnwind();
9333   return false;
9334 }
9335
9336 /// parseDirectivePersonality
9337 ///  ::= .personality name
9338 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) {
9339   MCAsmParser &Parser = getParser();
9340   bool HasExistingPersonality = UC.hasPersonality();
9341
9342   UC.recordPersonality(L);
9343
9344   // Check the ordering of unwind directives
9345   if (!UC.hasFnStart()) {
9346     Error(L, ".fnstart must precede .personality directive");
9347     return false;
9348   }
9349   if (UC.cantUnwind()) {
9350     Error(L, ".personality can't be used with .cantunwind directive");
9351     UC.emitCantUnwindLocNotes();
9352     return false;
9353   }
9354   if (UC.hasHandlerData()) {
9355     Error(L, ".personality must precede .handlerdata directive");
9356     UC.emitHandlerDataLocNotes();
9357     return false;
9358   }
9359   if (HasExistingPersonality) {
9360     Parser.eatToEndOfStatement();
9361     Error(L, "multiple personality directives");
9362     UC.emitPersonalityLocNotes();
9363     return false;
9364   }
9365
9366   // Parse the name of the personality routine
9367   if (Parser.getTok().isNot(AsmToken::Identifier)) {
9368     Parser.eatToEndOfStatement();
9369     Error(L, "unexpected input in .personality directive.");
9370     return false;
9371   }
9372   StringRef Name(Parser.getTok().getIdentifier());
9373   Parser.Lex();
9374
9375   MCSymbol *PR = getParser().getContext().GetOrCreateSymbol(Name);
9376   getTargetStreamer().emitPersonality(PR);
9377   return false;
9378 }
9379
9380 /// parseDirectiveHandlerData
9381 ///  ::= .handlerdata
9382 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) {
9383   UC.recordHandlerData(L);
9384
9385   // Check the ordering of unwind directives
9386   if (!UC.hasFnStart()) {
9387     Error(L, ".fnstart must precede .personality directive");
9388     return false;
9389   }
9390   if (UC.cantUnwind()) {
9391     Error(L, ".handlerdata can't be used with .cantunwind directive");
9392     UC.emitCantUnwindLocNotes();
9393     return false;
9394   }
9395
9396   getTargetStreamer().emitHandlerData();
9397   return false;
9398 }
9399
9400 /// parseDirectiveSetFP
9401 ///  ::= .setfp fpreg, spreg [, offset]
9402 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) {
9403   MCAsmParser &Parser = getParser();
9404   // Check the ordering of unwind directives
9405   if (!UC.hasFnStart()) {
9406     Error(L, ".fnstart must precede .setfp directive");
9407     return false;
9408   }
9409   if (UC.hasHandlerData()) {
9410     Error(L, ".setfp must precede .handlerdata directive");
9411     return false;
9412   }
9413
9414   // Parse fpreg
9415   SMLoc FPRegLoc = Parser.getTok().getLoc();
9416   int FPReg = tryParseRegister();
9417   if (FPReg == -1) {
9418     Error(FPRegLoc, "frame pointer register expected");
9419     return false;
9420   }
9421
9422   // Consume comma
9423   if (Parser.getTok().isNot(AsmToken::Comma)) {
9424     Error(Parser.getTok().getLoc(), "comma expected");
9425     return false;
9426   }
9427   Parser.Lex(); // skip comma
9428
9429   // Parse spreg
9430   SMLoc SPRegLoc = Parser.getTok().getLoc();
9431   int SPReg = tryParseRegister();
9432   if (SPReg == -1) {
9433     Error(SPRegLoc, "stack pointer register expected");
9434     return false;
9435   }
9436
9437   if (SPReg != ARM::SP && SPReg != UC.getFPReg()) {
9438     Error(SPRegLoc, "register should be either $sp or the latest fp register");
9439     return false;
9440   }
9441
9442   // Update the frame pointer register
9443   UC.saveFPReg(FPReg);
9444
9445   // Parse offset
9446   int64_t Offset = 0;
9447   if (Parser.getTok().is(AsmToken::Comma)) {
9448     Parser.Lex(); // skip comma
9449
9450     if (Parser.getTok().isNot(AsmToken::Hash) &&
9451         Parser.getTok().isNot(AsmToken::Dollar)) {
9452       Error(Parser.getTok().getLoc(), "'#' expected");
9453       return false;
9454     }
9455     Parser.Lex(); // skip hash token.
9456
9457     const MCExpr *OffsetExpr;
9458     SMLoc ExLoc = Parser.getTok().getLoc();
9459     SMLoc EndLoc;
9460     if (getParser().parseExpression(OffsetExpr, EndLoc)) {
9461       Error(ExLoc, "malformed setfp offset");
9462       return false;
9463     }
9464     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
9465     if (!CE) {
9466       Error(ExLoc, "setfp offset must be an immediate");
9467       return false;
9468     }
9469
9470     Offset = CE->getValue();
9471   }
9472
9473   getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg),
9474                                 static_cast<unsigned>(SPReg), Offset);
9475   return false;
9476 }
9477
9478 /// parseDirective
9479 ///  ::= .pad offset
9480 bool ARMAsmParser::parseDirectivePad(SMLoc L) {
9481   MCAsmParser &Parser = getParser();
9482   // Check the ordering of unwind directives
9483   if (!UC.hasFnStart()) {
9484     Error(L, ".fnstart must precede .pad directive");
9485     return false;
9486   }
9487   if (UC.hasHandlerData()) {
9488     Error(L, ".pad must precede .handlerdata directive");
9489     return false;
9490   }
9491
9492   // Parse the offset
9493   if (Parser.getTok().isNot(AsmToken::Hash) &&
9494       Parser.getTok().isNot(AsmToken::Dollar)) {
9495     Error(Parser.getTok().getLoc(), "'#' expected");
9496     return false;
9497   }
9498   Parser.Lex(); // skip hash token.
9499
9500   const MCExpr *OffsetExpr;
9501   SMLoc ExLoc = Parser.getTok().getLoc();
9502   SMLoc EndLoc;
9503   if (getParser().parseExpression(OffsetExpr, EndLoc)) {
9504     Error(ExLoc, "malformed pad offset");
9505     return false;
9506   }
9507   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
9508   if (!CE) {
9509     Error(ExLoc, "pad offset must be an immediate");
9510     return false;
9511   }
9512
9513   getTargetStreamer().emitPad(CE->getValue());
9514   return false;
9515 }
9516
9517 /// parseDirectiveRegSave
9518 ///  ::= .save  { registers }
9519 ///  ::= .vsave { registers }
9520 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) {
9521   // Check the ordering of unwind directives
9522   if (!UC.hasFnStart()) {
9523     Error(L, ".fnstart must precede .save or .vsave directives");
9524     return false;
9525   }
9526   if (UC.hasHandlerData()) {
9527     Error(L, ".save or .vsave must precede .handlerdata directive");
9528     return false;
9529   }
9530
9531   // RAII object to make sure parsed operands are deleted.
9532   SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands;
9533
9534   // Parse the register list
9535   if (parseRegisterList(Operands))
9536     return false;
9537   ARMOperand &Op = (ARMOperand &)*Operands[0];
9538   if (!IsVector && !Op.isRegList()) {
9539     Error(L, ".save expects GPR registers");
9540     return false;
9541   }
9542   if (IsVector && !Op.isDPRRegList()) {
9543     Error(L, ".vsave expects DPR registers");
9544     return false;
9545   }
9546
9547   getTargetStreamer().emitRegSave(Op.getRegList(), IsVector);
9548   return false;
9549 }
9550
9551 /// parseDirectiveInst
9552 ///  ::= .inst opcode [, ...]
9553 ///  ::= .inst.n opcode [, ...]
9554 ///  ::= .inst.w opcode [, ...]
9555 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) {
9556   MCAsmParser &Parser = getParser();
9557   int Width;
9558
9559   if (isThumb()) {
9560     switch (Suffix) {
9561     case 'n':
9562       Width = 2;
9563       break;
9564     case 'w':
9565       Width = 4;
9566       break;
9567     default:
9568       Parser.eatToEndOfStatement();
9569       Error(Loc, "cannot determine Thumb instruction size, "
9570                  "use inst.n/inst.w instead");
9571       return false;
9572     }
9573   } else {
9574     if (Suffix) {
9575       Parser.eatToEndOfStatement();
9576       Error(Loc, "width suffixes are invalid in ARM mode");
9577       return false;
9578     }
9579     Width = 4;
9580   }
9581
9582   if (getLexer().is(AsmToken::EndOfStatement)) {
9583     Parser.eatToEndOfStatement();
9584     Error(Loc, "expected expression following directive");
9585     return false;
9586   }
9587
9588   for (;;) {
9589     const MCExpr *Expr;
9590
9591     if (getParser().parseExpression(Expr)) {
9592       Error(Loc, "expected expression");
9593       return false;
9594     }
9595
9596     const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr);
9597     if (!Value) {
9598       Error(Loc, "expected constant expression");
9599       return false;
9600     }
9601
9602     switch (Width) {
9603     case 2:
9604       if (Value->getValue() > 0xffff) {
9605         Error(Loc, "inst.n operand is too big, use inst.w instead");
9606         return false;
9607       }
9608       break;
9609     case 4:
9610       if (Value->getValue() > 0xffffffff) {
9611         Error(Loc,
9612               StringRef(Suffix ? "inst.w" : "inst") + " operand is too big");
9613         return false;
9614       }
9615       break;
9616     default:
9617       llvm_unreachable("only supported widths are 2 and 4");
9618     }
9619
9620     getTargetStreamer().emitInst(Value->getValue(), Suffix);
9621
9622     if (getLexer().is(AsmToken::EndOfStatement))
9623       break;
9624
9625     if (getLexer().isNot(AsmToken::Comma)) {
9626       Error(Loc, "unexpected token in directive");
9627       return false;
9628     }
9629
9630     Parser.Lex();
9631   }
9632
9633   Parser.Lex();
9634   return false;
9635 }
9636
9637 /// parseDirectiveLtorg
9638 ///  ::= .ltorg | .pool
9639 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) {
9640   getTargetStreamer().emitCurrentConstantPool();
9641   return false;
9642 }
9643
9644 bool ARMAsmParser::parseDirectiveEven(SMLoc L) {
9645   const MCSection *Section = getStreamer().getCurrentSection().first;
9646
9647   if (getLexer().isNot(AsmToken::EndOfStatement)) {
9648     TokError("unexpected token in directive");
9649     return false;
9650   }
9651
9652   if (!Section) {
9653     getStreamer().InitSections(false);
9654     Section = getStreamer().getCurrentSection().first;
9655   }
9656
9657   assert(Section && "must have section to emit alignment");
9658   if (Section->UseCodeAlign())
9659     getStreamer().EmitCodeAlignment(2);
9660   else
9661     getStreamer().EmitValueToAlignment(2);
9662
9663   return false;
9664 }
9665
9666 /// parseDirectivePersonalityIndex
9667 ///   ::= .personalityindex index
9668 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) {
9669   MCAsmParser &Parser = getParser();
9670   bool HasExistingPersonality = UC.hasPersonality();
9671
9672   UC.recordPersonalityIndex(L);
9673
9674   if (!UC.hasFnStart()) {
9675     Parser.eatToEndOfStatement();
9676     Error(L, ".fnstart must precede .personalityindex directive");
9677     return false;
9678   }
9679   if (UC.cantUnwind()) {
9680     Parser.eatToEndOfStatement();
9681     Error(L, ".personalityindex cannot be used with .cantunwind");
9682     UC.emitCantUnwindLocNotes();
9683     return false;
9684   }
9685   if (UC.hasHandlerData()) {
9686     Parser.eatToEndOfStatement();
9687     Error(L, ".personalityindex must precede .handlerdata directive");
9688     UC.emitHandlerDataLocNotes();
9689     return false;
9690   }
9691   if (HasExistingPersonality) {
9692     Parser.eatToEndOfStatement();
9693     Error(L, "multiple personality directives");
9694     UC.emitPersonalityLocNotes();
9695     return false;
9696   }
9697
9698   const MCExpr *IndexExpression;
9699   SMLoc IndexLoc = Parser.getTok().getLoc();
9700   if (Parser.parseExpression(IndexExpression)) {
9701     Parser.eatToEndOfStatement();
9702     return false;
9703   }
9704
9705   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression);
9706   if (!CE) {
9707     Parser.eatToEndOfStatement();
9708     Error(IndexLoc, "index must be a constant number");
9709     return false;
9710   }
9711   if (CE->getValue() < 0 ||
9712       CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) {
9713     Parser.eatToEndOfStatement();
9714     Error(IndexLoc, "personality routine index should be in range [0-3]");
9715     return false;
9716   }
9717
9718   getTargetStreamer().emitPersonalityIndex(CE->getValue());
9719   return false;
9720 }
9721
9722 /// parseDirectiveUnwindRaw
9723 ///   ::= .unwind_raw offset, opcode [, opcode...]
9724 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) {
9725   MCAsmParser &Parser = getParser();
9726   if (!UC.hasFnStart()) {
9727     Parser.eatToEndOfStatement();
9728     Error(L, ".fnstart must precede .unwind_raw directives");
9729     return false;
9730   }
9731
9732   int64_t StackOffset;
9733
9734   const MCExpr *OffsetExpr;
9735   SMLoc OffsetLoc = getLexer().getLoc();
9736   if (getLexer().is(AsmToken::EndOfStatement) ||
9737       getParser().parseExpression(OffsetExpr)) {
9738     Error(OffsetLoc, "expected expression");
9739     Parser.eatToEndOfStatement();
9740     return false;
9741   }
9742
9743   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
9744   if (!CE) {
9745     Error(OffsetLoc, "offset must be a constant");
9746     Parser.eatToEndOfStatement();
9747     return false;
9748   }
9749
9750   StackOffset = CE->getValue();
9751
9752   if (getLexer().isNot(AsmToken::Comma)) {
9753     Error(getLexer().getLoc(), "expected comma");
9754     Parser.eatToEndOfStatement();
9755     return false;
9756   }
9757   Parser.Lex();
9758
9759   SmallVector<uint8_t, 16> Opcodes;
9760   for (;;) {
9761     const MCExpr *OE;
9762
9763     SMLoc OpcodeLoc = getLexer().getLoc();
9764     if (getLexer().is(AsmToken::EndOfStatement) || Parser.parseExpression(OE)) {
9765       Error(OpcodeLoc, "expected opcode expression");
9766       Parser.eatToEndOfStatement();
9767       return false;
9768     }
9769
9770     const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE);
9771     if (!OC) {
9772       Error(OpcodeLoc, "opcode value must be a constant");
9773       Parser.eatToEndOfStatement();
9774       return false;
9775     }
9776
9777     const int64_t Opcode = OC->getValue();
9778     if (Opcode & ~0xff) {
9779       Error(OpcodeLoc, "invalid opcode");
9780       Parser.eatToEndOfStatement();
9781       return false;
9782     }
9783
9784     Opcodes.push_back(uint8_t(Opcode));
9785
9786     if (getLexer().is(AsmToken::EndOfStatement))
9787       break;
9788
9789     if (getLexer().isNot(AsmToken::Comma)) {
9790       Error(getLexer().getLoc(), "unexpected token in directive");
9791       Parser.eatToEndOfStatement();
9792       return false;
9793     }
9794
9795     Parser.Lex();
9796   }
9797
9798   getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes);
9799
9800   Parser.Lex();
9801   return false;
9802 }
9803
9804 /// parseDirectiveTLSDescSeq
9805 ///   ::= .tlsdescseq tls-variable
9806 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) {
9807   MCAsmParser &Parser = getParser();
9808
9809   if (getLexer().isNot(AsmToken::Identifier)) {
9810     TokError("expected variable after '.tlsdescseq' directive");
9811     Parser.eatToEndOfStatement();
9812     return false;
9813   }
9814
9815   const MCSymbolRefExpr *SRE =
9816     MCSymbolRefExpr::Create(Parser.getTok().getIdentifier(),
9817                             MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext());
9818   Lex();
9819
9820   if (getLexer().isNot(AsmToken::EndOfStatement)) {
9821     Error(Parser.getTok().getLoc(), "unexpected token");
9822     Parser.eatToEndOfStatement();
9823     return false;
9824   }
9825
9826   getTargetStreamer().AnnotateTLSDescriptorSequence(SRE);
9827   return false;
9828 }
9829
9830 /// parseDirectiveMovSP
9831 ///  ::= .movsp reg [, #offset]
9832 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) {
9833   MCAsmParser &Parser = getParser();
9834   if (!UC.hasFnStart()) {
9835     Parser.eatToEndOfStatement();
9836     Error(L, ".fnstart must precede .movsp directives");
9837     return false;
9838   }
9839   if (UC.getFPReg() != ARM::SP) {
9840     Parser.eatToEndOfStatement();
9841     Error(L, "unexpected .movsp directive");
9842     return false;
9843   }
9844
9845   SMLoc SPRegLoc = Parser.getTok().getLoc();
9846   int SPReg = tryParseRegister();
9847   if (SPReg == -1) {
9848     Parser.eatToEndOfStatement();
9849     Error(SPRegLoc, "register expected");
9850     return false;
9851   }
9852
9853   if (SPReg == ARM::SP || SPReg == ARM::PC) {
9854     Parser.eatToEndOfStatement();
9855     Error(SPRegLoc, "sp and pc are not permitted in .movsp directive");
9856     return false;
9857   }
9858
9859   int64_t Offset = 0;
9860   if (Parser.getTok().is(AsmToken::Comma)) {
9861     Parser.Lex();
9862
9863     if (Parser.getTok().isNot(AsmToken::Hash)) {
9864       Error(Parser.getTok().getLoc(), "expected #constant");
9865       Parser.eatToEndOfStatement();
9866       return false;
9867     }
9868     Parser.Lex();
9869
9870     const MCExpr *OffsetExpr;
9871     SMLoc OffsetLoc = Parser.getTok().getLoc();
9872     if (Parser.parseExpression(OffsetExpr)) {
9873       Parser.eatToEndOfStatement();
9874       Error(OffsetLoc, "malformed offset expression");
9875       return false;
9876     }
9877
9878     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
9879     if (!CE) {
9880       Parser.eatToEndOfStatement();
9881       Error(OffsetLoc, "offset must be an immediate constant");
9882       return false;
9883     }
9884
9885     Offset = CE->getValue();
9886   }
9887
9888   getTargetStreamer().emitMovSP(SPReg, Offset);
9889   UC.saveFPReg(SPReg);
9890
9891   return false;
9892 }
9893
9894 /// parseDirectiveObjectArch
9895 ///   ::= .object_arch name
9896 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) {
9897   MCAsmParser &Parser = getParser();
9898   if (getLexer().isNot(AsmToken::Identifier)) {
9899     Error(getLexer().getLoc(), "unexpected token");
9900     Parser.eatToEndOfStatement();
9901     return false;
9902   }
9903
9904   StringRef Arch = Parser.getTok().getString();
9905   SMLoc ArchLoc = Parser.getTok().getLoc();
9906   getLexer().Lex();
9907
9908   unsigned ID = StringSwitch<unsigned>(Arch)
9909 #define ARM_ARCH_NAME(NAME, ID, DEFAULT_CPU_NAME, DEFAULT_CPU_ARCH) \
9910     .Case(NAME, ARM::ID)
9911 #define ARM_ARCH_ALIAS(NAME, ID) \
9912     .Case(NAME, ARM::ID)
9913 #include "MCTargetDesc/ARMArchName.def"
9914 #undef ARM_ARCH_NAME
9915 #undef ARM_ARCH_ALIAS
9916     .Default(ARM::INVALID_ARCH);
9917
9918   if (ID == ARM::INVALID_ARCH) {
9919     Error(ArchLoc, "unknown architecture '" + Arch + "'");
9920     Parser.eatToEndOfStatement();
9921     return false;
9922   }
9923
9924   getTargetStreamer().emitObjectArch(ID);
9925
9926   if (getLexer().isNot(AsmToken::EndOfStatement)) {
9927     Error(getLexer().getLoc(), "unexpected token");
9928     Parser.eatToEndOfStatement();
9929   }
9930
9931   return false;
9932 }
9933
9934 /// parseDirectiveAlign
9935 ///   ::= .align
9936 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) {
9937   // NOTE: if this is not the end of the statement, fall back to the target
9938   // agnostic handling for this directive which will correctly handle this.
9939   if (getLexer().isNot(AsmToken::EndOfStatement))
9940     return true;
9941
9942   // '.align' is target specifically handled to mean 2**2 byte alignment.
9943   if (getStreamer().getCurrentSection().first->UseCodeAlign())
9944     getStreamer().EmitCodeAlignment(4, 0);
9945   else
9946     getStreamer().EmitValueToAlignment(4, 0, 1, 0);
9947
9948   return false;
9949 }
9950
9951 /// parseDirectiveThumbSet
9952 ///  ::= .thumb_set name, value
9953 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) {
9954   MCAsmParser &Parser = getParser();
9955
9956   StringRef Name;
9957   if (Parser.parseIdentifier(Name)) {
9958     TokError("expected identifier after '.thumb_set'");
9959     Parser.eatToEndOfStatement();
9960     return false;
9961   }
9962
9963   if (getLexer().isNot(AsmToken::Comma)) {
9964     TokError("expected comma after name '" + Name + "'");
9965     Parser.eatToEndOfStatement();
9966     return false;
9967   }
9968   Lex();
9969
9970   const MCExpr *Value;
9971   if (Parser.parseExpression(Value)) {
9972     TokError("missing expression");
9973     Parser.eatToEndOfStatement();
9974     return false;
9975   }
9976
9977   if (getLexer().isNot(AsmToken::EndOfStatement)) {
9978     TokError("unexpected token");
9979     Parser.eatToEndOfStatement();
9980     return false;
9981   }
9982   Lex();
9983
9984   MCSymbol *Alias = getContext().GetOrCreateSymbol(Name);
9985   getTargetStreamer().emitThumbSet(Alias, Value);
9986   return false;
9987 }
9988
9989 /// Force static initialization.
9990 extern "C" void LLVMInitializeARMAsmParser() {
9991   RegisterMCAsmParser<ARMAsmParser> X(TheARMLETarget);
9992   RegisterMCAsmParser<ARMAsmParser> Y(TheARMBETarget);
9993   RegisterMCAsmParser<ARMAsmParser> A(TheThumbLETarget);
9994   RegisterMCAsmParser<ARMAsmParser> B(TheThumbBETarget);
9995 }
9996
9997 #define GET_REGISTER_MATCHER
9998 #define GET_SUBTARGET_FEATURE_NAME
9999 #define GET_MATCHER_IMPLEMENTATION
10000 #include "ARMGenAsmMatcher.inc"
10001
10002 static const struct {
10003   const char *Name;
10004   const unsigned ArchCheck;
10005   const uint64_t Features;
10006 } Extensions[] = {
10007   { "crc", Feature_HasV8, ARM::FeatureCRC },
10008   { "crypto",  Feature_HasV8,
10009     ARM::FeatureCrypto | ARM::FeatureNEON | ARM::FeatureFPARMv8 },
10010   { "fp", Feature_HasV8, ARM::FeatureFPARMv8 },
10011   { "idiv", Feature_HasV7 | Feature_IsNotMClass,
10012     ARM::FeatureHWDiv | ARM::FeatureHWDivARM },
10013   // FIXME: iWMMXT not supported
10014   { "iwmmxt", Feature_None, 0 },
10015   // FIXME: iWMMXT2 not supported
10016   { "iwmmxt2", Feature_None, 0 },
10017   // FIXME: Maverick not supported
10018   { "maverick", Feature_None, 0 },
10019   { "mp", Feature_HasV7 | Feature_IsNotMClass, ARM::FeatureMP },
10020   // FIXME: ARMv6-m OS Extensions feature not checked
10021   { "os", Feature_None, 0 },
10022   // FIXME: Also available in ARMv6-K
10023   { "sec", Feature_HasV7, ARM::FeatureTrustZone },
10024   { "simd", Feature_HasV8, ARM::FeatureNEON | ARM::FeatureFPARMv8 },
10025   // FIXME: Only available in A-class, isel not predicated
10026   { "virt", Feature_HasV7, ARM::FeatureVirtualization },
10027   // FIXME: xscale not supported
10028   { "xscale", Feature_None, 0 },
10029 };
10030
10031 /// parseDirectiveArchExtension
10032 ///   ::= .arch_extension [no]feature
10033 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) {
10034   MCAsmParser &Parser = getParser();
10035
10036   if (getLexer().isNot(AsmToken::Identifier)) {
10037     Error(getLexer().getLoc(), "unexpected token");
10038     Parser.eatToEndOfStatement();
10039     return false;
10040   }
10041
10042   StringRef Name = Parser.getTok().getString();
10043   SMLoc ExtLoc = Parser.getTok().getLoc();
10044   getLexer().Lex();
10045
10046   bool EnableFeature = true;
10047   if (Name.startswith_lower("no")) {
10048     EnableFeature = false;
10049     Name = Name.substr(2);
10050   }
10051
10052   for (const auto &Extension : Extensions) {
10053     if (Extension.Name != Name)
10054       continue;
10055
10056     if (!Extension.Features)
10057       report_fatal_error("unsupported architectural extension: " + Name);
10058
10059     if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) {
10060       Error(ExtLoc, "architectural extension '" + Name + "' is not "
10061             "allowed for the current base architecture");
10062       return false;
10063     }
10064
10065     uint64_t ToggleFeatures = EnableFeature
10066                                   ? (~STI.getFeatureBits() & Extension.Features)
10067                                   : ( STI.getFeatureBits() & Extension.Features);
10068     uint64_t Features =
10069         ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures));
10070     setAvailableFeatures(Features);
10071     return false;
10072   }
10073
10074   Error(ExtLoc, "unknown architectural extension: " + Name);
10075   Parser.eatToEndOfStatement();
10076   return false;
10077 }
10078
10079 // Define this matcher function after the auto-generated include so we
10080 // have the match class enum definitions.
10081 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
10082                                                   unsigned Kind) {
10083   ARMOperand &Op = static_cast<ARMOperand &>(AsmOp);
10084   // If the kind is a token for a literal immediate, check if our asm
10085   // operand matches. This is for InstAliases which have a fixed-value
10086   // immediate in the syntax.
10087   switch (Kind) {
10088   default: break;
10089   case MCK__35_0:
10090     if (Op.isImm())
10091       if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
10092         if (CE->getValue() == 0)
10093           return Match_Success;
10094     break;
10095   case MCK_ModImm:
10096     if (Op.isImm()) {
10097       const MCExpr *SOExpr = Op.getImm();
10098       int64_t Value;
10099       if (!SOExpr->EvaluateAsAbsolute(Value))
10100         return Match_Success;
10101       assert((Value >= INT32_MIN && Value <= UINT32_MAX) &&
10102              "expression value must be representable in 32 bits");
10103     }
10104     break;
10105   case MCK_GPRPair:
10106     if (Op.isReg() &&
10107         MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg()))
10108       return Match_Success;
10109     break;
10110   }
10111   return Match_InvalidOperand;
10112 }