Revert "r232027 - Add infrastructure for support of multiple memory constraints"
[oota-llvm.git] / lib / Target / ARM / ARMISelDAGToDAG.cpp
1 //===-- ARMISelDAGToDAG.cpp - A dag to dag inst selector for ARM ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines an instruction selector for the ARM target.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "ARM.h"
15 #include "ARMBaseInstrInfo.h"
16 #include "ARMTargetMachine.h"
17 #include "MCTargetDesc/ARMAddressingModes.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/CodeGen/SelectionDAGISel.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Compiler.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Target/TargetLowering.h"
35 #include "llvm/Target/TargetOptions.h"
36
37 using namespace llvm;
38
39 #define DEBUG_TYPE "arm-isel"
40
41 static cl::opt<bool>
42 DisableShifterOp("disable-shifter-op", cl::Hidden,
43   cl::desc("Disable isel of shifter-op"),
44   cl::init(false));
45
46 static cl::opt<bool>
47 CheckVMLxHazard("check-vmlx-hazard", cl::Hidden,
48   cl::desc("Check fp vmla / vmls hazard at isel time"),
49   cl::init(true));
50
51 //===--------------------------------------------------------------------===//
52 /// ARMDAGToDAGISel - ARM specific code to select ARM machine
53 /// instructions for SelectionDAG operations.
54 ///
55 namespace {
56
57 enum AddrMode2Type {
58   AM2_BASE, // Simple AM2 (+-imm12)
59   AM2_SHOP  // Shifter-op AM2
60 };
61
62 class ARMDAGToDAGISel : public SelectionDAGISel {
63   /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
64   /// make the right decision when generating code for different targets.
65   const ARMSubtarget *Subtarget;
66
67 public:
68   explicit ARMDAGToDAGISel(ARMBaseTargetMachine &tm, CodeGenOpt::Level OptLevel)
69       : SelectionDAGISel(tm, OptLevel) {}
70
71   bool runOnMachineFunction(MachineFunction &MF) override {
72     // Reset the subtarget each time through.
73     Subtarget = &MF.getSubtarget<ARMSubtarget>();
74     SelectionDAGISel::runOnMachineFunction(MF);
75     return true;
76   }
77
78   const char *getPassName() const override {
79     return "ARM Instruction Selection";
80   }
81
82   void PreprocessISelDAG() override;
83
84   /// getI32Imm - Return a target constant of type i32 with the specified
85   /// value.
86   inline SDValue getI32Imm(unsigned Imm) {
87     return CurDAG->getTargetConstant(Imm, MVT::i32);
88   }
89
90   SDNode *Select(SDNode *N) override;
91
92
93   bool hasNoVMLxHazardUse(SDNode *N) const;
94   bool isShifterOpProfitable(const SDValue &Shift,
95                              ARM_AM::ShiftOpc ShOpcVal, unsigned ShAmt);
96   bool SelectRegShifterOperand(SDValue N, SDValue &A,
97                                SDValue &B, SDValue &C,
98                                bool CheckProfitability = true);
99   bool SelectImmShifterOperand(SDValue N, SDValue &A,
100                                SDValue &B, bool CheckProfitability = true);
101   bool SelectShiftRegShifterOperand(SDValue N, SDValue &A,
102                                     SDValue &B, SDValue &C) {
103     // Don't apply the profitability check
104     return SelectRegShifterOperand(N, A, B, C, false);
105   }
106   bool SelectShiftImmShifterOperand(SDValue N, SDValue &A,
107                                     SDValue &B) {
108     // Don't apply the profitability check
109     return SelectImmShifterOperand(N, A, B, false);
110   }
111
112   bool SelectAddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm);
113   bool SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset, SDValue &Opc);
114
115   AddrMode2Type SelectAddrMode2Worker(SDValue N, SDValue &Base,
116                                       SDValue &Offset, SDValue &Opc);
117   bool SelectAddrMode2Base(SDValue N, SDValue &Base, SDValue &Offset,
118                            SDValue &Opc) {
119     return SelectAddrMode2Worker(N, Base, Offset, Opc) == AM2_BASE;
120   }
121
122   bool SelectAddrMode2ShOp(SDValue N, SDValue &Base, SDValue &Offset,
123                            SDValue &Opc) {
124     return SelectAddrMode2Worker(N, Base, Offset, Opc) == AM2_SHOP;
125   }
126
127   bool SelectAddrMode2(SDValue N, SDValue &Base, SDValue &Offset,
128                        SDValue &Opc) {
129     SelectAddrMode2Worker(N, Base, Offset, Opc);
130 //    return SelectAddrMode2ShOp(N, Base, Offset, Opc);
131     // This always matches one way or another.
132     return true;
133   }
134
135   bool SelectCMOVPred(SDValue N, SDValue &Pred, SDValue &Reg) {
136     const ConstantSDNode *CN = cast<ConstantSDNode>(N);
137     Pred = CurDAG->getTargetConstant(CN->getZExtValue(), MVT::i32);
138     Reg = CurDAG->getRegister(ARM::CPSR, MVT::i32);
139     return true;
140   }
141
142   bool SelectAddrMode2OffsetReg(SDNode *Op, SDValue N,
143                              SDValue &Offset, SDValue &Opc);
144   bool SelectAddrMode2OffsetImm(SDNode *Op, SDValue N,
145                              SDValue &Offset, SDValue &Opc);
146   bool SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N,
147                              SDValue &Offset, SDValue &Opc);
148   bool SelectAddrOffsetNone(SDValue N, SDValue &Base);
149   bool SelectAddrMode3(SDValue N, SDValue &Base,
150                        SDValue &Offset, SDValue &Opc);
151   bool SelectAddrMode3Offset(SDNode *Op, SDValue N,
152                              SDValue &Offset, SDValue &Opc);
153   bool SelectAddrMode5(SDValue N, SDValue &Base,
154                        SDValue &Offset);
155   bool SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,SDValue &Align);
156   bool SelectAddrMode6Offset(SDNode *Op, SDValue N, SDValue &Offset);
157
158   bool SelectAddrModePC(SDValue N, SDValue &Offset, SDValue &Label);
159
160   // Thumb Addressing Modes:
161   bool SelectThumbAddrModeRR(SDValue N, SDValue &Base, SDValue &Offset);
162   bool SelectThumbAddrModeRI(SDValue N, SDValue &Base, SDValue &Offset,
163                              unsigned Scale);
164   bool SelectThumbAddrModeRI5S1(SDValue N, SDValue &Base, SDValue &Offset);
165   bool SelectThumbAddrModeRI5S2(SDValue N, SDValue &Base, SDValue &Offset);
166   bool SelectThumbAddrModeRI5S4(SDValue N, SDValue &Base, SDValue &Offset);
167   bool SelectThumbAddrModeImm5S(SDValue N, unsigned Scale, SDValue &Base,
168                                 SDValue &OffImm);
169   bool SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base,
170                                  SDValue &OffImm);
171   bool SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base,
172                                  SDValue &OffImm);
173   bool SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base,
174                                  SDValue &OffImm);
175   bool SelectThumbAddrModeSP(SDValue N, SDValue &Base, SDValue &OffImm);
176
177   // Thumb 2 Addressing Modes:
178   bool SelectT2ShifterOperandReg(SDValue N,
179                                  SDValue &BaseReg, SDValue &Opc);
180   bool SelectT2AddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm);
181   bool SelectT2AddrModeImm8(SDValue N, SDValue &Base,
182                             SDValue &OffImm);
183   bool SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
184                                  SDValue &OffImm);
185   bool SelectT2AddrModeSoReg(SDValue N, SDValue &Base,
186                              SDValue &OffReg, SDValue &ShImm);
187   bool SelectT2AddrModeExclusive(SDValue N, SDValue &Base, SDValue &OffImm);
188
189   inline bool is_so_imm(unsigned Imm) const {
190     return ARM_AM::getSOImmVal(Imm) != -1;
191   }
192
193   inline bool is_so_imm_not(unsigned Imm) const {
194     return ARM_AM::getSOImmVal(~Imm) != -1;
195   }
196
197   inline bool is_t2_so_imm(unsigned Imm) const {
198     return ARM_AM::getT2SOImmVal(Imm) != -1;
199   }
200
201   inline bool is_t2_so_imm_not(unsigned Imm) const {
202     return ARM_AM::getT2SOImmVal(~Imm) != -1;
203   }
204
205   // Include the pieces autogenerated from the target description.
206 #include "ARMGenDAGISel.inc"
207
208 private:
209   /// SelectARMIndexedLoad - Indexed (pre/post inc/dec) load matching code for
210   /// ARM.
211   SDNode *SelectARMIndexedLoad(SDNode *N);
212   SDNode *SelectT2IndexedLoad(SDNode *N);
213
214   /// SelectVLD - Select NEON load intrinsics.  NumVecs should be
215   /// 1, 2, 3 or 4.  The opcode arrays specify the instructions used for
216   /// loads of D registers and even subregs and odd subregs of Q registers.
217   /// For NumVecs <= 2, QOpcodes1 is not used.
218   SDNode *SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
219                     const uint16_t *DOpcodes,
220                     const uint16_t *QOpcodes0, const uint16_t *QOpcodes1);
221
222   /// SelectVST - Select NEON store intrinsics.  NumVecs should
223   /// be 1, 2, 3 or 4.  The opcode arrays specify the instructions used for
224   /// stores of D registers and even subregs and odd subregs of Q registers.
225   /// For NumVecs <= 2, QOpcodes1 is not used.
226   SDNode *SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
227                     const uint16_t *DOpcodes,
228                     const uint16_t *QOpcodes0, const uint16_t *QOpcodes1);
229
230   /// SelectVLDSTLane - Select NEON load/store lane intrinsics.  NumVecs should
231   /// be 2, 3 or 4.  The opcode arrays specify the instructions used for
232   /// load/store of D registers and Q registers.
233   SDNode *SelectVLDSTLane(SDNode *N, bool IsLoad,
234                           bool isUpdating, unsigned NumVecs,
235                           const uint16_t *DOpcodes, const uint16_t *QOpcodes);
236
237   /// SelectVLDDup - Select NEON load-duplicate intrinsics.  NumVecs
238   /// should be 2, 3 or 4.  The opcode array specifies the instructions used
239   /// for loading D registers.  (Q registers are not supported.)
240   SDNode *SelectVLDDup(SDNode *N, bool isUpdating, unsigned NumVecs,
241                        const uint16_t *Opcodes);
242
243   /// SelectVTBL - Select NEON VTBL and VTBX intrinsics.  NumVecs should be 2,
244   /// 3 or 4.  These are custom-selected so that a REG_SEQUENCE can be
245   /// generated to force the table registers to be consecutive.
246   SDNode *SelectVTBL(SDNode *N, bool IsExt, unsigned NumVecs, unsigned Opc);
247
248   /// SelectV6T2BitfieldExtractOp - Select SBFX/UBFX instructions for ARM.
249   SDNode *SelectV6T2BitfieldExtractOp(SDNode *N, bool isSigned);
250
251   // Select special operations if node forms integer ABS pattern
252   SDNode *SelectABSOp(SDNode *N);
253
254   SDNode *SelectInlineAsm(SDNode *N);
255
256   SDNode *SelectConcatVector(SDNode *N);
257
258   /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
259   /// inline asm expressions.
260   bool SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
261                                     std::vector<SDValue> &OutOps) override;
262
263   // Form pairs of consecutive R, S, D, or Q registers.
264   SDNode *createGPRPairNode(EVT VT, SDValue V0, SDValue V1);
265   SDNode *createSRegPairNode(EVT VT, SDValue V0, SDValue V1);
266   SDNode *createDRegPairNode(EVT VT, SDValue V0, SDValue V1);
267   SDNode *createQRegPairNode(EVT VT, SDValue V0, SDValue V1);
268
269   // Form sequences of 4 consecutive S, D, or Q registers.
270   SDNode *createQuadSRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
271   SDNode *createQuadDRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
272   SDNode *createQuadQRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
273
274   // Get the alignment operand for a NEON VLD or VST instruction.
275   SDValue GetVLDSTAlign(SDValue Align, unsigned NumVecs, bool is64BitVector);
276 };
277 }
278
279 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
280 /// operand. If so Imm will receive the 32-bit value.
281 static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
282   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
283     Imm = cast<ConstantSDNode>(N)->getZExtValue();
284     return true;
285   }
286   return false;
287 }
288
289 // isInt32Immediate - This method tests to see if a constant operand.
290 // If so Imm will receive the 32 bit value.
291 static bool isInt32Immediate(SDValue N, unsigned &Imm) {
292   return isInt32Immediate(N.getNode(), Imm);
293 }
294
295 // isOpcWithIntImmediate - This method tests to see if the node is a specific
296 // opcode and that it has a immediate integer right operand.
297 // If so Imm will receive the 32 bit value.
298 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
299   return N->getOpcode() == Opc &&
300          isInt32Immediate(N->getOperand(1).getNode(), Imm);
301 }
302
303 /// \brief Check whether a particular node is a constant value representable as
304 /// (N * Scale) where (N in [\p RangeMin, \p RangeMax).
305 ///
306 /// \param ScaledConstant [out] - On success, the pre-scaled constant value.
307 static bool isScaledConstantInRange(SDValue Node, int Scale,
308                                     int RangeMin, int RangeMax,
309                                     int &ScaledConstant) {
310   assert(Scale > 0 && "Invalid scale!");
311
312   // Check that this is a constant.
313   const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Node);
314   if (!C)
315     return false;
316
317   ScaledConstant = (int) C->getZExtValue();
318   if ((ScaledConstant % Scale) != 0)
319     return false;
320
321   ScaledConstant /= Scale;
322   return ScaledConstant >= RangeMin && ScaledConstant < RangeMax;
323 }
324
325 void ARMDAGToDAGISel::PreprocessISelDAG() {
326   if (!Subtarget->hasV6T2Ops())
327     return;
328
329   bool isThumb2 = Subtarget->isThumb();
330   for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
331        E = CurDAG->allnodes_end(); I != E; ) {
332     SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
333
334     if (N->getOpcode() != ISD::ADD)
335       continue;
336
337     // Look for (add X1, (and (srl X2, c1), c2)) where c2 is constant with
338     // leading zeros, followed by consecutive set bits, followed by 1 or 2
339     // trailing zeros, e.g. 1020.
340     // Transform the expression to
341     // (add X1, (shl (and (srl X2, c1), (c2>>tz)), tz)) where tz is the number
342     // of trailing zeros of c2. The left shift would be folded as an shifter
343     // operand of 'add' and the 'and' and 'srl' would become a bits extraction
344     // node (UBFX).
345
346     SDValue N0 = N->getOperand(0);
347     SDValue N1 = N->getOperand(1);
348     unsigned And_imm = 0;
349     if (!isOpcWithIntImmediate(N1.getNode(), ISD::AND, And_imm)) {
350       if (isOpcWithIntImmediate(N0.getNode(), ISD::AND, And_imm))
351         std::swap(N0, N1);
352     }
353     if (!And_imm)
354       continue;
355
356     // Check if the AND mask is an immediate of the form: 000.....1111111100
357     unsigned TZ = countTrailingZeros(And_imm);
358     if (TZ != 1 && TZ != 2)
359       // Be conservative here. Shifter operands aren't always free. e.g. On
360       // Swift, left shifter operand of 1 / 2 for free but others are not.
361       // e.g.
362       //  ubfx   r3, r1, #16, #8
363       //  ldr.w  r3, [r0, r3, lsl #2]
364       // vs.
365       //  mov.w  r9, #1020
366       //  and.w  r2, r9, r1, lsr #14
367       //  ldr    r2, [r0, r2]
368       continue;
369     And_imm >>= TZ;
370     if (And_imm & (And_imm + 1))
371       continue;
372
373     // Look for (and (srl X, c1), c2).
374     SDValue Srl = N1.getOperand(0);
375     unsigned Srl_imm = 0;
376     if (!isOpcWithIntImmediate(Srl.getNode(), ISD::SRL, Srl_imm) ||
377         (Srl_imm <= 2))
378       continue;
379
380     // Make sure first operand is not a shifter operand which would prevent
381     // folding of the left shift.
382     SDValue CPTmp0;
383     SDValue CPTmp1;
384     SDValue CPTmp2;
385     if (isThumb2) {
386       if (SelectT2ShifterOperandReg(N0, CPTmp0, CPTmp1))
387         continue;
388     } else {
389       if (SelectImmShifterOperand(N0, CPTmp0, CPTmp1) ||
390           SelectRegShifterOperand(N0, CPTmp0, CPTmp1, CPTmp2))
391         continue;
392     }
393
394     // Now make the transformation.
395     Srl = CurDAG->getNode(ISD::SRL, SDLoc(Srl), MVT::i32,
396                           Srl.getOperand(0),
397                           CurDAG->getConstant(Srl_imm+TZ, MVT::i32));
398     N1 = CurDAG->getNode(ISD::AND, SDLoc(N1), MVT::i32,
399                          Srl, CurDAG->getConstant(And_imm, MVT::i32));
400     N1 = CurDAG->getNode(ISD::SHL, SDLoc(N1), MVT::i32,
401                          N1, CurDAG->getConstant(TZ, MVT::i32));
402     CurDAG->UpdateNodeOperands(N, N0, N1);
403   }
404 }
405
406 /// hasNoVMLxHazardUse - Return true if it's desirable to select a FP MLA / MLS
407 /// node. VFP / NEON fp VMLA / VMLS instructions have special RAW hazards (at
408 /// least on current ARM implementations) which should be avoidded.
409 bool ARMDAGToDAGISel::hasNoVMLxHazardUse(SDNode *N) const {
410   if (OptLevel == CodeGenOpt::None)
411     return true;
412
413   if (!CheckVMLxHazard)
414     return true;
415
416   if (!Subtarget->isCortexA7() && !Subtarget->isCortexA8() &&
417       !Subtarget->isCortexA9() && !Subtarget->isSwift())
418     return true;
419
420   if (!N->hasOneUse())
421     return false;
422
423   SDNode *Use = *N->use_begin();
424   if (Use->getOpcode() == ISD::CopyToReg)
425     return true;
426   if (Use->isMachineOpcode()) {
427     const ARMBaseInstrInfo *TII = static_cast<const ARMBaseInstrInfo *>(
428         CurDAG->getSubtarget().getInstrInfo());
429
430     const MCInstrDesc &MCID = TII->get(Use->getMachineOpcode());
431     if (MCID.mayStore())
432       return true;
433     unsigned Opcode = MCID.getOpcode();
434     if (Opcode == ARM::VMOVRS || Opcode == ARM::VMOVRRD)
435       return true;
436     // vmlx feeding into another vmlx. We actually want to unfold
437     // the use later in the MLxExpansion pass. e.g.
438     // vmla
439     // vmla (stall 8 cycles)
440     //
441     // vmul (5 cycles)
442     // vadd (5 cycles)
443     // vmla
444     // This adds up to about 18 - 19 cycles.
445     //
446     // vmla
447     // vmul (stall 4 cycles)
448     // vadd adds up to about 14 cycles.
449     return TII->isFpMLxInstruction(Opcode);
450   }
451
452   return false;
453 }
454
455 bool ARMDAGToDAGISel::isShifterOpProfitable(const SDValue &Shift,
456                                             ARM_AM::ShiftOpc ShOpcVal,
457                                             unsigned ShAmt) {
458   if (!Subtarget->isLikeA9() && !Subtarget->isSwift())
459     return true;
460   if (Shift.hasOneUse())
461     return true;
462   // R << 2 is free.
463   return ShOpcVal == ARM_AM::lsl &&
464          (ShAmt == 2 || (Subtarget->isSwift() && ShAmt == 1));
465 }
466
467 bool ARMDAGToDAGISel::SelectImmShifterOperand(SDValue N,
468                                               SDValue &BaseReg,
469                                               SDValue &Opc,
470                                               bool CheckProfitability) {
471   if (DisableShifterOp)
472     return false;
473
474   ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
475
476   // Don't match base register only case. That is matched to a separate
477   // lower complexity pattern with explicit register operand.
478   if (ShOpcVal == ARM_AM::no_shift) return false;
479
480   BaseReg = N.getOperand(0);
481   unsigned ShImmVal = 0;
482   ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
483   if (!RHS) return false;
484   ShImmVal = RHS->getZExtValue() & 31;
485   Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
486                                   MVT::i32);
487   return true;
488 }
489
490 bool ARMDAGToDAGISel::SelectRegShifterOperand(SDValue N,
491                                               SDValue &BaseReg,
492                                               SDValue &ShReg,
493                                               SDValue &Opc,
494                                               bool CheckProfitability) {
495   if (DisableShifterOp)
496     return false;
497
498   ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
499
500   // Don't match base register only case. That is matched to a separate
501   // lower complexity pattern with explicit register operand.
502   if (ShOpcVal == ARM_AM::no_shift) return false;
503
504   BaseReg = N.getOperand(0);
505   unsigned ShImmVal = 0;
506   ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
507   if (RHS) return false;
508
509   ShReg = N.getOperand(1);
510   if (CheckProfitability && !isShifterOpProfitable(N, ShOpcVal, ShImmVal))
511     return false;
512   Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
513                                   MVT::i32);
514   return true;
515 }
516
517
518 bool ARMDAGToDAGISel::SelectAddrModeImm12(SDValue N,
519                                           SDValue &Base,
520                                           SDValue &OffImm) {
521   // Match simple R + imm12 operands.
522
523   // Base only.
524   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
525       !CurDAG->isBaseWithConstantOffset(N)) {
526     if (N.getOpcode() == ISD::FrameIndex) {
527       // Match frame index.
528       int FI = cast<FrameIndexSDNode>(N)->getIndex();
529       Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
530       OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
531       return true;
532     }
533
534     if (N.getOpcode() == ARMISD::Wrapper &&
535         N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress) {
536       Base = N.getOperand(0);
537     } else
538       Base = N;
539     OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
540     return true;
541   }
542
543   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
544     int RHSC = (int)RHS->getSExtValue();
545     if (N.getOpcode() == ISD::SUB)
546       RHSC = -RHSC;
547
548     if (RHSC > -0x1000 && RHSC < 0x1000) { // 12 bits
549       Base   = N.getOperand(0);
550       if (Base.getOpcode() == ISD::FrameIndex) {
551         int FI = cast<FrameIndexSDNode>(Base)->getIndex();
552         Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
553       }
554       OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
555       return true;
556     }
557   }
558
559   // Base only.
560   Base = N;
561   OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
562   return true;
563 }
564
565
566
567 bool ARMDAGToDAGISel::SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset,
568                                       SDValue &Opc) {
569   if (N.getOpcode() == ISD::MUL &&
570       ((!Subtarget->isLikeA9() && !Subtarget->isSwift()) || N.hasOneUse())) {
571     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
572       // X * [3,5,9] -> X + X * [2,4,8] etc.
573       int RHSC = (int)RHS->getZExtValue();
574       if (RHSC & 1) {
575         RHSC = RHSC & ~1;
576         ARM_AM::AddrOpc AddSub = ARM_AM::add;
577         if (RHSC < 0) {
578           AddSub = ARM_AM::sub;
579           RHSC = - RHSC;
580         }
581         if (isPowerOf2_32(RHSC)) {
582           unsigned ShAmt = Log2_32(RHSC);
583           Base = Offset = N.getOperand(0);
584           Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt,
585                                                             ARM_AM::lsl),
586                                           MVT::i32);
587           return true;
588         }
589       }
590     }
591   }
592
593   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
594       // ISD::OR that is equivalent to an ISD::ADD.
595       !CurDAG->isBaseWithConstantOffset(N))
596     return false;
597
598   // Leave simple R +/- imm12 operands for LDRi12
599   if (N.getOpcode() == ISD::ADD || N.getOpcode() == ISD::OR) {
600     int RHSC;
601     if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
602                                 -0x1000+1, 0x1000, RHSC)) // 12 bits.
603       return false;
604   }
605
606   // Otherwise this is R +/- [possibly shifted] R.
607   ARM_AM::AddrOpc AddSub = N.getOpcode() == ISD::SUB ? ARM_AM::sub:ARM_AM::add;
608   ARM_AM::ShiftOpc ShOpcVal =
609     ARM_AM::getShiftOpcForNode(N.getOperand(1).getOpcode());
610   unsigned ShAmt = 0;
611
612   Base   = N.getOperand(0);
613   Offset = N.getOperand(1);
614
615   if (ShOpcVal != ARM_AM::no_shift) {
616     // Check to see if the RHS of the shift is a constant, if not, we can't fold
617     // it.
618     if (ConstantSDNode *Sh =
619            dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) {
620       ShAmt = Sh->getZExtValue();
621       if (isShifterOpProfitable(Offset, ShOpcVal, ShAmt))
622         Offset = N.getOperand(1).getOperand(0);
623       else {
624         ShAmt = 0;
625         ShOpcVal = ARM_AM::no_shift;
626       }
627     } else {
628       ShOpcVal = ARM_AM::no_shift;
629     }
630   }
631
632   // Try matching (R shl C) + (R).
633   if (N.getOpcode() != ISD::SUB && ShOpcVal == ARM_AM::no_shift &&
634       !(Subtarget->isLikeA9() || Subtarget->isSwift() ||
635         N.getOperand(0).hasOneUse())) {
636     ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0).getOpcode());
637     if (ShOpcVal != ARM_AM::no_shift) {
638       // Check to see if the RHS of the shift is a constant, if not, we can't
639       // fold it.
640       if (ConstantSDNode *Sh =
641           dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) {
642         ShAmt = Sh->getZExtValue();
643         if (isShifterOpProfitable(N.getOperand(0), ShOpcVal, ShAmt)) {
644           Offset = N.getOperand(0).getOperand(0);
645           Base = N.getOperand(1);
646         } else {
647           ShAmt = 0;
648           ShOpcVal = ARM_AM::no_shift;
649         }
650       } else {
651         ShOpcVal = ARM_AM::no_shift;
652       }
653     }
654   }
655
656   Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
657                                   MVT::i32);
658   return true;
659 }
660
661
662 //-----
663
664 AddrMode2Type ARMDAGToDAGISel::SelectAddrMode2Worker(SDValue N,
665                                                      SDValue &Base,
666                                                      SDValue &Offset,
667                                                      SDValue &Opc) {
668   if (N.getOpcode() == ISD::MUL &&
669       (!(Subtarget->isLikeA9() || Subtarget->isSwift()) || N.hasOneUse())) {
670     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
671       // X * [3,5,9] -> X + X * [2,4,8] etc.
672       int RHSC = (int)RHS->getZExtValue();
673       if (RHSC & 1) {
674         RHSC = RHSC & ~1;
675         ARM_AM::AddrOpc AddSub = ARM_AM::add;
676         if (RHSC < 0) {
677           AddSub = ARM_AM::sub;
678           RHSC = - RHSC;
679         }
680         if (isPowerOf2_32(RHSC)) {
681           unsigned ShAmt = Log2_32(RHSC);
682           Base = Offset = N.getOperand(0);
683           Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt,
684                                                             ARM_AM::lsl),
685                                           MVT::i32);
686           return AM2_SHOP;
687         }
688       }
689     }
690   }
691
692   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
693       // ISD::OR that is equivalent to an ADD.
694       !CurDAG->isBaseWithConstantOffset(N)) {
695     Base = N;
696     if (N.getOpcode() == ISD::FrameIndex) {
697       int FI = cast<FrameIndexSDNode>(N)->getIndex();
698       Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
699     } else if (N.getOpcode() == ARMISD::Wrapper &&
700                N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress) {
701       Base = N.getOperand(0);
702     }
703     Offset = CurDAG->getRegister(0, MVT::i32);
704     Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0,
705                                                       ARM_AM::no_shift),
706                                     MVT::i32);
707     return AM2_BASE;
708   }
709
710   // Match simple R +/- imm12 operands.
711   if (N.getOpcode() != ISD::SUB) {
712     int RHSC;
713     if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
714                                 -0x1000+1, 0x1000, RHSC)) { // 12 bits.
715       Base = N.getOperand(0);
716       if (Base.getOpcode() == ISD::FrameIndex) {
717         int FI = cast<FrameIndexSDNode>(Base)->getIndex();
718         Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
719       }
720       Offset = CurDAG->getRegister(0, MVT::i32);
721
722       ARM_AM::AddrOpc AddSub = ARM_AM::add;
723       if (RHSC < 0) {
724         AddSub = ARM_AM::sub;
725         RHSC = - RHSC;
726       }
727       Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, RHSC,
728                                                         ARM_AM::no_shift),
729                                       MVT::i32);
730       return AM2_BASE;
731     }
732   }
733
734   if ((Subtarget->isLikeA9() || Subtarget->isSwift()) && !N.hasOneUse()) {
735     // Compute R +/- (R << N) and reuse it.
736     Base = N;
737     Offset = CurDAG->getRegister(0, MVT::i32);
738     Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0,
739                                                       ARM_AM::no_shift),
740                                     MVT::i32);
741     return AM2_BASE;
742   }
743
744   // Otherwise this is R +/- [possibly shifted] R.
745   ARM_AM::AddrOpc AddSub = N.getOpcode() != ISD::SUB ? ARM_AM::add:ARM_AM::sub;
746   ARM_AM::ShiftOpc ShOpcVal =
747     ARM_AM::getShiftOpcForNode(N.getOperand(1).getOpcode());
748   unsigned ShAmt = 0;
749
750   Base   = N.getOperand(0);
751   Offset = N.getOperand(1);
752
753   if (ShOpcVal != ARM_AM::no_shift) {
754     // Check to see if the RHS of the shift is a constant, if not, we can't fold
755     // it.
756     if (ConstantSDNode *Sh =
757            dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) {
758       ShAmt = Sh->getZExtValue();
759       if (isShifterOpProfitable(Offset, ShOpcVal, ShAmt))
760         Offset = N.getOperand(1).getOperand(0);
761       else {
762         ShAmt = 0;
763         ShOpcVal = ARM_AM::no_shift;
764       }
765     } else {
766       ShOpcVal = ARM_AM::no_shift;
767     }
768   }
769
770   // Try matching (R shl C) + (R).
771   if (N.getOpcode() != ISD::SUB && ShOpcVal == ARM_AM::no_shift &&
772       !(Subtarget->isLikeA9() || Subtarget->isSwift() ||
773         N.getOperand(0).hasOneUse())) {
774     ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0).getOpcode());
775     if (ShOpcVal != ARM_AM::no_shift) {
776       // Check to see if the RHS of the shift is a constant, if not, we can't
777       // fold it.
778       if (ConstantSDNode *Sh =
779           dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) {
780         ShAmt = Sh->getZExtValue();
781         if (isShifterOpProfitable(N.getOperand(0), ShOpcVal, ShAmt)) {
782           Offset = N.getOperand(0).getOperand(0);
783           Base = N.getOperand(1);
784         } else {
785           ShAmt = 0;
786           ShOpcVal = ARM_AM::no_shift;
787         }
788       } else {
789         ShOpcVal = ARM_AM::no_shift;
790       }
791     }
792   }
793
794   Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
795                                   MVT::i32);
796   return AM2_SHOP;
797 }
798
799 bool ARMDAGToDAGISel::SelectAddrMode2OffsetReg(SDNode *Op, SDValue N,
800                                             SDValue &Offset, SDValue &Opc) {
801   unsigned Opcode = Op->getOpcode();
802   ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
803     ? cast<LoadSDNode>(Op)->getAddressingMode()
804     : cast<StoreSDNode>(Op)->getAddressingMode();
805   ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
806     ? ARM_AM::add : ARM_AM::sub;
807   int Val;
808   if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val))
809     return false;
810
811   Offset = N;
812   ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
813   unsigned ShAmt = 0;
814   if (ShOpcVal != ARM_AM::no_shift) {
815     // Check to see if the RHS of the shift is a constant, if not, we can't fold
816     // it.
817     if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
818       ShAmt = Sh->getZExtValue();
819       if (isShifterOpProfitable(N, ShOpcVal, ShAmt))
820         Offset = N.getOperand(0);
821       else {
822         ShAmt = 0;
823         ShOpcVal = ARM_AM::no_shift;
824       }
825     } else {
826       ShOpcVal = ARM_AM::no_shift;
827     }
828   }
829
830   Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
831                                   MVT::i32);
832   return true;
833 }
834
835 bool ARMDAGToDAGISel::SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N,
836                                             SDValue &Offset, SDValue &Opc) {
837   unsigned Opcode = Op->getOpcode();
838   ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
839     ? cast<LoadSDNode>(Op)->getAddressingMode()
840     : cast<StoreSDNode>(Op)->getAddressingMode();
841   ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
842     ? ARM_AM::add : ARM_AM::sub;
843   int Val;
844   if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits.
845     if (AddSub == ARM_AM::sub) Val *= -1;
846     Offset = CurDAG->getRegister(0, MVT::i32);
847     Opc = CurDAG->getTargetConstant(Val, MVT::i32);
848     return true;
849   }
850
851   return false;
852 }
853
854
855 bool ARMDAGToDAGISel::SelectAddrMode2OffsetImm(SDNode *Op, SDValue N,
856                                             SDValue &Offset, SDValue &Opc) {
857   unsigned Opcode = Op->getOpcode();
858   ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
859     ? cast<LoadSDNode>(Op)->getAddressingMode()
860     : cast<StoreSDNode>(Op)->getAddressingMode();
861   ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
862     ? ARM_AM::add : ARM_AM::sub;
863   int Val;
864   if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits.
865     Offset = CurDAG->getRegister(0, MVT::i32);
866     Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, Val,
867                                                       ARM_AM::no_shift),
868                                     MVT::i32);
869     return true;
870   }
871
872   return false;
873 }
874
875 bool ARMDAGToDAGISel::SelectAddrOffsetNone(SDValue N, SDValue &Base) {
876   Base = N;
877   return true;
878 }
879
880 bool ARMDAGToDAGISel::SelectAddrMode3(SDValue N,
881                                       SDValue &Base, SDValue &Offset,
882                                       SDValue &Opc) {
883   if (N.getOpcode() == ISD::SUB) {
884     // X - C  is canonicalize to X + -C, no need to handle it here.
885     Base = N.getOperand(0);
886     Offset = N.getOperand(1);
887     Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::sub, 0),MVT::i32);
888     return true;
889   }
890
891   if (!CurDAG->isBaseWithConstantOffset(N)) {
892     Base = N;
893     if (N.getOpcode() == ISD::FrameIndex) {
894       int FI = cast<FrameIndexSDNode>(N)->getIndex();
895       Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
896     }
897     Offset = CurDAG->getRegister(0, MVT::i32);
898     Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0),MVT::i32);
899     return true;
900   }
901
902   // If the RHS is +/- imm8, fold into addr mode.
903   int RHSC;
904   if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
905                               -256 + 1, 256, RHSC)) { // 8 bits.
906     Base = N.getOperand(0);
907     if (Base.getOpcode() == ISD::FrameIndex) {
908       int FI = cast<FrameIndexSDNode>(Base)->getIndex();
909       Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
910     }
911     Offset = CurDAG->getRegister(0, MVT::i32);
912
913     ARM_AM::AddrOpc AddSub = ARM_AM::add;
914     if (RHSC < 0) {
915       AddSub = ARM_AM::sub;
916       RHSC = -RHSC;
917     }
918     Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, RHSC),MVT::i32);
919     return true;
920   }
921
922   Base = N.getOperand(0);
923   Offset = N.getOperand(1);
924   Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0), MVT::i32);
925   return true;
926 }
927
928 bool ARMDAGToDAGISel::SelectAddrMode3Offset(SDNode *Op, SDValue N,
929                                             SDValue &Offset, SDValue &Opc) {
930   unsigned Opcode = Op->getOpcode();
931   ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
932     ? cast<LoadSDNode>(Op)->getAddressingMode()
933     : cast<StoreSDNode>(Op)->getAddressingMode();
934   ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
935     ? ARM_AM::add : ARM_AM::sub;
936   int Val;
937   if (isScaledConstantInRange(N, /*Scale=*/1, 0, 256, Val)) { // 12 bits.
938     Offset = CurDAG->getRegister(0, MVT::i32);
939     Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, Val), MVT::i32);
940     return true;
941   }
942
943   Offset = N;
944   Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, 0), MVT::i32);
945   return true;
946 }
947
948 bool ARMDAGToDAGISel::SelectAddrMode5(SDValue N,
949                                       SDValue &Base, SDValue &Offset) {
950   if (!CurDAG->isBaseWithConstantOffset(N)) {
951     Base = N;
952     if (N.getOpcode() == ISD::FrameIndex) {
953       int FI = cast<FrameIndexSDNode>(N)->getIndex();
954       Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
955     } else if (N.getOpcode() == ARMISD::Wrapper &&
956                N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress) {
957       Base = N.getOperand(0);
958     }
959     Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
960                                        MVT::i32);
961     return true;
962   }
963
964   // If the RHS is +/- imm8, fold into addr mode.
965   int RHSC;
966   if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/4,
967                               -256 + 1, 256, RHSC)) {
968     Base = N.getOperand(0);
969     if (Base.getOpcode() == ISD::FrameIndex) {
970       int FI = cast<FrameIndexSDNode>(Base)->getIndex();
971       Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
972     }
973
974     ARM_AM::AddrOpc AddSub = ARM_AM::add;
975     if (RHSC < 0) {
976       AddSub = ARM_AM::sub;
977       RHSC = -RHSC;
978     }
979     Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(AddSub, RHSC),
980                                        MVT::i32);
981     return true;
982   }
983
984   Base = N;
985   Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
986                                      MVT::i32);
987   return true;
988 }
989
990 bool ARMDAGToDAGISel::SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,
991                                       SDValue &Align) {
992   Addr = N;
993
994   unsigned Alignment = 0;
995
996   MemSDNode *MemN = cast<MemSDNode>(Parent);
997
998   if (isa<LSBaseSDNode>(MemN) ||
999       ((MemN->getOpcode() == ARMISD::VST1_UPD ||
1000         MemN->getOpcode() == ARMISD::VLD1_UPD) &&
1001        MemN->getConstantOperandVal(MemN->getNumOperands() - 1) == 1)) {
1002     // This case occurs only for VLD1-lane/dup and VST1-lane instructions.
1003     // The maximum alignment is equal to the memory size being referenced.
1004     unsigned MMOAlign = MemN->getAlignment();
1005     unsigned MemSize = MemN->getMemoryVT().getSizeInBits() / 8;
1006     if (MMOAlign >= MemSize && MemSize > 1)
1007       Alignment = MemSize;
1008   } else {
1009     // All other uses of addrmode6 are for intrinsics.  For now just record
1010     // the raw alignment value; it will be refined later based on the legal
1011     // alignment operands for the intrinsic.
1012     Alignment = MemN->getAlignment();
1013   }
1014
1015   Align = CurDAG->getTargetConstant(Alignment, MVT::i32);
1016   return true;
1017 }
1018
1019 bool ARMDAGToDAGISel::SelectAddrMode6Offset(SDNode *Op, SDValue N,
1020                                             SDValue &Offset) {
1021   LSBaseSDNode *LdSt = cast<LSBaseSDNode>(Op);
1022   ISD::MemIndexedMode AM = LdSt->getAddressingMode();
1023   if (AM != ISD::POST_INC)
1024     return false;
1025   Offset = N;
1026   if (ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N)) {
1027     if (NC->getZExtValue() * 8 == LdSt->getMemoryVT().getSizeInBits())
1028       Offset = CurDAG->getRegister(0, MVT::i32);
1029   }
1030   return true;
1031 }
1032
1033 bool ARMDAGToDAGISel::SelectAddrModePC(SDValue N,
1034                                        SDValue &Offset, SDValue &Label) {
1035   if (N.getOpcode() == ARMISD::PIC_ADD && N.hasOneUse()) {
1036     Offset = N.getOperand(0);
1037     SDValue N1 = N.getOperand(1);
1038     Label = CurDAG->getTargetConstant(cast<ConstantSDNode>(N1)->getZExtValue(),
1039                                       MVT::i32);
1040     return true;
1041   }
1042
1043   return false;
1044 }
1045
1046
1047 //===----------------------------------------------------------------------===//
1048 //                         Thumb Addressing Modes
1049 //===----------------------------------------------------------------------===//
1050
1051 bool ARMDAGToDAGISel::SelectThumbAddrModeRR(SDValue N,
1052                                             SDValue &Base, SDValue &Offset){
1053   if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N)) {
1054     ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N);
1055     if (!NC || !NC->isNullValue())
1056       return false;
1057
1058     Base = Offset = N;
1059     return true;
1060   }
1061
1062   Base = N.getOperand(0);
1063   Offset = N.getOperand(1);
1064   return true;
1065 }
1066
1067 bool
1068 ARMDAGToDAGISel::SelectThumbAddrModeRI(SDValue N, SDValue &Base,
1069                                        SDValue &Offset, unsigned Scale) {
1070   if (Scale == 4) {
1071     SDValue TmpBase, TmpOffImm;
1072     if (SelectThumbAddrModeSP(N, TmpBase, TmpOffImm))
1073       return false;  // We want to select tLDRspi / tSTRspi instead.
1074
1075     if (N.getOpcode() == ARMISD::Wrapper &&
1076         N.getOperand(0).getOpcode() == ISD::TargetConstantPool)
1077       return false;  // We want to select tLDRpci instead.
1078   }
1079
1080   if (!CurDAG->isBaseWithConstantOffset(N))
1081     return false;
1082
1083   // Thumb does not have [sp, r] address mode.
1084   RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
1085   RegisterSDNode *RHSR = dyn_cast<RegisterSDNode>(N.getOperand(1));
1086   if ((LHSR && LHSR->getReg() == ARM::SP) ||
1087       (RHSR && RHSR->getReg() == ARM::SP))
1088     return false;
1089
1090   // FIXME: Why do we explicitly check for a match here and then return false?
1091   // Presumably to allow something else to match, but shouldn't this be
1092   // documented?
1093   int RHSC;
1094   if (isScaledConstantInRange(N.getOperand(1), Scale, 0, 32, RHSC))
1095     return false;
1096
1097   Base = N.getOperand(0);
1098   Offset = N.getOperand(1);
1099   return true;
1100 }
1101
1102 bool
1103 ARMDAGToDAGISel::SelectThumbAddrModeRI5S1(SDValue N,
1104                                           SDValue &Base,
1105                                           SDValue &Offset) {
1106   return SelectThumbAddrModeRI(N, Base, Offset, 1);
1107 }
1108
1109 bool
1110 ARMDAGToDAGISel::SelectThumbAddrModeRI5S2(SDValue N,
1111                                           SDValue &Base,
1112                                           SDValue &Offset) {
1113   return SelectThumbAddrModeRI(N, Base, Offset, 2);
1114 }
1115
1116 bool
1117 ARMDAGToDAGISel::SelectThumbAddrModeRI5S4(SDValue N,
1118                                           SDValue &Base,
1119                                           SDValue &Offset) {
1120   return SelectThumbAddrModeRI(N, Base, Offset, 4);
1121 }
1122
1123 bool
1124 ARMDAGToDAGISel::SelectThumbAddrModeImm5S(SDValue N, unsigned Scale,
1125                                           SDValue &Base, SDValue &OffImm) {
1126   if (Scale == 4) {
1127     SDValue TmpBase, TmpOffImm;
1128     if (SelectThumbAddrModeSP(N, TmpBase, TmpOffImm))
1129       return false;  // We want to select tLDRspi / tSTRspi instead.
1130
1131     if (N.getOpcode() == ARMISD::Wrapper &&
1132         N.getOperand(0).getOpcode() == ISD::TargetConstantPool)
1133       return false;  // We want to select tLDRpci instead.
1134   }
1135
1136   if (!CurDAG->isBaseWithConstantOffset(N)) {
1137     if (N.getOpcode() == ARMISD::Wrapper &&
1138         N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress) {
1139       Base = N.getOperand(0);
1140     } else {
1141       Base = N;
1142     }
1143
1144     OffImm = CurDAG->getTargetConstant(0, MVT::i32);
1145     return true;
1146   }
1147
1148   RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
1149   RegisterSDNode *RHSR = dyn_cast<RegisterSDNode>(N.getOperand(1));
1150   if ((LHSR && LHSR->getReg() == ARM::SP) ||
1151       (RHSR && RHSR->getReg() == ARM::SP)) {
1152     ConstantSDNode *LHS = dyn_cast<ConstantSDNode>(N.getOperand(0));
1153     ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
1154     unsigned LHSC = LHS ? LHS->getZExtValue() : 0;
1155     unsigned RHSC = RHS ? RHS->getZExtValue() : 0;
1156
1157     // Thumb does not have [sp, #imm5] address mode for non-zero imm5.
1158     if (LHSC != 0 || RHSC != 0) return false;
1159
1160     Base = N;
1161     OffImm = CurDAG->getTargetConstant(0, MVT::i32);
1162     return true;
1163   }
1164
1165   // If the RHS is + imm5 * scale, fold into addr mode.
1166   int RHSC;
1167   if (isScaledConstantInRange(N.getOperand(1), Scale, 0, 32, RHSC)) {
1168     Base = N.getOperand(0);
1169     OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
1170     return true;
1171   }
1172
1173   Base = N.getOperand(0);
1174   OffImm = CurDAG->getTargetConstant(0, MVT::i32);
1175   return true;
1176 }
1177
1178 bool
1179 ARMDAGToDAGISel::SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base,
1180                                            SDValue &OffImm) {
1181   return SelectThumbAddrModeImm5S(N, 4, Base, OffImm);
1182 }
1183
1184 bool
1185 ARMDAGToDAGISel::SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base,
1186                                            SDValue &OffImm) {
1187   return SelectThumbAddrModeImm5S(N, 2, Base, OffImm);
1188 }
1189
1190 bool
1191 ARMDAGToDAGISel::SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base,
1192                                            SDValue &OffImm) {
1193   return SelectThumbAddrModeImm5S(N, 1, Base, OffImm);
1194 }
1195
1196 bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDValue N,
1197                                             SDValue &Base, SDValue &OffImm) {
1198   if (N.getOpcode() == ISD::FrameIndex) {
1199     int FI = cast<FrameIndexSDNode>(N)->getIndex();
1200     // Only multiples of 4 are allowed for the offset, so the frame object
1201     // alignment must be at least 4.
1202     MachineFrameInfo *MFI = MF->getFrameInfo();
1203     if (MFI->getObjectAlignment(FI) < 4)
1204       MFI->setObjectAlignment(FI, 4);
1205     Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
1206     OffImm = CurDAG->getTargetConstant(0, MVT::i32);
1207     return true;
1208   }
1209
1210   if (!CurDAG->isBaseWithConstantOffset(N))
1211     return false;
1212
1213   RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
1214   if (N.getOperand(0).getOpcode() == ISD::FrameIndex ||
1215       (LHSR && LHSR->getReg() == ARM::SP)) {
1216     // If the RHS is + imm8 * scale, fold into addr mode.
1217     int RHSC;
1218     if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/4, 0, 256, RHSC)) {
1219       Base = N.getOperand(0);
1220       if (Base.getOpcode() == ISD::FrameIndex) {
1221         int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1222         // For LHS+RHS to result in an offset that's a multiple of 4 the object
1223         // indexed by the LHS must be 4-byte aligned.
1224         MachineFrameInfo *MFI = MF->getFrameInfo();
1225         if (MFI->getObjectAlignment(FI) < 4)
1226           MFI->setObjectAlignment(FI, 4);
1227         Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
1228       }
1229       OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
1230       return true;
1231     }
1232   }
1233
1234   return false;
1235 }
1236
1237
1238 //===----------------------------------------------------------------------===//
1239 //                        Thumb 2 Addressing Modes
1240 //===----------------------------------------------------------------------===//
1241
1242
1243 bool ARMDAGToDAGISel::SelectT2ShifterOperandReg(SDValue N, SDValue &BaseReg,
1244                                                 SDValue &Opc) {
1245   if (DisableShifterOp)
1246     return false;
1247
1248   ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
1249
1250   // Don't match base register only case. That is matched to a separate
1251   // lower complexity pattern with explicit register operand.
1252   if (ShOpcVal == ARM_AM::no_shift) return false;
1253
1254   BaseReg = N.getOperand(0);
1255   unsigned ShImmVal = 0;
1256   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1257     ShImmVal = RHS->getZExtValue() & 31;
1258     Opc = getI32Imm(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal));
1259     return true;
1260   }
1261
1262   return false;
1263 }
1264
1265 bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDValue N,
1266                                             SDValue &Base, SDValue &OffImm) {
1267   // Match simple R + imm12 operands.
1268
1269   // Base only.
1270   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
1271       !CurDAG->isBaseWithConstantOffset(N)) {
1272     if (N.getOpcode() == ISD::FrameIndex) {
1273       // Match frame index.
1274       int FI = cast<FrameIndexSDNode>(N)->getIndex();
1275       Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
1276       OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
1277       return true;
1278     }
1279
1280     if (N.getOpcode() == ARMISD::Wrapper &&
1281         N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress) {
1282       Base = N.getOperand(0);
1283       if (Base.getOpcode() == ISD::TargetConstantPool)
1284         return false;  // We want to select t2LDRpci instead.
1285     } else
1286       Base = N;
1287     OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
1288     return true;
1289   }
1290
1291   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1292     if (SelectT2AddrModeImm8(N, Base, OffImm))
1293       // Let t2LDRi8 handle (R - imm8).
1294       return false;
1295
1296     int RHSC = (int)RHS->getZExtValue();
1297     if (N.getOpcode() == ISD::SUB)
1298       RHSC = -RHSC;
1299
1300     if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned)
1301       Base   = N.getOperand(0);
1302       if (Base.getOpcode() == ISD::FrameIndex) {
1303         int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1304         Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
1305       }
1306       OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
1307       return true;
1308     }
1309   }
1310
1311   // Base only.
1312   Base = N;
1313   OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
1314   return true;
1315 }
1316
1317 bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDValue N,
1318                                            SDValue &Base, SDValue &OffImm) {
1319   // Match simple R - imm8 operands.
1320   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
1321       !CurDAG->isBaseWithConstantOffset(N))
1322     return false;
1323
1324   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1325     int RHSC = (int)RHS->getSExtValue();
1326     if (N.getOpcode() == ISD::SUB)
1327       RHSC = -RHSC;
1328
1329     if ((RHSC >= -255) && (RHSC < 0)) { // 8 bits (always negative)
1330       Base = N.getOperand(0);
1331       if (Base.getOpcode() == ISD::FrameIndex) {
1332         int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1333         Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
1334       }
1335       OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
1336       return true;
1337     }
1338   }
1339
1340   return false;
1341 }
1342
1343 bool ARMDAGToDAGISel::SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
1344                                                  SDValue &OffImm){
1345   unsigned Opcode = Op->getOpcode();
1346   ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
1347     ? cast<LoadSDNode>(Op)->getAddressingMode()
1348     : cast<StoreSDNode>(Op)->getAddressingMode();
1349   int RHSC;
1350   if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x100, RHSC)) { // 8 bits.
1351     OffImm = ((AM == ISD::PRE_INC) || (AM == ISD::POST_INC))
1352       ? CurDAG->getTargetConstant(RHSC, MVT::i32)
1353       : CurDAG->getTargetConstant(-RHSC, MVT::i32);
1354     return true;
1355   }
1356
1357   return false;
1358 }
1359
1360 bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDValue N,
1361                                             SDValue &Base,
1362                                             SDValue &OffReg, SDValue &ShImm) {
1363   // (R - imm8) should be handled by t2LDRi8. The rest are handled by t2LDRi12.
1364   if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N))
1365     return false;
1366
1367   // Leave (R + imm12) for t2LDRi12, (R - imm8) for t2LDRi8.
1368   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1369     int RHSC = (int)RHS->getZExtValue();
1370     if (RHSC >= 0 && RHSC < 0x1000) // 12 bits (unsigned)
1371       return false;
1372     else if (RHSC < 0 && RHSC >= -255) // 8 bits
1373       return false;
1374   }
1375
1376   // Look for (R + R) or (R + (R << [1,2,3])).
1377   unsigned ShAmt = 0;
1378   Base   = N.getOperand(0);
1379   OffReg = N.getOperand(1);
1380
1381   // Swap if it is ((R << c) + R).
1382   ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(OffReg.getOpcode());
1383   if (ShOpcVal != ARM_AM::lsl) {
1384     ShOpcVal = ARM_AM::getShiftOpcForNode(Base.getOpcode());
1385     if (ShOpcVal == ARM_AM::lsl)
1386       std::swap(Base, OffReg);
1387   }
1388
1389   if (ShOpcVal == ARM_AM::lsl) {
1390     // Check to see if the RHS of the shift is a constant, if not, we can't fold
1391     // it.
1392     if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(OffReg.getOperand(1))) {
1393       ShAmt = Sh->getZExtValue();
1394       if (ShAmt < 4 && isShifterOpProfitable(OffReg, ShOpcVal, ShAmt))
1395         OffReg = OffReg.getOperand(0);
1396       else {
1397         ShAmt = 0;
1398       }
1399     }
1400   }
1401
1402   ShImm = CurDAG->getTargetConstant(ShAmt, MVT::i32);
1403
1404   return true;
1405 }
1406
1407 bool ARMDAGToDAGISel::SelectT2AddrModeExclusive(SDValue N, SDValue &Base,
1408                                                 SDValue &OffImm) {
1409   // This *must* succeed since it's used for the irreplaceable ldrex and strex
1410   // instructions.
1411   Base = N;
1412   OffImm = CurDAG->getTargetConstant(0, MVT::i32);
1413
1414   if (N.getOpcode() != ISD::ADD || !CurDAG->isBaseWithConstantOffset(N))
1415     return true;
1416
1417   ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
1418   if (!RHS)
1419     return true;
1420
1421   uint32_t RHSC = (int)RHS->getZExtValue();
1422   if (RHSC > 1020 || RHSC % 4 != 0)
1423     return true;
1424
1425   Base = N.getOperand(0);
1426   if (Base.getOpcode() == ISD::FrameIndex) {
1427     int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1428     Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
1429   }
1430
1431   OffImm = CurDAG->getTargetConstant(RHSC / 4, MVT::i32);
1432   return true;
1433 }
1434
1435 //===--------------------------------------------------------------------===//
1436
1437 /// getAL - Returns a ARMCC::AL immediate node.
1438 static inline SDValue getAL(SelectionDAG *CurDAG) {
1439   return CurDAG->getTargetConstant((uint64_t)ARMCC::AL, MVT::i32);
1440 }
1441
1442 SDNode *ARMDAGToDAGISel::SelectARMIndexedLoad(SDNode *N) {
1443   LoadSDNode *LD = cast<LoadSDNode>(N);
1444   ISD::MemIndexedMode AM = LD->getAddressingMode();
1445   if (AM == ISD::UNINDEXED)
1446     return nullptr;
1447
1448   EVT LoadedVT = LD->getMemoryVT();
1449   SDValue Offset, AMOpc;
1450   bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
1451   unsigned Opcode = 0;
1452   bool Match = false;
1453   if (LoadedVT == MVT::i32 && isPre &&
1454       SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) {
1455     Opcode = ARM::LDR_PRE_IMM;
1456     Match = true;
1457   } else if (LoadedVT == MVT::i32 && !isPre &&
1458       SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) {
1459     Opcode = ARM::LDR_POST_IMM;
1460     Match = true;
1461   } else if (LoadedVT == MVT::i32 &&
1462       SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) {
1463     Opcode = isPre ? ARM::LDR_PRE_REG : ARM::LDR_POST_REG;
1464     Match = true;
1465
1466   } else if (LoadedVT == MVT::i16 &&
1467              SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
1468     Match = true;
1469     Opcode = (LD->getExtensionType() == ISD::SEXTLOAD)
1470       ? (isPre ? ARM::LDRSH_PRE : ARM::LDRSH_POST)
1471       : (isPre ? ARM::LDRH_PRE : ARM::LDRH_POST);
1472   } else if (LoadedVT == MVT::i8 || LoadedVT == MVT::i1) {
1473     if (LD->getExtensionType() == ISD::SEXTLOAD) {
1474       if (SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
1475         Match = true;
1476         Opcode = isPre ? ARM::LDRSB_PRE : ARM::LDRSB_POST;
1477       }
1478     } else {
1479       if (isPre &&
1480           SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) {
1481         Match = true;
1482         Opcode = ARM::LDRB_PRE_IMM;
1483       } else if (!isPre &&
1484                   SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) {
1485         Match = true;
1486         Opcode = ARM::LDRB_POST_IMM;
1487       } else if (SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) {
1488         Match = true;
1489         Opcode = isPre ? ARM::LDRB_PRE_REG : ARM::LDRB_POST_REG;
1490       }
1491     }
1492   }
1493
1494   if (Match) {
1495     if (Opcode == ARM::LDR_PRE_IMM || Opcode == ARM::LDRB_PRE_IMM) {
1496       SDValue Chain = LD->getChain();
1497       SDValue Base = LD->getBasePtr();
1498       SDValue Ops[]= { Base, AMOpc, getAL(CurDAG),
1499                        CurDAG->getRegister(0, MVT::i32), Chain };
1500       return CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32,
1501                                     MVT::i32, MVT::Other, Ops);
1502     } else {
1503       SDValue Chain = LD->getChain();
1504       SDValue Base = LD->getBasePtr();
1505       SDValue Ops[]= { Base, Offset, AMOpc, getAL(CurDAG),
1506                        CurDAG->getRegister(0, MVT::i32), Chain };
1507       return CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32,
1508                                     MVT::i32, MVT::Other, Ops);
1509     }
1510   }
1511
1512   return nullptr;
1513 }
1514
1515 SDNode *ARMDAGToDAGISel::SelectT2IndexedLoad(SDNode *N) {
1516   LoadSDNode *LD = cast<LoadSDNode>(N);
1517   ISD::MemIndexedMode AM = LD->getAddressingMode();
1518   if (AM == ISD::UNINDEXED)
1519     return nullptr;
1520
1521   EVT LoadedVT = LD->getMemoryVT();
1522   bool isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD;
1523   SDValue Offset;
1524   bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
1525   unsigned Opcode = 0;
1526   bool Match = false;
1527   if (SelectT2AddrModeImm8Offset(N, LD->getOffset(), Offset)) {
1528     switch (LoadedVT.getSimpleVT().SimpleTy) {
1529     case MVT::i32:
1530       Opcode = isPre ? ARM::t2LDR_PRE : ARM::t2LDR_POST;
1531       break;
1532     case MVT::i16:
1533       if (isSExtLd)
1534         Opcode = isPre ? ARM::t2LDRSH_PRE : ARM::t2LDRSH_POST;
1535       else
1536         Opcode = isPre ? ARM::t2LDRH_PRE : ARM::t2LDRH_POST;
1537       break;
1538     case MVT::i8:
1539     case MVT::i1:
1540       if (isSExtLd)
1541         Opcode = isPre ? ARM::t2LDRSB_PRE : ARM::t2LDRSB_POST;
1542       else
1543         Opcode = isPre ? ARM::t2LDRB_PRE : ARM::t2LDRB_POST;
1544       break;
1545     default:
1546       return nullptr;
1547     }
1548     Match = true;
1549   }
1550
1551   if (Match) {
1552     SDValue Chain = LD->getChain();
1553     SDValue Base = LD->getBasePtr();
1554     SDValue Ops[]= { Base, Offset, getAL(CurDAG),
1555                      CurDAG->getRegister(0, MVT::i32), Chain };
1556     return CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32, MVT::i32,
1557                                   MVT::Other, Ops);
1558   }
1559
1560   return nullptr;
1561 }
1562
1563 /// \brief Form a GPRPair pseudo register from a pair of GPR regs.
1564 SDNode *ARMDAGToDAGISel::createGPRPairNode(EVT VT, SDValue V0, SDValue V1) {
1565   SDLoc dl(V0.getNode());
1566   SDValue RegClass =
1567     CurDAG->getTargetConstant(ARM::GPRPairRegClassID, MVT::i32);
1568   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::gsub_0, MVT::i32);
1569   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::gsub_1, MVT::i32);
1570   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
1571   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
1572 }
1573
1574 /// \brief Form a D register from a pair of S registers.
1575 SDNode *ARMDAGToDAGISel::createSRegPairNode(EVT VT, SDValue V0, SDValue V1) {
1576   SDLoc dl(V0.getNode());
1577   SDValue RegClass =
1578     CurDAG->getTargetConstant(ARM::DPR_VFP2RegClassID, MVT::i32);
1579   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, MVT::i32);
1580   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, MVT::i32);
1581   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
1582   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
1583 }
1584
1585 /// \brief Form a quad register from a pair of D registers.
1586 SDNode *ARMDAGToDAGISel::createDRegPairNode(EVT VT, SDValue V0, SDValue V1) {
1587   SDLoc dl(V0.getNode());
1588   SDValue RegClass = CurDAG->getTargetConstant(ARM::QPRRegClassID, MVT::i32);
1589   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
1590   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
1591   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
1592   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
1593 }
1594
1595 /// \brief Form 4 consecutive D registers from a pair of Q registers.
1596 SDNode *ARMDAGToDAGISel::createQRegPairNode(EVT VT, SDValue V0, SDValue V1) {
1597   SDLoc dl(V0.getNode());
1598   SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, MVT::i32);
1599   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32);
1600   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32);
1601   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
1602   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
1603 }
1604
1605 /// \brief Form 4 consecutive S registers.
1606 SDNode *ARMDAGToDAGISel::createQuadSRegsNode(EVT VT, SDValue V0, SDValue V1,
1607                                    SDValue V2, SDValue V3) {
1608   SDLoc dl(V0.getNode());
1609   SDValue RegClass =
1610     CurDAG->getTargetConstant(ARM::QPR_VFP2RegClassID, MVT::i32);
1611   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, MVT::i32);
1612   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, MVT::i32);
1613   SDValue SubReg2 = CurDAG->getTargetConstant(ARM::ssub_2, MVT::i32);
1614   SDValue SubReg3 = CurDAG->getTargetConstant(ARM::ssub_3, MVT::i32);
1615   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
1616                                     V2, SubReg2, V3, SubReg3 };
1617   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
1618 }
1619
1620 /// \brief Form 4 consecutive D registers.
1621 SDNode *ARMDAGToDAGISel::createQuadDRegsNode(EVT VT, SDValue V0, SDValue V1,
1622                                    SDValue V2, SDValue V3) {
1623   SDLoc dl(V0.getNode());
1624   SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, MVT::i32);
1625   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
1626   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
1627   SDValue SubReg2 = CurDAG->getTargetConstant(ARM::dsub_2, MVT::i32);
1628   SDValue SubReg3 = CurDAG->getTargetConstant(ARM::dsub_3, MVT::i32);
1629   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
1630                                     V2, SubReg2, V3, SubReg3 };
1631   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
1632 }
1633
1634 /// \brief Form 4 consecutive Q registers.
1635 SDNode *ARMDAGToDAGISel::createQuadQRegsNode(EVT VT, SDValue V0, SDValue V1,
1636                                    SDValue V2, SDValue V3) {
1637   SDLoc dl(V0.getNode());
1638   SDValue RegClass = CurDAG->getTargetConstant(ARM::QQQQPRRegClassID, MVT::i32);
1639   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32);
1640   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32);
1641   SDValue SubReg2 = CurDAG->getTargetConstant(ARM::qsub_2, MVT::i32);
1642   SDValue SubReg3 = CurDAG->getTargetConstant(ARM::qsub_3, MVT::i32);
1643   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
1644                                     V2, SubReg2, V3, SubReg3 };
1645   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
1646 }
1647
1648 /// GetVLDSTAlign - Get the alignment (in bytes) for the alignment operand
1649 /// of a NEON VLD or VST instruction.  The supported values depend on the
1650 /// number of registers being loaded.
1651 SDValue ARMDAGToDAGISel::GetVLDSTAlign(SDValue Align, unsigned NumVecs,
1652                                        bool is64BitVector) {
1653   unsigned NumRegs = NumVecs;
1654   if (!is64BitVector && NumVecs < 3)
1655     NumRegs *= 2;
1656
1657   unsigned Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
1658   if (Alignment >= 32 && NumRegs == 4)
1659     Alignment = 32;
1660   else if (Alignment >= 16 && (NumRegs == 2 || NumRegs == 4))
1661     Alignment = 16;
1662   else if (Alignment >= 8)
1663     Alignment = 8;
1664   else
1665     Alignment = 0;
1666
1667   return CurDAG->getTargetConstant(Alignment, MVT::i32);
1668 }
1669
1670 static bool isVLDfixed(unsigned Opc)
1671 {
1672   switch (Opc) {
1673   default: return false;
1674   case ARM::VLD1d8wb_fixed : return true;
1675   case ARM::VLD1d16wb_fixed : return true;
1676   case ARM::VLD1d64Qwb_fixed : return true;
1677   case ARM::VLD1d32wb_fixed : return true;
1678   case ARM::VLD1d64wb_fixed : return true;
1679   case ARM::VLD1d64TPseudoWB_fixed : return true;
1680   case ARM::VLD1d64QPseudoWB_fixed : return true;
1681   case ARM::VLD1q8wb_fixed : return true;
1682   case ARM::VLD1q16wb_fixed : return true;
1683   case ARM::VLD1q32wb_fixed : return true;
1684   case ARM::VLD1q64wb_fixed : return true;
1685   case ARM::VLD2d8wb_fixed : return true;
1686   case ARM::VLD2d16wb_fixed : return true;
1687   case ARM::VLD2d32wb_fixed : return true;
1688   case ARM::VLD2q8PseudoWB_fixed : return true;
1689   case ARM::VLD2q16PseudoWB_fixed : return true;
1690   case ARM::VLD2q32PseudoWB_fixed : return true;
1691   case ARM::VLD2DUPd8wb_fixed : return true;
1692   case ARM::VLD2DUPd16wb_fixed : return true;
1693   case ARM::VLD2DUPd32wb_fixed : return true;
1694   }
1695 }
1696
1697 static bool isVSTfixed(unsigned Opc)
1698 {
1699   switch (Opc) {
1700   default: return false;
1701   case ARM::VST1d8wb_fixed : return true;
1702   case ARM::VST1d16wb_fixed : return true;
1703   case ARM::VST1d32wb_fixed : return true;
1704   case ARM::VST1d64wb_fixed : return true;
1705   case ARM::VST1q8wb_fixed : return true;
1706   case ARM::VST1q16wb_fixed : return true;
1707   case ARM::VST1q32wb_fixed : return true;
1708   case ARM::VST1q64wb_fixed : return true;
1709   case ARM::VST1d64TPseudoWB_fixed : return true;
1710   case ARM::VST1d64QPseudoWB_fixed : return true;
1711   case ARM::VST2d8wb_fixed : return true;
1712   case ARM::VST2d16wb_fixed : return true;
1713   case ARM::VST2d32wb_fixed : return true;
1714   case ARM::VST2q8PseudoWB_fixed : return true;
1715   case ARM::VST2q16PseudoWB_fixed : return true;
1716   case ARM::VST2q32PseudoWB_fixed : return true;
1717   }
1718 }
1719
1720 // Get the register stride update opcode of a VLD/VST instruction that
1721 // is otherwise equivalent to the given fixed stride updating instruction.
1722 static unsigned getVLDSTRegisterUpdateOpcode(unsigned Opc) {
1723   assert((isVLDfixed(Opc) || isVSTfixed(Opc))
1724     && "Incorrect fixed stride updating instruction.");
1725   switch (Opc) {
1726   default: break;
1727   case ARM::VLD1d8wb_fixed: return ARM::VLD1d8wb_register;
1728   case ARM::VLD1d16wb_fixed: return ARM::VLD1d16wb_register;
1729   case ARM::VLD1d32wb_fixed: return ARM::VLD1d32wb_register;
1730   case ARM::VLD1d64wb_fixed: return ARM::VLD1d64wb_register;
1731   case ARM::VLD1q8wb_fixed: return ARM::VLD1q8wb_register;
1732   case ARM::VLD1q16wb_fixed: return ARM::VLD1q16wb_register;
1733   case ARM::VLD1q32wb_fixed: return ARM::VLD1q32wb_register;
1734   case ARM::VLD1q64wb_fixed: return ARM::VLD1q64wb_register;
1735   case ARM::VLD1d64Twb_fixed: return ARM::VLD1d64Twb_register;
1736   case ARM::VLD1d64Qwb_fixed: return ARM::VLD1d64Qwb_register;
1737   case ARM::VLD1d64TPseudoWB_fixed: return ARM::VLD1d64TPseudoWB_register;
1738   case ARM::VLD1d64QPseudoWB_fixed: return ARM::VLD1d64QPseudoWB_register;
1739
1740   case ARM::VST1d8wb_fixed: return ARM::VST1d8wb_register;
1741   case ARM::VST1d16wb_fixed: return ARM::VST1d16wb_register;
1742   case ARM::VST1d32wb_fixed: return ARM::VST1d32wb_register;
1743   case ARM::VST1d64wb_fixed: return ARM::VST1d64wb_register;
1744   case ARM::VST1q8wb_fixed: return ARM::VST1q8wb_register;
1745   case ARM::VST1q16wb_fixed: return ARM::VST1q16wb_register;
1746   case ARM::VST1q32wb_fixed: return ARM::VST1q32wb_register;
1747   case ARM::VST1q64wb_fixed: return ARM::VST1q64wb_register;
1748   case ARM::VST1d64TPseudoWB_fixed: return ARM::VST1d64TPseudoWB_register;
1749   case ARM::VST1d64QPseudoWB_fixed: return ARM::VST1d64QPseudoWB_register;
1750
1751   case ARM::VLD2d8wb_fixed: return ARM::VLD2d8wb_register;
1752   case ARM::VLD2d16wb_fixed: return ARM::VLD2d16wb_register;
1753   case ARM::VLD2d32wb_fixed: return ARM::VLD2d32wb_register;
1754   case ARM::VLD2q8PseudoWB_fixed: return ARM::VLD2q8PseudoWB_register;
1755   case ARM::VLD2q16PseudoWB_fixed: return ARM::VLD2q16PseudoWB_register;
1756   case ARM::VLD2q32PseudoWB_fixed: return ARM::VLD2q32PseudoWB_register;
1757
1758   case ARM::VST2d8wb_fixed: return ARM::VST2d8wb_register;
1759   case ARM::VST2d16wb_fixed: return ARM::VST2d16wb_register;
1760   case ARM::VST2d32wb_fixed: return ARM::VST2d32wb_register;
1761   case ARM::VST2q8PseudoWB_fixed: return ARM::VST2q8PseudoWB_register;
1762   case ARM::VST2q16PseudoWB_fixed: return ARM::VST2q16PseudoWB_register;
1763   case ARM::VST2q32PseudoWB_fixed: return ARM::VST2q32PseudoWB_register;
1764
1765   case ARM::VLD2DUPd8wb_fixed: return ARM::VLD2DUPd8wb_register;
1766   case ARM::VLD2DUPd16wb_fixed: return ARM::VLD2DUPd16wb_register;
1767   case ARM::VLD2DUPd32wb_fixed: return ARM::VLD2DUPd32wb_register;
1768   }
1769   return Opc; // If not one we handle, return it unchanged.
1770 }
1771
1772 SDNode *ARMDAGToDAGISel::SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
1773                                    const uint16_t *DOpcodes,
1774                                    const uint16_t *QOpcodes0,
1775                                    const uint16_t *QOpcodes1) {
1776   assert(NumVecs >= 1 && NumVecs <= 4 && "VLD NumVecs out-of-range");
1777   SDLoc dl(N);
1778
1779   SDValue MemAddr, Align;
1780   unsigned AddrOpIdx = isUpdating ? 1 : 2;
1781   if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
1782     return nullptr;
1783
1784   SDValue Chain = N->getOperand(0);
1785   EVT VT = N->getValueType(0);
1786   bool is64BitVector = VT.is64BitVector();
1787   Align = GetVLDSTAlign(Align, NumVecs, is64BitVector);
1788
1789   unsigned OpcodeIndex;
1790   switch (VT.getSimpleVT().SimpleTy) {
1791   default: llvm_unreachable("unhandled vld type");
1792     // Double-register operations:
1793   case MVT::v8i8:  OpcodeIndex = 0; break;
1794   case MVT::v4i16: OpcodeIndex = 1; break;
1795   case MVT::v2f32:
1796   case MVT::v2i32: OpcodeIndex = 2; break;
1797   case MVT::v1i64: OpcodeIndex = 3; break;
1798     // Quad-register operations:
1799   case MVT::v16i8: OpcodeIndex = 0; break;
1800   case MVT::v8i16: OpcodeIndex = 1; break;
1801   case MVT::v4f32:
1802   case MVT::v4i32: OpcodeIndex = 2; break;
1803   case MVT::v2f64:
1804   case MVT::v2i64: OpcodeIndex = 3;
1805     assert(NumVecs == 1 && "v2i64 type only supported for VLD1");
1806     break;
1807   }
1808
1809   EVT ResTy;
1810   if (NumVecs == 1)
1811     ResTy = VT;
1812   else {
1813     unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
1814     if (!is64BitVector)
1815       ResTyElts *= 2;
1816     ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64, ResTyElts);
1817   }
1818   std::vector<EVT> ResTys;
1819   ResTys.push_back(ResTy);
1820   if (isUpdating)
1821     ResTys.push_back(MVT::i32);
1822   ResTys.push_back(MVT::Other);
1823
1824   SDValue Pred = getAL(CurDAG);
1825   SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
1826   SDNode *VLd;
1827   SmallVector<SDValue, 7> Ops;
1828
1829   // Double registers and VLD1/VLD2 quad registers are directly supported.
1830   if (is64BitVector || NumVecs <= 2) {
1831     unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
1832                     QOpcodes0[OpcodeIndex]);
1833     Ops.push_back(MemAddr);
1834     Ops.push_back(Align);
1835     if (isUpdating) {
1836       SDValue Inc = N->getOperand(AddrOpIdx + 1);
1837       // FIXME: VLD1/VLD2 fixed increment doesn't need Reg0. Remove the reg0
1838       // case entirely when the rest are updated to that form, too.
1839       if ((NumVecs <= 2) && !isa<ConstantSDNode>(Inc.getNode()))
1840         Opc = getVLDSTRegisterUpdateOpcode(Opc);
1841       // FIXME: We use a VLD1 for v1i64 even if the pseudo says vld2/3/4, so
1842       // check for that explicitly too. Horribly hacky, but temporary.
1843       if ((NumVecs > 2 && !isVLDfixed(Opc)) ||
1844           !isa<ConstantSDNode>(Inc.getNode()))
1845         Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc);
1846     }
1847     Ops.push_back(Pred);
1848     Ops.push_back(Reg0);
1849     Ops.push_back(Chain);
1850     VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1851
1852   } else {
1853     // Otherwise, quad registers are loaded with two separate instructions,
1854     // where one loads the even registers and the other loads the odd registers.
1855     EVT AddrTy = MemAddr.getValueType();
1856
1857     // Load the even subregs.  This is always an updating load, so that it
1858     // provides the address to the second load for the odd subregs.
1859     SDValue ImplDef =
1860       SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, ResTy), 0);
1861     const SDValue OpsA[] = { MemAddr, Align, Reg0, ImplDef, Pred, Reg0, Chain };
1862     SDNode *VLdA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl,
1863                                           ResTy, AddrTy, MVT::Other, OpsA);
1864     Chain = SDValue(VLdA, 2);
1865
1866     // Load the odd subregs.
1867     Ops.push_back(SDValue(VLdA, 1));
1868     Ops.push_back(Align);
1869     if (isUpdating) {
1870       SDValue Inc = N->getOperand(AddrOpIdx + 1);
1871       assert(isa<ConstantSDNode>(Inc.getNode()) &&
1872              "only constant post-increment update allowed for VLD3/4");
1873       (void)Inc;
1874       Ops.push_back(Reg0);
1875     }
1876     Ops.push_back(SDValue(VLdA, 0));
1877     Ops.push_back(Pred);
1878     Ops.push_back(Reg0);
1879     Ops.push_back(Chain);
1880     VLd = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys, Ops);
1881   }
1882
1883   // Transfer memoperands.
1884   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1885   MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
1886   cast<MachineSDNode>(VLd)->setMemRefs(MemOp, MemOp + 1);
1887
1888   if (NumVecs == 1)
1889     return VLd;
1890
1891   // Extract out the subregisters.
1892   SDValue SuperReg = SDValue(VLd, 0);
1893   assert(ARM::dsub_7 == ARM::dsub_0+7 &&
1894          ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering");
1895   unsigned Sub0 = (is64BitVector ? ARM::dsub_0 : ARM::qsub_0);
1896   for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
1897     ReplaceUses(SDValue(N, Vec),
1898                 CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
1899   ReplaceUses(SDValue(N, NumVecs), SDValue(VLd, 1));
1900   if (isUpdating)
1901     ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLd, 2));
1902   return nullptr;
1903 }
1904
1905 SDNode *ARMDAGToDAGISel::SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
1906                                    const uint16_t *DOpcodes,
1907                                    const uint16_t *QOpcodes0,
1908                                    const uint16_t *QOpcodes1) {
1909   assert(NumVecs >= 1 && NumVecs <= 4 && "VST NumVecs out-of-range");
1910   SDLoc dl(N);
1911
1912   SDValue MemAddr, Align;
1913   unsigned AddrOpIdx = isUpdating ? 1 : 2;
1914   unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1)
1915   if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
1916     return nullptr;
1917
1918   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1919   MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
1920
1921   SDValue Chain = N->getOperand(0);
1922   EVT VT = N->getOperand(Vec0Idx).getValueType();
1923   bool is64BitVector = VT.is64BitVector();
1924   Align = GetVLDSTAlign(Align, NumVecs, is64BitVector);
1925
1926   unsigned OpcodeIndex;
1927   switch (VT.getSimpleVT().SimpleTy) {
1928   default: llvm_unreachable("unhandled vst type");
1929     // Double-register operations:
1930   case MVT::v8i8:  OpcodeIndex = 0; break;
1931   case MVT::v4i16: OpcodeIndex = 1; break;
1932   case MVT::v2f32:
1933   case MVT::v2i32: OpcodeIndex = 2; break;
1934   case MVT::v1i64: OpcodeIndex = 3; break;
1935     // Quad-register operations:
1936   case MVT::v16i8: OpcodeIndex = 0; break;
1937   case MVT::v8i16: OpcodeIndex = 1; break;
1938   case MVT::v4f32:
1939   case MVT::v4i32: OpcodeIndex = 2; break;
1940   case MVT::v2f64:
1941   case MVT::v2i64: OpcodeIndex = 3;
1942     assert(NumVecs == 1 && "v2i64 type only supported for VST1");
1943     break;
1944   }
1945
1946   std::vector<EVT> ResTys;
1947   if (isUpdating)
1948     ResTys.push_back(MVT::i32);
1949   ResTys.push_back(MVT::Other);
1950
1951   SDValue Pred = getAL(CurDAG);
1952   SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
1953   SmallVector<SDValue, 7> Ops;
1954
1955   // Double registers and VST1/VST2 quad registers are directly supported.
1956   if (is64BitVector || NumVecs <= 2) {
1957     SDValue SrcReg;
1958     if (NumVecs == 1) {
1959       SrcReg = N->getOperand(Vec0Idx);
1960     } else if (is64BitVector) {
1961       // Form a REG_SEQUENCE to force register allocation.
1962       SDValue V0 = N->getOperand(Vec0Idx + 0);
1963       SDValue V1 = N->getOperand(Vec0Idx + 1);
1964       if (NumVecs == 2)
1965         SrcReg = SDValue(createDRegPairNode(MVT::v2i64, V0, V1), 0);
1966       else {
1967         SDValue V2 = N->getOperand(Vec0Idx + 2);
1968         // If it's a vst3, form a quad D-register and leave the last part as
1969         // an undef.
1970         SDValue V3 = (NumVecs == 3)
1971           ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
1972           : N->getOperand(Vec0Idx + 3);
1973         SrcReg = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0);
1974       }
1975     } else {
1976       // Form a QQ register.
1977       SDValue Q0 = N->getOperand(Vec0Idx);
1978       SDValue Q1 = N->getOperand(Vec0Idx + 1);
1979       SrcReg = SDValue(createQRegPairNode(MVT::v4i64, Q0, Q1), 0);
1980     }
1981
1982     unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
1983                     QOpcodes0[OpcodeIndex]);
1984     Ops.push_back(MemAddr);
1985     Ops.push_back(Align);
1986     if (isUpdating) {
1987       SDValue Inc = N->getOperand(AddrOpIdx + 1);
1988       // FIXME: VST1/VST2 fixed increment doesn't need Reg0. Remove the reg0
1989       // case entirely when the rest are updated to that form, too.
1990       if (NumVecs <= 2 && !isa<ConstantSDNode>(Inc.getNode()))
1991         Opc = getVLDSTRegisterUpdateOpcode(Opc);
1992       // FIXME: We use a VST1 for v1i64 even if the pseudo says vld2/3/4, so
1993       // check for that explicitly too. Horribly hacky, but temporary.
1994       if  (!isa<ConstantSDNode>(Inc.getNode()))
1995         Ops.push_back(Inc);
1996       else if (NumVecs > 2 && !isVSTfixed(Opc))
1997         Ops.push_back(Reg0);
1998     }
1999     Ops.push_back(SrcReg);
2000     Ops.push_back(Pred);
2001     Ops.push_back(Reg0);
2002     Ops.push_back(Chain);
2003     SDNode *VSt = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
2004
2005     // Transfer memoperands.
2006     cast<MachineSDNode>(VSt)->setMemRefs(MemOp, MemOp + 1);
2007
2008     return VSt;
2009   }
2010
2011   // Otherwise, quad registers are stored with two separate instructions,
2012   // where one stores the even registers and the other stores the odd registers.
2013
2014   // Form the QQQQ REG_SEQUENCE.
2015   SDValue V0 = N->getOperand(Vec0Idx + 0);
2016   SDValue V1 = N->getOperand(Vec0Idx + 1);
2017   SDValue V2 = N->getOperand(Vec0Idx + 2);
2018   SDValue V3 = (NumVecs == 3)
2019     ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
2020     : N->getOperand(Vec0Idx + 3);
2021   SDValue RegSeq = SDValue(createQuadQRegsNode(MVT::v8i64, V0, V1, V2, V3), 0);
2022
2023   // Store the even D registers.  This is always an updating store, so that it
2024   // provides the address to the second store for the odd subregs.
2025   const SDValue OpsA[] = { MemAddr, Align, Reg0, RegSeq, Pred, Reg0, Chain };
2026   SDNode *VStA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl,
2027                                         MemAddr.getValueType(),
2028                                         MVT::Other, OpsA);
2029   cast<MachineSDNode>(VStA)->setMemRefs(MemOp, MemOp + 1);
2030   Chain = SDValue(VStA, 1);
2031
2032   // Store the odd D registers.
2033   Ops.push_back(SDValue(VStA, 0));
2034   Ops.push_back(Align);
2035   if (isUpdating) {
2036     SDValue Inc = N->getOperand(AddrOpIdx + 1);
2037     assert(isa<ConstantSDNode>(Inc.getNode()) &&
2038            "only constant post-increment update allowed for VST3/4");
2039     (void)Inc;
2040     Ops.push_back(Reg0);
2041   }
2042   Ops.push_back(RegSeq);
2043   Ops.push_back(Pred);
2044   Ops.push_back(Reg0);
2045   Ops.push_back(Chain);
2046   SDNode *VStB = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys,
2047                                         Ops);
2048   cast<MachineSDNode>(VStB)->setMemRefs(MemOp, MemOp + 1);
2049   return VStB;
2050 }
2051
2052 SDNode *ARMDAGToDAGISel::SelectVLDSTLane(SDNode *N, bool IsLoad,
2053                                          bool isUpdating, unsigned NumVecs,
2054                                          const uint16_t *DOpcodes,
2055                                          const uint16_t *QOpcodes) {
2056   assert(NumVecs >=2 && NumVecs <= 4 && "VLDSTLane NumVecs out-of-range");
2057   SDLoc dl(N);
2058
2059   SDValue MemAddr, Align;
2060   unsigned AddrOpIdx = isUpdating ? 1 : 2;
2061   unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1)
2062   if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
2063     return nullptr;
2064
2065   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
2066   MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2067
2068   SDValue Chain = N->getOperand(0);
2069   unsigned Lane =
2070     cast<ConstantSDNode>(N->getOperand(Vec0Idx + NumVecs))->getZExtValue();
2071   EVT VT = N->getOperand(Vec0Idx).getValueType();
2072   bool is64BitVector = VT.is64BitVector();
2073
2074   unsigned Alignment = 0;
2075   if (NumVecs != 3) {
2076     Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
2077     unsigned NumBytes = NumVecs * VT.getVectorElementType().getSizeInBits()/8;
2078     if (Alignment > NumBytes)
2079       Alignment = NumBytes;
2080     if (Alignment < 8 && Alignment < NumBytes)
2081       Alignment = 0;
2082     // Alignment must be a power of two; make sure of that.
2083     Alignment = (Alignment & -Alignment);
2084     if (Alignment == 1)
2085       Alignment = 0;
2086   }
2087   Align = CurDAG->getTargetConstant(Alignment, MVT::i32);
2088
2089   unsigned OpcodeIndex;
2090   switch (VT.getSimpleVT().SimpleTy) {
2091   default: llvm_unreachable("unhandled vld/vst lane type");
2092     // Double-register operations:
2093   case MVT::v8i8:  OpcodeIndex = 0; break;
2094   case MVT::v4i16: OpcodeIndex = 1; break;
2095   case MVT::v2f32:
2096   case MVT::v2i32: OpcodeIndex = 2; break;
2097     // Quad-register operations:
2098   case MVT::v8i16: OpcodeIndex = 0; break;
2099   case MVT::v4f32:
2100   case MVT::v4i32: OpcodeIndex = 1; break;
2101   }
2102
2103   std::vector<EVT> ResTys;
2104   if (IsLoad) {
2105     unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
2106     if (!is64BitVector)
2107       ResTyElts *= 2;
2108     ResTys.push_back(EVT::getVectorVT(*CurDAG->getContext(),
2109                                       MVT::i64, ResTyElts));
2110   }
2111   if (isUpdating)
2112     ResTys.push_back(MVT::i32);
2113   ResTys.push_back(MVT::Other);
2114
2115   SDValue Pred = getAL(CurDAG);
2116   SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2117
2118   SmallVector<SDValue, 8> Ops;
2119   Ops.push_back(MemAddr);
2120   Ops.push_back(Align);
2121   if (isUpdating) {
2122     SDValue Inc = N->getOperand(AddrOpIdx + 1);
2123     Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc);
2124   }
2125
2126   SDValue SuperReg;
2127   SDValue V0 = N->getOperand(Vec0Idx + 0);
2128   SDValue V1 = N->getOperand(Vec0Idx + 1);
2129   if (NumVecs == 2) {
2130     if (is64BitVector)
2131       SuperReg = SDValue(createDRegPairNode(MVT::v2i64, V0, V1), 0);
2132     else
2133       SuperReg = SDValue(createQRegPairNode(MVT::v4i64, V0, V1), 0);
2134   } else {
2135     SDValue V2 = N->getOperand(Vec0Idx + 2);
2136     SDValue V3 = (NumVecs == 3)
2137       ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
2138       : N->getOperand(Vec0Idx + 3);
2139     if (is64BitVector)
2140       SuperReg = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0);
2141     else
2142       SuperReg = SDValue(createQuadQRegsNode(MVT::v8i64, V0, V1, V2, V3), 0);
2143   }
2144   Ops.push_back(SuperReg);
2145   Ops.push_back(getI32Imm(Lane));
2146   Ops.push_back(Pred);
2147   Ops.push_back(Reg0);
2148   Ops.push_back(Chain);
2149
2150   unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
2151                                   QOpcodes[OpcodeIndex]);
2152   SDNode *VLdLn = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
2153   cast<MachineSDNode>(VLdLn)->setMemRefs(MemOp, MemOp + 1);
2154   if (!IsLoad)
2155     return VLdLn;
2156
2157   // Extract the subregisters.
2158   SuperReg = SDValue(VLdLn, 0);
2159   assert(ARM::dsub_7 == ARM::dsub_0+7 &&
2160          ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering");
2161   unsigned Sub0 = is64BitVector ? ARM::dsub_0 : ARM::qsub_0;
2162   for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
2163     ReplaceUses(SDValue(N, Vec),
2164                 CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
2165   ReplaceUses(SDValue(N, NumVecs), SDValue(VLdLn, 1));
2166   if (isUpdating)
2167     ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdLn, 2));
2168   return nullptr;
2169 }
2170
2171 SDNode *ARMDAGToDAGISel::SelectVLDDup(SDNode *N, bool isUpdating,
2172                                       unsigned NumVecs,
2173                                       const uint16_t *Opcodes) {
2174   assert(NumVecs >=2 && NumVecs <= 4 && "VLDDup NumVecs out-of-range");
2175   SDLoc dl(N);
2176
2177   SDValue MemAddr, Align;
2178   if (!SelectAddrMode6(N, N->getOperand(1), MemAddr, Align))
2179     return nullptr;
2180
2181   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
2182   MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2183
2184   SDValue Chain = N->getOperand(0);
2185   EVT VT = N->getValueType(0);
2186
2187   unsigned Alignment = 0;
2188   if (NumVecs != 3) {
2189     Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
2190     unsigned NumBytes = NumVecs * VT.getVectorElementType().getSizeInBits()/8;
2191     if (Alignment > NumBytes)
2192       Alignment = NumBytes;
2193     if (Alignment < 8 && Alignment < NumBytes)
2194       Alignment = 0;
2195     // Alignment must be a power of two; make sure of that.
2196     Alignment = (Alignment & -Alignment);
2197     if (Alignment == 1)
2198       Alignment = 0;
2199   }
2200   Align = CurDAG->getTargetConstant(Alignment, MVT::i32);
2201
2202   unsigned OpcodeIndex;
2203   switch (VT.getSimpleVT().SimpleTy) {
2204   default: llvm_unreachable("unhandled vld-dup type");
2205   case MVT::v8i8:  OpcodeIndex = 0; break;
2206   case MVT::v4i16: OpcodeIndex = 1; break;
2207   case MVT::v2f32:
2208   case MVT::v2i32: OpcodeIndex = 2; break;
2209   }
2210
2211   SDValue Pred = getAL(CurDAG);
2212   SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2213   SDValue SuperReg;
2214   unsigned Opc = Opcodes[OpcodeIndex];
2215   SmallVector<SDValue, 6> Ops;
2216   Ops.push_back(MemAddr);
2217   Ops.push_back(Align);
2218   if (isUpdating) {
2219     // fixed-stride update instructions don't have an explicit writeback
2220     // operand. It's implicit in the opcode itself.
2221     SDValue Inc = N->getOperand(2);
2222     if (!isa<ConstantSDNode>(Inc.getNode()))
2223       Ops.push_back(Inc);
2224     // FIXME: VLD3 and VLD4 haven't been updated to that form yet.
2225     else if (NumVecs > 2)
2226       Ops.push_back(Reg0);
2227   }
2228   Ops.push_back(Pred);
2229   Ops.push_back(Reg0);
2230   Ops.push_back(Chain);
2231
2232   unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
2233   std::vector<EVT> ResTys;
2234   ResTys.push_back(EVT::getVectorVT(*CurDAG->getContext(), MVT::i64,ResTyElts));
2235   if (isUpdating)
2236     ResTys.push_back(MVT::i32);
2237   ResTys.push_back(MVT::Other);
2238   SDNode *VLdDup = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
2239   cast<MachineSDNode>(VLdDup)->setMemRefs(MemOp, MemOp + 1);
2240   SuperReg = SDValue(VLdDup, 0);
2241
2242   // Extract the subregisters.
2243   assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
2244   unsigned SubIdx = ARM::dsub_0;
2245   for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
2246     ReplaceUses(SDValue(N, Vec),
2247                 CurDAG->getTargetExtractSubreg(SubIdx+Vec, dl, VT, SuperReg));
2248   ReplaceUses(SDValue(N, NumVecs), SDValue(VLdDup, 1));
2249   if (isUpdating)
2250     ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdDup, 2));
2251   return nullptr;
2252 }
2253
2254 SDNode *ARMDAGToDAGISel::SelectVTBL(SDNode *N, bool IsExt, unsigned NumVecs,
2255                                     unsigned Opc) {
2256   assert(NumVecs >= 2 && NumVecs <= 4 && "VTBL NumVecs out-of-range");
2257   SDLoc dl(N);
2258   EVT VT = N->getValueType(0);
2259   unsigned FirstTblReg = IsExt ? 2 : 1;
2260
2261   // Form a REG_SEQUENCE to force register allocation.
2262   SDValue RegSeq;
2263   SDValue V0 = N->getOperand(FirstTblReg + 0);
2264   SDValue V1 = N->getOperand(FirstTblReg + 1);
2265   if (NumVecs == 2)
2266     RegSeq = SDValue(createDRegPairNode(MVT::v16i8, V0, V1), 0);
2267   else {
2268     SDValue V2 = N->getOperand(FirstTblReg + 2);
2269     // If it's a vtbl3, form a quad D-register and leave the last part as
2270     // an undef.
2271     SDValue V3 = (NumVecs == 3)
2272       ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
2273       : N->getOperand(FirstTblReg + 3);
2274     RegSeq = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0);
2275   }
2276
2277   SmallVector<SDValue, 6> Ops;
2278   if (IsExt)
2279     Ops.push_back(N->getOperand(1));
2280   Ops.push_back(RegSeq);
2281   Ops.push_back(N->getOperand(FirstTblReg + NumVecs));
2282   Ops.push_back(getAL(CurDAG)); // predicate
2283   Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // predicate register
2284   return CurDAG->getMachineNode(Opc, dl, VT, Ops);
2285 }
2286
2287 SDNode *ARMDAGToDAGISel::SelectV6T2BitfieldExtractOp(SDNode *N,
2288                                                      bool isSigned) {
2289   if (!Subtarget->hasV6T2Ops())
2290     return nullptr;
2291
2292   unsigned Opc = isSigned
2293     ? (Subtarget->isThumb() ? ARM::t2SBFX : ARM::SBFX)
2294     : (Subtarget->isThumb() ? ARM::t2UBFX : ARM::UBFX);
2295
2296   // For unsigned extracts, check for a shift right and mask
2297   unsigned And_imm = 0;
2298   if (N->getOpcode() == ISD::AND) {
2299     if (isOpcWithIntImmediate(N, ISD::AND, And_imm)) {
2300
2301       // The immediate is a mask of the low bits iff imm & (imm+1) == 0
2302       if (And_imm & (And_imm + 1))
2303         return nullptr;
2304
2305       unsigned Srl_imm = 0;
2306       if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRL,
2307                                 Srl_imm)) {
2308         assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
2309
2310         // Note: The width operand is encoded as width-1.
2311         unsigned Width = countTrailingOnes(And_imm) - 1;
2312         unsigned LSB = Srl_imm;
2313
2314         SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2315
2316         if ((LSB + Width + 1) == N->getValueType(0).getSizeInBits()) {
2317           // It's cheaper to use a right shift to extract the top bits.
2318           if (Subtarget->isThumb()) {
2319             Opc = isSigned ? ARM::t2ASRri : ARM::t2LSRri;
2320             SDValue Ops[] = { N->getOperand(0).getOperand(0),
2321                               CurDAG->getTargetConstant(LSB, MVT::i32),
2322                               getAL(CurDAG), Reg0, Reg0 };
2323             return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
2324           }
2325
2326           // ARM models shift instructions as MOVsi with shifter operand.
2327           ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(ISD::SRL);
2328           SDValue ShOpc =
2329             CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, LSB),
2330                                       MVT::i32);
2331           SDValue Ops[] = { N->getOperand(0).getOperand(0), ShOpc,
2332                             getAL(CurDAG), Reg0, Reg0 };
2333           return CurDAG->SelectNodeTo(N, ARM::MOVsi, MVT::i32, Ops);
2334         }
2335
2336         SDValue Ops[] = { N->getOperand(0).getOperand(0),
2337                           CurDAG->getTargetConstant(LSB, MVT::i32),
2338                           CurDAG->getTargetConstant(Width, MVT::i32),
2339                           getAL(CurDAG), Reg0 };
2340         return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
2341       }
2342     }
2343     return nullptr;
2344   }
2345
2346   // Otherwise, we're looking for a shift of a shift
2347   unsigned Shl_imm = 0;
2348   if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) {
2349     assert(Shl_imm > 0 && Shl_imm < 32 && "bad amount in shift node!");
2350     unsigned Srl_imm = 0;
2351     if (isInt32Immediate(N->getOperand(1), Srl_imm)) {
2352       assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
2353       // Note: The width operand is encoded as width-1.
2354       unsigned Width = 32 - Srl_imm - 1;
2355       int LSB = Srl_imm - Shl_imm;
2356       if (LSB < 0)
2357         return nullptr;
2358       SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2359       SDValue Ops[] = { N->getOperand(0).getOperand(0),
2360                         CurDAG->getTargetConstant(LSB, MVT::i32),
2361                         CurDAG->getTargetConstant(Width, MVT::i32),
2362                         getAL(CurDAG), Reg0 };
2363       return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
2364     }
2365   }
2366
2367   if (N->getOpcode() == ISD::SIGN_EXTEND_INREG) {
2368     unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits();
2369     unsigned LSB = 0;
2370     if (!isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRL, LSB) &&
2371         !isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRA, LSB))
2372       return nullptr;
2373
2374     if (LSB + Width > 32)
2375       return nullptr;
2376
2377     SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2378     SDValue Ops[] = { N->getOperand(0).getOperand(0),
2379                       CurDAG->getTargetConstant(LSB, MVT::i32),
2380                       CurDAG->getTargetConstant(Width - 1, MVT::i32),
2381                       getAL(CurDAG), Reg0 };
2382     return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
2383   }
2384
2385   return nullptr;
2386 }
2387
2388 /// Target-specific DAG combining for ISD::XOR.
2389 /// Target-independent combining lowers SELECT_CC nodes of the form
2390 /// select_cc setg[ge] X,  0,  X, -X
2391 /// select_cc setgt    X, -1,  X, -X
2392 /// select_cc setl[te] X,  0, -X,  X
2393 /// select_cc setlt    X,  1, -X,  X
2394 /// which represent Integer ABS into:
2395 /// Y = sra (X, size(X)-1); xor (add (X, Y), Y)
2396 /// ARM instruction selection detects the latter and matches it to
2397 /// ARM::ABS or ARM::t2ABS machine node.
2398 SDNode *ARMDAGToDAGISel::SelectABSOp(SDNode *N){
2399   SDValue XORSrc0 = N->getOperand(0);
2400   SDValue XORSrc1 = N->getOperand(1);
2401   EVT VT = N->getValueType(0);
2402
2403   if (Subtarget->isThumb1Only())
2404     return nullptr;
2405
2406   if (XORSrc0.getOpcode() != ISD::ADD || XORSrc1.getOpcode() != ISD::SRA)
2407     return nullptr;
2408
2409   SDValue ADDSrc0 = XORSrc0.getOperand(0);
2410   SDValue ADDSrc1 = XORSrc0.getOperand(1);
2411   SDValue SRASrc0 = XORSrc1.getOperand(0);
2412   SDValue SRASrc1 = XORSrc1.getOperand(1);
2413   ConstantSDNode *SRAConstant =  dyn_cast<ConstantSDNode>(SRASrc1);
2414   EVT XType = SRASrc0.getValueType();
2415   unsigned Size = XType.getSizeInBits() - 1;
2416
2417   if (ADDSrc1 == XORSrc1 && ADDSrc0 == SRASrc0 &&
2418       XType.isInteger() && SRAConstant != nullptr &&
2419       Size == SRAConstant->getZExtValue()) {
2420     unsigned Opcode = Subtarget->isThumb2() ? ARM::t2ABS : ARM::ABS;
2421     return CurDAG->SelectNodeTo(N, Opcode, VT, ADDSrc0);
2422   }
2423
2424   return nullptr;
2425 }
2426
2427 SDNode *ARMDAGToDAGISel::SelectConcatVector(SDNode *N) {
2428   // The only time a CONCAT_VECTORS operation can have legal types is when
2429   // two 64-bit vectors are concatenated to a 128-bit vector.
2430   EVT VT = N->getValueType(0);
2431   if (!VT.is128BitVector() || N->getNumOperands() != 2)
2432     llvm_unreachable("unexpected CONCAT_VECTORS");
2433   return createDRegPairNode(VT, N->getOperand(0), N->getOperand(1));
2434 }
2435
2436 SDNode *ARMDAGToDAGISel::Select(SDNode *N) {
2437   SDLoc dl(N);
2438
2439   if (N->isMachineOpcode()) {
2440     N->setNodeId(-1);
2441     return nullptr;   // Already selected.
2442   }
2443
2444   switch (N->getOpcode()) {
2445   default: break;
2446   case ISD::INLINEASM: {
2447     SDNode *ResNode = SelectInlineAsm(N);
2448     if (ResNode)
2449       return ResNode;
2450     break;
2451   }
2452   case ISD::XOR: {
2453     // Select special operations if XOR node forms integer ABS pattern
2454     SDNode *ResNode = SelectABSOp(N);
2455     if (ResNode)
2456       return ResNode;
2457     // Other cases are autogenerated.
2458     break;
2459   }
2460   case ISD::Constant: {
2461     unsigned Val = cast<ConstantSDNode>(N)->getZExtValue();
2462     bool UseCP = true;
2463     if (Subtarget->useMovt(*MF))
2464       // Thumb2-aware targets have the MOVT instruction, so all immediates can
2465       // be done with MOV + MOVT, at worst.
2466       UseCP = false;
2467     else {
2468       if (Subtarget->isThumb()) {
2469         UseCP = (Val > 255 &&                                  // MOV
2470                  ~Val > 255 &&                                 // MOV + MVN
2471                  !ARM_AM::isThumbImmShiftedVal(Val) &&         // MOV + LSL
2472                  !(Subtarget->hasV6T2Ops() && Val <= 0xffff)); // MOVW
2473       } else
2474         UseCP = (ARM_AM::getSOImmVal(Val) == -1 &&             // MOV
2475                  ARM_AM::getSOImmVal(~Val) == -1 &&            // MVN
2476                  !ARM_AM::isSOImmTwoPartVal(Val) &&            // two instrs.
2477                  !(Subtarget->hasV6T2Ops() && Val <= 0xffff)); // MOVW
2478     }
2479
2480     if (UseCP) {
2481       SDValue CPIdx = CurDAG->getTargetConstantPool(
2482           ConstantInt::get(Type::getInt32Ty(*CurDAG->getContext()), Val),
2483           TLI->getPointerTy());
2484
2485       SDNode *ResNode;
2486       if (Subtarget->isThumb()) {
2487         SDValue Pred = getAL(CurDAG);
2488         SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
2489         SDValue Ops[] = { CPIdx, Pred, PredReg, CurDAG->getEntryNode() };
2490         ResNode = CurDAG->getMachineNode(ARM::tLDRpci, dl, MVT::i32, MVT::Other,
2491                                          Ops);
2492       } else {
2493         SDValue Ops[] = {
2494           CPIdx,
2495           CurDAG->getTargetConstant(0, MVT::i32),
2496           getAL(CurDAG),
2497           CurDAG->getRegister(0, MVT::i32),
2498           CurDAG->getEntryNode()
2499         };
2500         ResNode=CurDAG->getMachineNode(ARM::LDRcp, dl, MVT::i32, MVT::Other,
2501                                        Ops);
2502       }
2503       ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0));
2504       return nullptr;
2505     }
2506
2507     // Other cases are autogenerated.
2508     break;
2509   }
2510   case ISD::FrameIndex: {
2511     // Selects to ADDri FI, 0 which in turn will become ADDri SP, imm.
2512     int FI = cast<FrameIndexSDNode>(N)->getIndex();
2513     SDValue TFI = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
2514     if (Subtarget->isThumb1Only()) {
2515       // Set the alignment of the frame object to 4, to avoid having to generate
2516       // more than one ADD
2517       MachineFrameInfo *MFI = MF->getFrameInfo();
2518       if (MFI->getObjectAlignment(FI) < 4)
2519         MFI->setObjectAlignment(FI, 4);
2520       return CurDAG->SelectNodeTo(N, ARM::tADDframe, MVT::i32, TFI,
2521                                   CurDAG->getTargetConstant(0, MVT::i32));
2522     } else {
2523       unsigned Opc = ((Subtarget->isThumb() && Subtarget->hasThumb2()) ?
2524                       ARM::t2ADDri : ARM::ADDri);
2525       SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32),
2526                         getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
2527                         CurDAG->getRegister(0, MVT::i32) };
2528       return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
2529     }
2530   }
2531   case ISD::SRL:
2532     if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false))
2533       return I;
2534     break;
2535   case ISD::SIGN_EXTEND_INREG:
2536   case ISD::SRA:
2537     if (SDNode *I = SelectV6T2BitfieldExtractOp(N, true))
2538       return I;
2539     break;
2540   case ISD::MUL:
2541     if (Subtarget->isThumb1Only())
2542       break;
2543     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
2544       unsigned RHSV = C->getZExtValue();
2545       if (!RHSV) break;
2546       if (isPowerOf2_32(RHSV-1)) {  // 2^n+1?
2547         unsigned ShImm = Log2_32(RHSV-1);
2548         if (ShImm >= 32)
2549           break;
2550         SDValue V = N->getOperand(0);
2551         ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
2552         SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32);
2553         SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2554         if (Subtarget->isThumb()) {
2555           SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
2556           return CurDAG->SelectNodeTo(N, ARM::t2ADDrs, MVT::i32, Ops);
2557         } else {
2558           SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
2559           return CurDAG->SelectNodeTo(N, ARM::ADDrsi, MVT::i32, Ops);
2560         }
2561       }
2562       if (isPowerOf2_32(RHSV+1)) {  // 2^n-1?
2563         unsigned ShImm = Log2_32(RHSV+1);
2564         if (ShImm >= 32)
2565           break;
2566         SDValue V = N->getOperand(0);
2567         ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
2568         SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32);
2569         SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2570         if (Subtarget->isThumb()) {
2571           SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
2572           return CurDAG->SelectNodeTo(N, ARM::t2RSBrs, MVT::i32, Ops);
2573         } else {
2574           SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
2575           return CurDAG->SelectNodeTo(N, ARM::RSBrsi, MVT::i32, Ops);
2576         }
2577       }
2578     }
2579     break;
2580   case ISD::AND: {
2581     // Check for unsigned bitfield extract
2582     if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false))
2583       return I;
2584
2585     // (and (or x, c2), c1) and top 16-bits of c1 and c2 match, lower 16-bits
2586     // of c1 are 0xffff, and lower 16-bit of c2 are 0. That is, the top 16-bits
2587     // are entirely contributed by c2 and lower 16-bits are entirely contributed
2588     // by x. That's equal to (or (and x, 0xffff), (and c1, 0xffff0000)).
2589     // Select it to: "movt x, ((c1 & 0xffff) >> 16)
2590     EVT VT = N->getValueType(0);
2591     if (VT != MVT::i32)
2592       break;
2593     unsigned Opc = (Subtarget->isThumb() && Subtarget->hasThumb2())
2594       ? ARM::t2MOVTi16
2595       : (Subtarget->hasV6T2Ops() ? ARM::MOVTi16 : 0);
2596     if (!Opc)
2597       break;
2598     SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2599     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2600     if (!N1C)
2601       break;
2602     if (N0.getOpcode() == ISD::OR && N0.getNode()->hasOneUse()) {
2603       SDValue N2 = N0.getOperand(1);
2604       ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
2605       if (!N2C)
2606         break;
2607       unsigned N1CVal = N1C->getZExtValue();
2608       unsigned N2CVal = N2C->getZExtValue();
2609       if ((N1CVal & 0xffff0000U) == (N2CVal & 0xffff0000U) &&
2610           (N1CVal & 0xffffU) == 0xffffU &&
2611           (N2CVal & 0xffffU) == 0x0U) {
2612         SDValue Imm16 = CurDAG->getTargetConstant((N2CVal & 0xFFFF0000U) >> 16,
2613                                                   MVT::i32);
2614         SDValue Ops[] = { N0.getOperand(0), Imm16,
2615                           getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
2616         return CurDAG->getMachineNode(Opc, dl, VT, Ops);
2617       }
2618     }
2619     break;
2620   }
2621   case ARMISD::VMOVRRD:
2622     return CurDAG->getMachineNode(ARM::VMOVRRD, dl, MVT::i32, MVT::i32,
2623                                   N->getOperand(0), getAL(CurDAG),
2624                                   CurDAG->getRegister(0, MVT::i32));
2625   case ISD::UMUL_LOHI: {
2626     if (Subtarget->isThumb1Only())
2627       break;
2628     if (Subtarget->isThumb()) {
2629       SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
2630                         getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
2631       return CurDAG->getMachineNode(ARM::t2UMULL, dl, MVT::i32, MVT::i32, Ops);
2632     } else {
2633       SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
2634                         getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
2635                         CurDAG->getRegister(0, MVT::i32) };
2636       return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
2637                                     ARM::UMULL : ARM::UMULLv5,
2638                                     dl, MVT::i32, MVT::i32, Ops);
2639     }
2640   }
2641   case ISD::SMUL_LOHI: {
2642     if (Subtarget->isThumb1Only())
2643       break;
2644     if (Subtarget->isThumb()) {
2645       SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
2646                         getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
2647       return CurDAG->getMachineNode(ARM::t2SMULL, dl, MVT::i32, MVT::i32, Ops);
2648     } else {
2649       SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
2650                         getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
2651                         CurDAG->getRegister(0, MVT::i32) };
2652       return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
2653                                     ARM::SMULL : ARM::SMULLv5,
2654                                     dl, MVT::i32, MVT::i32, Ops);
2655     }
2656   }
2657   case ARMISD::UMLAL:{
2658     if (Subtarget->isThumb()) {
2659       SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
2660                         N->getOperand(3), getAL(CurDAG),
2661                         CurDAG->getRegister(0, MVT::i32)};
2662       return CurDAG->getMachineNode(ARM::t2UMLAL, dl, MVT::i32, MVT::i32, Ops);
2663     }else{
2664       SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
2665                         N->getOperand(3), getAL(CurDAG),
2666                         CurDAG->getRegister(0, MVT::i32),
2667                         CurDAG->getRegister(0, MVT::i32) };
2668       return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
2669                                       ARM::UMLAL : ARM::UMLALv5,
2670                                       dl, MVT::i32, MVT::i32, Ops);
2671     }
2672   }
2673   case ARMISD::SMLAL:{
2674     if (Subtarget->isThumb()) {
2675       SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
2676                         N->getOperand(3), getAL(CurDAG),
2677                         CurDAG->getRegister(0, MVT::i32)};
2678       return CurDAG->getMachineNode(ARM::t2SMLAL, dl, MVT::i32, MVT::i32, Ops);
2679     }else{
2680       SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
2681                         N->getOperand(3), getAL(CurDAG),
2682                         CurDAG->getRegister(0, MVT::i32),
2683                         CurDAG->getRegister(0, MVT::i32) };
2684       return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
2685                                       ARM::SMLAL : ARM::SMLALv5,
2686                                       dl, MVT::i32, MVT::i32, Ops);
2687     }
2688   }
2689   case ISD::LOAD: {
2690     SDNode *ResNode = nullptr;
2691     if (Subtarget->isThumb() && Subtarget->hasThumb2())
2692       ResNode = SelectT2IndexedLoad(N);
2693     else
2694       ResNode = SelectARMIndexedLoad(N);
2695     if (ResNode)
2696       return ResNode;
2697     // Other cases are autogenerated.
2698     break;
2699   }
2700   case ARMISD::BRCOND: {
2701     // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
2702     // Emits: (Bcc:void (bb:Other):$dst, (imm:i32):$cc)
2703     // Pattern complexity = 6  cost = 1  size = 0
2704
2705     // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
2706     // Emits: (tBcc:void (bb:Other):$dst, (imm:i32):$cc)
2707     // Pattern complexity = 6  cost = 1  size = 0
2708
2709     // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
2710     // Emits: (t2Bcc:void (bb:Other):$dst, (imm:i32):$cc)
2711     // Pattern complexity = 6  cost = 1  size = 0
2712
2713     unsigned Opc = Subtarget->isThumb() ?
2714       ((Subtarget->hasThumb2()) ? ARM::t2Bcc : ARM::tBcc) : ARM::Bcc;
2715     SDValue Chain = N->getOperand(0);
2716     SDValue N1 = N->getOperand(1);
2717     SDValue N2 = N->getOperand(2);
2718     SDValue N3 = N->getOperand(3);
2719     SDValue InFlag = N->getOperand(4);
2720     assert(N1.getOpcode() == ISD::BasicBlock);
2721     assert(N2.getOpcode() == ISD::Constant);
2722     assert(N3.getOpcode() == ISD::Register);
2723
2724     SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned)
2725                                cast<ConstantSDNode>(N2)->getZExtValue()),
2726                                MVT::i32);
2727     SDValue Ops[] = { N1, Tmp2, N3, Chain, InFlag };
2728     SDNode *ResNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
2729                                              MVT::Glue, Ops);
2730     Chain = SDValue(ResNode, 0);
2731     if (N->getNumValues() == 2) {
2732       InFlag = SDValue(ResNode, 1);
2733       ReplaceUses(SDValue(N, 1), InFlag);
2734     }
2735     ReplaceUses(SDValue(N, 0),
2736                 SDValue(Chain.getNode(), Chain.getResNo()));
2737     return nullptr;
2738   }
2739   case ARMISD::VZIP: {
2740     unsigned Opc = 0;
2741     EVT VT = N->getValueType(0);
2742     switch (VT.getSimpleVT().SimpleTy) {
2743     default: return nullptr;
2744     case MVT::v8i8:  Opc = ARM::VZIPd8; break;
2745     case MVT::v4i16: Opc = ARM::VZIPd16; break;
2746     case MVT::v2f32:
2747     // vzip.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm.
2748     case MVT::v2i32: Opc = ARM::VTRNd32; break;
2749     case MVT::v16i8: Opc = ARM::VZIPq8; break;
2750     case MVT::v8i16: Opc = ARM::VZIPq16; break;
2751     case MVT::v4f32:
2752     case MVT::v4i32: Opc = ARM::VZIPq32; break;
2753     }
2754     SDValue Pred = getAL(CurDAG);
2755     SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
2756     SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
2757     return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops);
2758   }
2759   case ARMISD::VUZP: {
2760     unsigned Opc = 0;
2761     EVT VT = N->getValueType(0);
2762     switch (VT.getSimpleVT().SimpleTy) {
2763     default: return nullptr;
2764     case MVT::v8i8:  Opc = ARM::VUZPd8; break;
2765     case MVT::v4i16: Opc = ARM::VUZPd16; break;
2766     case MVT::v2f32:
2767     // vuzp.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm.
2768     case MVT::v2i32: Opc = ARM::VTRNd32; break;
2769     case MVT::v16i8: Opc = ARM::VUZPq8; break;
2770     case MVT::v8i16: Opc = ARM::VUZPq16; break;
2771     case MVT::v4f32:
2772     case MVT::v4i32: Opc = ARM::VUZPq32; break;
2773     }
2774     SDValue Pred = getAL(CurDAG);
2775     SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
2776     SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
2777     return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops);
2778   }
2779   case ARMISD::VTRN: {
2780     unsigned Opc = 0;
2781     EVT VT = N->getValueType(0);
2782     switch (VT.getSimpleVT().SimpleTy) {
2783     default: return nullptr;
2784     case MVT::v8i8:  Opc = ARM::VTRNd8; break;
2785     case MVT::v4i16: Opc = ARM::VTRNd16; break;
2786     case MVT::v2f32:
2787     case MVT::v2i32: Opc = ARM::VTRNd32; break;
2788     case MVT::v16i8: Opc = ARM::VTRNq8; break;
2789     case MVT::v8i16: Opc = ARM::VTRNq16; break;
2790     case MVT::v4f32:
2791     case MVT::v4i32: Opc = ARM::VTRNq32; break;
2792     }
2793     SDValue Pred = getAL(CurDAG);
2794     SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
2795     SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
2796     return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops);
2797   }
2798   case ARMISD::BUILD_VECTOR: {
2799     EVT VecVT = N->getValueType(0);
2800     EVT EltVT = VecVT.getVectorElementType();
2801     unsigned NumElts = VecVT.getVectorNumElements();
2802     if (EltVT == MVT::f64) {
2803       assert(NumElts == 2 && "unexpected type for BUILD_VECTOR");
2804       return createDRegPairNode(VecVT, N->getOperand(0), N->getOperand(1));
2805     }
2806     assert(EltVT == MVT::f32 && "unexpected type for BUILD_VECTOR");
2807     if (NumElts == 2)
2808       return createSRegPairNode(VecVT, N->getOperand(0), N->getOperand(1));
2809     assert(NumElts == 4 && "unexpected type for BUILD_VECTOR");
2810     return createQuadSRegsNode(VecVT, N->getOperand(0), N->getOperand(1),
2811                      N->getOperand(2), N->getOperand(3));
2812   }
2813
2814   case ARMISD::VLD2DUP: {
2815     static const uint16_t Opcodes[] = { ARM::VLD2DUPd8, ARM::VLD2DUPd16,
2816                                         ARM::VLD2DUPd32 };
2817     return SelectVLDDup(N, false, 2, Opcodes);
2818   }
2819
2820   case ARMISD::VLD3DUP: {
2821     static const uint16_t Opcodes[] = { ARM::VLD3DUPd8Pseudo,
2822                                         ARM::VLD3DUPd16Pseudo,
2823                                         ARM::VLD3DUPd32Pseudo };
2824     return SelectVLDDup(N, false, 3, Opcodes);
2825   }
2826
2827   case ARMISD::VLD4DUP: {
2828     static const uint16_t Opcodes[] = { ARM::VLD4DUPd8Pseudo,
2829                                         ARM::VLD4DUPd16Pseudo,
2830                                         ARM::VLD4DUPd32Pseudo };
2831     return SelectVLDDup(N, false, 4, Opcodes);
2832   }
2833
2834   case ARMISD::VLD2DUP_UPD: {
2835     static const uint16_t Opcodes[] = { ARM::VLD2DUPd8wb_fixed,
2836                                         ARM::VLD2DUPd16wb_fixed,
2837                                         ARM::VLD2DUPd32wb_fixed };
2838     return SelectVLDDup(N, true, 2, Opcodes);
2839   }
2840
2841   case ARMISD::VLD3DUP_UPD: {
2842     static const uint16_t Opcodes[] = { ARM::VLD3DUPd8Pseudo_UPD,
2843                                         ARM::VLD3DUPd16Pseudo_UPD,
2844                                         ARM::VLD3DUPd32Pseudo_UPD };
2845     return SelectVLDDup(N, true, 3, Opcodes);
2846   }
2847
2848   case ARMISD::VLD4DUP_UPD: {
2849     static const uint16_t Opcodes[] = { ARM::VLD4DUPd8Pseudo_UPD,
2850                                         ARM::VLD4DUPd16Pseudo_UPD,
2851                                         ARM::VLD4DUPd32Pseudo_UPD };
2852     return SelectVLDDup(N, true, 4, Opcodes);
2853   }
2854
2855   case ARMISD::VLD1_UPD: {
2856     static const uint16_t DOpcodes[] = { ARM::VLD1d8wb_fixed,
2857                                          ARM::VLD1d16wb_fixed,
2858                                          ARM::VLD1d32wb_fixed,
2859                                          ARM::VLD1d64wb_fixed };
2860     static const uint16_t QOpcodes[] = { ARM::VLD1q8wb_fixed,
2861                                          ARM::VLD1q16wb_fixed,
2862                                          ARM::VLD1q32wb_fixed,
2863                                          ARM::VLD1q64wb_fixed };
2864     return SelectVLD(N, true, 1, DOpcodes, QOpcodes, nullptr);
2865   }
2866
2867   case ARMISD::VLD2_UPD: {
2868     static const uint16_t DOpcodes[] = { ARM::VLD2d8wb_fixed,
2869                                          ARM::VLD2d16wb_fixed,
2870                                          ARM::VLD2d32wb_fixed,
2871                                          ARM::VLD1q64wb_fixed};
2872     static const uint16_t QOpcodes[] = { ARM::VLD2q8PseudoWB_fixed,
2873                                          ARM::VLD2q16PseudoWB_fixed,
2874                                          ARM::VLD2q32PseudoWB_fixed };
2875     return SelectVLD(N, true, 2, DOpcodes, QOpcodes, nullptr);
2876   }
2877
2878   case ARMISD::VLD3_UPD: {
2879     static const uint16_t DOpcodes[] = { ARM::VLD3d8Pseudo_UPD,
2880                                          ARM::VLD3d16Pseudo_UPD,
2881                                          ARM::VLD3d32Pseudo_UPD,
2882                                          ARM::VLD1d64TPseudoWB_fixed};
2883     static const uint16_t QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD,
2884                                           ARM::VLD3q16Pseudo_UPD,
2885                                           ARM::VLD3q32Pseudo_UPD };
2886     static const uint16_t QOpcodes1[] = { ARM::VLD3q8oddPseudo_UPD,
2887                                           ARM::VLD3q16oddPseudo_UPD,
2888                                           ARM::VLD3q32oddPseudo_UPD };
2889     return SelectVLD(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
2890   }
2891
2892   case ARMISD::VLD4_UPD: {
2893     static const uint16_t DOpcodes[] = { ARM::VLD4d8Pseudo_UPD,
2894                                          ARM::VLD4d16Pseudo_UPD,
2895                                          ARM::VLD4d32Pseudo_UPD,
2896                                          ARM::VLD1d64QPseudoWB_fixed};
2897     static const uint16_t QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD,
2898                                           ARM::VLD4q16Pseudo_UPD,
2899                                           ARM::VLD4q32Pseudo_UPD };
2900     static const uint16_t QOpcodes1[] = { ARM::VLD4q8oddPseudo_UPD,
2901                                           ARM::VLD4q16oddPseudo_UPD,
2902                                           ARM::VLD4q32oddPseudo_UPD };
2903     return SelectVLD(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
2904   }
2905
2906   case ARMISD::VLD2LN_UPD: {
2907     static const uint16_t DOpcodes[] = { ARM::VLD2LNd8Pseudo_UPD,
2908                                          ARM::VLD2LNd16Pseudo_UPD,
2909                                          ARM::VLD2LNd32Pseudo_UPD };
2910     static const uint16_t QOpcodes[] = { ARM::VLD2LNq16Pseudo_UPD,
2911                                          ARM::VLD2LNq32Pseudo_UPD };
2912     return SelectVLDSTLane(N, true, true, 2, DOpcodes, QOpcodes);
2913   }
2914
2915   case ARMISD::VLD3LN_UPD: {
2916     static const uint16_t DOpcodes[] = { ARM::VLD3LNd8Pseudo_UPD,
2917                                          ARM::VLD3LNd16Pseudo_UPD,
2918                                          ARM::VLD3LNd32Pseudo_UPD };
2919     static const uint16_t QOpcodes[] = { ARM::VLD3LNq16Pseudo_UPD,
2920                                          ARM::VLD3LNq32Pseudo_UPD };
2921     return SelectVLDSTLane(N, true, true, 3, DOpcodes, QOpcodes);
2922   }
2923
2924   case ARMISD::VLD4LN_UPD: {
2925     static const uint16_t DOpcodes[] = { ARM::VLD4LNd8Pseudo_UPD,
2926                                          ARM::VLD4LNd16Pseudo_UPD,
2927                                          ARM::VLD4LNd32Pseudo_UPD };
2928     static const uint16_t QOpcodes[] = { ARM::VLD4LNq16Pseudo_UPD,
2929                                          ARM::VLD4LNq32Pseudo_UPD };
2930     return SelectVLDSTLane(N, true, true, 4, DOpcodes, QOpcodes);
2931   }
2932
2933   case ARMISD::VST1_UPD: {
2934     static const uint16_t DOpcodes[] = { ARM::VST1d8wb_fixed,
2935                                          ARM::VST1d16wb_fixed,
2936                                          ARM::VST1d32wb_fixed,
2937                                          ARM::VST1d64wb_fixed };
2938     static const uint16_t QOpcodes[] = { ARM::VST1q8wb_fixed,
2939                                          ARM::VST1q16wb_fixed,
2940                                          ARM::VST1q32wb_fixed,
2941                                          ARM::VST1q64wb_fixed };
2942     return SelectVST(N, true, 1, DOpcodes, QOpcodes, nullptr);
2943   }
2944
2945   case ARMISD::VST2_UPD: {
2946     static const uint16_t DOpcodes[] = { ARM::VST2d8wb_fixed,
2947                                          ARM::VST2d16wb_fixed,
2948                                          ARM::VST2d32wb_fixed,
2949                                          ARM::VST1q64wb_fixed};
2950     static const uint16_t QOpcodes[] = { ARM::VST2q8PseudoWB_fixed,
2951                                          ARM::VST2q16PseudoWB_fixed,
2952                                          ARM::VST2q32PseudoWB_fixed };
2953     return SelectVST(N, true, 2, DOpcodes, QOpcodes, nullptr);
2954   }
2955
2956   case ARMISD::VST3_UPD: {
2957     static const uint16_t DOpcodes[] = { ARM::VST3d8Pseudo_UPD,
2958                                          ARM::VST3d16Pseudo_UPD,
2959                                          ARM::VST3d32Pseudo_UPD,
2960                                          ARM::VST1d64TPseudoWB_fixed};
2961     static const uint16_t QOpcodes0[] = { ARM::VST3q8Pseudo_UPD,
2962                                           ARM::VST3q16Pseudo_UPD,
2963                                           ARM::VST3q32Pseudo_UPD };
2964     static const uint16_t QOpcodes1[] = { ARM::VST3q8oddPseudo_UPD,
2965                                           ARM::VST3q16oddPseudo_UPD,
2966                                           ARM::VST3q32oddPseudo_UPD };
2967     return SelectVST(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
2968   }
2969
2970   case ARMISD::VST4_UPD: {
2971     static const uint16_t DOpcodes[] = { ARM::VST4d8Pseudo_UPD,
2972                                          ARM::VST4d16Pseudo_UPD,
2973                                          ARM::VST4d32Pseudo_UPD,
2974                                          ARM::VST1d64QPseudoWB_fixed};
2975     static const uint16_t QOpcodes0[] = { ARM::VST4q8Pseudo_UPD,
2976                                           ARM::VST4q16Pseudo_UPD,
2977                                           ARM::VST4q32Pseudo_UPD };
2978     static const uint16_t QOpcodes1[] = { ARM::VST4q8oddPseudo_UPD,
2979                                           ARM::VST4q16oddPseudo_UPD,
2980                                           ARM::VST4q32oddPseudo_UPD };
2981     return SelectVST(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
2982   }
2983
2984   case ARMISD::VST2LN_UPD: {
2985     static const uint16_t DOpcodes[] = { ARM::VST2LNd8Pseudo_UPD,
2986                                          ARM::VST2LNd16Pseudo_UPD,
2987                                          ARM::VST2LNd32Pseudo_UPD };
2988     static const uint16_t QOpcodes[] = { ARM::VST2LNq16Pseudo_UPD,
2989                                          ARM::VST2LNq32Pseudo_UPD };
2990     return SelectVLDSTLane(N, false, true, 2, DOpcodes, QOpcodes);
2991   }
2992
2993   case ARMISD::VST3LN_UPD: {
2994     static const uint16_t DOpcodes[] = { ARM::VST3LNd8Pseudo_UPD,
2995                                          ARM::VST3LNd16Pseudo_UPD,
2996                                          ARM::VST3LNd32Pseudo_UPD };
2997     static const uint16_t QOpcodes[] = { ARM::VST3LNq16Pseudo_UPD,
2998                                          ARM::VST3LNq32Pseudo_UPD };
2999     return SelectVLDSTLane(N, false, true, 3, DOpcodes, QOpcodes);
3000   }
3001
3002   case ARMISD::VST4LN_UPD: {
3003     static const uint16_t DOpcodes[] = { ARM::VST4LNd8Pseudo_UPD,
3004                                          ARM::VST4LNd16Pseudo_UPD,
3005                                          ARM::VST4LNd32Pseudo_UPD };
3006     static const uint16_t QOpcodes[] = { ARM::VST4LNq16Pseudo_UPD,
3007                                          ARM::VST4LNq32Pseudo_UPD };
3008     return SelectVLDSTLane(N, false, true, 4, DOpcodes, QOpcodes);
3009   }
3010
3011   case ISD::INTRINSIC_VOID:
3012   case ISD::INTRINSIC_W_CHAIN: {
3013     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
3014     switch (IntNo) {
3015     default:
3016       break;
3017
3018     case Intrinsic::arm_ldaexd:
3019     case Intrinsic::arm_ldrexd: {
3020       SDLoc dl(N);
3021       SDValue Chain = N->getOperand(0);
3022       SDValue MemAddr = N->getOperand(2);
3023       bool isThumb = Subtarget->isThumb() && Subtarget->hasThumb2();
3024
3025       bool IsAcquire = IntNo == Intrinsic::arm_ldaexd;
3026       unsigned NewOpc = isThumb ? (IsAcquire ? ARM::t2LDAEXD : ARM::t2LDREXD)
3027                                 : (IsAcquire ? ARM::LDAEXD : ARM::LDREXD);
3028
3029       // arm_ldrexd returns a i64 value in {i32, i32}
3030       std::vector<EVT> ResTys;
3031       if (isThumb) {
3032         ResTys.push_back(MVT::i32);
3033         ResTys.push_back(MVT::i32);
3034       } else
3035         ResTys.push_back(MVT::Untyped);
3036       ResTys.push_back(MVT::Other);
3037
3038       // Place arguments in the right order.
3039       SmallVector<SDValue, 7> Ops;
3040       Ops.push_back(MemAddr);
3041       Ops.push_back(getAL(CurDAG));
3042       Ops.push_back(CurDAG->getRegister(0, MVT::i32));
3043       Ops.push_back(Chain);
3044       SDNode *Ld = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops);
3045       // Transfer memoperands.
3046       MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
3047       MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
3048       cast<MachineSDNode>(Ld)->setMemRefs(MemOp, MemOp + 1);
3049
3050       // Remap uses.
3051       SDValue OutChain = isThumb ? SDValue(Ld, 2) : SDValue(Ld, 1);
3052       if (!SDValue(N, 0).use_empty()) {
3053         SDValue Result;
3054         if (isThumb)
3055           Result = SDValue(Ld, 0);
3056         else {
3057           SDValue SubRegIdx = CurDAG->getTargetConstant(ARM::gsub_0, MVT::i32);
3058           SDNode *ResNode = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
3059               dl, MVT::i32, SDValue(Ld, 0), SubRegIdx);
3060           Result = SDValue(ResNode,0);
3061         }
3062         ReplaceUses(SDValue(N, 0), Result);
3063       }
3064       if (!SDValue(N, 1).use_empty()) {
3065         SDValue Result;
3066         if (isThumb)
3067           Result = SDValue(Ld, 1);
3068         else {
3069           SDValue SubRegIdx = CurDAG->getTargetConstant(ARM::gsub_1, MVT::i32);
3070           SDNode *ResNode = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
3071               dl, MVT::i32, SDValue(Ld, 0), SubRegIdx);
3072           Result = SDValue(ResNode,0);
3073         }
3074         ReplaceUses(SDValue(N, 1), Result);
3075       }
3076       ReplaceUses(SDValue(N, 2), OutChain);
3077       return nullptr;
3078     }
3079     case Intrinsic::arm_stlexd:
3080     case Intrinsic::arm_strexd: {
3081       SDLoc dl(N);
3082       SDValue Chain = N->getOperand(0);
3083       SDValue Val0 = N->getOperand(2);
3084       SDValue Val1 = N->getOperand(3);
3085       SDValue MemAddr = N->getOperand(4);
3086
3087       // Store exclusive double return a i32 value which is the return status
3088       // of the issued store.
3089       const EVT ResTys[] = {MVT::i32, MVT::Other};
3090
3091       bool isThumb = Subtarget->isThumb() && Subtarget->hasThumb2();
3092       // Place arguments in the right order.
3093       SmallVector<SDValue, 7> Ops;
3094       if (isThumb) {
3095         Ops.push_back(Val0);
3096         Ops.push_back(Val1);
3097       } else
3098         // arm_strexd uses GPRPair.
3099         Ops.push_back(SDValue(createGPRPairNode(MVT::Untyped, Val0, Val1), 0));
3100       Ops.push_back(MemAddr);
3101       Ops.push_back(getAL(CurDAG));
3102       Ops.push_back(CurDAG->getRegister(0, MVT::i32));
3103       Ops.push_back(Chain);
3104
3105       bool IsRelease = IntNo == Intrinsic::arm_stlexd;
3106       unsigned NewOpc = isThumb ? (IsRelease ? ARM::t2STLEXD : ARM::t2STREXD)
3107                                 : (IsRelease ? ARM::STLEXD : ARM::STREXD);
3108
3109       SDNode *St = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops);
3110       // Transfer memoperands.
3111       MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
3112       MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
3113       cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
3114
3115       return St;
3116     }
3117
3118     case Intrinsic::arm_neon_vld1: {
3119       static const uint16_t DOpcodes[] = { ARM::VLD1d8, ARM::VLD1d16,
3120                                            ARM::VLD1d32, ARM::VLD1d64 };
3121       static const uint16_t QOpcodes[] = { ARM::VLD1q8, ARM::VLD1q16,
3122                                            ARM::VLD1q32, ARM::VLD1q64};
3123       return SelectVLD(N, false, 1, DOpcodes, QOpcodes, nullptr);
3124     }
3125
3126     case Intrinsic::arm_neon_vld2: {
3127       static const uint16_t DOpcodes[] = { ARM::VLD2d8, ARM::VLD2d16,
3128                                            ARM::VLD2d32, ARM::VLD1q64 };
3129       static const uint16_t QOpcodes[] = { ARM::VLD2q8Pseudo, ARM::VLD2q16Pseudo,
3130                                            ARM::VLD2q32Pseudo };
3131       return SelectVLD(N, false, 2, DOpcodes, QOpcodes, nullptr);
3132     }
3133
3134     case Intrinsic::arm_neon_vld3: {
3135       static const uint16_t DOpcodes[] = { ARM::VLD3d8Pseudo,
3136                                            ARM::VLD3d16Pseudo,
3137                                            ARM::VLD3d32Pseudo,
3138                                            ARM::VLD1d64TPseudo };
3139       static const uint16_t QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD,
3140                                             ARM::VLD3q16Pseudo_UPD,
3141                                             ARM::VLD3q32Pseudo_UPD };
3142       static const uint16_t QOpcodes1[] = { ARM::VLD3q8oddPseudo,
3143                                             ARM::VLD3q16oddPseudo,
3144                                             ARM::VLD3q32oddPseudo };
3145       return SelectVLD(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
3146     }
3147
3148     case Intrinsic::arm_neon_vld4: {
3149       static const uint16_t DOpcodes[] = { ARM::VLD4d8Pseudo,
3150                                            ARM::VLD4d16Pseudo,
3151                                            ARM::VLD4d32Pseudo,
3152                                            ARM::VLD1d64QPseudo };
3153       static const uint16_t QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD,
3154                                             ARM::VLD4q16Pseudo_UPD,
3155                                             ARM::VLD4q32Pseudo_UPD };
3156       static const uint16_t QOpcodes1[] = { ARM::VLD4q8oddPseudo,
3157                                             ARM::VLD4q16oddPseudo,
3158                                             ARM::VLD4q32oddPseudo };
3159       return SelectVLD(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
3160     }
3161
3162     case Intrinsic::arm_neon_vld2lane: {
3163       static const uint16_t DOpcodes[] = { ARM::VLD2LNd8Pseudo,
3164                                            ARM::VLD2LNd16Pseudo,
3165                                            ARM::VLD2LNd32Pseudo };
3166       static const uint16_t QOpcodes[] = { ARM::VLD2LNq16Pseudo,
3167                                            ARM::VLD2LNq32Pseudo };
3168       return SelectVLDSTLane(N, true, false, 2, DOpcodes, QOpcodes);
3169     }
3170
3171     case Intrinsic::arm_neon_vld3lane: {
3172       static const uint16_t DOpcodes[] = { ARM::VLD3LNd8Pseudo,
3173                                            ARM::VLD3LNd16Pseudo,
3174                                            ARM::VLD3LNd32Pseudo };
3175       static const uint16_t QOpcodes[] = { ARM::VLD3LNq16Pseudo,
3176                                            ARM::VLD3LNq32Pseudo };
3177       return SelectVLDSTLane(N, true, false, 3, DOpcodes, QOpcodes);
3178     }
3179
3180     case Intrinsic::arm_neon_vld4lane: {
3181       static const uint16_t DOpcodes[] = { ARM::VLD4LNd8Pseudo,
3182                                            ARM::VLD4LNd16Pseudo,
3183                                            ARM::VLD4LNd32Pseudo };
3184       static const uint16_t QOpcodes[] = { ARM::VLD4LNq16Pseudo,
3185                                            ARM::VLD4LNq32Pseudo };
3186       return SelectVLDSTLane(N, true, false, 4, DOpcodes, QOpcodes);
3187     }
3188
3189     case Intrinsic::arm_neon_vst1: {
3190       static const uint16_t DOpcodes[] = { ARM::VST1d8, ARM::VST1d16,
3191                                            ARM::VST1d32, ARM::VST1d64 };
3192       static const uint16_t QOpcodes[] = { ARM::VST1q8, ARM::VST1q16,
3193                                            ARM::VST1q32, ARM::VST1q64 };
3194       return SelectVST(N, false, 1, DOpcodes, QOpcodes, nullptr);
3195     }
3196
3197     case Intrinsic::arm_neon_vst2: {
3198       static const uint16_t DOpcodes[] = { ARM::VST2d8, ARM::VST2d16,
3199                                            ARM::VST2d32, ARM::VST1q64 };
3200       static uint16_t QOpcodes[] = { ARM::VST2q8Pseudo, ARM::VST2q16Pseudo,
3201                                      ARM::VST2q32Pseudo };
3202       return SelectVST(N, false, 2, DOpcodes, QOpcodes, nullptr);
3203     }
3204
3205     case Intrinsic::arm_neon_vst3: {
3206       static const uint16_t DOpcodes[] = { ARM::VST3d8Pseudo,
3207                                            ARM::VST3d16Pseudo,
3208                                            ARM::VST3d32Pseudo,
3209                                            ARM::VST1d64TPseudo };
3210       static const uint16_t QOpcodes0[] = { ARM::VST3q8Pseudo_UPD,
3211                                             ARM::VST3q16Pseudo_UPD,
3212                                             ARM::VST3q32Pseudo_UPD };
3213       static const uint16_t QOpcodes1[] = { ARM::VST3q8oddPseudo,
3214                                             ARM::VST3q16oddPseudo,
3215                                             ARM::VST3q32oddPseudo };
3216       return SelectVST(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
3217     }
3218
3219     case Intrinsic::arm_neon_vst4: {
3220       static const uint16_t DOpcodes[] = { ARM::VST4d8Pseudo,
3221                                            ARM::VST4d16Pseudo,
3222                                            ARM::VST4d32Pseudo,
3223                                            ARM::VST1d64QPseudo };
3224       static const uint16_t QOpcodes0[] = { ARM::VST4q8Pseudo_UPD,
3225                                             ARM::VST4q16Pseudo_UPD,
3226                                             ARM::VST4q32Pseudo_UPD };
3227       static const uint16_t QOpcodes1[] = { ARM::VST4q8oddPseudo,
3228                                             ARM::VST4q16oddPseudo,
3229                                             ARM::VST4q32oddPseudo };
3230       return SelectVST(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
3231     }
3232
3233     case Intrinsic::arm_neon_vst2lane: {
3234       static const uint16_t DOpcodes[] = { ARM::VST2LNd8Pseudo,
3235                                            ARM::VST2LNd16Pseudo,
3236                                            ARM::VST2LNd32Pseudo };
3237       static const uint16_t QOpcodes[] = { ARM::VST2LNq16Pseudo,
3238                                            ARM::VST2LNq32Pseudo };
3239       return SelectVLDSTLane(N, false, false, 2, DOpcodes, QOpcodes);
3240     }
3241
3242     case Intrinsic::arm_neon_vst3lane: {
3243       static const uint16_t DOpcodes[] = { ARM::VST3LNd8Pseudo,
3244                                            ARM::VST3LNd16Pseudo,
3245                                            ARM::VST3LNd32Pseudo };
3246       static const uint16_t QOpcodes[] = { ARM::VST3LNq16Pseudo,
3247                                            ARM::VST3LNq32Pseudo };
3248       return SelectVLDSTLane(N, false, false, 3, DOpcodes, QOpcodes);
3249     }
3250
3251     case Intrinsic::arm_neon_vst4lane: {
3252       static const uint16_t DOpcodes[] = { ARM::VST4LNd8Pseudo,
3253                                            ARM::VST4LNd16Pseudo,
3254                                            ARM::VST4LNd32Pseudo };
3255       static const uint16_t QOpcodes[] = { ARM::VST4LNq16Pseudo,
3256                                            ARM::VST4LNq32Pseudo };
3257       return SelectVLDSTLane(N, false, false, 4, DOpcodes, QOpcodes);
3258     }
3259     }
3260     break;
3261   }
3262
3263   case ISD::INTRINSIC_WO_CHAIN: {
3264     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
3265     switch (IntNo) {
3266     default:
3267       break;
3268
3269     case Intrinsic::arm_neon_vtbl2:
3270       return SelectVTBL(N, false, 2, ARM::VTBL2);
3271     case Intrinsic::arm_neon_vtbl3:
3272       return SelectVTBL(N, false, 3, ARM::VTBL3Pseudo);
3273     case Intrinsic::arm_neon_vtbl4:
3274       return SelectVTBL(N, false, 4, ARM::VTBL4Pseudo);
3275
3276     case Intrinsic::arm_neon_vtbx2:
3277       return SelectVTBL(N, true, 2, ARM::VTBX2);
3278     case Intrinsic::arm_neon_vtbx3:
3279       return SelectVTBL(N, true, 3, ARM::VTBX3Pseudo);
3280     case Intrinsic::arm_neon_vtbx4:
3281       return SelectVTBL(N, true, 4, ARM::VTBX4Pseudo);
3282     }
3283     break;
3284   }
3285
3286   case ARMISD::VTBL1: {
3287     SDLoc dl(N);
3288     EVT VT = N->getValueType(0);
3289     SmallVector<SDValue, 6> Ops;
3290
3291     Ops.push_back(N->getOperand(0));
3292     Ops.push_back(N->getOperand(1));
3293     Ops.push_back(getAL(CurDAG));                    // Predicate
3294     Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // Predicate Register
3295     return CurDAG->getMachineNode(ARM::VTBL1, dl, VT, Ops);
3296   }
3297   case ARMISD::VTBL2: {
3298     SDLoc dl(N);
3299     EVT VT = N->getValueType(0);
3300
3301     // Form a REG_SEQUENCE to force register allocation.
3302     SDValue V0 = N->getOperand(0);
3303     SDValue V1 = N->getOperand(1);
3304     SDValue RegSeq = SDValue(createDRegPairNode(MVT::v16i8, V0, V1), 0);
3305
3306     SmallVector<SDValue, 6> Ops;
3307     Ops.push_back(RegSeq);
3308     Ops.push_back(N->getOperand(2));
3309     Ops.push_back(getAL(CurDAG));                    // Predicate
3310     Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // Predicate Register
3311     return CurDAG->getMachineNode(ARM::VTBL2, dl, VT, Ops);
3312   }
3313
3314   case ISD::CONCAT_VECTORS:
3315     return SelectConcatVector(N);
3316   }
3317
3318   return SelectCode(N);
3319 }
3320
3321 SDNode *ARMDAGToDAGISel::SelectInlineAsm(SDNode *N){
3322   std::vector<SDValue> AsmNodeOperands;
3323   unsigned Flag, Kind;
3324   bool Changed = false;
3325   unsigned NumOps = N->getNumOperands();
3326
3327   // Normally, i64 data is bounded to two arbitrary GRPs for "%r" constraint.
3328   // However, some instrstions (e.g. ldrexd/strexd in ARM mode) require
3329   // (even/even+1) GPRs and use %n and %Hn to refer to the individual regs
3330   // respectively. Since there is no constraint to explicitly specify a
3331   // reg pair, we use GPRPair reg class for "%r" for 64-bit data. For Thumb,
3332   // the 64-bit data may be referred by H, Q, R modifiers, so we still pack
3333   // them into a GPRPair.
3334
3335   SDLoc dl(N);
3336   SDValue Glue = N->getGluedNode() ? N->getOperand(NumOps-1)
3337                                    : SDValue(nullptr,0);
3338
3339   SmallVector<bool, 8> OpChanged;
3340   // Glue node will be appended late.
3341   for(unsigned i = 0, e = N->getGluedNode() ? NumOps - 1 : NumOps; i < e; ++i) {
3342     SDValue op = N->getOperand(i);
3343     AsmNodeOperands.push_back(op);
3344
3345     if (i < InlineAsm::Op_FirstOperand)
3346       continue;
3347
3348     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(i))) {
3349       Flag = C->getZExtValue();
3350       Kind = InlineAsm::getKind(Flag);
3351     }
3352     else
3353       continue;
3354
3355     // Immediate operands to inline asm in the SelectionDAG are modeled with
3356     // two operands. The first is a constant of value InlineAsm::Kind_Imm, and
3357     // the second is a constant with the value of the immediate. If we get here
3358     // and we have a Kind_Imm, skip the next operand, and continue.
3359     if (Kind == InlineAsm::Kind_Imm) {
3360       SDValue op = N->getOperand(++i);
3361       AsmNodeOperands.push_back(op);
3362       continue;
3363     }
3364
3365     unsigned NumRegs = InlineAsm::getNumOperandRegisters(Flag);
3366     if (NumRegs)
3367       OpChanged.push_back(false);
3368
3369     unsigned DefIdx = 0;
3370     bool IsTiedToChangedOp = false;
3371     // If it's a use that is tied with a previous def, it has no
3372     // reg class constraint.
3373     if (Changed && InlineAsm::isUseOperandTiedToDef(Flag, DefIdx))
3374       IsTiedToChangedOp = OpChanged[DefIdx];
3375
3376     if (Kind != InlineAsm::Kind_RegUse && Kind != InlineAsm::Kind_RegDef
3377         && Kind != InlineAsm::Kind_RegDefEarlyClobber)
3378       continue;
3379
3380     unsigned RC;
3381     bool HasRC = InlineAsm::hasRegClassConstraint(Flag, RC);
3382     if ((!IsTiedToChangedOp && (!HasRC || RC != ARM::GPRRegClassID))
3383         || NumRegs != 2)
3384       continue;
3385
3386     assert((i+2 < NumOps) && "Invalid number of operands in inline asm");
3387     SDValue V0 = N->getOperand(i+1);
3388     SDValue V1 = N->getOperand(i+2);
3389     unsigned Reg0 = cast<RegisterSDNode>(V0)->getReg();
3390     unsigned Reg1 = cast<RegisterSDNode>(V1)->getReg();
3391     SDValue PairedReg;
3392     MachineRegisterInfo &MRI = MF->getRegInfo();
3393
3394     if (Kind == InlineAsm::Kind_RegDef ||
3395         Kind == InlineAsm::Kind_RegDefEarlyClobber) {
3396       // Replace the two GPRs with 1 GPRPair and copy values from GPRPair to
3397       // the original GPRs.
3398
3399       unsigned GPVR = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
3400       PairedReg = CurDAG->getRegister(GPVR, MVT::Untyped);
3401       SDValue Chain = SDValue(N,0);
3402
3403       SDNode *GU = N->getGluedUser();
3404       SDValue RegCopy = CurDAG->getCopyFromReg(Chain, dl, GPVR, MVT::Untyped,
3405                                                Chain.getValue(1));
3406
3407       // Extract values from a GPRPair reg and copy to the original GPR reg.
3408       SDValue Sub0 = CurDAG->getTargetExtractSubreg(ARM::gsub_0, dl, MVT::i32,
3409                                                     RegCopy);
3410       SDValue Sub1 = CurDAG->getTargetExtractSubreg(ARM::gsub_1, dl, MVT::i32,
3411                                                     RegCopy);
3412       SDValue T0 = CurDAG->getCopyToReg(Sub0, dl, Reg0, Sub0,
3413                                         RegCopy.getValue(1));
3414       SDValue T1 = CurDAG->getCopyToReg(Sub1, dl, Reg1, Sub1, T0.getValue(1));
3415
3416       // Update the original glue user.
3417       std::vector<SDValue> Ops(GU->op_begin(), GU->op_end()-1);
3418       Ops.push_back(T1.getValue(1));
3419       CurDAG->UpdateNodeOperands(GU, Ops);
3420     }
3421     else {
3422       // For Kind  == InlineAsm::Kind_RegUse, we first copy two GPRs into a
3423       // GPRPair and then pass the GPRPair to the inline asm.
3424       SDValue Chain = AsmNodeOperands[InlineAsm::Op_InputChain];
3425
3426       // As REG_SEQ doesn't take RegisterSDNode, we copy them first.
3427       SDValue T0 = CurDAG->getCopyFromReg(Chain, dl, Reg0, MVT::i32,
3428                                           Chain.getValue(1));
3429       SDValue T1 = CurDAG->getCopyFromReg(Chain, dl, Reg1, MVT::i32,
3430                                           T0.getValue(1));
3431       SDValue Pair = SDValue(createGPRPairNode(MVT::Untyped, T0, T1), 0);
3432
3433       // Copy REG_SEQ into a GPRPair-typed VR and replace the original two
3434       // i32 VRs of inline asm with it.
3435       unsigned GPVR = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
3436       PairedReg = CurDAG->getRegister(GPVR, MVT::Untyped);
3437       Chain = CurDAG->getCopyToReg(T1, dl, GPVR, Pair, T1.getValue(1));
3438
3439       AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
3440       Glue = Chain.getValue(1);
3441     }
3442
3443     Changed = true;
3444
3445     if(PairedReg.getNode()) {
3446       OpChanged[OpChanged.size() -1 ] = true;
3447       Flag = InlineAsm::getFlagWord(Kind, 1 /* RegNum*/);
3448       if (IsTiedToChangedOp)
3449         Flag = InlineAsm::getFlagWordForMatchingOp(Flag, DefIdx);
3450       else
3451         Flag = InlineAsm::getFlagWordForRegClass(Flag, ARM::GPRPairRegClassID);
3452       // Replace the current flag.
3453       AsmNodeOperands[AsmNodeOperands.size() -1] = CurDAG->getTargetConstant(
3454           Flag, MVT::i32);
3455       // Add the new register node and skip the original two GPRs.
3456       AsmNodeOperands.push_back(PairedReg);
3457       // Skip the next two GPRs.
3458       i += 2;
3459     }
3460   }
3461
3462   if (Glue.getNode())
3463     AsmNodeOperands.push_back(Glue);
3464   if (!Changed)
3465     return nullptr;
3466
3467   SDValue New = CurDAG->getNode(ISD::INLINEASM, SDLoc(N),
3468       CurDAG->getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
3469   New->setNodeId(-1);
3470   return New.getNode();
3471 }
3472
3473
3474 bool ARMDAGToDAGISel::
3475 SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
3476                              std::vector<SDValue> &OutOps) {
3477   assert(ConstraintCode == 'm' && "unexpected asm memory constraint");
3478   // Require the address to be in a register.  That is safe for all ARM
3479   // variants and it is hard to do anything much smarter without knowing
3480   // how the operand is used.
3481   OutOps.push_back(Op);
3482   return false;
3483 }
3484
3485 /// createARMISelDag - This pass converts a legalized DAG into a
3486 /// ARM-specific DAG, ready for instruction scheduling.
3487 ///
3488 FunctionPass *llvm::createARMISelDag(ARMBaseTargetMachine &TM,
3489                                      CodeGenOpt::Level OptLevel) {
3490   return new ARMDAGToDAGISel(TM, OptLevel);
3491 }