AMDGPU/SI: Test commit
[oota-llvm.git] / lib / Target / AMDGPU / SIISelLowering.cpp
1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// \brief Custom DAG lowering for SI
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifdef _MSC_VER
16 // Provide M_PI.
17 #define _USE_MATH_DEFINES
18 #include <cmath>
19 #endif
20
21 #include "SIISelLowering.h"
22 #include "AMDGPU.h"
23 #include "AMDGPUDiagnosticInfoUnsupported.h"
24 #include "AMDGPUIntrinsicInfo.h"
25 #include "AMDGPUSubtarget.h"
26 #include "SIInstrInfo.h"
27 #include "SIMachineFunctionInfo.h"
28 #include "SIRegisterInfo.h"
29 #include "llvm/ADT/BitVector.h"
30 #include "llvm/CodeGen/CallingConvLower.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/SelectionDAG.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/ADT/SmallString.h"
36
37 using namespace llvm;
38
39 SITargetLowering::SITargetLowering(TargetMachine &TM,
40                                    const AMDGPUSubtarget &STI)
41     : AMDGPUTargetLowering(TM, STI) {
42   addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
43   addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
44
45   addRegisterClass(MVT::v32i8, &AMDGPU::SReg_256RegClass);
46   addRegisterClass(MVT::v64i8, &AMDGPU::SReg_512RegClass);
47
48   addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
49   addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
50
51   addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
52   addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
53   addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
54
55   addRegisterClass(MVT::v2i64, &AMDGPU::SReg_128RegClass);
56   addRegisterClass(MVT::v2f64, &AMDGPU::SReg_128RegClass);
57
58   addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass);
59   addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
60
61   addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass);
62   addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
63
64   addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass);
65   addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
66
67   computeRegisterProperties(STI.getRegisterInfo());
68
69   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
70   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
71   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
72   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
73
74   setOperationAction(ISD::ADD, MVT::i32, Legal);
75   setOperationAction(ISD::ADDC, MVT::i32, Legal);
76   setOperationAction(ISD::ADDE, MVT::i32, Legal);
77   setOperationAction(ISD::SUBC, MVT::i32, Legal);
78   setOperationAction(ISD::SUBE, MVT::i32, Legal);
79
80   setOperationAction(ISD::FSIN, MVT::f32, Custom);
81   setOperationAction(ISD::FCOS, MVT::f32, Custom);
82
83   setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
84   setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
85
86   // We need to custom lower vector stores from local memory
87   setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
88   setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
89   setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
90
91   setOperationAction(ISD::STORE, MVT::v8i32, Custom);
92   setOperationAction(ISD::STORE, MVT::v16i32, Custom);
93
94   setOperationAction(ISD::STORE, MVT::i1, Custom);
95   setOperationAction(ISD::STORE, MVT::v4i32, Custom);
96
97   setOperationAction(ISD::SELECT, MVT::i64, Custom);
98   setOperationAction(ISD::SELECT, MVT::f64, Promote);
99   AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
100
101   setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
102   setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
103   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
104   setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
105
106   setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
107   setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
108
109   setOperationAction(ISD::BSWAP, MVT::i32, Legal);
110   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
111
112   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Legal);
113   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
114   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
115
116   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Legal);
117   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
118   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
119
120   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
121   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
122   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
123
124   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
125   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
126
127   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
128   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
129   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v16i8, Custom);
130   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
131
132   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
133   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
134
135   for (MVT VT : MVT::integer_valuetypes()) {
136     if (VT == MVT::i64)
137       continue;
138
139     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
140     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
141     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
142     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
143
144     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
145     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
146     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
147     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
148
149     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
150     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
151     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
152     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
153   }
154
155   for (MVT VT : MVT::integer_vector_valuetypes()) {
156     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v8i16, Expand);
157     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v16i16, Expand);
158   }
159
160   for (MVT VT : MVT::fp_valuetypes())
161     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
162
163   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
164   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
165
166   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
167   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
168   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
169   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
170
171
172   setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
173
174   setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
175   setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
176
177   setOperationAction(ISD::LOAD, MVT::i1, Custom);
178
179   setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
180   AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
181
182   setOperationAction(ISD::STORE, MVT::v2i64, Promote);
183   AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
184
185   setOperationAction(ISD::ConstantPool, MVT::v2i64, Expand);
186
187   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
188   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
189   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
190
191   // These should use UDIVREM, so set them to expand
192   setOperationAction(ISD::UDIV, MVT::i64, Expand);
193   setOperationAction(ISD::UREM, MVT::i64, Expand);
194
195   setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
196   setOperationAction(ISD::SELECT, MVT::i1, Promote);
197
198   setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
199
200
201   setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
202
203   // We only support LOAD/STORE and vector manipulation ops for vectors
204   // with > 4 elements.
205   for (MVT VT : {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32, MVT::v2i64, MVT::v2f64}) {
206     for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
207       switch(Op) {
208       case ISD::LOAD:
209       case ISD::STORE:
210       case ISD::BUILD_VECTOR:
211       case ISD::BITCAST:
212       case ISD::EXTRACT_VECTOR_ELT:
213       case ISD::INSERT_VECTOR_ELT:
214       case ISD::INSERT_SUBVECTOR:
215       case ISD::EXTRACT_SUBVECTOR:
216       case ISD::SCALAR_TO_VECTOR:
217         break;
218       case ISD::CONCAT_VECTORS:
219         setOperationAction(Op, VT, Custom);
220         break;
221       default:
222         setOperationAction(Op, VT, Expand);
223         break;
224       }
225     }
226   }
227
228   // Most operations are naturally 32-bit vector operations. We only support
229   // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
230   for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
231     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
232     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
233
234     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
235     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
236
237     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
238     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
239
240     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
241     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
242   }
243
244   if (Subtarget->getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) {
245     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
246     setOperationAction(ISD::FCEIL, MVT::f64, Legal);
247     setOperationAction(ISD::FRINT, MVT::f64, Legal);
248   }
249
250   setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
251   setOperationAction(ISD::FDIV, MVT::f32, Custom);
252   setOperationAction(ISD::FDIV, MVT::f64, Custom);
253
254   setTargetDAGCombine(ISD::FADD);
255   setTargetDAGCombine(ISD::FSUB);
256   setTargetDAGCombine(ISD::FMINNUM);
257   setTargetDAGCombine(ISD::FMAXNUM);
258   setTargetDAGCombine(ISD::SMIN);
259   setTargetDAGCombine(ISD::SMAX);
260   setTargetDAGCombine(ISD::UMIN);
261   setTargetDAGCombine(ISD::UMAX);
262   setTargetDAGCombine(ISD::SELECT_CC);
263   setTargetDAGCombine(ISD::SETCC);
264   setTargetDAGCombine(ISD::AND);
265   setTargetDAGCombine(ISD::OR);
266   setTargetDAGCombine(ISD::UINT_TO_FP);
267
268   // All memory operations. Some folding on the pointer operand is done to help
269   // matching the constant offsets in the addressing modes.
270   setTargetDAGCombine(ISD::LOAD);
271   setTargetDAGCombine(ISD::STORE);
272   setTargetDAGCombine(ISD::ATOMIC_LOAD);
273   setTargetDAGCombine(ISD::ATOMIC_STORE);
274   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
275   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
276   setTargetDAGCombine(ISD::ATOMIC_SWAP);
277   setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
278   setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
279   setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
280   setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
281   setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
282   setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
283   setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
284   setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
285   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
286   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
287
288   setSchedulingPreference(Sched::RegPressure);
289 }
290
291 //===----------------------------------------------------------------------===//
292 // TargetLowering queries
293 //===----------------------------------------------------------------------===//
294
295 bool SITargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &,
296                                           EVT) const {
297   // SI has some legal vector types, but no legal vector operations. Say no
298   // shuffles are legal in order to prefer scalarizing some vector operations.
299   return false;
300 }
301
302 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
303   // Flat instructions do not have offsets, and only have the register
304   // address.
305   return AM.BaseOffs == 0 && (AM.Scale == 0 || AM.Scale == 1);
306 }
307
308 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
309   // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
310   // additionally can do r + r + i with addr64. 32-bit has more addressing
311   // mode options. Depending on the resource constant, it can also do
312   // (i64 r0) + (i32 r1) * (i14 i).
313   //
314   // Private arrays end up using a scratch buffer most of the time, so also
315   // assume those use MUBUF instructions. Scratch loads / stores are currently
316   // implemented as mubuf instructions with offen bit set, so slightly
317   // different than the normal addr64.
318   if (!isUInt<12>(AM.BaseOffs))
319     return false;
320
321   // FIXME: Since we can split immediate into soffset and immediate offset,
322   // would it make sense to allow any immediate?
323
324   switch (AM.Scale) {
325   case 0: // r + i or just i, depending on HasBaseReg.
326     return true;
327   case 1:
328     return true; // We have r + r or r + i.
329   case 2:
330     if (AM.HasBaseReg) {
331       // Reject 2 * r + r.
332       return false;
333     }
334
335     // Allow 2 * r as r + r
336     // Or  2 * r + i is allowed as r + r + i.
337     return true;
338   default: // Don't allow n * r
339     return false;
340   }
341 }
342
343 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
344                                              const AddrMode &AM, Type *Ty,
345                                              unsigned AS) const {
346   // No global is ever allowed as a base.
347   if (AM.BaseGV)
348     return false;
349
350   switch (AS) {
351   case AMDGPUAS::GLOBAL_ADDRESS: {
352     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
353       // Assume the we will use FLAT for all global memory accesses
354       // on VI.
355       // FIXME: This assumption is currently wrong.  On VI we still use
356       // MUBUF instructions for the r + i addressing mode.  As currently
357       // implemented, the MUBUF instructions only work on buffer < 4GB.
358       // It may be possible to support > 4GB buffers with MUBUF instructions,
359       // by setting the stride value in the resource descriptor which would
360       // increase the size limit to (stride * 4GB).  However, this is risky,
361       // because it has never been validated.
362       return isLegalFlatAddressingMode(AM);
363     }
364
365     return isLegalMUBUFAddressingMode(AM);
366   }
367   case AMDGPUAS::CONSTANT_ADDRESS: {
368     // If the offset isn't a multiple of 4, it probably isn't going to be
369     // correctly aligned.
370     if (AM.BaseOffs % 4 != 0)
371       return isLegalMUBUFAddressingMode(AM);
372
373     // There are no SMRD extloads, so if we have to do a small type access we
374     // will use a MUBUF load.
375     // FIXME?: We also need to do this if unaligned, but we don't know the
376     // alignment here.
377     if (DL.getTypeStoreSize(Ty) < 4)
378       return isLegalMUBUFAddressingMode(AM);
379
380     if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
381       // SMRD instructions have an 8-bit, dword offset on SI.
382       if (!isUInt<8>(AM.BaseOffs / 4))
383         return false;
384     } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
385       // On CI+, this can also be a 32-bit literal constant offset. If it fits
386       // in 8-bits, it can use a smaller encoding.
387       if (!isUInt<32>(AM.BaseOffs / 4))
388         return false;
389     } else if (Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS) {
390       // On VI, these use the SMEM format and the offset is 20-bit in bytes.
391       if (!isUInt<20>(AM.BaseOffs))
392         return false;
393     } else
394       llvm_unreachable("unhandled generation");
395
396     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
397       return true;
398
399     if (AM.Scale == 1 && AM.HasBaseReg)
400       return true;
401
402     return false;
403   }
404
405   case AMDGPUAS::PRIVATE_ADDRESS:
406   case AMDGPUAS::UNKNOWN_ADDRESS_SPACE:
407     return isLegalMUBUFAddressingMode(AM);
408
409   case AMDGPUAS::LOCAL_ADDRESS:
410   case AMDGPUAS::REGION_ADDRESS: {
411     // Basic, single offset DS instructions allow a 16-bit unsigned immediate
412     // field.
413     // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
414     // an 8-bit dword offset but we don't know the alignment here.
415     if (!isUInt<16>(AM.BaseOffs))
416       return false;
417
418     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
419       return true;
420
421     if (AM.Scale == 1 && AM.HasBaseReg)
422       return true;
423
424     return false;
425   }
426   case AMDGPUAS::FLAT_ADDRESS:
427     return isLegalFlatAddressingMode(AM);
428
429   default:
430     llvm_unreachable("unhandled address space");
431   }
432 }
433
434 bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
435                                                       unsigned AddrSpace,
436                                                       unsigned Align,
437                                                       bool *IsFast) const {
438   if (IsFast)
439     *IsFast = false;
440
441   // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
442   // which isn't a simple VT.
443   if (!VT.isSimple() || VT == MVT::Other)
444     return false;
445
446   // TODO - CI+ supports unaligned memory accesses, but this requires driver
447   // support.
448
449   // XXX - The only mention I see of this in the ISA manual is for LDS direct
450   // reads the "byte address and must be dword aligned". Is it also true for the
451   // normal loads and stores?
452   if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS) {
453     // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
454     // aligned, 8 byte access in a single operation using ds_read2/write2_b32
455     // with adjacent offsets.
456     bool AlignedBy4 = (Align % 4 == 0);
457     if (IsFast)
458       *IsFast = AlignedBy4;
459     return AlignedBy4;
460   }
461
462   // Smaller than dword value must be aligned.
463   // FIXME: This should be allowed on CI+
464   if (VT.bitsLT(MVT::i32))
465     return false;
466
467   // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
468   // byte-address are ignored, thus forcing Dword alignment.
469   // This applies to private, global, and constant memory.
470   if (IsFast)
471     *IsFast = true;
472
473   return VT.bitsGT(MVT::i32) && Align % 4 == 0;
474 }
475
476 EVT SITargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
477                                           unsigned SrcAlign, bool IsMemset,
478                                           bool ZeroMemset,
479                                           bool MemcpyStrSrc,
480                                           MachineFunction &MF) const {
481   // FIXME: Should account for address space here.
482
483   // The default fallback uses the private pointer size as a guess for a type to
484   // use. Make sure we switch these to 64-bit accesses.
485
486   if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global
487     return MVT::v4i32;
488
489   if (Size >= 8 && DstAlign >= 4)
490     return MVT::v2i32;
491
492   // Use the default.
493   return MVT::Other;
494 }
495
496 static bool isFlatGlobalAddrSpace(unsigned AS) {
497   return AS == AMDGPUAS::GLOBAL_ADDRESS ||
498     AS == AMDGPUAS::FLAT_ADDRESS ||
499     AS == AMDGPUAS::CONSTANT_ADDRESS;
500 }
501
502 bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
503                                            unsigned DestAS) const {
504   return isFlatGlobalAddrSpace(SrcAS) &&  isFlatGlobalAddrSpace(DestAS);
505 }
506
507
508 bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
509   const MemSDNode *MemNode = cast<MemSDNode>(N);
510   const Value *Ptr = MemNode->getMemOperand()->getValue();
511
512   // UndefValue means this is a load of a kernel input.  These are uniform.
513   // Sometimes LDS instructions have constant pointers
514   if (isa<UndefValue>(Ptr) || isa<Argument>(Ptr) || isa<Constant>(Ptr) ||
515       isa<GlobalValue>(Ptr))
516     return true;
517
518   const Instruction *I = dyn_cast_or_null<Instruction>(Ptr);
519   return I && I->getMetadata("amdgpu.uniform");
520 }
521
522 TargetLoweringBase::LegalizeTypeAction
523 SITargetLowering::getPreferredVectorAction(EVT VT) const {
524   if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16))
525     return TypeSplitVector;
526
527   return TargetLoweringBase::getPreferredVectorAction(VT);
528 }
529
530 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
531                                                          Type *Ty) const {
532   const SIInstrInfo *TII =
533       static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
534   return TII->isInlineConstant(Imm);
535 }
536
537 SDValue SITargetLowering::LowerParameter(SelectionDAG &DAG, EVT VT, EVT MemVT,
538                                          SDLoc SL, SDValue Chain,
539                                          unsigned Offset, bool Signed) const {
540   const DataLayout &DL = DAG.getDataLayout();
541   MachineFunction &MF = DAG.getMachineFunction();
542   const SIRegisterInfo *TRI =
543       static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
544   unsigned InputPtrReg = TRI->getPreloadedValue(MF, SIRegisterInfo::KERNARG_SEGMENT_PTR);
545
546   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
547
548   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
549   MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
550   PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
551   SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
552                                        MRI.getLiveInVirtReg(InputPtrReg), PtrVT);
553   SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
554                             DAG.getConstant(Offset, SL, PtrVT));
555   SDValue PtrOffset = DAG.getUNDEF(PtrVT);
556   MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
557
558   unsigned Align = DL.getABITypeAlignment(Ty);
559
560   ISD::LoadExtType ExtTy = Signed ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
561   if (MemVT.isFloatingPoint())
562     ExtTy = ISD::EXTLOAD;
563
564   return DAG.getLoad(ISD::UNINDEXED, ExtTy,
565                      VT, SL, Chain, Ptr, PtrOffset, PtrInfo, MemVT,
566                      false, // isVolatile
567                      true, // isNonTemporal
568                      true, // isInvariant
569                      Align); // Alignment
570 }
571
572 SDValue SITargetLowering::LowerFormalArguments(
573     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
574     const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
575     SmallVectorImpl<SDValue> &InVals) const {
576   const SIRegisterInfo *TRI =
577       static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
578
579   MachineFunction &MF = DAG.getMachineFunction();
580   FunctionType *FType = MF.getFunction()->getFunctionType();
581   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
582   const AMDGPUSubtarget &ST = MF.getSubtarget<AMDGPUSubtarget>();
583
584   if (Subtarget->isAmdHsaOS() && Info->getShaderType() != ShaderType::COMPUTE) {
585     const Function *Fn = MF.getFunction();
586     DiagnosticInfoUnsupported NoGraphicsHSA(*Fn, "non-compute shaders with HSA");
587     DAG.getContext()->diagnose(NoGraphicsHSA);
588     return SDValue();
589   }
590
591   // FIXME: We currently assume all calling conventions are kernels.
592
593   SmallVector<ISD::InputArg, 16> Splits;
594   BitVector Skipped(Ins.size());
595
596   for (unsigned i = 0, e = Ins.size(), PSInputNum = 0; i != e; ++i) {
597     const ISD::InputArg &Arg = Ins[i];
598
599     // First check if it's a PS input addr
600     if (Info->getShaderType() == ShaderType::PIXEL && !Arg.Flags.isInReg() &&
601         !Arg.Flags.isByVal()) {
602
603       assert((PSInputNum <= 15) && "Too many PS inputs!");
604
605       if (!Arg.Used) {
606         // We can safely skip PS inputs
607         Skipped.set(i);
608         ++PSInputNum;
609         continue;
610       }
611
612       Info->PSInputAddr |= 1 << PSInputNum++;
613     }
614
615     // Second split vertices into their elements
616     if (Info->getShaderType() != ShaderType::COMPUTE && Arg.VT.isVector()) {
617       ISD::InputArg NewArg = Arg;
618       NewArg.Flags.setSplit();
619       NewArg.VT = Arg.VT.getVectorElementType();
620
621       // We REALLY want the ORIGINAL number of vertex elements here, e.g. a
622       // three or five element vertex only needs three or five registers,
623       // NOT four or eight.
624       Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
625       unsigned NumElements = ParamType->getVectorNumElements();
626
627       for (unsigned j = 0; j != NumElements; ++j) {
628         Splits.push_back(NewArg);
629         NewArg.PartOffset += NewArg.VT.getStoreSize();
630       }
631
632     } else if (Info->getShaderType() != ShaderType::COMPUTE) {
633       Splits.push_back(Arg);
634     }
635   }
636
637   SmallVector<CCValAssign, 16> ArgLocs;
638   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
639                  *DAG.getContext());
640
641   // At least one interpolation mode must be enabled or else the GPU will hang.
642   if (Info->getShaderType() == ShaderType::PIXEL &&
643       (Info->PSInputAddr & 0x7F) == 0) {
644     Info->PSInputAddr |= 1;
645     CCInfo.AllocateReg(AMDGPU::VGPR0);
646     CCInfo.AllocateReg(AMDGPU::VGPR1);
647   }
648
649   if (Info->getShaderType() == ShaderType::COMPUTE) {
650     getOriginalFunctionArgs(DAG, DAG.getMachineFunction().getFunction(), Ins,
651                             Splits);
652   }
653
654   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
655   if (Info->hasPrivateSegmentBuffer()) {
656     unsigned PrivateSegmentBufferReg = Info->addPrivateSegmentBuffer(*TRI);
657     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SReg_128RegClass);
658     CCInfo.AllocateReg(PrivateSegmentBufferReg);
659   }
660
661   if (Info->hasDispatchPtr()) {
662     unsigned DispatchPtrReg = Info->addDispatchPtr(*TRI);
663     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SReg_64RegClass);
664     CCInfo.AllocateReg(DispatchPtrReg);
665   }
666
667   if (Info->hasKernargSegmentPtr()) {
668     unsigned InputPtrReg = Info->addKernargSegmentPtr(*TRI);
669     MF.addLiveIn(InputPtrReg, &AMDGPU::SReg_64RegClass);
670     CCInfo.AllocateReg(InputPtrReg);
671   }
672
673   AnalyzeFormalArguments(CCInfo, Splits);
674
675   SmallVector<SDValue, 16> Chains;
676
677   for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
678
679     const ISD::InputArg &Arg = Ins[i];
680     if (Skipped[i]) {
681       InVals.push_back(DAG.getUNDEF(Arg.VT));
682       continue;
683     }
684
685     CCValAssign &VA = ArgLocs[ArgIdx++];
686     MVT VT = VA.getLocVT();
687
688     if (VA.isMemLoc()) {
689       VT = Ins[i].VT;
690       EVT MemVT = Splits[i].VT;
691       const unsigned Offset = Subtarget->getExplicitKernelArgOffset() +
692                               VA.getLocMemOffset();
693       // The first 36 bytes of the input buffer contains information about
694       // thread group and global sizes.
695       SDValue Arg = LowerParameter(DAG, VT, MemVT,  DL, Chain,
696                                    Offset, Ins[i].Flags.isSExt());
697       Chains.push_back(Arg.getValue(1));
698
699       auto *ParamTy =
700         dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
701       if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
702           ParamTy && ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
703         // On SI local pointers are just offsets into LDS, so they are always
704         // less than 16-bits.  On CI and newer they could potentially be
705         // real pointers, so we can't guarantee their size.
706         Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
707                           DAG.getValueType(MVT::i16));
708       }
709
710       InVals.push_back(Arg);
711       Info->ABIArgOffset = Offset + MemVT.getStoreSize();
712       continue;
713     }
714     assert(VA.isRegLoc() && "Parameter must be in a register!");
715
716     unsigned Reg = VA.getLocReg();
717
718     if (VT == MVT::i64) {
719       // For now assume it is a pointer
720       Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0,
721                                      &AMDGPU::SReg_64RegClass);
722       Reg = MF.addLiveIn(Reg, &AMDGPU::SReg_64RegClass);
723       SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT);
724       InVals.push_back(Copy);
725       continue;
726     }
727
728     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
729
730     Reg = MF.addLiveIn(Reg, RC);
731     SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
732
733     if (Arg.VT.isVector()) {
734
735       // Build a vector from the registers
736       Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
737       unsigned NumElements = ParamType->getVectorNumElements();
738
739       SmallVector<SDValue, 4> Regs;
740       Regs.push_back(Val);
741       for (unsigned j = 1; j != NumElements; ++j) {
742         Reg = ArgLocs[ArgIdx++].getLocReg();
743         Reg = MF.addLiveIn(Reg, RC);
744
745         SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT);
746         Regs.push_back(Copy);
747       }
748
749       // Fill up the missing vector elements
750       NumElements = Arg.VT.getVectorNumElements() - NumElements;
751       Regs.append(NumElements, DAG.getUNDEF(VT));
752
753       InVals.push_back(DAG.getNode(ISD::BUILD_VECTOR, DL, Arg.VT, Regs));
754       continue;
755     }
756
757     InVals.push_back(Val);
758   }
759
760   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
761   // these from the dispatch pointer.
762
763   // Start adding system SGPRs.
764   if (Info->hasWorkGroupIDX()) {
765     unsigned Reg = Info->addWorkGroupIDX();
766     MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
767     CCInfo.AllocateReg(Reg);
768   } else
769     llvm_unreachable("work group id x is always enabled");
770
771   if (Info->hasWorkGroupIDY()) {
772     unsigned Reg = Info->addWorkGroupIDY();
773     MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
774     CCInfo.AllocateReg(Reg);
775   }
776
777   if (Info->hasWorkGroupIDZ()) {
778     unsigned Reg = Info->addWorkGroupIDZ();
779     MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
780     CCInfo.AllocateReg(Reg);
781   }
782
783   if (Info->hasWorkGroupInfo()) {
784     unsigned Reg = Info->addWorkGroupInfo();
785     MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
786     CCInfo.AllocateReg(Reg);
787   }
788
789   if (Info->hasPrivateSegmentWaveByteOffset()) {
790     // Scratch wave offset passed in system SGPR.
791     unsigned PrivateSegmentWaveByteOffsetReg
792       = Info->addPrivateSegmentWaveByteOffset();
793
794     MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
795     CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
796   }
797
798   // Now that we've figured out where the scratch register inputs are, see if
799   // should reserve the arguments and use them directly.
800
801   bool HasStackObjects = MF.getFrameInfo()->hasStackObjects();
802
803   if (ST.isAmdHsaOS()) {
804     // TODO: Assume we will spill without optimizations.
805     if (HasStackObjects) {
806       // If we have stack objects, we unquestionably need the private buffer
807       // resource. For the HSA ABI, this will be the first 4 user SGPR
808       // inputs. We can reserve those and use them directly.
809
810       unsigned PrivateSegmentBufferReg = TRI->getPreloadedValue(
811         MF, SIRegisterInfo::PRIVATE_SEGMENT_BUFFER);
812       Info->setScratchRSrcReg(PrivateSegmentBufferReg);
813
814       unsigned PrivateSegmentWaveByteOffsetReg = TRI->getPreloadedValue(
815         MF, SIRegisterInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
816       Info->setScratchWaveOffsetReg(PrivateSegmentWaveByteOffsetReg);
817     } else {
818       unsigned ReservedBufferReg
819         = TRI->reservedPrivateSegmentBufferReg(MF);
820       unsigned ReservedOffsetReg
821         = TRI->reservedPrivateSegmentWaveByteOffsetReg(MF);
822
823       // We tentatively reserve the last registers (skipping the last two
824       // which may contain VCC). After register allocation, we'll replace
825       // these with the ones immediately after those which were really
826       // allocated. In the prologue copies will be inserted from the argument
827       // to these reserved registers.
828       Info->setScratchRSrcReg(ReservedBufferReg);
829       Info->setScratchWaveOffsetReg(ReservedOffsetReg);
830     }
831   } else {
832     unsigned ReservedBufferReg = TRI->reservedPrivateSegmentBufferReg(MF);
833
834     // Without HSA, relocations are used for the scratch pointer and the
835     // buffer resource setup is always inserted in the prologue. Scratch wave
836     // offset is still in an input SGPR.
837     Info->setScratchRSrcReg(ReservedBufferReg);
838
839     if (HasStackObjects) {
840       unsigned ScratchWaveOffsetReg = TRI->getPreloadedValue(
841         MF, SIRegisterInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
842       Info->setScratchWaveOffsetReg(ScratchWaveOffsetReg);
843     } else {
844       unsigned ReservedOffsetReg
845         = TRI->reservedPrivateSegmentWaveByteOffsetReg(MF);
846       Info->setScratchWaveOffsetReg(ReservedOffsetReg);
847     }
848   }
849
850   if (Info->hasWorkItemIDX()) {
851     unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_X);
852     MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
853     CCInfo.AllocateReg(Reg);
854   } else
855     llvm_unreachable("workitem id x should always be enabled");
856
857   if (Info->hasWorkItemIDY()) {
858     unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Y);
859     MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
860     CCInfo.AllocateReg(Reg);
861   }
862
863   if (Info->hasWorkItemIDZ()) {
864     unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Z);
865     MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
866     CCInfo.AllocateReg(Reg);
867   }
868
869   if (Chains.empty())
870     return Chain;
871
872   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
873 }
874
875 MachineBasicBlock * SITargetLowering::EmitInstrWithCustomInserter(
876     MachineInstr * MI, MachineBasicBlock * BB) const {
877
878   switch (MI->getOpcode()) {
879   default:
880     return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
881   case AMDGPU::BRANCH:
882     return BB;
883   }
884   return BB;
885 }
886
887 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
888   // This currently forces unfolding various combinations of fsub into fma with
889   // free fneg'd operands. As long as we have fast FMA (controlled by
890   // isFMAFasterThanFMulAndFAdd), we should perform these.
891
892   // When fma is quarter rate, for f64 where add / sub are at best half rate,
893   // most of these combines appear to be cycle neutral but save on instruction
894   // count / code size.
895   return true;
896 }
897
898 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
899                                          EVT VT) const {
900   if (!VT.isVector()) {
901     return MVT::i1;
902   }
903   return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
904 }
905
906 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT) const {
907   return MVT::i32;
908 }
909
910 // Answering this is somewhat tricky and depends on the specific device which
911 // have different rates for fma or all f64 operations.
912 //
913 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
914 // regardless of which device (although the number of cycles differs between
915 // devices), so it is always profitable for f64.
916 //
917 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
918 // only on full rate devices. Normally, we should prefer selecting v_mad_f32
919 // which we can always do even without fused FP ops since it returns the same
920 // result as the separate operations and since it is always full
921 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
922 // however does not support denormals, so we do report fma as faster if we have
923 // a fast fma device and require denormals.
924 //
925 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
926   VT = VT.getScalarType();
927
928   if (!VT.isSimple())
929     return false;
930
931   switch (VT.getSimpleVT().SimpleTy) {
932   case MVT::f32:
933     // This is as fast on some subtargets. However, we always have full rate f32
934     // mad available which returns the same result as the separate operations
935     // which we should prefer over fma. We can't use this if we want to support
936     // denormals, so only report this in these cases.
937     return Subtarget->hasFP32Denormals() && Subtarget->hasFastFMAF32();
938   case MVT::f64:
939     return true;
940   default:
941     break;
942   }
943
944   return false;
945 }
946
947 //===----------------------------------------------------------------------===//
948 // Custom DAG Lowering Operations
949 //===----------------------------------------------------------------------===//
950
951 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
952   switch (Op.getOpcode()) {
953   default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
954   case ISD::FrameIndex: return LowerFrameIndex(Op, DAG);
955   case ISD::BRCOND: return LowerBRCOND(Op, DAG);
956   case ISD::LOAD: {
957     SDValue Result = LowerLOAD(Op, DAG);
958     assert((!Result.getNode() ||
959             Result.getNode()->getNumValues() == 2) &&
960            "Load should return a value and a chain");
961     return Result;
962   }
963
964   case ISD::FSIN:
965   case ISD::FCOS:
966     return LowerTrig(Op, DAG);
967   case ISD::SELECT: return LowerSELECT(Op, DAG);
968   case ISD::FDIV: return LowerFDIV(Op, DAG);
969   case ISD::STORE: return LowerSTORE(Op, DAG);
970   case ISD::GlobalAddress: {
971     MachineFunction &MF = DAG.getMachineFunction();
972     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
973     return LowerGlobalAddress(MFI, Op, DAG);
974   }
975   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
976   case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
977   }
978   return SDValue();
979 }
980
981 /// \brief Helper function for LowerBRCOND
982 static SDNode *findUser(SDValue Value, unsigned Opcode) {
983
984   SDNode *Parent = Value.getNode();
985   for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
986        I != E; ++I) {
987
988     if (I.getUse().get() != Value)
989       continue;
990
991     if (I->getOpcode() == Opcode)
992       return *I;
993   }
994   return nullptr;
995 }
996
997 SDValue SITargetLowering::LowerFrameIndex(SDValue Op, SelectionDAG &DAG) const {
998
999   SDLoc SL(Op);
1000   FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Op);
1001   unsigned FrameIndex = FINode->getIndex();
1002
1003   // A FrameIndex node represents a 32-bit offset into scratch memory.  If
1004   // the high bit of a frame index offset were to be set, this would mean
1005   // that it represented an offset of ~2GB * 64 = ~128GB from the start of the
1006   // scratch buffer, with 64 being the number of threads per wave.
1007   //
1008   // If we know the machine uses less than 128GB of scratch, then we can
1009   // amrk the high bit of the FrameIndex node as known zero,
1010   // which is important, because it means in most situations we can
1011   // prove that values derived from FrameIndex nodes are non-negative.
1012   // This enables us to take advantage of more addressing modes when
1013   // accessing scratch buffers, since for scratch reads/writes, the register
1014   // offset must always be positive.
1015
1016   SDValue TFI = DAG.getTargetFrameIndex(FrameIndex, MVT::i32);
1017   if (Subtarget->enableHugeScratchBuffer())
1018     return TFI;
1019
1020   return DAG.getNode(ISD::AssertZext, SL, MVT::i32, TFI,
1021                     DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), 31)));
1022 }
1023
1024 /// This transforms the control flow intrinsics to get the branch destination as
1025 /// last parameter, also switches branch target with BR if the need arise
1026 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
1027                                       SelectionDAG &DAG) const {
1028
1029   SDLoc DL(BRCOND);
1030
1031   SDNode *Intr = BRCOND.getOperand(1).getNode();
1032   SDValue Target = BRCOND.getOperand(2);
1033   SDNode *BR = nullptr;
1034
1035   if (Intr->getOpcode() == ISD::SETCC) {
1036     // As long as we negate the condition everything is fine
1037     SDNode *SetCC = Intr;
1038     assert(SetCC->getConstantOperandVal(1) == 1);
1039     assert(cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
1040            ISD::SETNE);
1041     Intr = SetCC->getOperand(0).getNode();
1042
1043   } else {
1044     // Get the target from BR if we don't negate the condition
1045     BR = findUser(BRCOND, ISD::BR);
1046     Target = BR->getOperand(1);
1047   }
1048
1049   assert(Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN);
1050
1051   // Build the result and
1052   ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
1053
1054   // operands of the new intrinsic call
1055   SmallVector<SDValue, 4> Ops;
1056   Ops.push_back(BRCOND.getOperand(0));
1057   Ops.append(Intr->op_begin() + 1, Intr->op_end());
1058   Ops.push_back(Target);
1059
1060   // build the new intrinsic call
1061   SDNode *Result = DAG.getNode(
1062     Res.size() > 1 ? ISD::INTRINSIC_W_CHAIN : ISD::INTRINSIC_VOID, DL,
1063     DAG.getVTList(Res), Ops).getNode();
1064
1065   if (BR) {
1066     // Give the branch instruction our target
1067     SDValue Ops[] = {
1068       BR->getOperand(0),
1069       BRCOND.getOperand(2)
1070     };
1071     SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
1072     DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
1073     BR = NewBR.getNode();
1074   }
1075
1076   SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
1077
1078   // Copy the intrinsic results to registers
1079   for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
1080     SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
1081     if (!CopyToReg)
1082       continue;
1083
1084     Chain = DAG.getCopyToReg(
1085       Chain, DL,
1086       CopyToReg->getOperand(1),
1087       SDValue(Result, i - 1),
1088       SDValue());
1089
1090     DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
1091   }
1092
1093   // Remove the old intrinsic from the chain
1094   DAG.ReplaceAllUsesOfValueWith(
1095     SDValue(Intr, Intr->getNumValues() - 1),
1096     Intr->getOperand(0));
1097
1098   return Chain;
1099 }
1100
1101 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
1102                                              SDValue Op,
1103                                              SelectionDAG &DAG) const {
1104   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
1105
1106   if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
1107     return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
1108
1109   SDLoc DL(GSD);
1110   const GlobalValue *GV = GSD->getGlobal();
1111   MVT PtrVT = getPointerTy(DAG.getDataLayout(), GSD->getAddressSpace());
1112
1113   SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32);
1114   return DAG.getNode(AMDGPUISD::CONST_DATA_PTR, DL, PtrVT, GA);
1115 }
1116
1117 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain, SDLoc DL,
1118                                    SDValue V) const {
1119   // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
1120   // so we will end up with redundant moves to m0.
1121   //
1122   // We can't use S_MOV_B32, because there is no way to specify m0 as the
1123   // destination register.
1124   //
1125   // We have to use them both.  Machine cse will combine all the S_MOV_B32
1126   // instructions and the register coalescer eliminate the extra copies.
1127   SDNode *M0 = DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, V.getValueType(), V);
1128   return DAG.getCopyToReg(Chain, DL, DAG.getRegister(AMDGPU::M0, MVT::i32),
1129                           SDValue(M0, 0), SDValue()); // Glue
1130                                                       // A Null SDValue creates
1131                                                       // a glue result.
1132 }
1133
1134 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
1135                                                  SDValue Op,
1136                                                  MVT VT,
1137                                                  unsigned Offset) const {
1138   SDLoc SL(Op);
1139   SDValue Param = LowerParameter(DAG, MVT::i32, MVT::i32, SL,
1140                                  DAG.getEntryNode(), Offset, false);
1141   // The local size values will have the hi 16-bits as zero.
1142   return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
1143                      DAG.getValueType(VT));
1144 }
1145
1146 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
1147                                                   SelectionDAG &DAG) const {
1148   MachineFunction &MF = DAG.getMachineFunction();
1149   auto MFI = MF.getInfo<SIMachineFunctionInfo>();
1150   const SIRegisterInfo *TRI =
1151       static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
1152
1153   EVT VT = Op.getValueType();
1154   SDLoc DL(Op);
1155   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1156
1157   // TODO: Should this propagate fast-math-flags?
1158
1159   switch (IntrinsicID) {
1160   case Intrinsic::amdgcn_dispatch_ptr:
1161     return CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass,
1162       TRI->getPreloadedValue(MF, SIRegisterInfo::DISPATCH_PTR), VT);
1163
1164   case Intrinsic::r600_read_ngroups_x:
1165     return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
1166                           SI::KernelInputOffsets::NGROUPS_X, false);
1167   case Intrinsic::r600_read_ngroups_y:
1168     return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
1169                           SI::KernelInputOffsets::NGROUPS_Y, false);
1170   case Intrinsic::r600_read_ngroups_z:
1171     return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
1172                           SI::KernelInputOffsets::NGROUPS_Z, false);
1173   case Intrinsic::r600_read_global_size_x:
1174     return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
1175                           SI::KernelInputOffsets::GLOBAL_SIZE_X, false);
1176   case Intrinsic::r600_read_global_size_y:
1177     return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
1178                           SI::KernelInputOffsets::GLOBAL_SIZE_Y, false);
1179   case Intrinsic::r600_read_global_size_z:
1180     return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
1181                           SI::KernelInputOffsets::GLOBAL_SIZE_Z, false);
1182   case Intrinsic::r600_read_local_size_x:
1183     return lowerImplicitZextParam(DAG, Op, MVT::i16,
1184                                   SI::KernelInputOffsets::LOCAL_SIZE_X);
1185   case Intrinsic::r600_read_local_size_y:
1186     return lowerImplicitZextParam(DAG, Op, MVT::i16,
1187                                   SI::KernelInputOffsets::LOCAL_SIZE_Y);
1188   case Intrinsic::r600_read_local_size_z:
1189     return lowerImplicitZextParam(DAG, Op, MVT::i16,
1190                                   SI::KernelInputOffsets::LOCAL_SIZE_Z);
1191   case Intrinsic::AMDGPU_read_workdim:
1192     // Really only 2 bits.
1193     return lowerImplicitZextParam(DAG, Op, MVT::i8,
1194                                   getImplicitParameterOffset(MFI, GRID_DIM));
1195   case Intrinsic::r600_read_tgid_x:
1196     return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
1197       TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_X), VT);
1198   case Intrinsic::r600_read_tgid_y:
1199     return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
1200       TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_Y), VT);
1201   case Intrinsic::r600_read_tgid_z:
1202     return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
1203       TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_Z), VT);
1204   case Intrinsic::r600_read_tidig_x:
1205     return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
1206       TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_X), VT);
1207   case Intrinsic::r600_read_tidig_y:
1208     return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
1209       TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Y), VT);
1210   case Intrinsic::r600_read_tidig_z:
1211     return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
1212       TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Z), VT);
1213   case AMDGPUIntrinsic::SI_load_const: {
1214     SDValue Ops[] = {
1215       Op.getOperand(1),
1216       Op.getOperand(2)
1217     };
1218
1219     MachineMemOperand *MMO = MF.getMachineMemOperand(
1220       MachinePointerInfo(),
1221       MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant,
1222       VT.getStoreSize(), 4);
1223     return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL,
1224                                    Op->getVTList(), Ops, VT, MMO);
1225   }
1226   case AMDGPUIntrinsic::SI_sample:
1227     return LowerSampleIntrinsic(AMDGPUISD::SAMPLE, Op, DAG);
1228   case AMDGPUIntrinsic::SI_sampleb:
1229     return LowerSampleIntrinsic(AMDGPUISD::SAMPLEB, Op, DAG);
1230   case AMDGPUIntrinsic::SI_sampled:
1231     return LowerSampleIntrinsic(AMDGPUISD::SAMPLED, Op, DAG);
1232   case AMDGPUIntrinsic::SI_samplel:
1233     return LowerSampleIntrinsic(AMDGPUISD::SAMPLEL, Op, DAG);
1234   case AMDGPUIntrinsic::SI_vs_load_input:
1235     return DAG.getNode(AMDGPUISD::LOAD_INPUT, DL, VT,
1236                        Op.getOperand(1),
1237                        Op.getOperand(2),
1238                        Op.getOperand(3));
1239
1240   case AMDGPUIntrinsic::AMDGPU_fract:
1241   case AMDGPUIntrinsic::AMDIL_fraction: // Legacy name.
1242     return DAG.getNode(ISD::FSUB, DL, VT, Op.getOperand(1),
1243                        DAG.getNode(ISD::FFLOOR, DL, VT, Op.getOperand(1)));
1244   case AMDGPUIntrinsic::SI_fs_constant: {
1245     SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(3));
1246     SDValue Glue = M0.getValue(1);
1247     return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32,
1248                        DAG.getConstant(2, DL, MVT::i32), // P0
1249                        Op.getOperand(1), Op.getOperand(2), Glue);
1250   }
1251   case AMDGPUIntrinsic::SI_packf16:
1252     if (Op.getOperand(1).isUndef() && Op.getOperand(2).isUndef())
1253       return DAG.getUNDEF(MVT::i32);
1254     return Op;
1255   case AMDGPUIntrinsic::SI_fs_interp: {
1256     SDValue IJ = Op.getOperand(4);
1257     SDValue I = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, IJ,
1258                             DAG.getConstant(0, DL, MVT::i32));
1259     SDValue J = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, IJ,
1260                             DAG.getConstant(1, DL, MVT::i32));
1261     SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(3));
1262     SDValue Glue = M0.getValue(1);
1263     SDValue P1 = DAG.getNode(AMDGPUISD::INTERP_P1, DL,
1264                              DAG.getVTList(MVT::f32, MVT::Glue),
1265                              I, Op.getOperand(1), Op.getOperand(2), Glue);
1266     Glue = SDValue(P1.getNode(), 1);
1267     return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, P1, J,
1268                              Op.getOperand(1), Op.getOperand(2), Glue);
1269   }
1270   case Intrinsic::amdgcn_interp_p1: {
1271     SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4));
1272     SDValue Glue = M0.getValue(1);
1273     return DAG.getNode(AMDGPUISD::INTERP_P1, DL, MVT::f32, Op.getOperand(1),
1274                        Op.getOperand(2), Op.getOperand(3), Glue);
1275   }
1276   case Intrinsic::amdgcn_interp_p2: {
1277     SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5));
1278     SDValue Glue = SDValue(M0.getNode(), 1);
1279     return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, Op.getOperand(1),
1280                        Op.getOperand(2), Op.getOperand(3), Op.getOperand(4),
1281                        Glue);
1282   }
1283   default:
1284     return AMDGPUTargetLowering::LowerOperation(Op, DAG);
1285   }
1286 }
1287
1288 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
1289                                               SelectionDAG &DAG) const {
1290   MachineFunction &MF = DAG.getMachineFunction();
1291   SDLoc DL(Op);
1292   SDValue Chain = Op.getOperand(0);
1293   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1294
1295   switch (IntrinsicID) {
1296   case AMDGPUIntrinsic::SI_sendmsg: {
1297     Chain = copyToM0(DAG, Chain, DL, Op.getOperand(3));
1298     SDValue Glue = Chain.getValue(1);
1299     return DAG.getNode(AMDGPUISD::SENDMSG, DL, MVT::Other, Chain,
1300                        Op.getOperand(2), Glue);
1301   }
1302   case AMDGPUIntrinsic::SI_tbuffer_store: {
1303     SDValue Ops[] = {
1304       Chain,
1305       Op.getOperand(2),
1306       Op.getOperand(3),
1307       Op.getOperand(4),
1308       Op.getOperand(5),
1309       Op.getOperand(6),
1310       Op.getOperand(7),
1311       Op.getOperand(8),
1312       Op.getOperand(9),
1313       Op.getOperand(10),
1314       Op.getOperand(11),
1315       Op.getOperand(12),
1316       Op.getOperand(13),
1317       Op.getOperand(14)
1318     };
1319
1320     EVT VT = Op.getOperand(3).getValueType();
1321
1322     MachineMemOperand *MMO = MF.getMachineMemOperand(
1323       MachinePointerInfo(),
1324       MachineMemOperand::MOStore,
1325       VT.getStoreSize(), 4);
1326     return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_STORE_FORMAT, DL,
1327                                    Op->getVTList(), Ops, VT, MMO);
1328   }
1329   default:
1330     return SDValue();
1331   }
1332 }
1333
1334 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1335   SDLoc DL(Op);
1336   LoadSDNode *Load = cast<LoadSDNode>(Op);
1337
1338   if (Op.getValueType().isVector()) {
1339     assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
1340            "Custom lowering for non-i32 vectors hasn't been implemented.");
1341     unsigned NumElements = Op.getValueType().getVectorNumElements();
1342     assert(NumElements != 2 && "v2 loads are supported for all address spaces.");
1343
1344     switch (Load->getAddressSpace()) {
1345       default: break;
1346       case AMDGPUAS::CONSTANT_ADDRESS:
1347       if (isMemOpUniform(Load))
1348         break;
1349         // Non-uniform loads will be selected to MUBUF instructions, so they
1350         // have the same legalization requires ments as global and private
1351         // loads.
1352         //
1353         // Fall-through
1354       case AMDGPUAS::GLOBAL_ADDRESS:
1355       case AMDGPUAS::PRIVATE_ADDRESS:
1356         if (NumElements >= 8)
1357           return SplitVectorLoad(Op, DAG);
1358
1359         // v4 loads are supported for private and global memory.
1360         if (NumElements <= 4)
1361           break;
1362         // fall-through
1363       case AMDGPUAS::LOCAL_ADDRESS:
1364         // If properly aligned, if we split we might be able to use ds_read_b64.
1365         return SplitVectorLoad(Op, DAG);
1366     }
1367   }
1368
1369   return AMDGPUTargetLowering::LowerLOAD(Op, DAG);
1370 }
1371
1372 SDValue SITargetLowering::LowerSampleIntrinsic(unsigned Opcode,
1373                                                const SDValue &Op,
1374                                                SelectionDAG &DAG) const {
1375   return DAG.getNode(Opcode, SDLoc(Op), Op.getValueType(), Op.getOperand(1),
1376                      Op.getOperand(2),
1377                      Op.getOperand(3),
1378                      Op.getOperand(4));
1379 }
1380
1381 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
1382   if (Op.getValueType() != MVT::i64)
1383     return SDValue();
1384
1385   SDLoc DL(Op);
1386   SDValue Cond = Op.getOperand(0);
1387
1388   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
1389   SDValue One = DAG.getConstant(1, DL, MVT::i32);
1390
1391   SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
1392   SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
1393
1394   SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
1395   SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
1396
1397   SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
1398
1399   SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
1400   SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
1401
1402   SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
1403
1404   SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i32, Lo, Hi);
1405   return DAG.getNode(ISD::BITCAST, DL, MVT::i64, Res);
1406 }
1407
1408 // Catch division cases where we can use shortcuts with rcp and rsq
1409 // instructions.
1410 SDValue SITargetLowering::LowerFastFDIV(SDValue Op, SelectionDAG &DAG) const {
1411   SDLoc SL(Op);
1412   SDValue LHS = Op.getOperand(0);
1413   SDValue RHS = Op.getOperand(1);
1414   EVT VT = Op.getValueType();
1415   bool Unsafe = DAG.getTarget().Options.UnsafeFPMath;
1416
1417   if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
1418     if ((Unsafe || (VT == MVT::f32 && !Subtarget->hasFP32Denormals())) &&
1419         CLHS->isExactlyValue(1.0)) {
1420       // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
1421       // the CI documentation has a worst case error of 1 ulp.
1422       // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
1423       // use it as long as we aren't trying to use denormals.
1424
1425       // 1.0 / sqrt(x) -> rsq(x)
1426       //
1427       // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
1428       // error seems really high at 2^29 ULP.
1429       if (RHS.getOpcode() == ISD::FSQRT)
1430         return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
1431
1432       // 1.0 / x -> rcp(x)
1433       return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
1434     }
1435   }
1436
1437   if (Unsafe) {
1438     // Turn into multiply by the reciprocal.
1439     // x / y -> x * (1.0 / y)
1440     SDNodeFlags Flags;
1441     Flags.setUnsafeAlgebra(true);
1442     SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
1443     return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, &Flags);
1444   }
1445
1446   return SDValue();
1447 }
1448
1449 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
1450   SDValue FastLowered = LowerFastFDIV(Op, DAG);
1451   if (FastLowered.getNode())
1452     return FastLowered;
1453
1454   // This uses v_rcp_f32 which does not handle denormals. Let this hit a
1455   // selection error for now rather than do something incorrect.
1456   if (Subtarget->hasFP32Denormals())
1457     return SDValue();
1458
1459   SDLoc SL(Op);
1460   SDValue LHS = Op.getOperand(0);
1461   SDValue RHS = Op.getOperand(1);
1462
1463   SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
1464
1465   const APFloat K0Val(BitsToFloat(0x6f800000));
1466   const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
1467
1468   const APFloat K1Val(BitsToFloat(0x2f800000));
1469   const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
1470
1471   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
1472
1473   EVT SetCCVT =
1474       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
1475
1476   SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
1477
1478   SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
1479
1480   // TODO: Should this propagate fast-math-flags?
1481
1482   r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
1483
1484   SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
1485
1486   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
1487
1488   return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
1489 }
1490
1491 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
1492   if (DAG.getTarget().Options.UnsafeFPMath)
1493     return LowerFastFDIV(Op, DAG);
1494
1495   SDLoc SL(Op);
1496   SDValue X = Op.getOperand(0);
1497   SDValue Y = Op.getOperand(1);
1498
1499   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
1500
1501   SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
1502
1503   SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
1504
1505   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
1506
1507   SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
1508
1509   SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
1510
1511   SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
1512
1513   SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
1514
1515   SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
1516
1517   SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
1518   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
1519
1520   SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
1521                              NegDivScale0, Mul, DivScale1);
1522
1523   SDValue Scale;
1524
1525   if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
1526     // Workaround a hardware bug on SI where the condition output from div_scale
1527     // is not usable.
1528
1529     const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
1530
1531     // Figure out if the scale to use for div_fmas.
1532     SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
1533     SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
1534     SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
1535     SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
1536
1537     SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
1538     SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
1539
1540     SDValue Scale0Hi
1541       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
1542     SDValue Scale1Hi
1543       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
1544
1545     SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
1546     SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
1547     Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
1548   } else {
1549     Scale = DivScale1.getValue(1);
1550   }
1551
1552   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
1553                              Fma4, Fma3, Mul, Scale);
1554
1555   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
1556 }
1557
1558 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
1559   EVT VT = Op.getValueType();
1560
1561   if (VT == MVT::f32)
1562     return LowerFDIV32(Op, DAG);
1563
1564   if (VT == MVT::f64)
1565     return LowerFDIV64(Op, DAG);
1566
1567   llvm_unreachable("Unexpected type for fdiv");
1568 }
1569
1570 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1571   SDLoc DL(Op);
1572   StoreSDNode *Store = cast<StoreSDNode>(Op);
1573   EVT VT = Store->getMemoryVT();
1574
1575   // These stores are legal.
1576   if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
1577     if (VT.isVector() && VT.getVectorNumElements() > 4)
1578       return ScalarizeVectorStore(Op, DAG);
1579     return SDValue();
1580   }
1581
1582   SDValue Ret = AMDGPUTargetLowering::LowerSTORE(Op, DAG);
1583   if (Ret.getNode())
1584     return Ret;
1585
1586   if (VT.isVector() && VT.getVectorNumElements() >= 8)
1587       return SplitVectorStore(Op, DAG);
1588
1589   if (VT == MVT::i1)
1590     return DAG.getTruncStore(Store->getChain(), DL,
1591                         DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
1592                         Store->getBasePtr(), MVT::i1, Store->getMemOperand());
1593
1594   return SDValue();
1595 }
1596
1597 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
1598   SDLoc DL(Op);
1599   EVT VT = Op.getValueType();
1600   SDValue Arg = Op.getOperand(0);
1601   // TODO: Should this propagate fast-math-flags?
1602   SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT,
1603                                   DAG.getNode(ISD::FMUL, DL, VT, Arg,
1604                                               DAG.getConstantFP(0.5/M_PI, DL,
1605                                                                 VT)));
1606
1607   switch (Op.getOpcode()) {
1608   case ISD::FCOS:
1609     return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, FractPart);
1610   case ISD::FSIN:
1611     return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, FractPart);
1612   default:
1613     llvm_unreachable("Wrong trig opcode");
1614   }
1615 }
1616
1617 //===----------------------------------------------------------------------===//
1618 // Custom DAG optimizations
1619 //===----------------------------------------------------------------------===//
1620
1621 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
1622                                                      DAGCombinerInfo &DCI) const {
1623   EVT VT = N->getValueType(0);
1624   EVT ScalarVT = VT.getScalarType();
1625   if (ScalarVT != MVT::f32)
1626     return SDValue();
1627
1628   SelectionDAG &DAG = DCI.DAG;
1629   SDLoc DL(N);
1630
1631   SDValue Src = N->getOperand(0);
1632   EVT SrcVT = Src.getValueType();
1633
1634   // TODO: We could try to match extracting the higher bytes, which would be
1635   // easier if i8 vectors weren't promoted to i32 vectors, particularly after
1636   // types are legalized. v4i8 -> v4f32 is probably the only case to worry
1637   // about in practice.
1638   if (DCI.isAfterLegalizeVectorOps() && SrcVT == MVT::i32) {
1639     if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
1640       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
1641       DCI.AddToWorklist(Cvt.getNode());
1642       return Cvt;
1643     }
1644   }
1645
1646   // We are primarily trying to catch operations on illegal vector types
1647   // before they are expanded.
1648   // For scalars, we can use the more flexible method of checking masked bits
1649   // after legalization.
1650   if (!DCI.isBeforeLegalize() ||
1651       !SrcVT.isVector() ||
1652       SrcVT.getVectorElementType() != MVT::i8) {
1653     return SDValue();
1654   }
1655
1656   assert(DCI.isBeforeLegalize() && "Unexpected legal type");
1657
1658   // Weird sized vectors are a pain to handle, but we know 3 is really the same
1659   // size as 4.
1660   unsigned NElts = SrcVT.getVectorNumElements();
1661   if (!SrcVT.isSimple() && NElts != 3)
1662     return SDValue();
1663
1664   // Handle v4i8 -> v4f32 extload. Replace the v4i8 with a legal i32 load to
1665   // prevent a mess from expanding to v4i32 and repacking.
1666   if (ISD::isNormalLoad(Src.getNode()) && Src.hasOneUse()) {
1667     EVT LoadVT = getEquivalentMemType(*DAG.getContext(), SrcVT);
1668     EVT RegVT = getEquivalentLoadRegType(*DAG.getContext(), SrcVT);
1669     EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f32, NElts);
1670     LoadSDNode *Load = cast<LoadSDNode>(Src);
1671
1672     unsigned AS = Load->getAddressSpace();
1673     unsigned Align = Load->getAlignment();
1674     Type *Ty = LoadVT.getTypeForEVT(*DAG.getContext());
1675     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
1676
1677     // Don't try to replace the load if we have to expand it due to alignment
1678     // problems. Otherwise we will end up scalarizing the load, and trying to
1679     // repack into the vector for no real reason.
1680     if (Align < ABIAlignment &&
1681         !allowsMisalignedMemoryAccesses(LoadVT, AS, Align, nullptr)) {
1682       return SDValue();
1683     }
1684
1685     SDValue NewLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegVT,
1686                                      Load->getChain(),
1687                                      Load->getBasePtr(),
1688                                      LoadVT,
1689                                      Load->getMemOperand());
1690
1691     // Make sure successors of the original load stay after it by updating
1692     // them to use the new Chain.
1693     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), NewLoad.getValue(1));
1694
1695     SmallVector<SDValue, 4> Elts;
1696     if (RegVT.isVector())
1697       DAG.ExtractVectorElements(NewLoad, Elts);
1698     else
1699       Elts.push_back(NewLoad);
1700
1701     SmallVector<SDValue, 4> Ops;
1702
1703     unsigned EltIdx = 0;
1704     for (SDValue Elt : Elts) {
1705       unsigned ComponentsInElt = std::min(4u, NElts - 4 * EltIdx);
1706       for (unsigned I = 0; I < ComponentsInElt; ++I) {
1707         unsigned Opc = AMDGPUISD::CVT_F32_UBYTE0 + I;
1708         SDValue Cvt = DAG.getNode(Opc, DL, MVT::f32, Elt);
1709         DCI.AddToWorklist(Cvt.getNode());
1710         Ops.push_back(Cvt);
1711       }
1712
1713       ++EltIdx;
1714     }
1715
1716     assert(Ops.size() == NElts);
1717
1718     return DAG.getNode(ISD::BUILD_VECTOR, DL, FloatVT, Ops);
1719   }
1720
1721   return SDValue();
1722 }
1723
1724 /// \brief Return true if the given offset Size in bytes can be folded into
1725 /// the immediate offsets of a memory instruction for the given address space.
1726 static bool canFoldOffset(unsigned OffsetSize, unsigned AS,
1727                           const AMDGPUSubtarget &STI) {
1728   switch (AS) {
1729   case AMDGPUAS::GLOBAL_ADDRESS: {
1730     // MUBUF instructions a 12-bit offset in bytes.
1731     return isUInt<12>(OffsetSize);
1732   }
1733   case AMDGPUAS::CONSTANT_ADDRESS: {
1734     // SMRD instructions have an 8-bit offset in dwords on SI and
1735     // a 20-bit offset in bytes on VI.
1736     if (STI.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
1737       return isUInt<20>(OffsetSize);
1738     else
1739       return (OffsetSize % 4 == 0) && isUInt<8>(OffsetSize / 4);
1740   }
1741   case AMDGPUAS::LOCAL_ADDRESS:
1742   case AMDGPUAS::REGION_ADDRESS: {
1743     // The single offset versions have a 16-bit offset in bytes.
1744     return isUInt<16>(OffsetSize);
1745   }
1746   case AMDGPUAS::PRIVATE_ADDRESS:
1747   // Indirect register addressing does not use any offsets.
1748   default:
1749     return 0;
1750   }
1751 }
1752
1753 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
1754
1755 // This is a variant of
1756 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
1757 //
1758 // The normal DAG combiner will do this, but only if the add has one use since
1759 // that would increase the number of instructions.
1760 //
1761 // This prevents us from seeing a constant offset that can be folded into a
1762 // memory instruction's addressing mode. If we know the resulting add offset of
1763 // a pointer can be folded into an addressing offset, we can replace the pointer
1764 // operand with the add of new constant offset. This eliminates one of the uses,
1765 // and may allow the remaining use to also be simplified.
1766 //
1767 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
1768                                                unsigned AddrSpace,
1769                                                DAGCombinerInfo &DCI) const {
1770   SDValue N0 = N->getOperand(0);
1771   SDValue N1 = N->getOperand(1);
1772
1773   if (N0.getOpcode() != ISD::ADD)
1774     return SDValue();
1775
1776   const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
1777   if (!CN1)
1778     return SDValue();
1779
1780   const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
1781   if (!CAdd)
1782     return SDValue();
1783
1784   // If the resulting offset is too large, we can't fold it into the addressing
1785   // mode offset.
1786   APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
1787   if (!canFoldOffset(Offset.getZExtValue(), AddrSpace, *Subtarget))
1788     return SDValue();
1789
1790   SelectionDAG &DAG = DCI.DAG;
1791   SDLoc SL(N);
1792   EVT VT = N->getValueType(0);
1793
1794   SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
1795   SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32);
1796
1797   return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset);
1798 }
1799
1800 SDValue SITargetLowering::performAndCombine(SDNode *N,
1801                                             DAGCombinerInfo &DCI) const {
1802   if (DCI.isBeforeLegalize())
1803     return SDValue();
1804
1805   SelectionDAG &DAG = DCI.DAG;
1806
1807   // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
1808   // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
1809   SDValue LHS = N->getOperand(0);
1810   SDValue RHS = N->getOperand(1);
1811
1812   if (LHS.getOpcode() == ISD::SETCC &&
1813       RHS.getOpcode() == ISD::SETCC) {
1814     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
1815     ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
1816
1817     SDValue X = LHS.getOperand(0);
1818     SDValue Y = RHS.getOperand(0);
1819     if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
1820       return SDValue();
1821
1822     if (LCC == ISD::SETO) {
1823       if (X != LHS.getOperand(1))
1824         return SDValue();
1825
1826       if (RCC == ISD::SETUNE) {
1827         const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
1828         if (!C1 || !C1->isInfinity() || C1->isNegative())
1829           return SDValue();
1830
1831         const uint32_t Mask = SIInstrFlags::N_NORMAL |
1832                               SIInstrFlags::N_SUBNORMAL |
1833                               SIInstrFlags::N_ZERO |
1834                               SIInstrFlags::P_ZERO |
1835                               SIInstrFlags::P_SUBNORMAL |
1836                               SIInstrFlags::P_NORMAL;
1837
1838         static_assert(((~(SIInstrFlags::S_NAN |
1839                           SIInstrFlags::Q_NAN |
1840                           SIInstrFlags::N_INFINITY |
1841                           SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
1842                       "mask not equal");
1843
1844         SDLoc DL(N);
1845         return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
1846                            X, DAG.getConstant(Mask, DL, MVT::i32));
1847       }
1848     }
1849   }
1850
1851   return SDValue();
1852 }
1853
1854 SDValue SITargetLowering::performOrCombine(SDNode *N,
1855                                            DAGCombinerInfo &DCI) const {
1856   SelectionDAG &DAG = DCI.DAG;
1857   SDValue LHS = N->getOperand(0);
1858   SDValue RHS = N->getOperand(1);
1859
1860   // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
1861   if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
1862       RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
1863     SDValue Src = LHS.getOperand(0);
1864     if (Src != RHS.getOperand(0))
1865       return SDValue();
1866
1867     const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
1868     const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
1869     if (!CLHS || !CRHS)
1870       return SDValue();
1871
1872     // Only 10 bits are used.
1873     static const uint32_t MaxMask = 0x3ff;
1874
1875     uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
1876     SDLoc DL(N);
1877     return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
1878                        Src, DAG.getConstant(NewMask, DL, MVT::i32));
1879   }
1880
1881   return SDValue();
1882 }
1883
1884 SDValue SITargetLowering::performClassCombine(SDNode *N,
1885                                               DAGCombinerInfo &DCI) const {
1886   SelectionDAG &DAG = DCI.DAG;
1887   SDValue Mask = N->getOperand(1);
1888
1889   // fp_class x, 0 -> false
1890   if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
1891     if (CMask->isNullValue())
1892       return DAG.getConstant(0, SDLoc(N), MVT::i1);
1893   }
1894
1895   return SDValue();
1896 }
1897
1898 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
1899   switch (Opc) {
1900   case ISD::FMAXNUM:
1901     return AMDGPUISD::FMAX3;
1902   case ISD::SMAX:
1903     return AMDGPUISD::SMAX3;
1904   case ISD::UMAX:
1905     return AMDGPUISD::UMAX3;
1906   case ISD::FMINNUM:
1907     return AMDGPUISD::FMIN3;
1908   case ISD::SMIN:
1909     return AMDGPUISD::SMIN3;
1910   case ISD::UMIN:
1911     return AMDGPUISD::UMIN3;
1912   default:
1913     llvm_unreachable("Not a min/max opcode");
1914   }
1915 }
1916
1917 SDValue SITargetLowering::performMin3Max3Combine(SDNode *N,
1918                                                  DAGCombinerInfo &DCI) const {
1919   SelectionDAG &DAG = DCI.DAG;
1920
1921   unsigned Opc = N->getOpcode();
1922   SDValue Op0 = N->getOperand(0);
1923   SDValue Op1 = N->getOperand(1);
1924
1925   // Only do this if the inner op has one use since this will just increases
1926   // register pressure for no benefit.
1927
1928   // max(max(a, b), c)
1929   if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
1930     SDLoc DL(N);
1931     return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
1932                        DL,
1933                        N->getValueType(0),
1934                        Op0.getOperand(0),
1935                        Op0.getOperand(1),
1936                        Op1);
1937   }
1938
1939   // max(a, max(b, c))
1940   if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
1941     SDLoc DL(N);
1942     return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
1943                        DL,
1944                        N->getValueType(0),
1945                        Op0,
1946                        Op1.getOperand(0),
1947                        Op1.getOperand(1));
1948   }
1949
1950   return SDValue();
1951 }
1952
1953 SDValue SITargetLowering::performSetCCCombine(SDNode *N,
1954                                               DAGCombinerInfo &DCI) const {
1955   SelectionDAG &DAG = DCI.DAG;
1956   SDLoc SL(N);
1957
1958   SDValue LHS = N->getOperand(0);
1959   SDValue RHS = N->getOperand(1);
1960   EVT VT = LHS.getValueType();
1961
1962   if (VT != MVT::f32 && VT != MVT::f64)
1963     return SDValue();
1964
1965   // Match isinf pattern
1966   // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
1967   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
1968   if (CC == ISD::SETOEQ && LHS.getOpcode() == ISD::FABS) {
1969     const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
1970     if (!CRHS)
1971       return SDValue();
1972
1973     const APFloat &APF = CRHS->getValueAPF();
1974     if (APF.isInfinity() && !APF.isNegative()) {
1975       unsigned Mask = SIInstrFlags::P_INFINITY | SIInstrFlags::N_INFINITY;
1976       return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
1977                          DAG.getConstant(Mask, SL, MVT::i32));
1978     }
1979   }
1980
1981   return SDValue();
1982 }
1983
1984 SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
1985                                             DAGCombinerInfo &DCI) const {
1986   SelectionDAG &DAG = DCI.DAG;
1987   SDLoc DL(N);
1988
1989   switch (N->getOpcode()) {
1990   default:
1991     return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
1992   case ISD::SETCC:
1993     return performSetCCCombine(N, DCI);
1994   case ISD::FMAXNUM: // TODO: What about fmax_legacy?
1995   case ISD::FMINNUM:
1996   case ISD::SMAX:
1997   case ISD::SMIN:
1998   case ISD::UMAX:
1999   case ISD::UMIN: {
2000     if (DCI.getDAGCombineLevel() >= AfterLegalizeDAG &&
2001         N->getValueType(0) != MVT::f64 &&
2002         getTargetMachine().getOptLevel() > CodeGenOpt::None)
2003       return performMin3Max3Combine(N, DCI);
2004     break;
2005   }
2006
2007   case AMDGPUISD::CVT_F32_UBYTE0:
2008   case AMDGPUISD::CVT_F32_UBYTE1:
2009   case AMDGPUISD::CVT_F32_UBYTE2:
2010   case AMDGPUISD::CVT_F32_UBYTE3: {
2011     unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
2012
2013     SDValue Src = N->getOperand(0);
2014     APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
2015
2016     APInt KnownZero, KnownOne;
2017     TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2018                                           !DCI.isBeforeLegalizeOps());
2019     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2020     if (TLO.ShrinkDemandedConstant(Src, Demanded) ||
2021         TLI.SimplifyDemandedBits(Src, Demanded, KnownZero, KnownOne, TLO)) {
2022       DCI.CommitTargetLoweringOpt(TLO);
2023     }
2024
2025     break;
2026   }
2027
2028   case ISD::UINT_TO_FP: {
2029     return performUCharToFloatCombine(N, DCI);
2030
2031   case ISD::FADD: {
2032     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
2033       break;
2034
2035     EVT VT = N->getValueType(0);
2036     if (VT != MVT::f32)
2037       break;
2038
2039     // Only do this if we are not trying to support denormals. v_mad_f32 does
2040     // not support denormals ever.
2041     if (Subtarget->hasFP32Denormals())
2042       break;
2043
2044     SDValue LHS = N->getOperand(0);
2045     SDValue RHS = N->getOperand(1);
2046
2047     // These should really be instruction patterns, but writing patterns with
2048     // source modiifiers is a pain.
2049
2050     // fadd (fadd (a, a), b) -> mad 2.0, a, b
2051     if (LHS.getOpcode() == ISD::FADD) {
2052       SDValue A = LHS.getOperand(0);
2053       if (A == LHS.getOperand(1)) {
2054         const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32);
2055         return DAG.getNode(ISD::FMAD, DL, VT, Two, A, RHS);
2056       }
2057     }
2058
2059     // fadd (b, fadd (a, a)) -> mad 2.0, a, b
2060     if (RHS.getOpcode() == ISD::FADD) {
2061       SDValue A = RHS.getOperand(0);
2062       if (A == RHS.getOperand(1)) {
2063         const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32);
2064         return DAG.getNode(ISD::FMAD, DL, VT, Two, A, LHS);
2065       }
2066     }
2067
2068     return SDValue();
2069   }
2070   case ISD::FSUB: {
2071     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
2072       break;
2073
2074     EVT VT = N->getValueType(0);
2075
2076     // Try to get the fneg to fold into the source modifier. This undoes generic
2077     // DAG combines and folds them into the mad.
2078     //
2079     // Only do this if we are not trying to support denormals. v_mad_f32 does
2080     // not support denormals ever.
2081     if (VT == MVT::f32 &&
2082         !Subtarget->hasFP32Denormals()) {
2083       SDValue LHS = N->getOperand(0);
2084       SDValue RHS = N->getOperand(1);
2085       if (LHS.getOpcode() == ISD::FADD) {
2086         // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
2087
2088         SDValue A = LHS.getOperand(0);
2089         if (A == LHS.getOperand(1)) {
2090           const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32);
2091           SDValue NegRHS = DAG.getNode(ISD::FNEG, DL, VT, RHS);
2092
2093           return DAG.getNode(ISD::FMAD, DL, VT, Two, A, NegRHS);
2094         }
2095       }
2096
2097       if (RHS.getOpcode() == ISD::FADD) {
2098         // (fsub c, (fadd a, a)) -> mad -2.0, a, c
2099
2100         SDValue A = RHS.getOperand(0);
2101         if (A == RHS.getOperand(1)) {
2102           const SDValue NegTwo = DAG.getConstantFP(-2.0, DL, MVT::f32);
2103           return DAG.getNode(ISD::FMAD, DL, VT, NegTwo, A, LHS);
2104         }
2105       }
2106
2107       return SDValue();
2108     }
2109
2110     break;
2111   }
2112   }
2113   case ISD::LOAD:
2114   case ISD::STORE:
2115   case ISD::ATOMIC_LOAD:
2116   case ISD::ATOMIC_STORE:
2117   case ISD::ATOMIC_CMP_SWAP:
2118   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2119   case ISD::ATOMIC_SWAP:
2120   case ISD::ATOMIC_LOAD_ADD:
2121   case ISD::ATOMIC_LOAD_SUB:
2122   case ISD::ATOMIC_LOAD_AND:
2123   case ISD::ATOMIC_LOAD_OR:
2124   case ISD::ATOMIC_LOAD_XOR:
2125   case ISD::ATOMIC_LOAD_NAND:
2126   case ISD::ATOMIC_LOAD_MIN:
2127   case ISD::ATOMIC_LOAD_MAX:
2128   case ISD::ATOMIC_LOAD_UMIN:
2129   case ISD::ATOMIC_LOAD_UMAX: { // TODO: Target mem intrinsics.
2130     if (DCI.isBeforeLegalize())
2131       break;
2132
2133     MemSDNode *MemNode = cast<MemSDNode>(N);
2134     SDValue Ptr = MemNode->getBasePtr();
2135
2136     // TODO: We could also do this for multiplies.
2137     unsigned AS = MemNode->getAddressSpace();
2138     if (Ptr.getOpcode() == ISD::SHL && AS != AMDGPUAS::PRIVATE_ADDRESS) {
2139       SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), AS, DCI);
2140       if (NewPtr) {
2141         SmallVector<SDValue, 8> NewOps(MemNode->op_begin(), MemNode->op_end());
2142
2143         NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr;
2144         return SDValue(DAG.UpdateNodeOperands(MemNode, NewOps), 0);
2145       }
2146     }
2147     break;
2148   }
2149   case ISD::AND:
2150     return performAndCombine(N, DCI);
2151   case ISD::OR:
2152     return performOrCombine(N, DCI);
2153   case AMDGPUISD::FP_CLASS:
2154     return performClassCombine(N, DCI);
2155   }
2156   return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
2157 }
2158
2159 /// \brief Analyze the possible immediate value Op
2160 ///
2161 /// Returns -1 if it isn't an immediate, 0 if it's and inline immediate
2162 /// and the immediate value if it's a literal immediate
2163 int32_t SITargetLowering::analyzeImmediate(const SDNode *N) const {
2164
2165   const SIInstrInfo *TII =
2166       static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
2167
2168   if (const ConstantSDNode *Node = dyn_cast<ConstantSDNode>(N)) {
2169     if (TII->isInlineConstant(Node->getAPIntValue()))
2170       return 0;
2171
2172     uint64_t Val = Node->getZExtValue();
2173     return isUInt<32>(Val) ? Val : -1;
2174   }
2175
2176   if (const ConstantFPSDNode *Node = dyn_cast<ConstantFPSDNode>(N)) {
2177     if (TII->isInlineConstant(Node->getValueAPF().bitcastToAPInt()))
2178       return 0;
2179
2180     if (Node->getValueType(0) == MVT::f32)
2181       return FloatToBits(Node->getValueAPF().convertToFloat());
2182
2183     return -1;
2184   }
2185
2186   return -1;
2187 }
2188
2189 /// \brief Helper function for adjustWritemask
2190 static unsigned SubIdx2Lane(unsigned Idx) {
2191   switch (Idx) {
2192   default: return 0;
2193   case AMDGPU::sub0: return 0;
2194   case AMDGPU::sub1: return 1;
2195   case AMDGPU::sub2: return 2;
2196   case AMDGPU::sub3: return 3;
2197   }
2198 }
2199
2200 /// \brief Adjust the writemask of MIMG instructions
2201 void SITargetLowering::adjustWritemask(MachineSDNode *&Node,
2202                                        SelectionDAG &DAG) const {
2203   SDNode *Users[4] = { };
2204   unsigned Lane = 0;
2205   unsigned OldDmask = Node->getConstantOperandVal(0);
2206   unsigned NewDmask = 0;
2207
2208   // Try to figure out the used register components
2209   for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
2210        I != E; ++I) {
2211
2212     // Abort if we can't understand the usage
2213     if (!I->isMachineOpcode() ||
2214         I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
2215       return;
2216
2217     // Lane means which subreg of %VGPRa_VGPRb_VGPRc_VGPRd is used.
2218     // Note that subregs are packed, i.e. Lane==0 is the first bit set
2219     // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
2220     // set, etc.
2221     Lane = SubIdx2Lane(I->getConstantOperandVal(1));
2222
2223     // Set which texture component corresponds to the lane.
2224     unsigned Comp;
2225     for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) {
2226       assert(Dmask);
2227       Comp = countTrailingZeros(Dmask);
2228       Dmask &= ~(1 << Comp);
2229     }
2230
2231     // Abort if we have more than one user per component
2232     if (Users[Lane])
2233       return;
2234
2235     Users[Lane] = *I;
2236     NewDmask |= 1 << Comp;
2237   }
2238
2239   // Abort if there's no change
2240   if (NewDmask == OldDmask)
2241     return;
2242
2243   // Adjust the writemask in the node
2244   std::vector<SDValue> Ops;
2245   Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
2246   Ops.insert(Ops.end(), Node->op_begin() + 1, Node->op_end());
2247   Node = (MachineSDNode*)DAG.UpdateNodeOperands(Node, Ops);
2248
2249   // If we only got one lane, replace it with a copy
2250   // (if NewDmask has only one bit set...)
2251   if (NewDmask && (NewDmask & (NewDmask-1)) == 0) {
2252     SDValue RC = DAG.getTargetConstant(AMDGPU::VGPR_32RegClassID, SDLoc(),
2253                                        MVT::i32);
2254     SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
2255                                       SDLoc(), Users[Lane]->getValueType(0),
2256                                       SDValue(Node, 0), RC);
2257     DAG.ReplaceAllUsesWith(Users[Lane], Copy);
2258     return;
2259   }
2260
2261   // Update the users of the node with the new indices
2262   for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) {
2263
2264     SDNode *User = Users[i];
2265     if (!User)
2266       continue;
2267
2268     SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
2269     DAG.UpdateNodeOperands(User, User->getOperand(0), Op);
2270
2271     switch (Idx) {
2272     default: break;
2273     case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
2274     case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
2275     case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
2276     }
2277   }
2278 }
2279
2280 static bool isFrameIndexOp(SDValue Op) {
2281   if (Op.getOpcode() == ISD::AssertZext)
2282     Op = Op.getOperand(0);
2283
2284   return isa<FrameIndexSDNode>(Op);
2285 }
2286
2287 /// \brief Legalize target independent instructions (e.g. INSERT_SUBREG)
2288 /// with frame index operands.
2289 /// LLVM assumes that inputs are to these instructions are registers.
2290 void SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
2291                                                      SelectionDAG &DAG) const {
2292
2293   SmallVector<SDValue, 8> Ops;
2294   for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
2295     if (!isFrameIndexOp(Node->getOperand(i))) {
2296       Ops.push_back(Node->getOperand(i));
2297       continue;
2298     }
2299
2300     SDLoc DL(Node);
2301     Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
2302                                      Node->getOperand(i).getValueType(),
2303                                      Node->getOperand(i)), 0));
2304   }
2305
2306   DAG.UpdateNodeOperands(Node, Ops);
2307 }
2308
2309 /// \brief Fold the instructions after selecting them.
2310 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
2311                                           SelectionDAG &DAG) const {
2312   const SIInstrInfo *TII =
2313       static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
2314
2315   if (TII->isMIMG(Node->getMachineOpcode()))
2316     adjustWritemask(Node, DAG);
2317
2318   if (Node->getMachineOpcode() == AMDGPU::INSERT_SUBREG ||
2319       Node->getMachineOpcode() == AMDGPU::REG_SEQUENCE) {
2320     legalizeTargetIndependentNode(Node, DAG);
2321     return Node;
2322   }
2323   return Node;
2324 }
2325
2326 /// \brief Assign the register class depending on the number of
2327 /// bits set in the writemask
2328 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
2329                                                      SDNode *Node) const {
2330   const SIInstrInfo *TII =
2331       static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
2332
2333   MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
2334
2335   if (TII->isVOP3(MI->getOpcode())) {
2336     // Make sure constant bus requirements are respected.
2337     TII->legalizeOperandsVOP3(MRI, MI);
2338     return;
2339   }
2340
2341   if (TII->isMIMG(*MI)) {
2342     unsigned VReg = MI->getOperand(0).getReg();
2343     unsigned Writemask = MI->getOperand(1).getImm();
2344     unsigned BitsSet = 0;
2345     for (unsigned i = 0; i < 4; ++i)
2346       BitsSet += Writemask & (1 << i) ? 1 : 0;
2347
2348     const TargetRegisterClass *RC;
2349     switch (BitsSet) {
2350     default: return;
2351     case 1:  RC = &AMDGPU::VGPR_32RegClass; break;
2352     case 2:  RC = &AMDGPU::VReg_64RegClass; break;
2353     case 3:  RC = &AMDGPU::VReg_96RegClass; break;
2354     }
2355
2356     unsigned NewOpcode = TII->getMaskedMIMGOp(MI->getOpcode(), BitsSet);
2357     MI->setDesc(TII->get(NewOpcode));
2358     MRI.setRegClass(VReg, RC);
2359     return;
2360   }
2361
2362   // Replace unused atomics with the no return version.
2363   int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI->getOpcode());
2364   if (NoRetAtomicOp != -1) {
2365     if (!Node->hasAnyUseOfValue(0)) {
2366       MI->setDesc(TII->get(NoRetAtomicOp));
2367       MI->RemoveOperand(0);
2368     }
2369
2370     return;
2371   }
2372 }
2373
2374 static SDValue buildSMovImm32(SelectionDAG &DAG, SDLoc DL, uint64_t Val) {
2375   SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
2376   return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
2377 }
2378
2379 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
2380                                                 SDLoc DL,
2381                                                 SDValue Ptr) const {
2382   const SIInstrInfo *TII =
2383     static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
2384
2385   // Build the half of the subregister with the constants before building the
2386   // full 128-bit register. If we are building multiple resource descriptors,
2387   // this will allow CSEing of the 2-component register.
2388   const SDValue Ops0[] = {
2389     DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
2390     buildSMovImm32(DAG, DL, 0),
2391     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
2392     buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
2393     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
2394   };
2395
2396   SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
2397                                                 MVT::v2i32, Ops0), 0);
2398
2399   // Combine the constants and the pointer.
2400   const SDValue Ops1[] = {
2401     DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
2402     Ptr,
2403     DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
2404     SubRegHi,
2405     DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
2406   };
2407
2408   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
2409 }
2410
2411 /// \brief Return a resource descriptor with the 'Add TID' bit enabled
2412 ///        The TID (Thread ID) is multiplied by the stride value (bits [61:48]
2413 ///        of the resource descriptor) to create an offset, which is added to
2414 ///        the resource pointer.
2415 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG,
2416                                            SDLoc DL,
2417                                            SDValue Ptr,
2418                                            uint32_t RsrcDword1,
2419                                            uint64_t RsrcDword2And3) const {
2420   SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
2421   SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
2422   if (RsrcDword1) {
2423     PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
2424                                      DAG.getConstant(RsrcDword1, DL, MVT::i32)),
2425                     0);
2426   }
2427
2428   SDValue DataLo = buildSMovImm32(DAG, DL,
2429                                   RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
2430   SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
2431
2432   const SDValue Ops[] = {
2433     DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
2434     PtrLo,
2435     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
2436     PtrHi,
2437     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
2438     DataLo,
2439     DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
2440     DataHi,
2441     DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
2442   };
2443
2444   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
2445 }
2446
2447 SDValue SITargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
2448                                                const TargetRegisterClass *RC,
2449                                                unsigned Reg, EVT VT) const {
2450   SDValue VReg = AMDGPUTargetLowering::CreateLiveInRegister(DAG, RC, Reg, VT);
2451
2452   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(DAG.getEntryNode()),
2453                             cast<RegisterSDNode>(VReg)->getReg(), VT);
2454 }
2455
2456 //===----------------------------------------------------------------------===//
2457 //                         SI Inline Assembly Support
2458 //===----------------------------------------------------------------------===//
2459
2460 std::pair<unsigned, const TargetRegisterClass *>
2461 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
2462                                                StringRef Constraint,
2463                                                MVT VT) const {
2464
2465   if (Constraint.size() == 1) {
2466     switch (Constraint[0]) {
2467     case 's':
2468     case 'r':
2469       switch (VT.getSizeInBits()) {
2470       default:
2471         return std::make_pair(0U, nullptr);
2472       case 32:
2473         return std::make_pair(0U, &AMDGPU::SGPR_32RegClass);
2474       case 64:
2475         return std::make_pair(0U, &AMDGPU::SGPR_64RegClass);
2476       case 128:
2477         return std::make_pair(0U, &AMDGPU::SReg_128RegClass);
2478       case 256:
2479         return std::make_pair(0U, &AMDGPU::SReg_256RegClass);
2480       }
2481
2482     case 'v':
2483       switch (VT.getSizeInBits()) {
2484       default:
2485         return std::make_pair(0U, nullptr);
2486       case 32:
2487         return std::make_pair(0U, &AMDGPU::VGPR_32RegClass);
2488       case 64:
2489         return std::make_pair(0U, &AMDGPU::VReg_64RegClass);
2490       case 96:
2491         return std::make_pair(0U, &AMDGPU::VReg_96RegClass);
2492       case 128:
2493         return std::make_pair(0U, &AMDGPU::VReg_128RegClass);
2494       case 256:
2495         return std::make_pair(0U, &AMDGPU::VReg_256RegClass);
2496       case 512:
2497         return std::make_pair(0U, &AMDGPU::VReg_512RegClass);
2498       }
2499     }
2500   }
2501
2502   if (Constraint.size() > 1) {
2503     const TargetRegisterClass *RC = nullptr;
2504     if (Constraint[1] == 'v') {
2505       RC = &AMDGPU::VGPR_32RegClass;
2506     } else if (Constraint[1] == 's') {
2507       RC = &AMDGPU::SGPR_32RegClass;
2508     }
2509
2510     if (RC) {
2511       uint32_t Idx;
2512       bool Failed = Constraint.substr(2).getAsInteger(10, Idx);
2513       if (!Failed && Idx < RC->getNumRegs())
2514         return std::make_pair(RC->getRegister(Idx), RC);
2515     }
2516   }
2517   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
2518 }
2519
2520 SITargetLowering::ConstraintType
2521 SITargetLowering::getConstraintType(StringRef Constraint) const {
2522   if (Constraint.size() == 1) {
2523     switch (Constraint[0]) {
2524     default: break;
2525     case 's':
2526     case 'v':
2527       return C_RegisterClass;
2528     }
2529   }
2530   return TargetLowering::getConstraintType(Constraint);
2531 }