Disable AArch64 fast-isel on big-endian call vector returns.
[oota-llvm.git] / lib / Target / AArch64 / AArch64FastISel.cpp
1 //===-- AArch6464FastISel.cpp - AArch64 FastISel implementation -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the AArch64-specific support for the FastISel class. Some
11 // of the target-specific code is generated by tablegen in the file
12 // AArch64GenFastISel.inc, which is #included here.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "AArch64.h"
17 #include "AArch64CallingConvention.h"
18 #include "AArch64Subtarget.h"
19 #include "AArch64TargetMachine.h"
20 #include "MCTargetDesc/AArch64AddressingModes.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/CodeGen/CallingConvLower.h"
23 #include "llvm/CodeGen/FastISel.h"
24 #include "llvm/CodeGen/FunctionLoweringInfo.h"
25 #include "llvm/CodeGen/MachineConstantPool.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/IR/CallingConv.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/GetElementPtrTypeIterator.h"
34 #include "llvm/IR/GlobalAlias.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/Support/CommandLine.h"
40 using namespace llvm;
41
42 namespace {
43
44 class AArch64FastISel final : public FastISel {
45   class Address {
46   public:
47     typedef enum {
48       RegBase,
49       FrameIndexBase
50     } BaseKind;
51
52   private:
53     BaseKind Kind;
54     AArch64_AM::ShiftExtendType ExtType;
55     union {
56       unsigned Reg;
57       int FI;
58     } Base;
59     unsigned OffsetReg;
60     unsigned Shift;
61     int64_t Offset;
62     const GlobalValue *GV;
63
64   public:
65     Address() : Kind(RegBase), ExtType(AArch64_AM::InvalidShiftExtend),
66       OffsetReg(0), Shift(0), Offset(0), GV(nullptr) { Base.Reg = 0; }
67     void setKind(BaseKind K) { Kind = K; }
68     BaseKind getKind() const { return Kind; }
69     void setExtendType(AArch64_AM::ShiftExtendType E) { ExtType = E; }
70     AArch64_AM::ShiftExtendType getExtendType() const { return ExtType; }
71     bool isRegBase() const { return Kind == RegBase; }
72     bool isFIBase() const { return Kind == FrameIndexBase; }
73     void setReg(unsigned Reg) {
74       assert(isRegBase() && "Invalid base register access!");
75       Base.Reg = Reg;
76     }
77     unsigned getReg() const {
78       assert(isRegBase() && "Invalid base register access!");
79       return Base.Reg;
80     }
81     void setOffsetReg(unsigned Reg) {
82       OffsetReg = Reg;
83     }
84     unsigned getOffsetReg() const {
85       return OffsetReg;
86     }
87     void setFI(unsigned FI) {
88       assert(isFIBase() && "Invalid base frame index  access!");
89       Base.FI = FI;
90     }
91     unsigned getFI() const {
92       assert(isFIBase() && "Invalid base frame index access!");
93       return Base.FI;
94     }
95     void setOffset(int64_t O) { Offset = O; }
96     int64_t getOffset() { return Offset; }
97     void setShift(unsigned S) { Shift = S; }
98     unsigned getShift() { return Shift; }
99
100     void setGlobalValue(const GlobalValue *G) { GV = G; }
101     const GlobalValue *getGlobalValue() { return GV; }
102   };
103
104   /// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can
105   /// make the right decision when generating code for different targets.
106   const AArch64Subtarget *Subtarget;
107   LLVMContext *Context;
108
109   bool fastLowerArguments() override;
110   bool fastLowerCall(CallLoweringInfo &CLI) override;
111   bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
112
113 private:
114   // Selection routines.
115   bool selectAddSub(const Instruction *I);
116   bool selectLogicalOp(const Instruction *I);
117   bool selectLoad(const Instruction *I);
118   bool selectStore(const Instruction *I);
119   bool selectBranch(const Instruction *I);
120   bool selectIndirectBr(const Instruction *I);
121   bool selectCmp(const Instruction *I);
122   bool selectSelect(const Instruction *I);
123   bool selectFPExt(const Instruction *I);
124   bool selectFPTrunc(const Instruction *I);
125   bool selectFPToInt(const Instruction *I, bool Signed);
126   bool selectIntToFP(const Instruction *I, bool Signed);
127   bool selectRem(const Instruction *I, unsigned ISDOpcode);
128   bool selectRet(const Instruction *I);
129   bool selectTrunc(const Instruction *I);
130   bool selectIntExt(const Instruction *I);
131   bool selectMul(const Instruction *I);
132   bool selectShift(const Instruction *I);
133   bool selectBitCast(const Instruction *I);
134   bool selectFRem(const Instruction *I);
135   bool selectSDiv(const Instruction *I);
136   bool selectGetElementPtr(const Instruction *I);
137
138   // Utility helper routines.
139   bool isTypeLegal(Type *Ty, MVT &VT);
140   bool isTypeSupported(Type *Ty, MVT &VT, bool IsVectorAllowed = false);
141   bool isValueAvailable(const Value *V) const;
142   bool computeAddress(const Value *Obj, Address &Addr, Type *Ty = nullptr);
143   bool computeCallAddress(const Value *V, Address &Addr);
144   bool simplifyAddress(Address &Addr, MVT VT);
145   void addLoadStoreOperands(Address &Addr, const MachineInstrBuilder &MIB,
146                             unsigned Flags, unsigned ScaleFactor,
147                             MachineMemOperand *MMO);
148   bool isMemCpySmall(uint64_t Len, unsigned Alignment);
149   bool tryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
150                           unsigned Alignment);
151   bool foldXALUIntrinsic(AArch64CC::CondCode &CC, const Instruction *I,
152                          const Value *Cond);
153   bool optimizeIntExtLoad(const Instruction *I, MVT RetVT, MVT SrcVT);
154   bool optimizeSelect(const SelectInst *SI);
155   std::pair<unsigned, bool> getRegForGEPIndex(const Value *Idx);
156
157   // Emit helper routines.
158   unsigned emitAddSub(bool UseAdd, MVT RetVT, const Value *LHS,
159                       const Value *RHS, bool SetFlags = false,
160                       bool WantResult = true,  bool IsZExt = false);
161   unsigned emitAddSub_rr(bool UseAdd, MVT RetVT, unsigned LHSReg,
162                          bool LHSIsKill, unsigned RHSReg, bool RHSIsKill,
163                          bool SetFlags = false, bool WantResult = true);
164   unsigned emitAddSub_ri(bool UseAdd, MVT RetVT, unsigned LHSReg,
165                          bool LHSIsKill, uint64_t Imm, bool SetFlags = false,
166                          bool WantResult = true);
167   unsigned emitAddSub_rs(bool UseAdd, MVT RetVT, unsigned LHSReg,
168                          bool LHSIsKill, unsigned RHSReg, bool RHSIsKill,
169                          AArch64_AM::ShiftExtendType ShiftType,
170                          uint64_t ShiftImm, bool SetFlags = false,
171                          bool WantResult = true);
172   unsigned emitAddSub_rx(bool UseAdd, MVT RetVT, unsigned LHSReg,
173                          bool LHSIsKill, unsigned RHSReg, bool RHSIsKill,
174                           AArch64_AM::ShiftExtendType ExtType,
175                           uint64_t ShiftImm, bool SetFlags = false,
176                          bool WantResult = true);
177
178   // Emit functions.
179   bool emitCompareAndBranch(const BranchInst *BI);
180   bool emitCmp(const Value *LHS, const Value *RHS, bool IsZExt);
181   bool emitICmp(MVT RetVT, const Value *LHS, const Value *RHS, bool IsZExt);
182   bool emitICmp_ri(MVT RetVT, unsigned LHSReg, bool LHSIsKill, uint64_t Imm);
183   bool emitFCmp(MVT RetVT, const Value *LHS, const Value *RHS);
184   unsigned emitLoad(MVT VT, MVT ResultVT, Address Addr, bool WantZExt = true,
185                     MachineMemOperand *MMO = nullptr);
186   bool emitStore(MVT VT, unsigned SrcReg, Address Addr,
187                  MachineMemOperand *MMO = nullptr);
188   unsigned emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
189   unsigned emiti1Ext(unsigned SrcReg, MVT DestVT, bool isZExt);
190   unsigned emitAdd(MVT RetVT, const Value *LHS, const Value *RHS,
191                    bool SetFlags = false, bool WantResult = true,
192                    bool IsZExt = false);
193   unsigned emitAdd_ri_(MVT VT, unsigned Op0, bool Op0IsKill, int64_t Imm);
194   unsigned emitSub(MVT RetVT, const Value *LHS, const Value *RHS,
195                    bool SetFlags = false, bool WantResult = true,
196                    bool IsZExt = false);
197   unsigned emitSubs_rr(MVT RetVT, unsigned LHSReg, bool LHSIsKill,
198                        unsigned RHSReg, bool RHSIsKill, bool WantResult = true);
199   unsigned emitSubs_rs(MVT RetVT, unsigned LHSReg, bool LHSIsKill,
200                        unsigned RHSReg, bool RHSIsKill,
201                        AArch64_AM::ShiftExtendType ShiftType, uint64_t ShiftImm,
202                        bool WantResult = true);
203   unsigned emitLogicalOp(unsigned ISDOpc, MVT RetVT, const Value *LHS,
204                          const Value *RHS);
205   unsigned emitLogicalOp_ri(unsigned ISDOpc, MVT RetVT, unsigned LHSReg,
206                             bool LHSIsKill, uint64_t Imm);
207   unsigned emitLogicalOp_rs(unsigned ISDOpc, MVT RetVT, unsigned LHSReg,
208                             bool LHSIsKill, unsigned RHSReg, bool RHSIsKill,
209                             uint64_t ShiftImm);
210   unsigned emitAnd_ri(MVT RetVT, unsigned LHSReg, bool LHSIsKill, uint64_t Imm);
211   unsigned emitMul_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
212                       unsigned Op1, bool Op1IsKill);
213   unsigned emitSMULL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
214                         unsigned Op1, bool Op1IsKill);
215   unsigned emitUMULL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
216                         unsigned Op1, bool Op1IsKill);
217   unsigned emitLSL_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
218                       unsigned Op1Reg, bool Op1IsKill);
219   unsigned emitLSL_ri(MVT RetVT, MVT SrcVT, unsigned Op0Reg, bool Op0IsKill,
220                       uint64_t Imm, bool IsZExt = true);
221   unsigned emitLSR_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
222                       unsigned Op1Reg, bool Op1IsKill);
223   unsigned emitLSR_ri(MVT RetVT, MVT SrcVT, unsigned Op0Reg, bool Op0IsKill,
224                       uint64_t Imm, bool IsZExt = true);
225   unsigned emitASR_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
226                       unsigned Op1Reg, bool Op1IsKill);
227   unsigned emitASR_ri(MVT RetVT, MVT SrcVT, unsigned Op0Reg, bool Op0IsKill,
228                       uint64_t Imm, bool IsZExt = false);
229
230   unsigned materializeInt(const ConstantInt *CI, MVT VT);
231   unsigned materializeFP(const ConstantFP *CFP, MVT VT);
232   unsigned materializeGV(const GlobalValue *GV);
233
234   // Call handling routines.
235 private:
236   CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const;
237   bool processCallArgs(CallLoweringInfo &CLI, SmallVectorImpl<MVT> &ArgVTs,
238                        unsigned &NumBytes);
239   bool finishCall(CallLoweringInfo &CLI, MVT RetVT, unsigned NumBytes);
240
241 public:
242   // Backend specific FastISel code.
243   unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
244   unsigned fastMaterializeConstant(const Constant *C) override;
245   unsigned fastMaterializeFloatZero(const ConstantFP* CF) override;
246
247   explicit AArch64FastISel(FunctionLoweringInfo &FuncInfo,
248                            const TargetLibraryInfo *LibInfo)
249       : FastISel(FuncInfo, LibInfo, /*SkipTargetIndependentISel=*/true) {
250     Subtarget =
251         &static_cast<const AArch64Subtarget &>(FuncInfo.MF->getSubtarget());
252     Context = &FuncInfo.Fn->getContext();
253   }
254
255   bool fastSelectInstruction(const Instruction *I) override;
256
257 #include "AArch64GenFastISel.inc"
258 };
259
260 } // end anonymous namespace
261
262 #include "AArch64GenCallingConv.inc"
263
264 /// \brief Check if the sign-/zero-extend will be a noop.
265 static bool isIntExtFree(const Instruction *I) {
266   assert((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
267          "Unexpected integer extend instruction.");
268   assert(!I->getType()->isVectorTy() && I->getType()->isIntegerTy() &&
269          "Unexpected value type.");
270   bool IsZExt = isa<ZExtInst>(I);
271
272   if (const auto *LI = dyn_cast<LoadInst>(I->getOperand(0)))
273     if (LI->hasOneUse())
274       return true;
275
276   if (const auto *Arg = dyn_cast<Argument>(I->getOperand(0)))
277     if ((IsZExt && Arg->hasZExtAttr()) || (!IsZExt && Arg->hasSExtAttr()))
278       return true;
279
280   return false;
281 }
282
283 /// \brief Determine the implicit scale factor that is applied by a memory
284 /// operation for a given value type.
285 static unsigned getImplicitScaleFactor(MVT VT) {
286   switch (VT.SimpleTy) {
287   default:
288     return 0;    // invalid
289   case MVT::i1:  // fall-through
290   case MVT::i8:
291     return 1;
292   case MVT::i16:
293     return 2;
294   case MVT::i32: // fall-through
295   case MVT::f32:
296     return 4;
297   case MVT::i64: // fall-through
298   case MVT::f64:
299     return 8;
300   }
301 }
302
303 CCAssignFn *AArch64FastISel::CCAssignFnForCall(CallingConv::ID CC) const {
304   if (CC == CallingConv::WebKit_JS)
305     return CC_AArch64_WebKit_JS;
306   if (CC == CallingConv::GHC)
307     return CC_AArch64_GHC;
308   return Subtarget->isTargetDarwin() ? CC_AArch64_DarwinPCS : CC_AArch64_AAPCS;
309 }
310
311 unsigned AArch64FastISel::fastMaterializeAlloca(const AllocaInst *AI) {
312   assert(TLI.getValueType(AI->getType(), true) == MVT::i64 &&
313          "Alloca should always return a pointer.");
314
315   // Don't handle dynamic allocas.
316   if (!FuncInfo.StaticAllocaMap.count(AI))
317     return 0;
318
319   DenseMap<const AllocaInst *, int>::iterator SI =
320       FuncInfo.StaticAllocaMap.find(AI);
321
322   if (SI != FuncInfo.StaticAllocaMap.end()) {
323     unsigned ResultReg = createResultReg(&AArch64::GPR64spRegClass);
324     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri),
325             ResultReg)
326         .addFrameIndex(SI->second)
327         .addImm(0)
328         .addImm(0);
329     return ResultReg;
330   }
331
332   return 0;
333 }
334
335 unsigned AArch64FastISel::materializeInt(const ConstantInt *CI, MVT VT) {
336   if (VT > MVT::i64)
337     return 0;
338
339   if (!CI->isZero())
340     return fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
341
342   // Create a copy from the zero register to materialize a "0" value.
343   const TargetRegisterClass *RC = (VT == MVT::i64) ? &AArch64::GPR64RegClass
344                                                    : &AArch64::GPR32RegClass;
345   unsigned ZeroReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR;
346   unsigned ResultReg = createResultReg(RC);
347   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
348           ResultReg).addReg(ZeroReg, getKillRegState(true));
349   return ResultReg;
350 }
351
352 unsigned AArch64FastISel::materializeFP(const ConstantFP *CFP, MVT VT) {
353   // Positive zero (+0.0) has to be materialized with a fmov from the zero
354   // register, because the immediate version of fmov cannot encode zero.
355   if (CFP->isNullValue())
356     return fastMaterializeFloatZero(CFP);
357
358   if (VT != MVT::f32 && VT != MVT::f64)
359     return 0;
360
361   const APFloat Val = CFP->getValueAPF();
362   bool Is64Bit = (VT == MVT::f64);
363   // This checks to see if we can use FMOV instructions to materialize
364   // a constant, otherwise we have to materialize via the constant pool.
365   if (TLI.isFPImmLegal(Val, VT)) {
366     int Imm =
367         Is64Bit ? AArch64_AM::getFP64Imm(Val) : AArch64_AM::getFP32Imm(Val);
368     assert((Imm != -1) && "Cannot encode floating-point constant.");
369     unsigned Opc = Is64Bit ? AArch64::FMOVDi : AArch64::FMOVSi;
370     return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
371   }
372
373   // For the MachO large code model materialize the FP constant in code.
374   if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
375     unsigned Opc1 = Is64Bit ? AArch64::MOVi64imm : AArch64::MOVi32imm;
376     const TargetRegisterClass *RC = Is64Bit ?
377         &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
378
379     unsigned TmpReg = createResultReg(RC);
380     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc1), TmpReg)
381         .addImm(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
382
383     unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
384     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
385             TII.get(TargetOpcode::COPY), ResultReg)
386         .addReg(TmpReg, getKillRegState(true));
387
388     return ResultReg;
389   }
390
391   // Materialize via constant pool.  MachineConstantPool wants an explicit
392   // alignment.
393   unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
394   if (Align == 0)
395     Align = DL.getTypeAllocSize(CFP->getType());
396
397   unsigned CPI = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
398   unsigned ADRPReg = createResultReg(&AArch64::GPR64commonRegClass);
399   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
400           ADRPReg).addConstantPoolIndex(CPI, 0, AArch64II::MO_PAGE);
401
402   unsigned Opc = Is64Bit ? AArch64::LDRDui : AArch64::LDRSui;
403   unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
404   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
405       .addReg(ADRPReg)
406       .addConstantPoolIndex(CPI, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
407   return ResultReg;
408 }
409
410 unsigned AArch64FastISel::materializeGV(const GlobalValue *GV) {
411   // We can't handle thread-local variables quickly yet.
412   if (GV->isThreadLocal())
413     return 0;
414
415   // MachO still uses GOT for large code-model accesses, but ELF requires
416   // movz/movk sequences, which FastISel doesn't handle yet.
417   if (TM.getCodeModel() != CodeModel::Small && !Subtarget->isTargetMachO())
418     return 0;
419
420   unsigned char OpFlags = Subtarget->ClassifyGlobalReference(GV, TM);
421
422   EVT DestEVT = TLI.getValueType(GV->getType(), true);
423   if (!DestEVT.isSimple())
424     return 0;
425
426   unsigned ADRPReg = createResultReg(&AArch64::GPR64commonRegClass);
427   unsigned ResultReg;
428
429   if (OpFlags & AArch64II::MO_GOT) {
430     // ADRP + LDRX
431     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
432             ADRPReg)
433       .addGlobalAddress(GV, 0, AArch64II::MO_GOT | AArch64II::MO_PAGE);
434
435     ResultReg = createResultReg(&AArch64::GPR64RegClass);
436     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::LDRXui),
437             ResultReg)
438       .addReg(ADRPReg)
439       .addGlobalAddress(GV, 0, AArch64II::MO_GOT | AArch64II::MO_PAGEOFF |
440                         AArch64II::MO_NC);
441   } else if (OpFlags & AArch64II::MO_CONSTPOOL) {
442     // We can't handle addresses loaded from a constant pool quickly yet.
443     return 0;
444   } else {
445     // ADRP + ADDX
446     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
447             ADRPReg)
448       .addGlobalAddress(GV, 0, AArch64II::MO_PAGE);
449
450     ResultReg = createResultReg(&AArch64::GPR64spRegClass);
451     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri),
452             ResultReg)
453       .addReg(ADRPReg)
454       .addGlobalAddress(GV, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC)
455       .addImm(0);
456   }
457   return ResultReg;
458 }
459
460 unsigned AArch64FastISel::fastMaterializeConstant(const Constant *C) {
461   EVT CEVT = TLI.getValueType(C->getType(), true);
462
463   // Only handle simple types.
464   if (!CEVT.isSimple())
465     return 0;
466   MVT VT = CEVT.getSimpleVT();
467
468   if (const auto *CI = dyn_cast<ConstantInt>(C))
469     return materializeInt(CI, VT);
470   else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
471     return materializeFP(CFP, VT);
472   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
473     return materializeGV(GV);
474
475   return 0;
476 }
477
478 unsigned AArch64FastISel::fastMaterializeFloatZero(const ConstantFP* CFP) {
479   assert(CFP->isNullValue() &&
480          "Floating-point constant is not a positive zero.");
481   MVT VT;
482   if (!isTypeLegal(CFP->getType(), VT))
483     return 0;
484
485   if (VT != MVT::f32 && VT != MVT::f64)
486     return 0;
487
488   bool Is64Bit = (VT == MVT::f64);
489   unsigned ZReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
490   unsigned Opc = Is64Bit ? AArch64::FMOVXDr : AArch64::FMOVWSr;
491   return fastEmitInst_r(Opc, TLI.getRegClassFor(VT), ZReg, /*IsKill=*/true);
492 }
493
494 /// \brief Check if the multiply is by a power-of-2 constant.
495 static bool isMulPowOf2(const Value *I) {
496   if (const auto *MI = dyn_cast<MulOperator>(I)) {
497     if (const auto *C = dyn_cast<ConstantInt>(MI->getOperand(0)))
498       if (C->getValue().isPowerOf2())
499         return true;
500     if (const auto *C = dyn_cast<ConstantInt>(MI->getOperand(1)))
501       if (C->getValue().isPowerOf2())
502         return true;
503   }
504   return false;
505 }
506
507 // Computes the address to get to an object.
508 bool AArch64FastISel::computeAddress(const Value *Obj, Address &Addr, Type *Ty)
509 {
510   const User *U = nullptr;
511   unsigned Opcode = Instruction::UserOp1;
512   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
513     // Don't walk into other basic blocks unless the object is an alloca from
514     // another block, otherwise it may not have a virtual register assigned.
515     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
516         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
517       Opcode = I->getOpcode();
518       U = I;
519     }
520   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
521     Opcode = C->getOpcode();
522     U = C;
523   }
524
525   if (const PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
526     if (Ty->getAddressSpace() > 255)
527       // Fast instruction selection doesn't support the special
528       // address spaces.
529       return false;
530
531   switch (Opcode) {
532   default:
533     break;
534   case Instruction::BitCast: {
535     // Look through bitcasts.
536     return computeAddress(U->getOperand(0), Addr, Ty);
537   }
538   case Instruction::IntToPtr: {
539     // Look past no-op inttoptrs.
540     if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
541       return computeAddress(U->getOperand(0), Addr, Ty);
542     break;
543   }
544   case Instruction::PtrToInt: {
545     // Look past no-op ptrtoints.
546     if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
547       return computeAddress(U->getOperand(0), Addr, Ty);
548     break;
549   }
550   case Instruction::GetElementPtr: {
551     Address SavedAddr = Addr;
552     uint64_t TmpOffset = Addr.getOffset();
553
554     // Iterate through the GEP folding the constants into offsets where
555     // we can.
556     gep_type_iterator GTI = gep_type_begin(U);
557     for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e;
558          ++i, ++GTI) {
559       const Value *Op = *i;
560       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
561         const StructLayout *SL = DL.getStructLayout(STy);
562         unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
563         TmpOffset += SL->getElementOffset(Idx);
564       } else {
565         uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
566         for (;;) {
567           if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
568             // Constant-offset addressing.
569             TmpOffset += CI->getSExtValue() * S;
570             break;
571           }
572           if (canFoldAddIntoGEP(U, Op)) {
573             // A compatible add with a constant operand. Fold the constant.
574             ConstantInt *CI =
575                 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
576             TmpOffset += CI->getSExtValue() * S;
577             // Iterate on the other operand.
578             Op = cast<AddOperator>(Op)->getOperand(0);
579             continue;
580           }
581           // Unsupported
582           goto unsupported_gep;
583         }
584       }
585     }
586
587     // Try to grab the base operand now.
588     Addr.setOffset(TmpOffset);
589     if (computeAddress(U->getOperand(0), Addr, Ty))
590       return true;
591
592     // We failed, restore everything and try the other options.
593     Addr = SavedAddr;
594
595   unsupported_gep:
596     break;
597   }
598   case Instruction::Alloca: {
599     const AllocaInst *AI = cast<AllocaInst>(Obj);
600     DenseMap<const AllocaInst *, int>::iterator SI =
601         FuncInfo.StaticAllocaMap.find(AI);
602     if (SI != FuncInfo.StaticAllocaMap.end()) {
603       Addr.setKind(Address::FrameIndexBase);
604       Addr.setFI(SI->second);
605       return true;
606     }
607     break;
608   }
609   case Instruction::Add: {
610     // Adds of constants are common and easy enough.
611     const Value *LHS = U->getOperand(0);
612     const Value *RHS = U->getOperand(1);
613
614     if (isa<ConstantInt>(LHS))
615       std::swap(LHS, RHS);
616
617     if (const ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
618       Addr.setOffset(Addr.getOffset() + CI->getSExtValue());
619       return computeAddress(LHS, Addr, Ty);
620     }
621
622     Address Backup = Addr;
623     if (computeAddress(LHS, Addr, Ty) && computeAddress(RHS, Addr, Ty))
624       return true;
625     Addr = Backup;
626
627     break;
628   }
629   case Instruction::Sub: {
630     // Subs of constants are common and easy enough.
631     const Value *LHS = U->getOperand(0);
632     const Value *RHS = U->getOperand(1);
633
634     if (const ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
635       Addr.setOffset(Addr.getOffset() - CI->getSExtValue());
636       return computeAddress(LHS, Addr, Ty);
637     }
638     break;
639   }
640   case Instruction::Shl: {
641     if (Addr.getOffsetReg())
642       break;
643
644     const auto *CI = dyn_cast<ConstantInt>(U->getOperand(1));
645     if (!CI)
646       break;
647
648     unsigned Val = CI->getZExtValue();
649     if (Val < 1 || Val > 3)
650       break;
651
652     uint64_t NumBytes = 0;
653     if (Ty && Ty->isSized()) {
654       uint64_t NumBits = DL.getTypeSizeInBits(Ty);
655       NumBytes = NumBits / 8;
656       if (!isPowerOf2_64(NumBits))
657         NumBytes = 0;
658     }
659
660     if (NumBytes != (1ULL << Val))
661       break;
662
663     Addr.setShift(Val);
664     Addr.setExtendType(AArch64_AM::LSL);
665
666     const Value *Src = U->getOperand(0);
667     if (const auto *I = dyn_cast<Instruction>(Src))
668       if (FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB)
669         Src = I;
670
671     // Fold the zext or sext when it won't become a noop.
672     if (const auto *ZE = dyn_cast<ZExtInst>(Src)) {
673       if (!isIntExtFree(ZE) && ZE->getOperand(0)->getType()->isIntegerTy(32)) {
674           Addr.setExtendType(AArch64_AM::UXTW);
675           Src = ZE->getOperand(0);
676       }
677     } else if (const auto *SE = dyn_cast<SExtInst>(Src)) {
678       if (!isIntExtFree(SE) && SE->getOperand(0)->getType()->isIntegerTy(32)) {
679         Addr.setExtendType(AArch64_AM::SXTW);
680         Src = SE->getOperand(0);
681       }
682     }
683
684     if (const auto *AI = dyn_cast<BinaryOperator>(Src))
685       if (AI->getOpcode() == Instruction::And) {
686         const Value *LHS = AI->getOperand(0);
687         const Value *RHS = AI->getOperand(1);
688
689         if (const auto *C = dyn_cast<ConstantInt>(LHS))
690           if (C->getValue() == 0xffffffff)
691             std::swap(LHS, RHS);
692
693         if (const auto *C = dyn_cast<ConstantInt>(RHS))
694           if (C->getValue() == 0xffffffff) {
695             Addr.setExtendType(AArch64_AM::UXTW);
696             unsigned Reg = getRegForValue(LHS);
697             if (!Reg)
698               return false;
699             bool RegIsKill = hasTrivialKill(LHS);
700             Reg = fastEmitInst_extractsubreg(MVT::i32, Reg, RegIsKill,
701                                              AArch64::sub_32);
702             Addr.setOffsetReg(Reg);
703             return true;
704           }
705       }
706
707     unsigned Reg = getRegForValue(Src);
708     if (!Reg)
709       return false;
710     Addr.setOffsetReg(Reg);
711     return true;
712   }
713   case Instruction::Mul: {
714     if (Addr.getOffsetReg())
715       break;
716
717     if (!isMulPowOf2(U))
718       break;
719
720     const Value *LHS = U->getOperand(0);
721     const Value *RHS = U->getOperand(1);
722
723     // Canonicalize power-of-2 value to the RHS.
724     if (const auto *C = dyn_cast<ConstantInt>(LHS))
725       if (C->getValue().isPowerOf2())
726         std::swap(LHS, RHS);
727
728     assert(isa<ConstantInt>(RHS) && "Expected an ConstantInt.");
729     const auto *C = cast<ConstantInt>(RHS);
730     unsigned Val = C->getValue().logBase2();
731     if (Val < 1 || Val > 3)
732       break;
733
734     uint64_t NumBytes = 0;
735     if (Ty && Ty->isSized()) {
736       uint64_t NumBits = DL.getTypeSizeInBits(Ty);
737       NumBytes = NumBits / 8;
738       if (!isPowerOf2_64(NumBits))
739         NumBytes = 0;
740     }
741
742     if (NumBytes != (1ULL << Val))
743       break;
744
745     Addr.setShift(Val);
746     Addr.setExtendType(AArch64_AM::LSL);
747
748     const Value *Src = LHS;
749     if (const auto *I = dyn_cast<Instruction>(Src))
750       if (FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB)
751         Src = I;
752
753
754     // Fold the zext or sext when it won't become a noop.
755     if (const auto *ZE = dyn_cast<ZExtInst>(Src)) {
756       if (!isIntExtFree(ZE) && ZE->getOperand(0)->getType()->isIntegerTy(32)) {
757         Addr.setExtendType(AArch64_AM::UXTW);
758         Src = ZE->getOperand(0);
759       }
760     } else if (const auto *SE = dyn_cast<SExtInst>(Src)) {
761       if (!isIntExtFree(SE) && SE->getOperand(0)->getType()->isIntegerTy(32)) {
762         Addr.setExtendType(AArch64_AM::SXTW);
763         Src = SE->getOperand(0);
764       }
765     }
766
767     unsigned Reg = getRegForValue(Src);
768     if (!Reg)
769       return false;
770     Addr.setOffsetReg(Reg);
771     return true;
772   }
773   case Instruction::And: {
774     if (Addr.getOffsetReg())
775       break;
776
777     if (!Ty || DL.getTypeSizeInBits(Ty) != 8)
778       break;
779
780     const Value *LHS = U->getOperand(0);
781     const Value *RHS = U->getOperand(1);
782
783     if (const auto *C = dyn_cast<ConstantInt>(LHS))
784       if (C->getValue() == 0xffffffff)
785         std::swap(LHS, RHS);
786
787     if (const auto *C = dyn_cast<ConstantInt>(RHS))
788       if (C->getValue() == 0xffffffff) {
789         Addr.setShift(0);
790         Addr.setExtendType(AArch64_AM::LSL);
791         Addr.setExtendType(AArch64_AM::UXTW);
792
793         unsigned Reg = getRegForValue(LHS);
794         if (!Reg)
795           return false;
796         bool RegIsKill = hasTrivialKill(LHS);
797         Reg = fastEmitInst_extractsubreg(MVT::i32, Reg, RegIsKill,
798                                          AArch64::sub_32);
799         Addr.setOffsetReg(Reg);
800         return true;
801       }
802     break;
803   }
804   case Instruction::SExt:
805   case Instruction::ZExt: {
806     if (!Addr.getReg() || Addr.getOffsetReg())
807       break;
808
809     const Value *Src = nullptr;
810     // Fold the zext or sext when it won't become a noop.
811     if (const auto *ZE = dyn_cast<ZExtInst>(U)) {
812       if (!isIntExtFree(ZE) && ZE->getOperand(0)->getType()->isIntegerTy(32)) {
813         Addr.setExtendType(AArch64_AM::UXTW);
814         Src = ZE->getOperand(0);
815       }
816     } else if (const auto *SE = dyn_cast<SExtInst>(U)) {
817       if (!isIntExtFree(SE) && SE->getOperand(0)->getType()->isIntegerTy(32)) {
818         Addr.setExtendType(AArch64_AM::SXTW);
819         Src = SE->getOperand(0);
820       }
821     }
822
823     if (!Src)
824       break;
825
826     Addr.setShift(0);
827     unsigned Reg = getRegForValue(Src);
828     if (!Reg)
829       return false;
830     Addr.setOffsetReg(Reg);
831     return true;
832   }
833   } // end switch
834
835   if (Addr.isRegBase() && !Addr.getReg()) {
836     unsigned Reg = getRegForValue(Obj);
837     if (!Reg)
838       return false;
839     Addr.setReg(Reg);
840     return true;
841   }
842
843   if (!Addr.getOffsetReg()) {
844     unsigned Reg = getRegForValue(Obj);
845     if (!Reg)
846       return false;
847     Addr.setOffsetReg(Reg);
848     return true;
849   }
850
851   return false;
852 }
853
854 bool AArch64FastISel::computeCallAddress(const Value *V, Address &Addr) {
855   const User *U = nullptr;
856   unsigned Opcode = Instruction::UserOp1;
857   bool InMBB = true;
858
859   if (const auto *I = dyn_cast<Instruction>(V)) {
860     Opcode = I->getOpcode();
861     U = I;
862     InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
863   } else if (const auto *C = dyn_cast<ConstantExpr>(V)) {
864     Opcode = C->getOpcode();
865     U = C;
866   }
867
868   switch (Opcode) {
869   default: break;
870   case Instruction::BitCast:
871     // Look past bitcasts if its operand is in the same BB.
872     if (InMBB)
873       return computeCallAddress(U->getOperand(0), Addr);
874     break;
875   case Instruction::IntToPtr:
876     // Look past no-op inttoptrs if its operand is in the same BB.
877     if (InMBB &&
878         TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
879       return computeCallAddress(U->getOperand(0), Addr);
880     break;
881   case Instruction::PtrToInt:
882     // Look past no-op ptrtoints if its operand is in the same BB.
883     if (InMBB &&
884         TLI.getValueType(U->getType()) == TLI.getPointerTy())
885       return computeCallAddress(U->getOperand(0), Addr);
886     break;
887   }
888
889   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
890     Addr.setGlobalValue(GV);
891     return true;
892   }
893
894   // If all else fails, try to materialize the value in a register.
895   if (!Addr.getGlobalValue()) {
896     Addr.setReg(getRegForValue(V));
897     return Addr.getReg() != 0;
898   }
899
900   return false;
901 }
902
903
904 bool AArch64FastISel::isTypeLegal(Type *Ty, MVT &VT) {
905   EVT evt = TLI.getValueType(Ty, true);
906
907   // Only handle simple types.
908   if (evt == MVT::Other || !evt.isSimple())
909     return false;
910   VT = evt.getSimpleVT();
911
912   // This is a legal type, but it's not something we handle in fast-isel.
913   if (VT == MVT::f128)
914     return false;
915
916   // Handle all other legal types, i.e. a register that will directly hold this
917   // value.
918   return TLI.isTypeLegal(VT);
919 }
920
921 /// \brief Determine if the value type is supported by FastISel.
922 ///
923 /// FastISel for AArch64 can handle more value types than are legal. This adds
924 /// simple value type such as i1, i8, and i16.
925 bool AArch64FastISel::isTypeSupported(Type *Ty, MVT &VT, bool IsVectorAllowed) {
926   if (Ty->isVectorTy() && !IsVectorAllowed)
927     return false;
928
929   if (isTypeLegal(Ty, VT))
930     return true;
931
932   // If this is a type than can be sign or zero-extended to a basic operation
933   // go ahead and accept it now.
934   if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
935     return true;
936
937   return false;
938 }
939
940 bool AArch64FastISel::isValueAvailable(const Value *V) const {
941   if (!isa<Instruction>(V))
942     return true;
943
944   const auto *I = cast<Instruction>(V);
945   if (FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB)
946     return true;
947
948   return false;
949 }
950
951 bool AArch64FastISel::simplifyAddress(Address &Addr, MVT VT) {
952   unsigned ScaleFactor = getImplicitScaleFactor(VT);
953   if (!ScaleFactor)
954     return false;
955
956   bool ImmediateOffsetNeedsLowering = false;
957   bool RegisterOffsetNeedsLowering = false;
958   int64_t Offset = Addr.getOffset();
959   if (((Offset < 0) || (Offset & (ScaleFactor - 1))) && !isInt<9>(Offset))
960     ImmediateOffsetNeedsLowering = true;
961   else if (Offset > 0 && !(Offset & (ScaleFactor - 1)) &&
962            !isUInt<12>(Offset / ScaleFactor))
963     ImmediateOffsetNeedsLowering = true;
964
965   // Cannot encode an offset register and an immediate offset in the same
966   // instruction. Fold the immediate offset into the load/store instruction and
967   // emit an additonal add to take care of the offset register.
968   if (!ImmediateOffsetNeedsLowering && Addr.getOffset() && Addr.getOffsetReg())
969     RegisterOffsetNeedsLowering = true;
970
971   // Cannot encode zero register as base.
972   if (Addr.isRegBase() && Addr.getOffsetReg() && !Addr.getReg())
973     RegisterOffsetNeedsLowering = true;
974
975   // If this is a stack pointer and the offset needs to be simplified then put
976   // the alloca address into a register, set the base type back to register and
977   // continue. This should almost never happen.
978   if ((ImmediateOffsetNeedsLowering || Addr.getOffsetReg()) && Addr.isFIBase())
979   {
980     unsigned ResultReg = createResultReg(&AArch64::GPR64spRegClass);
981     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri),
982             ResultReg)
983       .addFrameIndex(Addr.getFI())
984       .addImm(0)
985       .addImm(0);
986     Addr.setKind(Address::RegBase);
987     Addr.setReg(ResultReg);
988   }
989
990   if (RegisterOffsetNeedsLowering) {
991     unsigned ResultReg = 0;
992     if (Addr.getReg()) {
993       if (Addr.getExtendType() == AArch64_AM::SXTW ||
994           Addr.getExtendType() == AArch64_AM::UXTW   )
995         ResultReg = emitAddSub_rx(/*UseAdd=*/true, MVT::i64, Addr.getReg(),
996                                   /*TODO:IsKill=*/false, Addr.getOffsetReg(),
997                                   /*TODO:IsKill=*/false, Addr.getExtendType(),
998                                   Addr.getShift());
999       else
1000         ResultReg = emitAddSub_rs(/*UseAdd=*/true, MVT::i64, Addr.getReg(),
1001                                   /*TODO:IsKill=*/false, Addr.getOffsetReg(),
1002                                   /*TODO:IsKill=*/false, AArch64_AM::LSL,
1003                                   Addr.getShift());
1004     } else {
1005       if (Addr.getExtendType() == AArch64_AM::UXTW)
1006         ResultReg = emitLSL_ri(MVT::i64, MVT::i32, Addr.getOffsetReg(),
1007                                /*Op0IsKill=*/false, Addr.getShift(),
1008                                /*IsZExt=*/true);
1009       else if (Addr.getExtendType() == AArch64_AM::SXTW)
1010         ResultReg = emitLSL_ri(MVT::i64, MVT::i32, Addr.getOffsetReg(),
1011                                /*Op0IsKill=*/false, Addr.getShift(),
1012                                /*IsZExt=*/false);
1013       else
1014         ResultReg = emitLSL_ri(MVT::i64, MVT::i64, Addr.getOffsetReg(),
1015                                /*Op0IsKill=*/false, Addr.getShift());
1016     }
1017     if (!ResultReg)
1018       return false;
1019
1020     Addr.setReg(ResultReg);
1021     Addr.setOffsetReg(0);
1022     Addr.setShift(0);
1023     Addr.setExtendType(AArch64_AM::InvalidShiftExtend);
1024   }
1025
1026   // Since the offset is too large for the load/store instruction get the
1027   // reg+offset into a register.
1028   if (ImmediateOffsetNeedsLowering) {
1029     unsigned ResultReg;
1030     if (Addr.getReg())
1031       // Try to fold the immediate into the add instruction.
1032       ResultReg = emitAdd_ri_(MVT::i64, Addr.getReg(), /*IsKill=*/false, Offset);
1033     else
1034       ResultReg = fastEmit_i(MVT::i64, MVT::i64, ISD::Constant, Offset);
1035
1036     if (!ResultReg)
1037       return false;
1038     Addr.setReg(ResultReg);
1039     Addr.setOffset(0);
1040   }
1041   return true;
1042 }
1043
1044 void AArch64FastISel::addLoadStoreOperands(Address &Addr,
1045                                            const MachineInstrBuilder &MIB,
1046                                            unsigned Flags,
1047                                            unsigned ScaleFactor,
1048                                            MachineMemOperand *MMO) {
1049   int64_t Offset = Addr.getOffset() / ScaleFactor;
1050   // Frame base works a bit differently. Handle it separately.
1051   if (Addr.isFIBase()) {
1052     int FI = Addr.getFI();
1053     // FIXME: We shouldn't be using getObjectSize/getObjectAlignment.  The size
1054     // and alignment should be based on the VT.
1055     MMO = FuncInfo.MF->getMachineMemOperand(
1056       MachinePointerInfo::getFixedStack(FI, Offset), Flags,
1057       MFI.getObjectSize(FI), MFI.getObjectAlignment(FI));
1058     // Now add the rest of the operands.
1059     MIB.addFrameIndex(FI).addImm(Offset);
1060   } else {
1061     assert(Addr.isRegBase() && "Unexpected address kind.");
1062     const MCInstrDesc &II = MIB->getDesc();
1063     unsigned Idx = (Flags & MachineMemOperand::MOStore) ? 1 : 0;
1064     Addr.setReg(
1065       constrainOperandRegClass(II, Addr.getReg(), II.getNumDefs()+Idx));
1066     Addr.setOffsetReg(
1067       constrainOperandRegClass(II, Addr.getOffsetReg(), II.getNumDefs()+Idx+1));
1068     if (Addr.getOffsetReg()) {
1069       assert(Addr.getOffset() == 0 && "Unexpected offset");
1070       bool IsSigned = Addr.getExtendType() == AArch64_AM::SXTW ||
1071                       Addr.getExtendType() == AArch64_AM::SXTX;
1072       MIB.addReg(Addr.getReg());
1073       MIB.addReg(Addr.getOffsetReg());
1074       MIB.addImm(IsSigned);
1075       MIB.addImm(Addr.getShift() != 0);
1076     } else
1077       MIB.addReg(Addr.getReg()).addImm(Offset);
1078   }
1079
1080   if (MMO)
1081     MIB.addMemOperand(MMO);
1082 }
1083
1084 unsigned AArch64FastISel::emitAddSub(bool UseAdd, MVT RetVT, const Value *LHS,
1085                                      const Value *RHS, bool SetFlags,
1086                                      bool WantResult,  bool IsZExt) {
1087   AArch64_AM::ShiftExtendType ExtendType = AArch64_AM::InvalidShiftExtend;
1088   bool NeedExtend = false;
1089   switch (RetVT.SimpleTy) {
1090   default:
1091     return 0;
1092   case MVT::i1:
1093     NeedExtend = true;
1094     break;
1095   case MVT::i8:
1096     NeedExtend = true;
1097     ExtendType = IsZExt ? AArch64_AM::UXTB : AArch64_AM::SXTB;
1098     break;
1099   case MVT::i16:
1100     NeedExtend = true;
1101     ExtendType = IsZExt ? AArch64_AM::UXTH : AArch64_AM::SXTH;
1102     break;
1103   case MVT::i32:  // fall-through
1104   case MVT::i64:
1105     break;
1106   }
1107   MVT SrcVT = RetVT;
1108   RetVT.SimpleTy = std::max(RetVT.SimpleTy, MVT::i32);
1109
1110   // Canonicalize immediates to the RHS first.
1111   if (UseAdd && isa<Constant>(LHS) && !isa<Constant>(RHS))
1112     std::swap(LHS, RHS);
1113
1114   // Canonicalize mul by power of 2 to the RHS.
1115   if (UseAdd && LHS->hasOneUse() && isValueAvailable(LHS))
1116     if (isMulPowOf2(LHS))
1117       std::swap(LHS, RHS);
1118
1119   // Canonicalize shift immediate to the RHS.
1120   if (UseAdd && LHS->hasOneUse() && isValueAvailable(LHS))
1121     if (const auto *SI = dyn_cast<BinaryOperator>(LHS))
1122       if (isa<ConstantInt>(SI->getOperand(1)))
1123         if (SI->getOpcode() == Instruction::Shl  ||
1124             SI->getOpcode() == Instruction::LShr ||
1125             SI->getOpcode() == Instruction::AShr   )
1126           std::swap(LHS, RHS);
1127
1128   unsigned LHSReg = getRegForValue(LHS);
1129   if (!LHSReg)
1130     return 0;
1131   bool LHSIsKill = hasTrivialKill(LHS);
1132
1133   if (NeedExtend)
1134     LHSReg = emitIntExt(SrcVT, LHSReg, RetVT, IsZExt);
1135
1136   unsigned ResultReg = 0;
1137   if (const auto *C = dyn_cast<ConstantInt>(RHS)) {
1138     uint64_t Imm = IsZExt ? C->getZExtValue() : C->getSExtValue();
1139     if (C->isNegative())
1140       ResultReg = emitAddSub_ri(!UseAdd, RetVT, LHSReg, LHSIsKill, -Imm,
1141                                 SetFlags, WantResult);
1142     else
1143       ResultReg = emitAddSub_ri(UseAdd, RetVT, LHSReg, LHSIsKill, Imm, SetFlags,
1144                                 WantResult);
1145   } else if (const auto *C = dyn_cast<Constant>(RHS))
1146     if (C->isNullValue())
1147       ResultReg = emitAddSub_ri(UseAdd, RetVT, LHSReg, LHSIsKill, 0, SetFlags,
1148                                 WantResult);
1149
1150   if (ResultReg)
1151     return ResultReg;
1152
1153   // Only extend the RHS within the instruction if there is a valid extend type.
1154   if (ExtendType != AArch64_AM::InvalidShiftExtend && RHS->hasOneUse() &&
1155       isValueAvailable(RHS)) {
1156     if (const auto *SI = dyn_cast<BinaryOperator>(RHS))
1157       if (const auto *C = dyn_cast<ConstantInt>(SI->getOperand(1)))
1158         if ((SI->getOpcode() == Instruction::Shl) && (C->getZExtValue() < 4)) {
1159           unsigned RHSReg = getRegForValue(SI->getOperand(0));
1160           if (!RHSReg)
1161             return 0;
1162           bool RHSIsKill = hasTrivialKill(SI->getOperand(0));
1163           return emitAddSub_rx(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg,
1164                                RHSIsKill, ExtendType, C->getZExtValue(),
1165                                SetFlags, WantResult);
1166         }
1167     unsigned RHSReg = getRegForValue(RHS);
1168     if (!RHSReg)
1169       return 0;
1170     bool RHSIsKill = hasTrivialKill(RHS);
1171     return emitAddSub_rx(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg, RHSIsKill,
1172                          ExtendType, 0, SetFlags, WantResult);
1173   }
1174
1175   // Check if the mul can be folded into the instruction.
1176   if (RHS->hasOneUse() && isValueAvailable(RHS))
1177     if (isMulPowOf2(RHS)) {
1178       const Value *MulLHS = cast<MulOperator>(RHS)->getOperand(0);
1179       const Value *MulRHS = cast<MulOperator>(RHS)->getOperand(1);
1180
1181       if (const auto *C = dyn_cast<ConstantInt>(MulLHS))
1182         if (C->getValue().isPowerOf2())
1183           std::swap(MulLHS, MulRHS);
1184
1185       assert(isa<ConstantInt>(MulRHS) && "Expected a ConstantInt.");
1186       uint64_t ShiftVal = cast<ConstantInt>(MulRHS)->getValue().logBase2();
1187       unsigned RHSReg = getRegForValue(MulLHS);
1188       if (!RHSReg)
1189         return 0;
1190       bool RHSIsKill = hasTrivialKill(MulLHS);
1191       return emitAddSub_rs(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg, RHSIsKill,
1192                            AArch64_AM::LSL, ShiftVal, SetFlags, WantResult);
1193     }
1194
1195   // Check if the shift can be folded into the instruction.
1196   if (RHS->hasOneUse() && isValueAvailable(RHS))
1197     if (const auto *SI = dyn_cast<BinaryOperator>(RHS)) {
1198       if (const auto *C = dyn_cast<ConstantInt>(SI->getOperand(1))) {
1199         AArch64_AM::ShiftExtendType ShiftType = AArch64_AM::InvalidShiftExtend;
1200         switch (SI->getOpcode()) {
1201         default: break;
1202         case Instruction::Shl:  ShiftType = AArch64_AM::LSL; break;
1203         case Instruction::LShr: ShiftType = AArch64_AM::LSR; break;
1204         case Instruction::AShr: ShiftType = AArch64_AM::ASR; break;
1205         }
1206         uint64_t ShiftVal = C->getZExtValue();
1207         if (ShiftType != AArch64_AM::InvalidShiftExtend) {
1208           unsigned RHSReg = getRegForValue(SI->getOperand(0));
1209           if (!RHSReg)
1210             return 0;
1211           bool RHSIsKill = hasTrivialKill(SI->getOperand(0));
1212           return emitAddSub_rs(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg,
1213                                RHSIsKill, ShiftType, ShiftVal, SetFlags,
1214                                WantResult);
1215         }
1216       }
1217     }
1218
1219   unsigned RHSReg = getRegForValue(RHS);
1220   if (!RHSReg)
1221     return 0;
1222   bool RHSIsKill = hasTrivialKill(RHS);
1223
1224   if (NeedExtend)
1225     RHSReg = emitIntExt(SrcVT, RHSReg, RetVT, IsZExt);
1226
1227   return emitAddSub_rr(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg, RHSIsKill,
1228                        SetFlags, WantResult);
1229 }
1230
1231 unsigned AArch64FastISel::emitAddSub_rr(bool UseAdd, MVT RetVT, unsigned LHSReg,
1232                                         bool LHSIsKill, unsigned RHSReg,
1233                                         bool RHSIsKill, bool SetFlags,
1234                                         bool WantResult) {
1235   assert(LHSReg && RHSReg && "Invalid register number.");
1236
1237   if (RetVT != MVT::i32 && RetVT != MVT::i64)
1238     return 0;
1239
1240   static const unsigned OpcTable[2][2][2] = {
1241     { { AArch64::SUBWrr,  AArch64::SUBXrr  },
1242       { AArch64::ADDWrr,  AArch64::ADDXrr  }  },
1243     { { AArch64::SUBSWrr, AArch64::SUBSXrr },
1244       { AArch64::ADDSWrr, AArch64::ADDSXrr }  }
1245   };
1246   bool Is64Bit = RetVT == MVT::i64;
1247   unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit];
1248   const TargetRegisterClass *RC =
1249       Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
1250   unsigned ResultReg;
1251   if (WantResult)
1252     ResultReg = createResultReg(RC);
1253   else
1254     ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
1255
1256   const MCInstrDesc &II = TII.get(Opc);
1257   LHSReg = constrainOperandRegClass(II, LHSReg, II.getNumDefs());
1258   RHSReg = constrainOperandRegClass(II, RHSReg, II.getNumDefs() + 1);
1259   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1260       .addReg(LHSReg, getKillRegState(LHSIsKill))
1261       .addReg(RHSReg, getKillRegState(RHSIsKill));
1262   return ResultReg;
1263 }
1264
1265 unsigned AArch64FastISel::emitAddSub_ri(bool UseAdd, MVT RetVT, unsigned LHSReg,
1266                                         bool LHSIsKill, uint64_t Imm,
1267                                         bool SetFlags, bool WantResult) {
1268   assert(LHSReg && "Invalid register number.");
1269
1270   if (RetVT != MVT::i32 && RetVT != MVT::i64)
1271     return 0;
1272
1273   unsigned ShiftImm;
1274   if (isUInt<12>(Imm))
1275     ShiftImm = 0;
1276   else if ((Imm & 0xfff000) == Imm) {
1277     ShiftImm = 12;
1278     Imm >>= 12;
1279   } else
1280     return 0;
1281
1282   static const unsigned OpcTable[2][2][2] = {
1283     { { AArch64::SUBWri,  AArch64::SUBXri  },
1284       { AArch64::ADDWri,  AArch64::ADDXri  }  },
1285     { { AArch64::SUBSWri, AArch64::SUBSXri },
1286       { AArch64::ADDSWri, AArch64::ADDSXri }  }
1287   };
1288   bool Is64Bit = RetVT == MVT::i64;
1289   unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit];
1290   const TargetRegisterClass *RC;
1291   if (SetFlags)
1292     RC = Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
1293   else
1294     RC = Is64Bit ? &AArch64::GPR64spRegClass : &AArch64::GPR32spRegClass;
1295   unsigned ResultReg;
1296   if (WantResult)
1297     ResultReg = createResultReg(RC);
1298   else
1299     ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
1300
1301   const MCInstrDesc &II = TII.get(Opc);
1302   LHSReg = constrainOperandRegClass(II, LHSReg, II.getNumDefs());
1303   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1304       .addReg(LHSReg, getKillRegState(LHSIsKill))
1305       .addImm(Imm)
1306       .addImm(getShifterImm(AArch64_AM::LSL, ShiftImm));
1307   return ResultReg;
1308 }
1309
1310 unsigned AArch64FastISel::emitAddSub_rs(bool UseAdd, MVT RetVT, unsigned LHSReg,
1311                                         bool LHSIsKill, unsigned RHSReg,
1312                                         bool RHSIsKill,
1313                                         AArch64_AM::ShiftExtendType ShiftType,
1314                                         uint64_t ShiftImm, bool SetFlags,
1315                                         bool WantResult) {
1316   assert(LHSReg && RHSReg && "Invalid register number.");
1317
1318   if (RetVT != MVT::i32 && RetVT != MVT::i64)
1319     return 0;
1320
1321   static const unsigned OpcTable[2][2][2] = {
1322     { { AArch64::SUBWrs,  AArch64::SUBXrs  },
1323       { AArch64::ADDWrs,  AArch64::ADDXrs  }  },
1324     { { AArch64::SUBSWrs, AArch64::SUBSXrs },
1325       { AArch64::ADDSWrs, AArch64::ADDSXrs }  }
1326   };
1327   bool Is64Bit = RetVT == MVT::i64;
1328   unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit];
1329   const TargetRegisterClass *RC =
1330       Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
1331   unsigned ResultReg;
1332   if (WantResult)
1333     ResultReg = createResultReg(RC);
1334   else
1335     ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
1336
1337   const MCInstrDesc &II = TII.get(Opc);
1338   LHSReg = constrainOperandRegClass(II, LHSReg, II.getNumDefs());
1339   RHSReg = constrainOperandRegClass(II, RHSReg, II.getNumDefs() + 1);
1340   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1341       .addReg(LHSReg, getKillRegState(LHSIsKill))
1342       .addReg(RHSReg, getKillRegState(RHSIsKill))
1343       .addImm(getShifterImm(ShiftType, ShiftImm));
1344   return ResultReg;
1345 }
1346
1347 unsigned AArch64FastISel::emitAddSub_rx(bool UseAdd, MVT RetVT, unsigned LHSReg,
1348                                         bool LHSIsKill, unsigned RHSReg,
1349                                         bool RHSIsKill,
1350                                         AArch64_AM::ShiftExtendType ExtType,
1351                                         uint64_t ShiftImm, bool SetFlags,
1352                                         bool WantResult) {
1353   assert(LHSReg && RHSReg && "Invalid register number.");
1354
1355   if (RetVT != MVT::i32 && RetVT != MVT::i64)
1356     return 0;
1357
1358   static const unsigned OpcTable[2][2][2] = {
1359     { { AArch64::SUBWrx,  AArch64::SUBXrx  },
1360       { AArch64::ADDWrx,  AArch64::ADDXrx  }  },
1361     { { AArch64::SUBSWrx, AArch64::SUBSXrx },
1362       { AArch64::ADDSWrx, AArch64::ADDSXrx }  }
1363   };
1364   bool Is64Bit = RetVT == MVT::i64;
1365   unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit];
1366   const TargetRegisterClass *RC = nullptr;
1367   if (SetFlags)
1368     RC = Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
1369   else
1370     RC = Is64Bit ? &AArch64::GPR64spRegClass : &AArch64::GPR32spRegClass;
1371   unsigned ResultReg;
1372   if (WantResult)
1373     ResultReg = createResultReg(RC);
1374   else
1375     ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
1376
1377   const MCInstrDesc &II = TII.get(Opc);
1378   LHSReg = constrainOperandRegClass(II, LHSReg, II.getNumDefs());
1379   RHSReg = constrainOperandRegClass(II, RHSReg, II.getNumDefs() + 1);
1380   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1381       .addReg(LHSReg, getKillRegState(LHSIsKill))
1382       .addReg(RHSReg, getKillRegState(RHSIsKill))
1383       .addImm(getArithExtendImm(ExtType, ShiftImm));
1384   return ResultReg;
1385 }
1386
1387 bool AArch64FastISel::emitCmp(const Value *LHS, const Value *RHS, bool IsZExt) {
1388   Type *Ty = LHS->getType();
1389   EVT EVT = TLI.getValueType(Ty, true);
1390   if (!EVT.isSimple())
1391     return false;
1392   MVT VT = EVT.getSimpleVT();
1393
1394   switch (VT.SimpleTy) {
1395   default:
1396     return false;
1397   case MVT::i1:
1398   case MVT::i8:
1399   case MVT::i16:
1400   case MVT::i32:
1401   case MVT::i64:
1402     return emitICmp(VT, LHS, RHS, IsZExt);
1403   case MVT::f32:
1404   case MVT::f64:
1405     return emitFCmp(VT, LHS, RHS);
1406   }
1407 }
1408
1409 bool AArch64FastISel::emitICmp(MVT RetVT, const Value *LHS, const Value *RHS,
1410                                bool IsZExt) {
1411   return emitSub(RetVT, LHS, RHS, /*SetFlags=*/true, /*WantResult=*/false,
1412                  IsZExt) != 0;
1413 }
1414
1415 bool AArch64FastISel::emitICmp_ri(MVT RetVT, unsigned LHSReg, bool LHSIsKill,
1416                                   uint64_t Imm) {
1417   return emitAddSub_ri(/*UseAdd=*/false, RetVT, LHSReg, LHSIsKill, Imm,
1418                        /*SetFlags=*/true, /*WantResult=*/false) != 0;
1419 }
1420
1421 bool AArch64FastISel::emitFCmp(MVT RetVT, const Value *LHS, const Value *RHS) {
1422   if (RetVT != MVT::f32 && RetVT != MVT::f64)
1423     return false;
1424
1425   // Check to see if the 2nd operand is a constant that we can encode directly
1426   // in the compare.
1427   bool UseImm = false;
1428   if (const auto *CFP = dyn_cast<ConstantFP>(RHS))
1429     if (CFP->isZero() && !CFP->isNegative())
1430       UseImm = true;
1431
1432   unsigned LHSReg = getRegForValue(LHS);
1433   if (!LHSReg)
1434     return false;
1435   bool LHSIsKill = hasTrivialKill(LHS);
1436
1437   if (UseImm) {
1438     unsigned Opc = (RetVT == MVT::f64) ? AArch64::FCMPDri : AArch64::FCMPSri;
1439     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
1440         .addReg(LHSReg, getKillRegState(LHSIsKill));
1441     return true;
1442   }
1443
1444   unsigned RHSReg = getRegForValue(RHS);
1445   if (!RHSReg)
1446     return false;
1447   bool RHSIsKill = hasTrivialKill(RHS);
1448
1449   unsigned Opc = (RetVT == MVT::f64) ? AArch64::FCMPDrr : AArch64::FCMPSrr;
1450   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
1451       .addReg(LHSReg, getKillRegState(LHSIsKill))
1452       .addReg(RHSReg, getKillRegState(RHSIsKill));
1453   return true;
1454 }
1455
1456 unsigned AArch64FastISel::emitAdd(MVT RetVT, const Value *LHS, const Value *RHS,
1457                                   bool SetFlags, bool WantResult, bool IsZExt) {
1458   return emitAddSub(/*UseAdd=*/true, RetVT, LHS, RHS, SetFlags, WantResult,
1459                     IsZExt);
1460 }
1461
1462 /// \brief This method is a wrapper to simplify add emission.
1463 ///
1464 /// First try to emit an add with an immediate operand using emitAddSub_ri. If
1465 /// that fails, then try to materialize the immediate into a register and use
1466 /// emitAddSub_rr instead.
1467 unsigned AArch64FastISel::emitAdd_ri_(MVT VT, unsigned Op0, bool Op0IsKill,
1468                                       int64_t Imm) {
1469   unsigned ResultReg;
1470   if (Imm < 0)
1471     ResultReg = emitAddSub_ri(false, VT, Op0, Op0IsKill, -Imm);
1472   else
1473     ResultReg = emitAddSub_ri(true, VT, Op0, Op0IsKill, Imm);
1474
1475   if (ResultReg)
1476     return ResultReg;
1477
1478   unsigned CReg = fastEmit_i(VT, VT, ISD::Constant, Imm);
1479   if (!CReg)
1480     return 0;
1481
1482   ResultReg = emitAddSub_rr(true, VT, Op0, Op0IsKill, CReg, true);
1483   return ResultReg;
1484 }
1485
1486 unsigned AArch64FastISel::emitSub(MVT RetVT, const Value *LHS, const Value *RHS,
1487                                   bool SetFlags, bool WantResult, bool IsZExt) {
1488   return emitAddSub(/*UseAdd=*/false, RetVT, LHS, RHS, SetFlags, WantResult,
1489                     IsZExt);
1490 }
1491
1492 unsigned AArch64FastISel::emitSubs_rr(MVT RetVT, unsigned LHSReg,
1493                                       bool LHSIsKill, unsigned RHSReg,
1494                                       bool RHSIsKill, bool WantResult) {
1495   return emitAddSub_rr(/*UseAdd=*/false, RetVT, LHSReg, LHSIsKill, RHSReg,
1496                        RHSIsKill, /*SetFlags=*/true, WantResult);
1497 }
1498
1499 unsigned AArch64FastISel::emitSubs_rs(MVT RetVT, unsigned LHSReg,
1500                                       bool LHSIsKill, unsigned RHSReg,
1501                                       bool RHSIsKill,
1502                                       AArch64_AM::ShiftExtendType ShiftType,
1503                                       uint64_t ShiftImm, bool WantResult) {
1504   return emitAddSub_rs(/*UseAdd=*/false, RetVT, LHSReg, LHSIsKill, RHSReg,
1505                        RHSIsKill, ShiftType, ShiftImm, /*SetFlags=*/true,
1506                        WantResult);
1507 }
1508
1509 unsigned AArch64FastISel::emitLogicalOp(unsigned ISDOpc, MVT RetVT,
1510                                         const Value *LHS, const Value *RHS) {
1511   // Canonicalize immediates to the RHS first.
1512   if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS))
1513     std::swap(LHS, RHS);
1514
1515   // Canonicalize mul by power-of-2 to the RHS.
1516   if (LHS->hasOneUse() && isValueAvailable(LHS))
1517     if (isMulPowOf2(LHS))
1518       std::swap(LHS, RHS);
1519
1520   // Canonicalize shift immediate to the RHS.
1521   if (LHS->hasOneUse() && isValueAvailable(LHS))
1522     if (const auto *SI = dyn_cast<ShlOperator>(LHS))
1523       if (isa<ConstantInt>(SI->getOperand(1)))
1524         std::swap(LHS, RHS);
1525
1526   unsigned LHSReg = getRegForValue(LHS);
1527   if (!LHSReg)
1528     return 0;
1529   bool LHSIsKill = hasTrivialKill(LHS);
1530
1531   unsigned ResultReg = 0;
1532   if (const auto *C = dyn_cast<ConstantInt>(RHS)) {
1533     uint64_t Imm = C->getZExtValue();
1534     ResultReg = emitLogicalOp_ri(ISDOpc, RetVT, LHSReg, LHSIsKill, Imm);
1535   }
1536   if (ResultReg)
1537     return ResultReg;
1538
1539   // Check if the mul can be folded into the instruction.
1540   if (RHS->hasOneUse() && isValueAvailable(RHS))
1541     if (isMulPowOf2(RHS)) {
1542       const Value *MulLHS = cast<MulOperator>(RHS)->getOperand(0);
1543       const Value *MulRHS = cast<MulOperator>(RHS)->getOperand(1);
1544
1545       if (const auto *C = dyn_cast<ConstantInt>(MulLHS))
1546         if (C->getValue().isPowerOf2())
1547           std::swap(MulLHS, MulRHS);
1548
1549       assert(isa<ConstantInt>(MulRHS) && "Expected a ConstantInt.");
1550       uint64_t ShiftVal = cast<ConstantInt>(MulRHS)->getValue().logBase2();
1551
1552       unsigned RHSReg = getRegForValue(MulLHS);
1553       if (!RHSReg)
1554         return 0;
1555       bool RHSIsKill = hasTrivialKill(MulLHS);
1556       return emitLogicalOp_rs(ISDOpc, RetVT, LHSReg, LHSIsKill, RHSReg,
1557                               RHSIsKill, ShiftVal);
1558     }
1559
1560   // Check if the shift can be folded into the instruction.
1561   if (RHS->hasOneUse() && isValueAvailable(RHS))
1562     if (const auto *SI = dyn_cast<ShlOperator>(RHS))
1563       if (const auto *C = dyn_cast<ConstantInt>(SI->getOperand(1))) {
1564         uint64_t ShiftVal = C->getZExtValue();
1565         unsigned RHSReg = getRegForValue(SI->getOperand(0));
1566         if (!RHSReg)
1567           return 0;
1568         bool RHSIsKill = hasTrivialKill(SI->getOperand(0));
1569         return emitLogicalOp_rs(ISDOpc, RetVT, LHSReg, LHSIsKill, RHSReg,
1570                                 RHSIsKill, ShiftVal);
1571       }
1572
1573   unsigned RHSReg = getRegForValue(RHS);
1574   if (!RHSReg)
1575     return 0;
1576   bool RHSIsKill = hasTrivialKill(RHS);
1577
1578   MVT VT = std::max(MVT::i32, RetVT.SimpleTy);
1579   ResultReg = fastEmit_rr(VT, VT, ISDOpc, LHSReg, LHSIsKill, RHSReg, RHSIsKill);
1580   if (RetVT >= MVT::i8 && RetVT <= MVT::i16) {
1581     uint64_t Mask = (RetVT == MVT::i8) ? 0xff : 0xffff;
1582     ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
1583   }
1584   return ResultReg;
1585 }
1586
1587 unsigned AArch64FastISel::emitLogicalOp_ri(unsigned ISDOpc, MVT RetVT,
1588                                            unsigned LHSReg, bool LHSIsKill,
1589                                            uint64_t Imm) {
1590   assert((ISD::AND + 1 == ISD::OR) && (ISD::AND + 2 == ISD::XOR) &&
1591          "ISD nodes are not consecutive!");
1592   static const unsigned OpcTable[3][2] = {
1593     { AArch64::ANDWri, AArch64::ANDXri },
1594     { AArch64::ORRWri, AArch64::ORRXri },
1595     { AArch64::EORWri, AArch64::EORXri }
1596   };
1597   const TargetRegisterClass *RC;
1598   unsigned Opc;
1599   unsigned RegSize;
1600   switch (RetVT.SimpleTy) {
1601   default:
1602     return 0;
1603   case MVT::i1:
1604   case MVT::i8:
1605   case MVT::i16:
1606   case MVT::i32: {
1607     unsigned Idx = ISDOpc - ISD::AND;
1608     Opc = OpcTable[Idx][0];
1609     RC = &AArch64::GPR32spRegClass;
1610     RegSize = 32;
1611     break;
1612   }
1613   case MVT::i64:
1614     Opc = OpcTable[ISDOpc - ISD::AND][1];
1615     RC = &AArch64::GPR64spRegClass;
1616     RegSize = 64;
1617     break;
1618   }
1619
1620   if (!AArch64_AM::isLogicalImmediate(Imm, RegSize))
1621     return 0;
1622
1623   unsigned ResultReg =
1624       fastEmitInst_ri(Opc, RC, LHSReg, LHSIsKill,
1625                       AArch64_AM::encodeLogicalImmediate(Imm, RegSize));
1626   if (RetVT >= MVT::i8 && RetVT <= MVT::i16 && ISDOpc != ISD::AND) {
1627     uint64_t Mask = (RetVT == MVT::i8) ? 0xff : 0xffff;
1628     ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
1629   }
1630   return ResultReg;
1631 }
1632
1633 unsigned AArch64FastISel::emitLogicalOp_rs(unsigned ISDOpc, MVT RetVT,
1634                                            unsigned LHSReg, bool LHSIsKill,
1635                                            unsigned RHSReg, bool RHSIsKill,
1636                                            uint64_t ShiftImm) {
1637   assert((ISD::AND + 1 == ISD::OR) && (ISD::AND + 2 == ISD::XOR) &&
1638          "ISD nodes are not consecutive!");
1639   static const unsigned OpcTable[3][2] = {
1640     { AArch64::ANDWrs, AArch64::ANDXrs },
1641     { AArch64::ORRWrs, AArch64::ORRXrs },
1642     { AArch64::EORWrs, AArch64::EORXrs }
1643   };
1644   const TargetRegisterClass *RC;
1645   unsigned Opc;
1646   switch (RetVT.SimpleTy) {
1647   default:
1648     return 0;
1649   case MVT::i1:
1650   case MVT::i8:
1651   case MVT::i16:
1652   case MVT::i32:
1653     Opc = OpcTable[ISDOpc - ISD::AND][0];
1654     RC = &AArch64::GPR32RegClass;
1655     break;
1656   case MVT::i64:
1657     Opc = OpcTable[ISDOpc - ISD::AND][1];
1658     RC = &AArch64::GPR64RegClass;
1659     break;
1660   }
1661   unsigned ResultReg =
1662       fastEmitInst_rri(Opc, RC, LHSReg, LHSIsKill, RHSReg, RHSIsKill,
1663                        AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftImm));
1664   if (RetVT >= MVT::i8 && RetVT <= MVT::i16) {
1665     uint64_t Mask = (RetVT == MVT::i8) ? 0xff : 0xffff;
1666     ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
1667   }
1668   return ResultReg;
1669 }
1670
1671 unsigned AArch64FastISel::emitAnd_ri(MVT RetVT, unsigned LHSReg, bool LHSIsKill,
1672                                      uint64_t Imm) {
1673   return emitLogicalOp_ri(ISD::AND, RetVT, LHSReg, LHSIsKill, Imm);
1674 }
1675
1676 unsigned AArch64FastISel::emitLoad(MVT VT, MVT RetVT, Address Addr,
1677                                    bool WantZExt, MachineMemOperand *MMO) {
1678   // Simplify this down to something we can handle.
1679   if (!simplifyAddress(Addr, VT))
1680     return 0;
1681
1682   unsigned ScaleFactor = getImplicitScaleFactor(VT);
1683   if (!ScaleFactor)
1684     llvm_unreachable("Unexpected value type.");
1685
1686   // Negative offsets require unscaled, 9-bit, signed immediate offsets.
1687   // Otherwise, we try using scaled, 12-bit, unsigned immediate offsets.
1688   bool UseScaled = true;
1689   if ((Addr.getOffset() < 0) || (Addr.getOffset() & (ScaleFactor - 1))) {
1690     UseScaled = false;
1691     ScaleFactor = 1;
1692   }
1693
1694   static const unsigned GPOpcTable[2][8][4] = {
1695     // Sign-extend.
1696     { { AArch64::LDURSBWi,  AArch64::LDURSHWi,  AArch64::LDURWi,
1697         AArch64::LDURXi  },
1698       { AArch64::LDURSBXi,  AArch64::LDURSHXi,  AArch64::LDURSWi,
1699         AArch64::LDURXi  },
1700       { AArch64::LDRSBWui,  AArch64::LDRSHWui,  AArch64::LDRWui,
1701         AArch64::LDRXui  },
1702       { AArch64::LDRSBXui,  AArch64::LDRSHXui,  AArch64::LDRSWui,
1703         AArch64::LDRXui  },
1704       { AArch64::LDRSBWroX, AArch64::LDRSHWroX, AArch64::LDRWroX,
1705         AArch64::LDRXroX },
1706       { AArch64::LDRSBXroX, AArch64::LDRSHXroX, AArch64::LDRSWroX,
1707         AArch64::LDRXroX },
1708       { AArch64::LDRSBWroW, AArch64::LDRSHWroW, AArch64::LDRWroW,
1709         AArch64::LDRXroW },
1710       { AArch64::LDRSBXroW, AArch64::LDRSHXroW, AArch64::LDRSWroW,
1711         AArch64::LDRXroW }
1712     },
1713     // Zero-extend.
1714     { { AArch64::LDURBBi,   AArch64::LDURHHi,   AArch64::LDURWi,
1715         AArch64::LDURXi  },
1716       { AArch64::LDURBBi,   AArch64::LDURHHi,   AArch64::LDURWi,
1717         AArch64::LDURXi  },
1718       { AArch64::LDRBBui,   AArch64::LDRHHui,   AArch64::LDRWui,
1719         AArch64::LDRXui  },
1720       { AArch64::LDRBBui,   AArch64::LDRHHui,   AArch64::LDRWui,
1721         AArch64::LDRXui  },
1722       { AArch64::LDRBBroX,  AArch64::LDRHHroX,  AArch64::LDRWroX,
1723         AArch64::LDRXroX },
1724       { AArch64::LDRBBroX,  AArch64::LDRHHroX,  AArch64::LDRWroX,
1725         AArch64::LDRXroX },
1726       { AArch64::LDRBBroW,  AArch64::LDRHHroW,  AArch64::LDRWroW,
1727         AArch64::LDRXroW },
1728       { AArch64::LDRBBroW,  AArch64::LDRHHroW,  AArch64::LDRWroW,
1729         AArch64::LDRXroW }
1730     }
1731   };
1732
1733   static const unsigned FPOpcTable[4][2] = {
1734     { AArch64::LDURSi,  AArch64::LDURDi  },
1735     { AArch64::LDRSui,  AArch64::LDRDui  },
1736     { AArch64::LDRSroX, AArch64::LDRDroX },
1737     { AArch64::LDRSroW, AArch64::LDRDroW }
1738   };
1739
1740   unsigned Opc;
1741   const TargetRegisterClass *RC;
1742   bool UseRegOffset = Addr.isRegBase() && !Addr.getOffset() && Addr.getReg() &&
1743                       Addr.getOffsetReg();
1744   unsigned Idx = UseRegOffset ? 2 : UseScaled ? 1 : 0;
1745   if (Addr.getExtendType() == AArch64_AM::UXTW ||
1746       Addr.getExtendType() == AArch64_AM::SXTW)
1747     Idx++;
1748
1749   bool IsRet64Bit = RetVT == MVT::i64;
1750   switch (VT.SimpleTy) {
1751   default:
1752     llvm_unreachable("Unexpected value type.");
1753   case MVT::i1: // Intentional fall-through.
1754   case MVT::i8:
1755     Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][0];
1756     RC = (IsRet64Bit && !WantZExt) ?
1757              &AArch64::GPR64RegClass: &AArch64::GPR32RegClass;
1758     break;
1759   case MVT::i16:
1760     Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][1];
1761     RC = (IsRet64Bit && !WantZExt) ?
1762              &AArch64::GPR64RegClass: &AArch64::GPR32RegClass;
1763     break;
1764   case MVT::i32:
1765     Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][2];
1766     RC = (IsRet64Bit && !WantZExt) ?
1767              &AArch64::GPR64RegClass: &AArch64::GPR32RegClass;
1768     break;
1769   case MVT::i64:
1770     Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][3];
1771     RC = &AArch64::GPR64RegClass;
1772     break;
1773   case MVT::f32:
1774     Opc = FPOpcTable[Idx][0];
1775     RC = &AArch64::FPR32RegClass;
1776     break;
1777   case MVT::f64:
1778     Opc = FPOpcTable[Idx][1];
1779     RC = &AArch64::FPR64RegClass;
1780     break;
1781   }
1782
1783   // Create the base instruction, then add the operands.
1784   unsigned ResultReg = createResultReg(RC);
1785   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1786                                     TII.get(Opc), ResultReg);
1787   addLoadStoreOperands(Addr, MIB, MachineMemOperand::MOLoad, ScaleFactor, MMO);
1788
1789   // Loading an i1 requires special handling.
1790   if (VT == MVT::i1) {
1791     unsigned ANDReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, 1);
1792     assert(ANDReg && "Unexpected AND instruction emission failure.");
1793     ResultReg = ANDReg;
1794   }
1795
1796   // For zero-extending loads to 64bit we emit a 32bit load and then convert
1797   // the 32bit reg to a 64bit reg.
1798   if (WantZExt && RetVT == MVT::i64 && VT <= MVT::i32) {
1799     unsigned Reg64 = createResultReg(&AArch64::GPR64RegClass);
1800     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1801             TII.get(AArch64::SUBREG_TO_REG), Reg64)
1802         .addImm(0)
1803         .addReg(ResultReg, getKillRegState(true))
1804         .addImm(AArch64::sub_32);
1805     ResultReg = Reg64;
1806   }
1807   return ResultReg;
1808 }
1809
1810 bool AArch64FastISel::selectAddSub(const Instruction *I) {
1811   MVT VT;
1812   if (!isTypeSupported(I->getType(), VT, /*IsVectorAllowed=*/true))
1813     return false;
1814
1815   if (VT.isVector())
1816     return selectOperator(I, I->getOpcode());
1817
1818   unsigned ResultReg;
1819   switch (I->getOpcode()) {
1820   default:
1821     llvm_unreachable("Unexpected instruction.");
1822   case Instruction::Add:
1823     ResultReg = emitAdd(VT, I->getOperand(0), I->getOperand(1));
1824     break;
1825   case Instruction::Sub:
1826     ResultReg = emitSub(VT, I->getOperand(0), I->getOperand(1));
1827     break;
1828   }
1829   if (!ResultReg)
1830     return false;
1831
1832   updateValueMap(I, ResultReg);
1833   return true;
1834 }
1835
1836 bool AArch64FastISel::selectLogicalOp(const Instruction *I) {
1837   MVT VT;
1838   if (!isTypeSupported(I->getType(), VT, /*IsVectorAllowed=*/true))
1839     return false;
1840
1841   if (VT.isVector())
1842     return selectOperator(I, I->getOpcode());
1843
1844   unsigned ResultReg;
1845   switch (I->getOpcode()) {
1846   default:
1847     llvm_unreachable("Unexpected instruction.");
1848   case Instruction::And:
1849     ResultReg = emitLogicalOp(ISD::AND, VT, I->getOperand(0), I->getOperand(1));
1850     break;
1851   case Instruction::Or:
1852     ResultReg = emitLogicalOp(ISD::OR, VT, I->getOperand(0), I->getOperand(1));
1853     break;
1854   case Instruction::Xor:
1855     ResultReg = emitLogicalOp(ISD::XOR, VT, I->getOperand(0), I->getOperand(1));
1856     break;
1857   }
1858   if (!ResultReg)
1859     return false;
1860
1861   updateValueMap(I, ResultReg);
1862   return true;
1863 }
1864
1865 bool AArch64FastISel::selectLoad(const Instruction *I) {
1866   MVT VT;
1867   // Verify we have a legal type before going any further.  Currently, we handle
1868   // simple types that will directly fit in a register (i32/f32/i64/f64) or
1869   // those that can be sign or zero-extended to a basic operation (i1/i8/i16).
1870   if (!isTypeSupported(I->getType(), VT, /*IsVectorAllowed=*/true) ||
1871       cast<LoadInst>(I)->isAtomic())
1872     return false;
1873
1874   // See if we can handle this address.
1875   Address Addr;
1876   if (!computeAddress(I->getOperand(0), Addr, I->getType()))
1877     return false;
1878
1879   // Fold the following sign-/zero-extend into the load instruction.
1880   bool WantZExt = true;
1881   MVT RetVT = VT;
1882   const Value *IntExtVal = nullptr;
1883   if (I->hasOneUse()) {
1884     if (const auto *ZE = dyn_cast<ZExtInst>(I->use_begin()->getUser())) {
1885       if (isTypeSupported(ZE->getType(), RetVT))
1886         IntExtVal = ZE;
1887       else
1888         RetVT = VT;
1889     } else if (const auto *SE = dyn_cast<SExtInst>(I->use_begin()->getUser())) {
1890       if (isTypeSupported(SE->getType(), RetVT))
1891         IntExtVal = SE;
1892       else
1893         RetVT = VT;
1894       WantZExt = false;
1895     }
1896   }
1897
1898   unsigned ResultReg =
1899       emitLoad(VT, RetVT, Addr, WantZExt, createMachineMemOperandFor(I));
1900   if (!ResultReg)
1901     return false;
1902
1903   // There are a few different cases we have to handle, because the load or the
1904   // sign-/zero-extend might not be selected by FastISel if we fall-back to
1905   // SelectionDAG. There is also an ordering issue when both instructions are in
1906   // different basic blocks.
1907   // 1.) The load instruction is selected by FastISel, but the integer extend
1908   //     not. This usually happens when the integer extend is in a different
1909   //     basic block and SelectionDAG took over for that basic block.
1910   // 2.) The load instruction is selected before the integer extend. This only
1911   //     happens when the integer extend is in a different basic block.
1912   // 3.) The load instruction is selected by SelectionDAG and the integer extend
1913   //     by FastISel. This happens if there are instructions between the load
1914   //     and the integer extend that couldn't be selected by FastISel.
1915   if (IntExtVal) {
1916     // The integer extend hasn't been emitted yet. FastISel or SelectionDAG
1917     // could select it. Emit a copy to subreg if necessary. FastISel will remove
1918     // it when it selects the integer extend.
1919     unsigned Reg = lookUpRegForValue(IntExtVal);
1920     auto *MI = MRI.getUniqueVRegDef(Reg);
1921     if (!MI) {
1922       if (RetVT == MVT::i64 && VT <= MVT::i32) {
1923         if (WantZExt) {
1924           // Delete the last emitted instruction from emitLoad (SUBREG_TO_REG).
1925           std::prev(FuncInfo.InsertPt)->eraseFromParent();
1926           ResultReg = std::prev(FuncInfo.InsertPt)->getOperand(0).getReg();
1927         } else
1928           ResultReg = fastEmitInst_extractsubreg(MVT::i32, ResultReg,
1929                                                  /*IsKill=*/true,
1930                                                  AArch64::sub_32);
1931       }
1932       updateValueMap(I, ResultReg);
1933       return true;
1934     }
1935
1936     // The integer extend has already been emitted - delete all the instructions
1937     // that have been emitted by the integer extend lowering code and use the
1938     // result from the load instruction directly.
1939     while (MI) {
1940       Reg = 0;
1941       for (auto &Opnd : MI->uses()) {
1942         if (Opnd.isReg()) {
1943           Reg = Opnd.getReg();
1944           break;
1945         }
1946       }
1947       MI->eraseFromParent();
1948       MI = nullptr;
1949       if (Reg)
1950         MI = MRI.getUniqueVRegDef(Reg);
1951     }
1952     updateValueMap(IntExtVal, ResultReg);
1953     return true;
1954   }
1955
1956   updateValueMap(I, ResultReg);
1957   return true;
1958 }
1959
1960 bool AArch64FastISel::emitStore(MVT VT, unsigned SrcReg, Address Addr,
1961                                 MachineMemOperand *MMO) {
1962   // Simplify this down to something we can handle.
1963   if (!simplifyAddress(Addr, VT))
1964     return false;
1965
1966   unsigned ScaleFactor = getImplicitScaleFactor(VT);
1967   if (!ScaleFactor)
1968     llvm_unreachable("Unexpected value type.");
1969
1970   // Negative offsets require unscaled, 9-bit, signed immediate offsets.
1971   // Otherwise, we try using scaled, 12-bit, unsigned immediate offsets.
1972   bool UseScaled = true;
1973   if ((Addr.getOffset() < 0) || (Addr.getOffset() & (ScaleFactor - 1))) {
1974     UseScaled = false;
1975     ScaleFactor = 1;
1976   }
1977
1978   static const unsigned OpcTable[4][6] = {
1979     { AArch64::STURBBi,  AArch64::STURHHi,  AArch64::STURWi,  AArch64::STURXi,
1980       AArch64::STURSi,   AArch64::STURDi },
1981     { AArch64::STRBBui,  AArch64::STRHHui,  AArch64::STRWui,  AArch64::STRXui,
1982       AArch64::STRSui,   AArch64::STRDui },
1983     { AArch64::STRBBroX, AArch64::STRHHroX, AArch64::STRWroX, AArch64::STRXroX,
1984       AArch64::STRSroX,  AArch64::STRDroX },
1985     { AArch64::STRBBroW, AArch64::STRHHroW, AArch64::STRWroW, AArch64::STRXroW,
1986       AArch64::STRSroW,  AArch64::STRDroW }
1987   };
1988
1989   unsigned Opc;
1990   bool VTIsi1 = false;
1991   bool UseRegOffset = Addr.isRegBase() && !Addr.getOffset() && Addr.getReg() &&
1992                       Addr.getOffsetReg();
1993   unsigned Idx = UseRegOffset ? 2 : UseScaled ? 1 : 0;
1994   if (Addr.getExtendType() == AArch64_AM::UXTW ||
1995       Addr.getExtendType() == AArch64_AM::SXTW)
1996     Idx++;
1997
1998   switch (VT.SimpleTy) {
1999   default: llvm_unreachable("Unexpected value type.");
2000   case MVT::i1:  VTIsi1 = true;
2001   case MVT::i8:  Opc = OpcTable[Idx][0]; break;
2002   case MVT::i16: Opc = OpcTable[Idx][1]; break;
2003   case MVT::i32: Opc = OpcTable[Idx][2]; break;
2004   case MVT::i64: Opc = OpcTable[Idx][3]; break;
2005   case MVT::f32: Opc = OpcTable[Idx][4]; break;
2006   case MVT::f64: Opc = OpcTable[Idx][5]; break;
2007   }
2008
2009   // Storing an i1 requires special handling.
2010   if (VTIsi1 && SrcReg != AArch64::WZR) {
2011     unsigned ANDReg = emitAnd_ri(MVT::i32, SrcReg, /*TODO:IsKill=*/false, 1);
2012     assert(ANDReg && "Unexpected AND instruction emission failure.");
2013     SrcReg = ANDReg;
2014   }
2015   // Create the base instruction, then add the operands.
2016   const MCInstrDesc &II = TII.get(Opc);
2017   SrcReg = constrainOperandRegClass(II, SrcReg, II.getNumDefs());
2018   MachineInstrBuilder MIB =
2019       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addReg(SrcReg);
2020   addLoadStoreOperands(Addr, MIB, MachineMemOperand::MOStore, ScaleFactor, MMO);
2021
2022   return true;
2023 }
2024
2025 bool AArch64FastISel::selectStore(const Instruction *I) {
2026   MVT VT;
2027   const Value *Op0 = I->getOperand(0);
2028   // Verify we have a legal type before going any further.  Currently, we handle
2029   // simple types that will directly fit in a register (i32/f32/i64/f64) or
2030   // those that can be sign or zero-extended to a basic operation (i1/i8/i16).
2031   if (!isTypeSupported(Op0->getType(), VT, /*IsVectorAllowed=*/true) ||
2032       cast<StoreInst>(I)->isAtomic())
2033     return false;
2034
2035   // Get the value to be stored into a register. Use the zero register directly
2036   // when possible to avoid an unnecessary copy and a wasted register.
2037   unsigned SrcReg = 0;
2038   if (const auto *CI = dyn_cast<ConstantInt>(Op0)) {
2039     if (CI->isZero())
2040       SrcReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR;
2041   } else if (const auto *CF = dyn_cast<ConstantFP>(Op0)) {
2042     if (CF->isZero() && !CF->isNegative()) {
2043       VT = MVT::getIntegerVT(VT.getSizeInBits());
2044       SrcReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR;
2045     }
2046   }
2047
2048   if (!SrcReg)
2049     SrcReg = getRegForValue(Op0);
2050
2051   if (!SrcReg)
2052     return false;
2053
2054   // See if we can handle this address.
2055   Address Addr;
2056   if (!computeAddress(I->getOperand(1), Addr, I->getOperand(0)->getType()))
2057     return false;
2058
2059   if (!emitStore(VT, SrcReg, Addr, createMachineMemOperandFor(I)))
2060     return false;
2061   return true;
2062 }
2063
2064 static AArch64CC::CondCode getCompareCC(CmpInst::Predicate Pred) {
2065   switch (Pred) {
2066   case CmpInst::FCMP_ONE:
2067   case CmpInst::FCMP_UEQ:
2068   default:
2069     // AL is our "false" for now. The other two need more compares.
2070     return AArch64CC::AL;
2071   case CmpInst::ICMP_EQ:
2072   case CmpInst::FCMP_OEQ:
2073     return AArch64CC::EQ;
2074   case CmpInst::ICMP_SGT:
2075   case CmpInst::FCMP_OGT:
2076     return AArch64CC::GT;
2077   case CmpInst::ICMP_SGE:
2078   case CmpInst::FCMP_OGE:
2079     return AArch64CC::GE;
2080   case CmpInst::ICMP_UGT:
2081   case CmpInst::FCMP_UGT:
2082     return AArch64CC::HI;
2083   case CmpInst::FCMP_OLT:
2084     return AArch64CC::MI;
2085   case CmpInst::ICMP_ULE:
2086   case CmpInst::FCMP_OLE:
2087     return AArch64CC::LS;
2088   case CmpInst::FCMP_ORD:
2089     return AArch64CC::VC;
2090   case CmpInst::FCMP_UNO:
2091     return AArch64CC::VS;
2092   case CmpInst::FCMP_UGE:
2093     return AArch64CC::PL;
2094   case CmpInst::ICMP_SLT:
2095   case CmpInst::FCMP_ULT:
2096     return AArch64CC::LT;
2097   case CmpInst::ICMP_SLE:
2098   case CmpInst::FCMP_ULE:
2099     return AArch64CC::LE;
2100   case CmpInst::FCMP_UNE:
2101   case CmpInst::ICMP_NE:
2102     return AArch64CC::NE;
2103   case CmpInst::ICMP_UGE:
2104     return AArch64CC::HS;
2105   case CmpInst::ICMP_ULT:
2106     return AArch64CC::LO;
2107   }
2108 }
2109
2110 /// \brief Try to emit a combined compare-and-branch instruction.
2111 bool AArch64FastISel::emitCompareAndBranch(const BranchInst *BI) {
2112   assert(isa<CmpInst>(BI->getCondition()) && "Expected cmp instruction");
2113   const CmpInst *CI = cast<CmpInst>(BI->getCondition());
2114   CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2115
2116   const Value *LHS = CI->getOperand(0);
2117   const Value *RHS = CI->getOperand(1);
2118
2119   MVT VT;
2120   if (!isTypeSupported(LHS->getType(), VT))
2121     return false;
2122
2123   unsigned BW = VT.getSizeInBits();
2124   if (BW > 64)
2125     return false;
2126
2127   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
2128   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
2129
2130   // Try to take advantage of fallthrough opportunities.
2131   if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
2132     std::swap(TBB, FBB);
2133     Predicate = CmpInst::getInversePredicate(Predicate);
2134   }
2135
2136   int TestBit = -1;
2137   bool IsCmpNE;
2138   switch (Predicate) {
2139   default:
2140     return false;
2141   case CmpInst::ICMP_EQ:
2142   case CmpInst::ICMP_NE:
2143     if (isa<Constant>(LHS) && cast<Constant>(LHS)->isNullValue())
2144       std::swap(LHS, RHS);
2145
2146     if (!isa<Constant>(RHS) || !cast<Constant>(RHS)->isNullValue())
2147       return false;
2148
2149     if (const auto *AI = dyn_cast<BinaryOperator>(LHS))
2150       if (AI->getOpcode() == Instruction::And && isValueAvailable(AI)) {
2151         const Value *AndLHS = AI->getOperand(0);
2152         const Value *AndRHS = AI->getOperand(1);
2153
2154         if (const auto *C = dyn_cast<ConstantInt>(AndLHS))
2155           if (C->getValue().isPowerOf2())
2156             std::swap(AndLHS, AndRHS);
2157
2158         if (const auto *C = dyn_cast<ConstantInt>(AndRHS))
2159           if (C->getValue().isPowerOf2()) {
2160             TestBit = C->getValue().logBase2();
2161             LHS = AndLHS;
2162           }
2163       }
2164
2165     if (VT == MVT::i1)
2166       TestBit = 0;
2167
2168     IsCmpNE = Predicate == CmpInst::ICMP_NE;
2169     break;
2170   case CmpInst::ICMP_SLT:
2171   case CmpInst::ICMP_SGE:
2172     if (!isa<Constant>(RHS) || !cast<Constant>(RHS)->isNullValue())
2173       return false;
2174
2175     TestBit = BW - 1;
2176     IsCmpNE = Predicate == CmpInst::ICMP_SLT;
2177     break;
2178   case CmpInst::ICMP_SGT:
2179   case CmpInst::ICMP_SLE:
2180     if (!isa<ConstantInt>(RHS))
2181       return false;
2182
2183     if (cast<ConstantInt>(RHS)->getValue() != APInt(BW, -1, true))
2184       return false;
2185
2186     TestBit = BW - 1;
2187     IsCmpNE = Predicate == CmpInst::ICMP_SLE;
2188     break;
2189   } // end switch
2190
2191   static const unsigned OpcTable[2][2][2] = {
2192     { {AArch64::CBZW,  AArch64::CBZX },
2193       {AArch64::CBNZW, AArch64::CBNZX} },
2194     { {AArch64::TBZW,  AArch64::TBZX },
2195       {AArch64::TBNZW, AArch64::TBNZX} }
2196   };
2197
2198   bool IsBitTest = TestBit != -1;
2199   bool Is64Bit = BW == 64;
2200   if (TestBit < 32 && TestBit >= 0)
2201     Is64Bit = false;
2202
2203   unsigned Opc = OpcTable[IsBitTest][IsCmpNE][Is64Bit];
2204   const MCInstrDesc &II = TII.get(Opc);
2205
2206   unsigned SrcReg = getRegForValue(LHS);
2207   if (!SrcReg)
2208     return false;
2209   bool SrcIsKill = hasTrivialKill(LHS);
2210
2211   if (BW == 64 && !Is64Bit)
2212     SrcReg = fastEmitInst_extractsubreg(MVT::i32, SrcReg, SrcIsKill,
2213                                         AArch64::sub_32);
2214
2215   if ((BW < 32) && !IsBitTest)
2216     SrcReg = emitIntExt(VT, SrcReg, MVT::i32, /*IsZExt=*/true);
2217
2218   // Emit the combined compare and branch instruction.
2219   SrcReg = constrainOperandRegClass(II, SrcReg,  II.getNumDefs());
2220   MachineInstrBuilder MIB =
2221       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
2222           .addReg(SrcReg, getKillRegState(SrcIsKill));
2223   if (IsBitTest)
2224     MIB.addImm(TestBit);
2225   MIB.addMBB(TBB);
2226
2227   // Obtain the branch weight and add the TrueBB to the successor list.
2228   uint32_t BranchWeight = 0;
2229   if (FuncInfo.BPI)
2230     BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
2231                                                TBB->getBasicBlock());
2232   FuncInfo.MBB->addSuccessor(TBB, BranchWeight);
2233   fastEmitBranch(FBB, DbgLoc);
2234
2235   return true;
2236 }
2237
2238 bool AArch64FastISel::selectBranch(const Instruction *I) {
2239   const BranchInst *BI = cast<BranchInst>(I);
2240   if (BI->isUnconditional()) {
2241     MachineBasicBlock *MSucc = FuncInfo.MBBMap[BI->getSuccessor(0)];
2242     fastEmitBranch(MSucc, BI->getDebugLoc());
2243     return true;
2244   }
2245
2246   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
2247   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
2248
2249   AArch64CC::CondCode CC = AArch64CC::NE;
2250   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
2251     if (CI->hasOneUse() && isValueAvailable(CI)) {
2252       // Try to optimize or fold the cmp.
2253       CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2254       switch (Predicate) {
2255       default:
2256         break;
2257       case CmpInst::FCMP_FALSE:
2258         fastEmitBranch(FBB, DbgLoc);
2259         return true;
2260       case CmpInst::FCMP_TRUE:
2261         fastEmitBranch(TBB, DbgLoc);
2262         return true;
2263       }
2264
2265       // Try to emit a combined compare-and-branch first.
2266       if (emitCompareAndBranch(BI))
2267         return true;
2268
2269       // Try to take advantage of fallthrough opportunities.
2270       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
2271         std::swap(TBB, FBB);
2272         Predicate = CmpInst::getInversePredicate(Predicate);
2273       }
2274
2275       // Emit the cmp.
2276       if (!emitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
2277         return false;
2278
2279       // FCMP_UEQ and FCMP_ONE cannot be checked with a single branch
2280       // instruction.
2281       CC = getCompareCC(Predicate);
2282       AArch64CC::CondCode ExtraCC = AArch64CC::AL;
2283       switch (Predicate) {
2284       default:
2285         break;
2286       case CmpInst::FCMP_UEQ:
2287         ExtraCC = AArch64CC::EQ;
2288         CC = AArch64CC::VS;
2289         break;
2290       case CmpInst::FCMP_ONE:
2291         ExtraCC = AArch64CC::MI;
2292         CC = AArch64CC::GT;
2293         break;
2294       }
2295       assert((CC != AArch64CC::AL) && "Unexpected condition code.");
2296
2297       // Emit the extra branch for FCMP_UEQ and FCMP_ONE.
2298       if (ExtraCC != AArch64CC::AL) {
2299         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
2300             .addImm(ExtraCC)
2301             .addMBB(TBB);
2302       }
2303
2304       // Emit the branch.
2305       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
2306           .addImm(CC)
2307           .addMBB(TBB);
2308
2309       // Obtain the branch weight and add the TrueBB to the successor list.
2310       uint32_t BranchWeight = 0;
2311       if (FuncInfo.BPI)
2312         BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
2313                                                   TBB->getBasicBlock());
2314       FuncInfo.MBB->addSuccessor(TBB, BranchWeight);
2315
2316       fastEmitBranch(FBB, DbgLoc);
2317       return true;
2318     }
2319   } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
2320     MVT SrcVT;
2321     if (TI->hasOneUse() && isValueAvailable(TI) &&
2322         isTypeSupported(TI->getOperand(0)->getType(), SrcVT)) {
2323       unsigned CondReg = getRegForValue(TI->getOperand(0));
2324       if (!CondReg)
2325         return false;
2326       bool CondIsKill = hasTrivialKill(TI->getOperand(0));
2327
2328       // Issue an extract_subreg to get the lower 32-bits.
2329       if (SrcVT == MVT::i64) {
2330         CondReg = fastEmitInst_extractsubreg(MVT::i32, CondReg, CondIsKill,
2331                                              AArch64::sub_32);
2332         CondIsKill = true;
2333       }
2334
2335       unsigned ANDReg = emitAnd_ri(MVT::i32, CondReg, CondIsKill, 1);
2336       assert(ANDReg && "Unexpected AND instruction emission failure.");
2337       emitICmp_ri(MVT::i32, ANDReg, /*IsKill=*/true, 0);
2338
2339       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
2340         std::swap(TBB, FBB);
2341         CC = AArch64CC::EQ;
2342       }
2343       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
2344           .addImm(CC)
2345           .addMBB(TBB);
2346
2347       // Obtain the branch weight and add the TrueBB to the successor list.
2348       uint32_t BranchWeight = 0;
2349       if (FuncInfo.BPI)
2350         BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
2351                                                   TBB->getBasicBlock());
2352       FuncInfo.MBB->addSuccessor(TBB, BranchWeight);
2353
2354       fastEmitBranch(FBB, DbgLoc);
2355       return true;
2356     }
2357   } else if (const auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
2358     uint64_t Imm = CI->getZExtValue();
2359     MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
2360     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::B))
2361         .addMBB(Target);
2362
2363     // Obtain the branch weight and add the target to the successor list.
2364     uint32_t BranchWeight = 0;
2365     if (FuncInfo.BPI)
2366       BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
2367                                                  Target->getBasicBlock());
2368     FuncInfo.MBB->addSuccessor(Target, BranchWeight);
2369     return true;
2370   } else if (foldXALUIntrinsic(CC, I, BI->getCondition())) {
2371     // Fake request the condition, otherwise the intrinsic might be completely
2372     // optimized away.
2373     unsigned CondReg = getRegForValue(BI->getCondition());
2374     if (!CondReg)
2375       return false;
2376
2377     // Emit the branch.
2378     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
2379       .addImm(CC)
2380       .addMBB(TBB);
2381
2382     // Obtain the branch weight and add the TrueBB to the successor list.
2383     uint32_t BranchWeight = 0;
2384     if (FuncInfo.BPI)
2385       BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
2386                                                  TBB->getBasicBlock());
2387     FuncInfo.MBB->addSuccessor(TBB, BranchWeight);
2388
2389     fastEmitBranch(FBB, DbgLoc);
2390     return true;
2391   }
2392
2393   unsigned CondReg = getRegForValue(BI->getCondition());
2394   if (CondReg == 0)
2395     return false;
2396   bool CondRegIsKill = hasTrivialKill(BI->getCondition());
2397
2398   // We've been divorced from our compare!  Our block was split, and
2399   // now our compare lives in a predecessor block.  We musn't
2400   // re-compare here, as the children of the compare aren't guaranteed
2401   // live across the block boundary (we *could* check for this).
2402   // Regardless, the compare has been done in the predecessor block,
2403   // and it left a value for us in a virtual register.  Ergo, we test
2404   // the one-bit value left in the virtual register.
2405   emitICmp_ri(MVT::i32, CondReg, CondRegIsKill, 0);
2406
2407   if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
2408     std::swap(TBB, FBB);
2409     CC = AArch64CC::EQ;
2410   }
2411
2412   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
2413       .addImm(CC)
2414       .addMBB(TBB);
2415
2416   // Obtain the branch weight and add the TrueBB to the successor list.
2417   uint32_t BranchWeight = 0;
2418   if (FuncInfo.BPI)
2419     BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
2420                                                TBB->getBasicBlock());
2421   FuncInfo.MBB->addSuccessor(TBB, BranchWeight);
2422
2423   fastEmitBranch(FBB, DbgLoc);
2424   return true;
2425 }
2426
2427 bool AArch64FastISel::selectIndirectBr(const Instruction *I) {
2428   const IndirectBrInst *BI = cast<IndirectBrInst>(I);
2429   unsigned AddrReg = getRegForValue(BI->getOperand(0));
2430   if (AddrReg == 0)
2431     return false;
2432
2433   // Emit the indirect branch.
2434   const MCInstrDesc &II = TII.get(AArch64::BR);
2435   AddrReg = constrainOperandRegClass(II, AddrReg,  II.getNumDefs());
2436   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addReg(AddrReg);
2437
2438   // Make sure the CFG is up-to-date.
2439   for (unsigned i = 0, e = BI->getNumSuccessors(); i != e; ++i)
2440     FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[BI->getSuccessor(i)]);
2441
2442   return true;
2443 }
2444
2445 bool AArch64FastISel::selectCmp(const Instruction *I) {
2446   const CmpInst *CI = cast<CmpInst>(I);
2447
2448   // Try to optimize or fold the cmp.
2449   CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2450   unsigned ResultReg = 0;
2451   switch (Predicate) {
2452   default:
2453     break;
2454   case CmpInst::FCMP_FALSE:
2455     ResultReg = createResultReg(&AArch64::GPR32RegClass);
2456     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2457             TII.get(TargetOpcode::COPY), ResultReg)
2458         .addReg(AArch64::WZR, getKillRegState(true));
2459     break;
2460   case CmpInst::FCMP_TRUE:
2461     ResultReg = fastEmit_i(MVT::i32, MVT::i32, ISD::Constant, 1);
2462     break;
2463   }
2464
2465   if (ResultReg) {
2466     updateValueMap(I, ResultReg);
2467     return true;
2468   }
2469
2470   // Emit the cmp.
2471   if (!emitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
2472     return false;
2473
2474   ResultReg = createResultReg(&AArch64::GPR32RegClass);
2475
2476   // FCMP_UEQ and FCMP_ONE cannot be checked with a single instruction. These
2477   // condition codes are inverted, because they are used by CSINC.
2478   static unsigned CondCodeTable[2][2] = {
2479     { AArch64CC::NE, AArch64CC::VC },
2480     { AArch64CC::PL, AArch64CC::LE }
2481   };
2482   unsigned *CondCodes = nullptr;
2483   switch (Predicate) {
2484   default:
2485     break;
2486   case CmpInst::FCMP_UEQ:
2487     CondCodes = &CondCodeTable[0][0];
2488     break;
2489   case CmpInst::FCMP_ONE:
2490     CondCodes = &CondCodeTable[1][0];
2491     break;
2492   }
2493
2494   if (CondCodes) {
2495     unsigned TmpReg1 = createResultReg(&AArch64::GPR32RegClass);
2496     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::CSINCWr),
2497             TmpReg1)
2498         .addReg(AArch64::WZR, getKillRegState(true))
2499         .addReg(AArch64::WZR, getKillRegState(true))
2500         .addImm(CondCodes[0]);
2501     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::CSINCWr),
2502             ResultReg)
2503         .addReg(TmpReg1, getKillRegState(true))
2504         .addReg(AArch64::WZR, getKillRegState(true))
2505         .addImm(CondCodes[1]);
2506
2507     updateValueMap(I, ResultReg);
2508     return true;
2509   }
2510
2511   // Now set a register based on the comparison.
2512   AArch64CC::CondCode CC = getCompareCC(Predicate);
2513   assert((CC != AArch64CC::AL) && "Unexpected condition code.");
2514   AArch64CC::CondCode invertedCC = getInvertedCondCode(CC);
2515   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::CSINCWr),
2516           ResultReg)
2517       .addReg(AArch64::WZR, getKillRegState(true))
2518       .addReg(AArch64::WZR, getKillRegState(true))
2519       .addImm(invertedCC);
2520
2521   updateValueMap(I, ResultReg);
2522   return true;
2523 }
2524
2525 /// \brief Optimize selects of i1 if one of the operands has a 'true' or 'false'
2526 /// value.
2527 bool AArch64FastISel::optimizeSelect(const SelectInst *SI) {
2528   if (!SI->getType()->isIntegerTy(1))
2529     return false;
2530
2531   const Value *Src1Val, *Src2Val;
2532   unsigned Opc = 0;
2533   bool NeedExtraOp = false;
2534   if (auto *CI = dyn_cast<ConstantInt>(SI->getTrueValue())) {
2535     if (CI->isOne()) {
2536       Src1Val = SI->getCondition();
2537       Src2Val = SI->getFalseValue();
2538       Opc = AArch64::ORRWrr;
2539     } else {
2540       assert(CI->isZero());
2541       Src1Val = SI->getFalseValue();
2542       Src2Val = SI->getCondition();
2543       Opc = AArch64::BICWrr;
2544     }
2545   } else if (auto *CI = dyn_cast<ConstantInt>(SI->getFalseValue())) {
2546     if (CI->isOne()) {
2547       Src1Val = SI->getCondition();
2548       Src2Val = SI->getTrueValue();
2549       Opc = AArch64::ORRWrr;
2550       NeedExtraOp = true;
2551     } else {
2552       assert(CI->isZero());
2553       Src1Val = SI->getCondition();
2554       Src2Val = SI->getTrueValue();
2555       Opc = AArch64::ANDWrr;
2556     }
2557   }
2558
2559   if (!Opc)
2560     return false;
2561
2562   unsigned Src1Reg = getRegForValue(Src1Val);
2563   if (!Src1Reg)
2564     return false;
2565   bool Src1IsKill = hasTrivialKill(Src1Val);
2566
2567   unsigned Src2Reg = getRegForValue(Src2Val);
2568   if (!Src2Reg)
2569     return false;
2570   bool Src2IsKill = hasTrivialKill(Src2Val);
2571
2572   if (NeedExtraOp) {
2573     Src1Reg = emitLogicalOp_ri(ISD::XOR, MVT::i32, Src1Reg, Src1IsKill, 1);
2574     Src1IsKill = true;
2575   }
2576   unsigned ResultReg = fastEmitInst_rr(Opc, &AArch64::GPR32spRegClass, Src1Reg,
2577                                        Src1IsKill, Src2Reg, Src2IsKill);
2578   updateValueMap(SI, ResultReg);
2579   return true;
2580 }
2581
2582 bool AArch64FastISel::selectSelect(const Instruction *I) {
2583   assert(isa<SelectInst>(I) && "Expected a select instruction.");
2584   MVT VT;
2585   if (!isTypeSupported(I->getType(), VT))
2586     return false;
2587
2588   unsigned Opc;
2589   const TargetRegisterClass *RC;
2590   switch (VT.SimpleTy) {
2591   default:
2592     return false;
2593   case MVT::i1:
2594   case MVT::i8:
2595   case MVT::i16:
2596   case MVT::i32:
2597     Opc = AArch64::CSELWr;
2598     RC = &AArch64::GPR32RegClass;
2599     break;
2600   case MVT::i64:
2601     Opc = AArch64::CSELXr;
2602     RC = &AArch64::GPR64RegClass;
2603     break;
2604   case MVT::f32:
2605     Opc = AArch64::FCSELSrrr;
2606     RC = &AArch64::FPR32RegClass;
2607     break;
2608   case MVT::f64:
2609     Opc = AArch64::FCSELDrrr;
2610     RC = &AArch64::FPR64RegClass;
2611     break;
2612   }
2613
2614   const SelectInst *SI = cast<SelectInst>(I);
2615   const Value *Cond = SI->getCondition();
2616   AArch64CC::CondCode CC = AArch64CC::NE;
2617   AArch64CC::CondCode ExtraCC = AArch64CC::AL;
2618
2619   if (optimizeSelect(SI))
2620     return true;
2621
2622   // Try to pickup the flags, so we don't have to emit another compare.
2623   if (foldXALUIntrinsic(CC, I, Cond)) {
2624     // Fake request the condition to force emission of the XALU intrinsic.
2625     unsigned CondReg = getRegForValue(Cond);
2626     if (!CondReg)
2627       return false;
2628   } else if (isa<CmpInst>(Cond) && cast<CmpInst>(Cond)->hasOneUse() &&
2629              isValueAvailable(Cond)) {
2630     const auto *Cmp = cast<CmpInst>(Cond);
2631     // Try to optimize or fold the cmp.
2632     CmpInst::Predicate Predicate = optimizeCmpPredicate(Cmp);
2633     const Value *FoldSelect = nullptr;
2634     switch (Predicate) {
2635     default:
2636       break;
2637     case CmpInst::FCMP_FALSE:
2638       FoldSelect = SI->getFalseValue();
2639       break;
2640     case CmpInst::FCMP_TRUE:
2641       FoldSelect = SI->getTrueValue();
2642       break;
2643     }
2644
2645     if (FoldSelect) {
2646       unsigned SrcReg = getRegForValue(FoldSelect);
2647       if (!SrcReg)
2648         return false;
2649       unsigned UseReg = lookUpRegForValue(SI);
2650       if (UseReg)
2651         MRI.clearKillFlags(UseReg);
2652
2653       updateValueMap(I, SrcReg);
2654       return true;
2655     }
2656
2657     // Emit the cmp.
2658     if (!emitCmp(Cmp->getOperand(0), Cmp->getOperand(1), Cmp->isUnsigned()))
2659       return false;
2660
2661     // FCMP_UEQ and FCMP_ONE cannot be checked with a single select instruction.
2662     CC = getCompareCC(Predicate);
2663     switch (Predicate) {
2664     default:
2665       break;
2666     case CmpInst::FCMP_UEQ:
2667       ExtraCC = AArch64CC::EQ;
2668       CC = AArch64CC::VS;
2669       break;
2670     case CmpInst::FCMP_ONE:
2671       ExtraCC = AArch64CC::MI;
2672       CC = AArch64CC::GT;
2673       break;
2674     }
2675     assert((CC != AArch64CC::AL) && "Unexpected condition code.");
2676   } else {
2677     unsigned CondReg = getRegForValue(Cond);
2678     if (!CondReg)
2679       return false;
2680     bool CondIsKill = hasTrivialKill(Cond);
2681
2682     // Emit a TST instruction (ANDS wzr, reg, #imm).
2683     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDSWri),
2684             AArch64::WZR)
2685         .addReg(CondReg, getKillRegState(CondIsKill))
2686         .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
2687   }
2688
2689   unsigned Src1Reg = getRegForValue(SI->getTrueValue());
2690   bool Src1IsKill = hasTrivialKill(SI->getTrueValue());
2691
2692   unsigned Src2Reg = getRegForValue(SI->getFalseValue());
2693   bool Src2IsKill = hasTrivialKill(SI->getFalseValue());
2694
2695   if (!Src1Reg || !Src2Reg)
2696     return false;
2697
2698   if (ExtraCC != AArch64CC::AL) {
2699     Src2Reg = fastEmitInst_rri(Opc, RC, Src1Reg, Src1IsKill, Src2Reg,
2700                                Src2IsKill, ExtraCC);
2701     Src2IsKill = true;
2702   }
2703   unsigned ResultReg = fastEmitInst_rri(Opc, RC, Src1Reg, Src1IsKill, Src2Reg,
2704                                         Src2IsKill, CC);
2705   updateValueMap(I, ResultReg);
2706   return true;
2707 }
2708
2709 bool AArch64FastISel::selectFPExt(const Instruction *I) {
2710   Value *V = I->getOperand(0);
2711   if (!I->getType()->isDoubleTy() || !V->getType()->isFloatTy())
2712     return false;
2713
2714   unsigned Op = getRegForValue(V);
2715   if (Op == 0)
2716     return false;
2717
2718   unsigned ResultReg = createResultReg(&AArch64::FPR64RegClass);
2719   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::FCVTDSr),
2720           ResultReg).addReg(Op);
2721   updateValueMap(I, ResultReg);
2722   return true;
2723 }
2724
2725 bool AArch64FastISel::selectFPTrunc(const Instruction *I) {
2726   Value *V = I->getOperand(0);
2727   if (!I->getType()->isFloatTy() || !V->getType()->isDoubleTy())
2728     return false;
2729
2730   unsigned Op = getRegForValue(V);
2731   if (Op == 0)
2732     return false;
2733
2734   unsigned ResultReg = createResultReg(&AArch64::FPR32RegClass);
2735   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::FCVTSDr),
2736           ResultReg).addReg(Op);
2737   updateValueMap(I, ResultReg);
2738   return true;
2739 }
2740
2741 // FPToUI and FPToSI
2742 bool AArch64FastISel::selectFPToInt(const Instruction *I, bool Signed) {
2743   MVT DestVT;
2744   if (!isTypeLegal(I->getType(), DestVT) || DestVT.isVector())
2745     return false;
2746
2747   unsigned SrcReg = getRegForValue(I->getOperand(0));
2748   if (SrcReg == 0)
2749     return false;
2750
2751   EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType(), true);
2752   if (SrcVT == MVT::f128)
2753     return false;
2754
2755   unsigned Opc;
2756   if (SrcVT == MVT::f64) {
2757     if (Signed)
2758       Opc = (DestVT == MVT::i32) ? AArch64::FCVTZSUWDr : AArch64::FCVTZSUXDr;
2759     else
2760       Opc = (DestVT == MVT::i32) ? AArch64::FCVTZUUWDr : AArch64::FCVTZUUXDr;
2761   } else {
2762     if (Signed)
2763       Opc = (DestVT == MVT::i32) ? AArch64::FCVTZSUWSr : AArch64::FCVTZSUXSr;
2764     else
2765       Opc = (DestVT == MVT::i32) ? AArch64::FCVTZUUWSr : AArch64::FCVTZUUXSr;
2766   }
2767   unsigned ResultReg = createResultReg(
2768       DestVT == MVT::i32 ? &AArch64::GPR32RegClass : &AArch64::GPR64RegClass);
2769   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
2770       .addReg(SrcReg);
2771   updateValueMap(I, ResultReg);
2772   return true;
2773 }
2774
2775 bool AArch64FastISel::selectIntToFP(const Instruction *I, bool Signed) {
2776   MVT DestVT;
2777   if (!isTypeLegal(I->getType(), DestVT) || DestVT.isVector())
2778     return false;
2779   assert ((DestVT == MVT::f32 || DestVT == MVT::f64) &&
2780           "Unexpected value type.");
2781
2782   unsigned SrcReg = getRegForValue(I->getOperand(0));
2783   if (!SrcReg)
2784     return false;
2785   bool SrcIsKill = hasTrivialKill(I->getOperand(0));
2786
2787   EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType(), true);
2788
2789   // Handle sign-extension.
2790   if (SrcVT == MVT::i16 || SrcVT == MVT::i8 || SrcVT == MVT::i1) {
2791     SrcReg =
2792         emitIntExt(SrcVT.getSimpleVT(), SrcReg, MVT::i32, /*isZExt*/ !Signed);
2793     if (!SrcReg)
2794       return false;
2795     SrcIsKill = true;
2796   }
2797
2798   unsigned Opc;
2799   if (SrcVT == MVT::i64) {
2800     if (Signed)
2801       Opc = (DestVT == MVT::f32) ? AArch64::SCVTFUXSri : AArch64::SCVTFUXDri;
2802     else
2803       Opc = (DestVT == MVT::f32) ? AArch64::UCVTFUXSri : AArch64::UCVTFUXDri;
2804   } else {
2805     if (Signed)
2806       Opc = (DestVT == MVT::f32) ? AArch64::SCVTFUWSri : AArch64::SCVTFUWDri;
2807     else
2808       Opc = (DestVT == MVT::f32) ? AArch64::UCVTFUWSri : AArch64::UCVTFUWDri;
2809   }
2810
2811   unsigned ResultReg = fastEmitInst_r(Opc, TLI.getRegClassFor(DestVT), SrcReg,
2812                                       SrcIsKill);
2813   updateValueMap(I, ResultReg);
2814   return true;
2815 }
2816
2817 bool AArch64FastISel::fastLowerArguments() {
2818   if (!FuncInfo.CanLowerReturn)
2819     return false;
2820
2821   const Function *F = FuncInfo.Fn;
2822   if (F->isVarArg())
2823     return false;
2824
2825   CallingConv::ID CC = F->getCallingConv();
2826   if (CC != CallingConv::C)
2827     return false;
2828
2829   // Only handle simple cases of up to 8 GPR and FPR each.
2830   unsigned GPRCnt = 0;
2831   unsigned FPRCnt = 0;
2832   unsigned Idx = 0;
2833   for (auto const &Arg : F->args()) {
2834     // The first argument is at index 1.
2835     ++Idx;
2836     if (F->getAttributes().hasAttribute(Idx, Attribute::ByVal) ||
2837         F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
2838         F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
2839         F->getAttributes().hasAttribute(Idx, Attribute::Nest))
2840       return false;
2841
2842     Type *ArgTy = Arg.getType();
2843     if (ArgTy->isStructTy() || ArgTy->isArrayTy())
2844       return false;
2845
2846     EVT ArgVT = TLI.getValueType(ArgTy);
2847     if (!ArgVT.isSimple())
2848       return false;
2849
2850     MVT VT = ArgVT.getSimpleVT().SimpleTy;
2851     if (VT.isFloatingPoint() && !Subtarget->hasFPARMv8())
2852       return false;
2853
2854     if (VT.isVector() &&
2855         (!Subtarget->hasNEON() || !Subtarget->isLittleEndian()))
2856       return false;
2857
2858     if (VT >= MVT::i1 && VT <= MVT::i64)
2859       ++GPRCnt;
2860     else if ((VT >= MVT::f16 && VT <= MVT::f64) || VT.is64BitVector() ||
2861              VT.is128BitVector())
2862       ++FPRCnt;
2863     else
2864       return false;
2865
2866     if (GPRCnt > 8 || FPRCnt > 8)
2867       return false;
2868   }
2869
2870   static const MCPhysReg Registers[6][8] = {
2871     { AArch64::W0, AArch64::W1, AArch64::W2, AArch64::W3, AArch64::W4,
2872       AArch64::W5, AArch64::W6, AArch64::W7 },
2873     { AArch64::X0, AArch64::X1, AArch64::X2, AArch64::X3, AArch64::X4,
2874       AArch64::X5, AArch64::X6, AArch64::X7 },
2875     { AArch64::H0, AArch64::H1, AArch64::H2, AArch64::H3, AArch64::H4,
2876       AArch64::H5, AArch64::H6, AArch64::H7 },
2877     { AArch64::S0, AArch64::S1, AArch64::S2, AArch64::S3, AArch64::S4,
2878       AArch64::S5, AArch64::S6, AArch64::S7 },
2879     { AArch64::D0, AArch64::D1, AArch64::D2, AArch64::D3, AArch64::D4,
2880       AArch64::D5, AArch64::D6, AArch64::D7 },
2881     { AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3, AArch64::Q4,
2882       AArch64::Q5, AArch64::Q6, AArch64::Q7 }
2883   };
2884
2885   unsigned GPRIdx = 0;
2886   unsigned FPRIdx = 0;
2887   for (auto const &Arg : F->args()) {
2888     MVT VT = TLI.getSimpleValueType(Arg.getType());
2889     unsigned SrcReg;
2890     const TargetRegisterClass *RC;
2891     if (VT >= MVT::i1 && VT <= MVT::i32) {
2892       SrcReg = Registers[0][GPRIdx++];
2893       RC = &AArch64::GPR32RegClass;
2894       VT = MVT::i32;
2895     } else if (VT == MVT::i64) {
2896       SrcReg = Registers[1][GPRIdx++];
2897       RC = &AArch64::GPR64RegClass;
2898     } else if (VT == MVT::f16) {
2899       SrcReg = Registers[2][FPRIdx++];
2900       RC = &AArch64::FPR16RegClass;
2901     } else if (VT ==  MVT::f32) {
2902       SrcReg = Registers[3][FPRIdx++];
2903       RC = &AArch64::FPR32RegClass;
2904     } else if ((VT == MVT::f64) || VT.is64BitVector()) {
2905       SrcReg = Registers[4][FPRIdx++];
2906       RC = &AArch64::FPR64RegClass;
2907     } else if (VT.is128BitVector()) {
2908       SrcReg = Registers[5][FPRIdx++];
2909       RC = &AArch64::FPR128RegClass;
2910     } else
2911       llvm_unreachable("Unexpected value type.");
2912
2913     unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
2914     // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
2915     // Without this, EmitLiveInCopies may eliminate the livein if its only
2916     // use is a bitcast (which isn't turned into an instruction).
2917     unsigned ResultReg = createResultReg(RC);
2918     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2919             TII.get(TargetOpcode::COPY), ResultReg)
2920         .addReg(DstReg, getKillRegState(true));
2921     updateValueMap(&Arg, ResultReg);
2922   }
2923   return true;
2924 }
2925
2926 bool AArch64FastISel::processCallArgs(CallLoweringInfo &CLI,
2927                                       SmallVectorImpl<MVT> &OutVTs,
2928                                       unsigned &NumBytes) {
2929   CallingConv::ID CC = CLI.CallConv;
2930   SmallVector<CCValAssign, 16> ArgLocs;
2931   CCState CCInfo(CC, false, *FuncInfo.MF, ArgLocs, *Context);
2932   CCInfo.AnalyzeCallOperands(OutVTs, CLI.OutFlags, CCAssignFnForCall(CC));
2933
2934   // Get a count of how many bytes are to be pushed on the stack.
2935   NumBytes = CCInfo.getNextStackOffset();
2936
2937   // Issue CALLSEQ_START
2938   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
2939   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
2940     .addImm(NumBytes);
2941
2942   // Process the args.
2943   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2944     CCValAssign &VA = ArgLocs[i];
2945     const Value *ArgVal = CLI.OutVals[VA.getValNo()];
2946     MVT ArgVT = OutVTs[VA.getValNo()];
2947
2948     unsigned ArgReg = getRegForValue(ArgVal);
2949     if (!ArgReg)
2950       return false;
2951
2952     // Handle arg promotion: SExt, ZExt, AExt.
2953     switch (VA.getLocInfo()) {
2954     case CCValAssign::Full:
2955       break;
2956     case CCValAssign::SExt: {
2957       MVT DestVT = VA.getLocVT();
2958       MVT SrcVT = ArgVT;
2959       ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/false);
2960       if (!ArgReg)
2961         return false;
2962       break;
2963     }
2964     case CCValAssign::AExt:
2965     // Intentional fall-through.
2966     case CCValAssign::ZExt: {
2967       MVT DestVT = VA.getLocVT();
2968       MVT SrcVT = ArgVT;
2969       ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/true);
2970       if (!ArgReg)
2971         return false;
2972       break;
2973     }
2974     default:
2975       llvm_unreachable("Unknown arg promotion!");
2976     }
2977
2978     // Now copy/store arg to correct locations.
2979     if (VA.isRegLoc() && !VA.needsCustom()) {
2980       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2981               TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
2982       CLI.OutRegs.push_back(VA.getLocReg());
2983     } else if (VA.needsCustom()) {
2984       // FIXME: Handle custom args.
2985       return false;
2986     } else {
2987       assert(VA.isMemLoc() && "Assuming store on stack.");
2988
2989       // Don't emit stores for undef values.
2990       if (isa<UndefValue>(ArgVal))
2991         continue;
2992
2993       // Need to store on the stack.
2994       unsigned ArgSize = (ArgVT.getSizeInBits() + 7) / 8;
2995
2996       unsigned BEAlign = 0;
2997       if (ArgSize < 8 && !Subtarget->isLittleEndian())
2998         BEAlign = 8 - ArgSize;
2999
3000       Address Addr;
3001       Addr.setKind(Address::RegBase);
3002       Addr.setReg(AArch64::SP);
3003       Addr.setOffset(VA.getLocMemOffset() + BEAlign);
3004
3005       unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
3006       MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3007         MachinePointerInfo::getStack(Addr.getOffset()),
3008         MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
3009
3010       if (!emitStore(ArgVT, ArgReg, Addr, MMO))
3011         return false;
3012     }
3013   }
3014   return true;
3015 }
3016
3017 bool AArch64FastISel::finishCall(CallLoweringInfo &CLI, MVT RetVT,
3018                                  unsigned NumBytes) {
3019   CallingConv::ID CC = CLI.CallConv;
3020
3021   // Issue CALLSEQ_END
3022   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
3023   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
3024     .addImm(NumBytes).addImm(0);
3025
3026   // Now the return value.
3027   if (RetVT != MVT::isVoid) {
3028     SmallVector<CCValAssign, 16> RVLocs;
3029     CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
3030     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC));
3031
3032     // Only handle a single return value.
3033     if (RVLocs.size() != 1)
3034       return false;
3035
3036     // Copy all of the result registers out of their specified physreg.
3037     MVT CopyVT = RVLocs[0].getValVT();
3038
3039     // TODO: Handle big-endian results
3040     if (CopyVT.isVector() && !Subtarget->isLittleEndian())
3041       return false;
3042
3043     unsigned ResultReg = createResultReg(TLI.getRegClassFor(CopyVT));
3044     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3045             TII.get(TargetOpcode::COPY), ResultReg)
3046         .addReg(RVLocs[0].getLocReg());
3047     CLI.InRegs.push_back(RVLocs[0].getLocReg());
3048
3049     CLI.ResultReg = ResultReg;
3050     CLI.NumResultRegs = 1;
3051   }
3052
3053   return true;
3054 }
3055
3056 bool AArch64FastISel::fastLowerCall(CallLoweringInfo &CLI) {
3057   CallingConv::ID CC  = CLI.CallConv;
3058   bool IsTailCall     = CLI.IsTailCall;
3059   bool IsVarArg       = CLI.IsVarArg;
3060   const Value *Callee = CLI.Callee;
3061   const char *SymName = CLI.SymName;
3062
3063   if (!Callee && !SymName)
3064     return false;
3065
3066   // Allow SelectionDAG isel to handle tail calls.
3067   if (IsTailCall)
3068     return false;
3069
3070   CodeModel::Model CM = TM.getCodeModel();
3071   // Only support the small and large code model.
3072   if (CM != CodeModel::Small && CM != CodeModel::Large)
3073     return false;
3074
3075   // FIXME: Add large code model support for ELF.
3076   if (CM == CodeModel::Large && !Subtarget->isTargetMachO())
3077     return false;
3078
3079   // Let SDISel handle vararg functions.
3080   if (IsVarArg)
3081     return false;
3082
3083   // FIXME: Only handle *simple* calls for now.
3084   MVT RetVT;
3085   if (CLI.RetTy->isVoidTy())
3086     RetVT = MVT::isVoid;
3087   else if (!isTypeLegal(CLI.RetTy, RetVT))
3088     return false;
3089
3090   for (auto Flag : CLI.OutFlags)
3091     if (Flag.isInReg() || Flag.isSRet() || Flag.isNest() || Flag.isByVal())
3092       return false;
3093
3094   // Set up the argument vectors.
3095   SmallVector<MVT, 16> OutVTs;
3096   OutVTs.reserve(CLI.OutVals.size());
3097
3098   for (auto *Val : CLI.OutVals) {
3099     MVT VT;
3100     if (!isTypeLegal(Val->getType(), VT) &&
3101         !(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16))
3102       return false;
3103
3104     // We don't handle vector parameters yet.
3105     if (VT.isVector() || VT.getSizeInBits() > 64)
3106       return false;
3107
3108     OutVTs.push_back(VT);
3109   }
3110
3111   Address Addr;
3112   if (Callee && !computeCallAddress(Callee, Addr))
3113     return false;
3114
3115   // Handle the arguments now that we've gotten them.
3116   unsigned NumBytes;
3117   if (!processCallArgs(CLI, OutVTs, NumBytes))
3118     return false;
3119
3120   // Issue the call.
3121   MachineInstrBuilder MIB;
3122   if (CM == CodeModel::Small) {
3123     const MCInstrDesc &II = TII.get(Addr.getReg() ? AArch64::BLR : AArch64::BL);
3124     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II);
3125     if (SymName)
3126       MIB.addExternalSymbol(SymName, 0);
3127     else if (Addr.getGlobalValue())
3128       MIB.addGlobalAddress(Addr.getGlobalValue(), 0, 0);
3129     else if (Addr.getReg()) {
3130       unsigned Reg = constrainOperandRegClass(II, Addr.getReg(), 0);
3131       MIB.addReg(Reg);
3132     } else
3133       return false;
3134   } else {
3135     unsigned CallReg = 0;
3136     if (SymName) {
3137       unsigned ADRPReg = createResultReg(&AArch64::GPR64commonRegClass);
3138       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
3139               ADRPReg)
3140         .addExternalSymbol(SymName, AArch64II::MO_GOT | AArch64II::MO_PAGE);
3141
3142       CallReg = createResultReg(&AArch64::GPR64RegClass);
3143       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::LDRXui),
3144               CallReg)
3145         .addReg(ADRPReg)
3146         .addExternalSymbol(SymName, AArch64II::MO_GOT | AArch64II::MO_PAGEOFF |
3147                            AArch64II::MO_NC);
3148     } else if (Addr.getGlobalValue())
3149       CallReg = materializeGV(Addr.getGlobalValue());
3150     else if (Addr.getReg())
3151       CallReg = Addr.getReg();
3152
3153     if (!CallReg)
3154       return false;
3155
3156     const MCInstrDesc &II = TII.get(AArch64::BLR);
3157     CallReg = constrainOperandRegClass(II, CallReg, 0);
3158     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addReg(CallReg);
3159   }
3160
3161   // Add implicit physical register uses to the call.
3162   for (auto Reg : CLI.OutRegs)
3163     MIB.addReg(Reg, RegState::Implicit);
3164
3165   // Add a register mask with the call-preserved registers.
3166   // Proper defs for return values will be added by setPhysRegsDeadExcept().
3167   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
3168
3169   CLI.Call = MIB;
3170
3171   // Finish off the call including any return values.
3172   return finishCall(CLI, RetVT, NumBytes);
3173 }
3174
3175 bool AArch64FastISel::isMemCpySmall(uint64_t Len, unsigned Alignment) {
3176   if (Alignment)
3177     return Len / Alignment <= 4;
3178   else
3179     return Len < 32;
3180 }
3181
3182 bool AArch64FastISel::tryEmitSmallMemCpy(Address Dest, Address Src,
3183                                          uint64_t Len, unsigned Alignment) {
3184   // Make sure we don't bloat code by inlining very large memcpy's.
3185   if (!isMemCpySmall(Len, Alignment))
3186     return false;
3187
3188   int64_t UnscaledOffset = 0;
3189   Address OrigDest = Dest;
3190   Address OrigSrc = Src;
3191
3192   while (Len) {
3193     MVT VT;
3194     if (!Alignment || Alignment >= 8) {
3195       if (Len >= 8)
3196         VT = MVT::i64;
3197       else if (Len >= 4)
3198         VT = MVT::i32;
3199       else if (Len >= 2)
3200         VT = MVT::i16;
3201       else {
3202         VT = MVT::i8;
3203       }
3204     } else {
3205       // Bound based on alignment.
3206       if (Len >= 4 && Alignment == 4)
3207         VT = MVT::i32;
3208       else if (Len >= 2 && Alignment == 2)
3209         VT = MVT::i16;
3210       else {
3211         VT = MVT::i8;
3212       }
3213     }
3214
3215     unsigned ResultReg = emitLoad(VT, VT, Src);
3216     if (!ResultReg)
3217       return false;
3218
3219     if (!emitStore(VT, ResultReg, Dest))
3220       return false;
3221
3222     int64_t Size = VT.getSizeInBits() / 8;
3223     Len -= Size;
3224     UnscaledOffset += Size;
3225
3226     // We need to recompute the unscaled offset for each iteration.
3227     Dest.setOffset(OrigDest.getOffset() + UnscaledOffset);
3228     Src.setOffset(OrigSrc.getOffset() + UnscaledOffset);
3229   }
3230
3231   return true;
3232 }
3233
3234 /// \brief Check if it is possible to fold the condition from the XALU intrinsic
3235 /// into the user. The condition code will only be updated on success.
3236 bool AArch64FastISel::foldXALUIntrinsic(AArch64CC::CondCode &CC,
3237                                         const Instruction *I,
3238                                         const Value *Cond) {
3239   if (!isa<ExtractValueInst>(Cond))
3240     return false;
3241
3242   const auto *EV = cast<ExtractValueInst>(Cond);
3243   if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
3244     return false;
3245
3246   const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
3247   MVT RetVT;
3248   const Function *Callee = II->getCalledFunction();
3249   Type *RetTy =
3250   cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
3251   if (!isTypeLegal(RetTy, RetVT))
3252     return false;
3253
3254   if (RetVT != MVT::i32 && RetVT != MVT::i64)
3255     return false;
3256
3257   const Value *LHS = II->getArgOperand(0);
3258   const Value *RHS = II->getArgOperand(1);
3259
3260   // Canonicalize immediate to the RHS.
3261   if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
3262       isCommutativeIntrinsic(II))
3263     std::swap(LHS, RHS);
3264
3265   // Simplify multiplies.
3266   unsigned IID = II->getIntrinsicID();
3267   switch (IID) {
3268   default:
3269     break;
3270   case Intrinsic::smul_with_overflow:
3271     if (const auto *C = dyn_cast<ConstantInt>(RHS))
3272       if (C->getValue() == 2)
3273         IID = Intrinsic::sadd_with_overflow;
3274     break;
3275   case Intrinsic::umul_with_overflow:
3276     if (const auto *C = dyn_cast<ConstantInt>(RHS))
3277       if (C->getValue() == 2)
3278         IID = Intrinsic::uadd_with_overflow;
3279     break;
3280   }
3281
3282   AArch64CC::CondCode TmpCC;
3283   switch (IID) {
3284   default:
3285     return false;
3286   case Intrinsic::sadd_with_overflow:
3287   case Intrinsic::ssub_with_overflow:
3288     TmpCC = AArch64CC::VS;
3289     break;
3290   case Intrinsic::uadd_with_overflow:
3291     TmpCC = AArch64CC::HS;
3292     break;
3293   case Intrinsic::usub_with_overflow:
3294     TmpCC = AArch64CC::LO;
3295     break;
3296   case Intrinsic::smul_with_overflow:
3297   case Intrinsic::umul_with_overflow:
3298     TmpCC = AArch64CC::NE;
3299     break;
3300   }
3301
3302   // Check if both instructions are in the same basic block.
3303   if (!isValueAvailable(II))
3304     return false;
3305
3306   // Make sure nothing is in the way
3307   BasicBlock::const_iterator Start = I;
3308   BasicBlock::const_iterator End = II;
3309   for (auto Itr = std::prev(Start); Itr != End; --Itr) {
3310     // We only expect extractvalue instructions between the intrinsic and the
3311     // instruction to be selected.
3312     if (!isa<ExtractValueInst>(Itr))
3313       return false;
3314
3315     // Check that the extractvalue operand comes from the intrinsic.
3316     const auto *EVI = cast<ExtractValueInst>(Itr);
3317     if (EVI->getAggregateOperand() != II)
3318       return false;
3319   }
3320
3321   CC = TmpCC;
3322   return true;
3323 }
3324
3325 bool AArch64FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
3326   // FIXME: Handle more intrinsics.
3327   switch (II->getIntrinsicID()) {
3328   default: return false;
3329   case Intrinsic::frameaddress: {
3330     MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo();
3331     MFI->setFrameAddressIsTaken(true);
3332
3333     const AArch64RegisterInfo *RegInfo =
3334         static_cast<const AArch64RegisterInfo *>(Subtarget->getRegisterInfo());
3335     unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
3336     unsigned SrcReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
3337     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3338             TII.get(TargetOpcode::COPY), SrcReg).addReg(FramePtr);
3339     // Recursively load frame address
3340     // ldr x0, [fp]
3341     // ldr x0, [x0]
3342     // ldr x0, [x0]
3343     // ...
3344     unsigned DestReg;
3345     unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
3346     while (Depth--) {
3347       DestReg = fastEmitInst_ri(AArch64::LDRXui, &AArch64::GPR64RegClass,
3348                                 SrcReg, /*IsKill=*/true, 0);
3349       assert(DestReg && "Unexpected LDR instruction emission failure.");
3350       SrcReg = DestReg;
3351     }
3352
3353     updateValueMap(II, SrcReg);
3354     return true;
3355   }
3356   case Intrinsic::memcpy:
3357   case Intrinsic::memmove: {
3358     const auto *MTI = cast<MemTransferInst>(II);
3359     // Don't handle volatile.
3360     if (MTI->isVolatile())
3361       return false;
3362
3363     // Disable inlining for memmove before calls to ComputeAddress.  Otherwise,
3364     // we would emit dead code because we don't currently handle memmoves.
3365     bool IsMemCpy = (II->getIntrinsicID() == Intrinsic::memcpy);
3366     if (isa<ConstantInt>(MTI->getLength()) && IsMemCpy) {
3367       // Small memcpy's are common enough that we want to do them without a call
3368       // if possible.
3369       uint64_t Len = cast<ConstantInt>(MTI->getLength())->getZExtValue();
3370       unsigned Alignment = MTI->getAlignment();
3371       if (isMemCpySmall(Len, Alignment)) {
3372         Address Dest, Src;
3373         if (!computeAddress(MTI->getRawDest(), Dest) ||
3374             !computeAddress(MTI->getRawSource(), Src))
3375           return false;
3376         if (tryEmitSmallMemCpy(Dest, Src, Len, Alignment))
3377           return true;
3378       }
3379     }
3380
3381     if (!MTI->getLength()->getType()->isIntegerTy(64))
3382       return false;
3383
3384     if (MTI->getSourceAddressSpace() > 255 || MTI->getDestAddressSpace() > 255)
3385       // Fast instruction selection doesn't support the special
3386       // address spaces.
3387       return false;
3388
3389     const char *IntrMemName = isa<MemCpyInst>(II) ? "memcpy" : "memmove";
3390     return lowerCallTo(II, IntrMemName, II->getNumArgOperands() - 2);
3391   }
3392   case Intrinsic::memset: {
3393     const MemSetInst *MSI = cast<MemSetInst>(II);
3394     // Don't handle volatile.
3395     if (MSI->isVolatile())
3396       return false;
3397
3398     if (!MSI->getLength()->getType()->isIntegerTy(64))
3399       return false;
3400
3401     if (MSI->getDestAddressSpace() > 255)
3402       // Fast instruction selection doesn't support the special
3403       // address spaces.
3404       return false;
3405
3406     return lowerCallTo(II, "memset", II->getNumArgOperands() - 2);
3407   }
3408   case Intrinsic::sin:
3409   case Intrinsic::cos:
3410   case Intrinsic::pow: {
3411     MVT RetVT;
3412     if (!isTypeLegal(II->getType(), RetVT))
3413       return false;
3414
3415     if (RetVT != MVT::f32 && RetVT != MVT::f64)
3416       return false;
3417
3418     static const RTLIB::Libcall LibCallTable[3][2] = {
3419       { RTLIB::SIN_F32, RTLIB::SIN_F64 },
3420       { RTLIB::COS_F32, RTLIB::COS_F64 },
3421       { RTLIB::POW_F32, RTLIB::POW_F64 }
3422     };
3423     RTLIB::Libcall LC;
3424     bool Is64Bit = RetVT == MVT::f64;
3425     switch (II->getIntrinsicID()) {
3426     default:
3427       llvm_unreachable("Unexpected intrinsic.");
3428     case Intrinsic::sin:
3429       LC = LibCallTable[0][Is64Bit];
3430       break;
3431     case Intrinsic::cos:
3432       LC = LibCallTable[1][Is64Bit];
3433       break;
3434     case Intrinsic::pow:
3435       LC = LibCallTable[2][Is64Bit];
3436       break;
3437     }
3438
3439     ArgListTy Args;
3440     Args.reserve(II->getNumArgOperands());
3441
3442     // Populate the argument list.
3443     for (auto &Arg : II->arg_operands()) {
3444       ArgListEntry Entry;
3445       Entry.Val = Arg;
3446       Entry.Ty = Arg->getType();
3447       Args.push_back(Entry);
3448     }
3449
3450     CallLoweringInfo CLI;
3451     CLI.setCallee(TLI.getLibcallCallingConv(LC), II->getType(),
3452                   TLI.getLibcallName(LC), std::move(Args));
3453     if (!lowerCallTo(CLI))
3454       return false;
3455     updateValueMap(II, CLI.ResultReg);
3456     return true;
3457   }
3458   case Intrinsic::fabs: {
3459     MVT VT;
3460     if (!isTypeLegal(II->getType(), VT))
3461       return false;
3462
3463     unsigned Opc;
3464     switch (VT.SimpleTy) {
3465     default:
3466       return false;
3467     case MVT::f32:
3468       Opc = AArch64::FABSSr;