AArch64/ARM64: move ARM64 into AArch64's place
[oota-llvm.git] / lib / Target / AArch64 / AArch64CleanupLocalDynamicTLSPass.cpp
1 //===-- AArch64CleanupLocalDynamicTLSPass.cpp ---------------------*- C++ -*-=//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Local-dynamic access to thread-local variables proceeds in three stages.
11 //
12 // 1. The offset of this Module's thread-local area from TPIDR_EL0 is calculated
13 //    in much the same way as a general-dynamic TLS-descriptor access against
14 //    the special symbol _TLS_MODULE_BASE.
15 // 2. The variable's offset from _TLS_MODULE_BASE_ is calculated using
16 //    instructions with "dtprel" modifiers.
17 // 3. These two are added, together with TPIDR_EL0, to obtain the variable's
18 //    true address.
19 //
20 // This is only better than general-dynamic access to the variable if two or
21 // more of the first stage TLS-descriptor calculations can be combined. This
22 // pass looks through a function and performs such combinations.
23 //
24 //===----------------------------------------------------------------------===//
25 #include "AArch64.h"
26 #include "AArch64InstrInfo.h"
27 #include "AArch64MachineFunctionInfo.h"
28 #include "AArch64TargetMachine.h"
29 #include "llvm/CodeGen/MachineDominators.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 using namespace llvm;
35
36 namespace {
37 struct LDTLSCleanup : public MachineFunctionPass {
38   static char ID;
39   LDTLSCleanup() : MachineFunctionPass(ID) {}
40
41   bool runOnMachineFunction(MachineFunction &MF) override {
42     AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
43     if (AFI->getNumLocalDynamicTLSAccesses() < 2) {
44       // No point folding accesses if there isn't at least two.
45       return false;
46     }
47
48     MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
49     return VisitNode(DT->getRootNode(), 0);
50   }
51
52   // Visit the dominator subtree rooted at Node in pre-order.
53   // If TLSBaseAddrReg is non-null, then use that to replace any
54   // TLS_base_addr instructions. Otherwise, create the register
55   // when the first such instruction is seen, and then use it
56   // as we encounter more instructions.
57   bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
58     MachineBasicBlock *BB = Node->getBlock();
59     bool Changed = false;
60
61     // Traverse the current block.
62     for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
63          ++I) {
64       switch (I->getOpcode()) {
65       case AArch64::TLSDESC_BLR:
66         // Make sure it's a local dynamic access.
67         if (!I->getOperand(1).isSymbol() ||
68             strcmp(I->getOperand(1).getSymbolName(), "_TLS_MODULE_BASE_"))
69           break;
70
71         if (TLSBaseAddrReg)
72           I = replaceTLSBaseAddrCall(I, TLSBaseAddrReg);
73         else
74           I = setRegister(I, &TLSBaseAddrReg);
75         Changed = true;
76         break;
77       default:
78         break;
79       }
80     }
81
82     // Visit the children of this block in the dominator tree.
83     for (MachineDomTreeNode *N : *Node) {
84       Changed |= VisitNode(N, TLSBaseAddrReg);
85     }
86
87     return Changed;
88   }
89
90   // Replace the TLS_base_addr instruction I with a copy from
91   // TLSBaseAddrReg, returning the new instruction.
92   MachineInstr *replaceTLSBaseAddrCall(MachineInstr *I,
93                                        unsigned TLSBaseAddrReg) {
94     MachineFunction *MF = I->getParent()->getParent();
95     const AArch64TargetMachine *TM =
96         static_cast<const AArch64TargetMachine *>(&MF->getTarget());
97     const AArch64InstrInfo *TII = TM->getInstrInfo();
98
99     // Insert a Copy from TLSBaseAddrReg to x0, which is where the rest of the
100     // code sequence assumes the address will be.
101     MachineInstr *Copy = BuildMI(*I->getParent(), I, I->getDebugLoc(),
102                                  TII->get(TargetOpcode::COPY),
103                                  AArch64::X0).addReg(TLSBaseAddrReg);
104
105     // Erase the TLS_base_addr instruction.
106     I->eraseFromParent();
107
108     return Copy;
109   }
110
111   // Create a virtal register in *TLSBaseAddrReg, and populate it by
112   // inserting a copy instruction after I. Returns the new instruction.
113   MachineInstr *setRegister(MachineInstr *I, unsigned *TLSBaseAddrReg) {
114     MachineFunction *MF = I->getParent()->getParent();
115     const AArch64TargetMachine *TM =
116         static_cast<const AArch64TargetMachine *>(&MF->getTarget());
117     const AArch64InstrInfo *TII = TM->getInstrInfo();
118
119     // Create a virtual register for the TLS base address.
120     MachineRegisterInfo &RegInfo = MF->getRegInfo();
121     *TLSBaseAddrReg = RegInfo.createVirtualRegister(&AArch64::GPR64RegClass);
122
123     // Insert a copy from X0 to TLSBaseAddrReg for later.
124     MachineInstr *Next = I->getNextNode();
125     MachineInstr *Copy = BuildMI(*I->getParent(), Next, I->getDebugLoc(),
126                                  TII->get(TargetOpcode::COPY),
127                                  *TLSBaseAddrReg).addReg(AArch64::X0);
128
129     return Copy;
130   }
131
132   const char *getPassName() const override {
133     return "Local Dynamic TLS Access Clean-up";
134   }
135
136   void getAnalysisUsage(AnalysisUsage &AU) const override {
137     AU.setPreservesCFG();
138     AU.addRequired<MachineDominatorTree>();
139     MachineFunctionPass::getAnalysisUsage(AU);
140   }
141 };
142 }
143
144 char LDTLSCleanup::ID = 0;
145 FunctionPass *llvm::createAArch64CleanupLocalDynamicTLSPass() {
146   return new LDTLSCleanup();
147 }