53980519645022f58e01bfc09361c3b0d7e32085
[oota-llvm.git] / lib / Support / StringRef.cpp
1 //===-- StringRef.cpp - Lightweight String References ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/ADT/StringRef.h"
11 #include "llvm/ADT/APInt.h"
12 #include "llvm/ADT/OwningPtr.h"
13 #include <bitset>
14
15 using namespace llvm;
16
17 // MSVC emits references to this into the translation units which reference it.
18 #ifndef _MSC_VER
19 const size_t StringRef::npos;
20 #endif
21
22 static char ascii_tolower(char x) {
23   if (x >= 'A' && x <= 'Z')
24     return x - 'A' + 'a';
25   return x;
26 }
27
28 static bool ascii_isdigit(char x) {
29   return x >= '0' && x <= '9';
30 }
31
32 /// compare_lower - Compare strings, ignoring case.
33 int StringRef::compare_lower(StringRef RHS) const {
34   for (size_t I = 0, E = min(Length, RHS.Length); I != E; ++I) {
35     unsigned char LHC = ascii_tolower(Data[I]);
36     unsigned char RHC = ascii_tolower(RHS.Data[I]);
37     if (LHC != RHC)
38       return LHC < RHC ? -1 : 1;
39   }
40
41   if (Length == RHS.Length)
42     return 0;
43   return Length < RHS.Length ? -1 : 1;
44 }
45
46 /// compare_numeric - Compare strings, handle embedded numbers.
47 int StringRef::compare_numeric(StringRef RHS) const {
48   for (size_t I = 0, E = min(Length, RHS.Length); I != E; ++I) {
49     if (Data[I] == RHS.Data[I])
50       continue;
51     if (ascii_isdigit(Data[I]) && ascii_isdigit(RHS.Data[I])) {
52       // The longer sequence of numbers is larger. This doesn't really handle
53       // prefixed zeros well.
54       for (size_t J = I+1; J != E+1; ++J) {
55         bool ld = J < Length && ascii_isdigit(Data[J]);
56         bool rd = J < RHS.Length && ascii_isdigit(RHS.Data[J]);
57         if (ld != rd)
58           return rd ? -1 : 1;
59         if (!rd)
60           break;
61       }
62     }
63     return (unsigned char)Data[I] < (unsigned char)RHS.Data[I] ? -1 : 1;
64   }
65   if (Length == RHS.Length)
66     return 0;
67   return Length < RHS.Length ? -1 : 1;
68 }
69
70 // Compute the edit distance between the two given strings.
71 unsigned StringRef::edit_distance(llvm::StringRef Other,
72                                   bool AllowReplacements,
73                                   unsigned MaxEditDistance) {
74   // The algorithm implemented below is the "classic"
75   // dynamic-programming algorithm for computing the Levenshtein
76   // distance, which is described here:
77   //
78   //   http://en.wikipedia.org/wiki/Levenshtein_distance
79   //
80   // Although the algorithm is typically described using an m x n
81   // array, only two rows are used at a time, so this implemenation
82   // just keeps two separate vectors for those two rows.
83   size_type m = size();
84   size_type n = Other.size();
85
86   const unsigned SmallBufferSize = 64;
87   unsigned SmallBuffer[SmallBufferSize];
88   llvm::OwningArrayPtr<unsigned> Allocated;
89   unsigned *previous = SmallBuffer;
90   if (2*(n + 1) > SmallBufferSize) {
91     previous = new unsigned [2*(n+1)];
92     Allocated.reset(previous);
93   }
94   unsigned *current = previous + (n + 1);
95
96   for (unsigned i = 0; i <= n; ++i)
97     previous[i] = i;
98
99   for (size_type y = 1; y <= m; ++y) {
100     current[0] = y;
101     unsigned BestThisRow = current[0];
102
103     for (size_type x = 1; x <= n; ++x) {
104       if (AllowReplacements) {
105         current[x] = min(previous[x-1] + ((*this)[y-1] == Other[x-1]? 0u:1u),
106                          min(current[x-1], previous[x])+1);
107       }
108       else {
109         if ((*this)[y-1] == Other[x-1]) current[x] = previous[x-1];
110         else current[x] = min(current[x-1], previous[x]) + 1;
111       }
112       BestThisRow = min(BestThisRow, current[x]);
113     }
114
115     if (MaxEditDistance && BestThisRow > MaxEditDistance)
116       return MaxEditDistance + 1;
117
118     unsigned *tmp = current;
119     current = previous;
120     previous = tmp;
121   }
122
123   unsigned Result = previous[n];
124   return Result;
125 }
126
127 //===----------------------------------------------------------------------===//
128 // String Searching
129 //===----------------------------------------------------------------------===//
130
131
132 /// find - Search for the first string \arg Str in the string.
133 ///
134 /// \return - The index of the first occurence of \arg Str, or npos if not
135 /// found.
136 size_t StringRef::find(StringRef Str, size_t From) const {
137   size_t N = Str.size();
138   if (N > Length)
139     return npos;
140   for (size_t e = Length - N + 1, i = min(From, e); i != e; ++i)
141     if (substr(i, N).equals(Str))
142       return i;
143   return npos;
144 }
145
146 /// rfind - Search for the last string \arg Str in the string.
147 ///
148 /// \return - The index of the last occurence of \arg Str, or npos if not
149 /// found.
150 size_t StringRef::rfind(StringRef Str) const {
151   size_t N = Str.size();
152   if (N > Length)
153     return npos;
154   for (size_t i = Length - N + 1, e = 0; i != e;) {
155     --i;
156     if (substr(i, N).equals(Str))
157       return i;
158   }
159   return npos;
160 }
161
162 /// find_first_of - Find the first character in the string that is in \arg
163 /// Chars, or npos if not found.
164 ///
165 /// Note: O(size() + Chars.size())
166 StringRef::size_type StringRef::find_first_of(StringRef Chars,
167                                               size_t From) const {
168   std::bitset<1 << CHAR_BIT> CharBits;
169   for (size_type i = 0; i != Chars.size(); ++i)
170     CharBits.set((unsigned char)Chars[i]);
171
172   for (size_type i = min(From, Length), e = Length; i != e; ++i)
173     if (CharBits.test((unsigned char)Data[i]))
174       return i;
175   return npos;
176 }
177
178 /// find_first_not_of - Find the first character in the string that is not
179 /// \arg C or npos if not found.
180 StringRef::size_type StringRef::find_first_not_of(char C, size_t From) const {
181   for (size_type i = min(From, Length), e = Length; i != e; ++i)
182     if (Data[i] != C)
183       return i;
184   return npos;
185 }
186
187 /// find_first_not_of - Find the first character in the string that is not
188 /// in the string \arg Chars, or npos if not found.
189 ///
190 /// Note: O(size() + Chars.size())
191 StringRef::size_type StringRef::find_first_not_of(StringRef Chars,
192                                                   size_t From) const {
193   std::bitset<1 << CHAR_BIT> CharBits;
194   for (size_type i = 0; i != Chars.size(); ++i)
195     CharBits.set((unsigned char)Chars[i]);
196
197   for (size_type i = min(From, Length), e = Length; i != e; ++i)
198     if (!CharBits.test((unsigned char)Data[i]))
199       return i;
200   return npos;
201 }
202
203 /// find_last_of - Find the last character in the string that is in \arg C,
204 /// or npos if not found.
205 ///
206 /// Note: O(size() + Chars.size())
207 StringRef::size_type StringRef::find_last_of(StringRef Chars,
208                                              size_t From) const {
209   std::bitset<1 << CHAR_BIT> CharBits;
210   for (size_type i = 0; i != Chars.size(); ++i)
211     CharBits.set((unsigned char)Chars[i]);
212
213   for (size_type i = min(From, Length) - 1, e = -1; i != e; --i)
214     if (CharBits.test((unsigned char)Data[i]))
215       return i;
216   return npos;
217 }
218
219 //===----------------------------------------------------------------------===//
220 // Helpful Algorithms
221 //===----------------------------------------------------------------------===//
222
223 /// count - Return the number of non-overlapped occurrences of \arg Str in
224 /// the string.
225 size_t StringRef::count(StringRef Str) const {
226   size_t Count = 0;
227   size_t N = Str.size();
228   if (N > Length)
229     return 0;
230   for (size_t i = 0, e = Length - N + 1; i != e; ++i)
231     if (substr(i, N).equals(Str))
232       ++Count;
233   return Count;
234 }
235
236 static unsigned GetAutoSenseRadix(StringRef &Str) {
237   if (Str.startswith("0x")) {
238     Str = Str.substr(2);
239     return 16;
240   } else if (Str.startswith("0b")) {
241     Str = Str.substr(2);
242     return 2;
243   } else if (Str.startswith("0")) {
244     return 8;
245   } else {
246     return 10;
247   }
248 }
249
250
251 /// GetAsUnsignedInteger - Workhorse method that converts a integer character
252 /// sequence of radix up to 36 to an unsigned long long value.
253 static bool GetAsUnsignedInteger(StringRef Str, unsigned Radix,
254                                  unsigned long long &Result) {
255   // Autosense radix if not specified.
256   if (Radix == 0)
257     Radix = GetAutoSenseRadix(Str);
258
259   // Empty strings (after the radix autosense) are invalid.
260   if (Str.empty()) return true;
261
262   // Parse all the bytes of the string given this radix.  Watch for overflow.
263   Result = 0;
264   while (!Str.empty()) {
265     unsigned CharVal;
266     if (Str[0] >= '0' && Str[0] <= '9')
267       CharVal = Str[0]-'0';
268     else if (Str[0] >= 'a' && Str[0] <= 'z')
269       CharVal = Str[0]-'a'+10;
270     else if (Str[0] >= 'A' && Str[0] <= 'Z')
271       CharVal = Str[0]-'A'+10;
272     else
273       return true;
274
275     // If the parsed value is larger than the integer radix, the string is
276     // invalid.
277     if (CharVal >= Radix)
278       return true;
279
280     // Add in this character.
281     unsigned long long PrevResult = Result;
282     Result = Result*Radix+CharVal;
283
284     // Check for overflow.
285     if (Result < PrevResult)
286       return true;
287
288     Str = Str.substr(1);
289   }
290
291   return false;
292 }
293
294 bool StringRef::getAsInteger(unsigned Radix, unsigned long long &Result) const {
295   return GetAsUnsignedInteger(*this, Radix, Result);
296 }
297
298
299 bool StringRef::getAsInteger(unsigned Radix, long long &Result) const {
300   unsigned long long ULLVal;
301
302   // Handle positive strings first.
303   if (empty() || front() != '-') {
304     if (GetAsUnsignedInteger(*this, Radix, ULLVal) ||
305         // Check for value so large it overflows a signed value.
306         (long long)ULLVal < 0)
307       return true;
308     Result = ULLVal;
309     return false;
310   }
311
312   // Get the positive part of the value.
313   if (GetAsUnsignedInteger(substr(1), Radix, ULLVal) ||
314       // Reject values so large they'd overflow as negative signed, but allow
315       // "-0".  This negates the unsigned so that the negative isn't undefined
316       // on signed overflow.
317       (long long)-ULLVal > 0)
318     return true;
319
320   Result = -ULLVal;
321   return false;
322 }
323
324 bool StringRef::getAsInteger(unsigned Radix, int &Result) const {
325   long long Val;
326   if (getAsInteger(Radix, Val) ||
327       (int)Val != Val)
328     return true;
329   Result = Val;
330   return false;
331 }
332
333 bool StringRef::getAsInteger(unsigned Radix, unsigned &Result) const {
334   unsigned long long Val;
335   if (getAsInteger(Radix, Val) ||
336       (unsigned)Val != Val)
337     return true;
338   Result = Val;
339   return false;
340 }
341
342 bool StringRef::getAsInteger(unsigned Radix, APInt &Result) const {
343   StringRef Str = *this;
344
345   // Autosense radix if not specified.
346   if (Radix == 0)
347     Radix = GetAutoSenseRadix(Str);
348
349   assert(Radix > 1 && Radix <= 36);
350
351   // Empty strings (after the radix autosense) are invalid.
352   if (Str.empty()) return true;
353
354   // Skip leading zeroes.  This can be a significant improvement if
355   // it means we don't need > 64 bits.
356   while (!Str.empty() && Str.front() == '0')
357     Str = Str.substr(1);
358
359   // If it was nothing but zeroes....
360   if (Str.empty()) {
361     Result = APInt(64, 0);
362     return false;
363   }
364
365   // (Over-)estimate the required number of bits.
366   unsigned Log2Radix = 0;
367   while ((1U << Log2Radix) < Radix) Log2Radix++;
368   bool IsPowerOf2Radix = ((1U << Log2Radix) == Radix);
369
370   unsigned BitWidth = Log2Radix * Str.size();
371   if (BitWidth < Result.getBitWidth())
372     BitWidth = Result.getBitWidth(); // don't shrink the result
373   else
374     Result = Result.zext(BitWidth);
375
376   APInt RadixAP, CharAP; // unused unless !IsPowerOf2Radix
377   if (!IsPowerOf2Radix) {
378     // These must have the same bit-width as Result.
379     RadixAP = APInt(BitWidth, Radix);
380     CharAP = APInt(BitWidth, 0);
381   }
382
383   // Parse all the bytes of the string given this radix.
384   Result = 0;
385   while (!Str.empty()) {
386     unsigned CharVal;
387     if (Str[0] >= '0' && Str[0] <= '9')
388       CharVal = Str[0]-'0';
389     else if (Str[0] >= 'a' && Str[0] <= 'z')
390       CharVal = Str[0]-'a'+10;
391     else if (Str[0] >= 'A' && Str[0] <= 'Z')
392       CharVal = Str[0]-'A'+10;
393     else
394       return true;
395
396     // If the parsed value is larger than the integer radix, the string is
397     // invalid.
398     if (CharVal >= Radix)
399       return true;
400
401     // Add in this character.
402     if (IsPowerOf2Radix) {
403       Result <<= Log2Radix;
404       Result |= CharVal;
405     } else {
406       Result *= RadixAP;
407       CharAP = CharVal;
408       Result += CharAP;
409     }
410
411     Str = Str.substr(1);
412   }
413
414   return false;
415 }