Make the moved-from SmallPtrSet be a valid, empty, small-state object.
[oota-llvm.git] / lib / Support / SmallPtrSet.cpp
1 //===- llvm/ADT/SmallPtrSet.cpp - 'Normally small' pointer set ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SmallPtrSet class.  See SmallPtrSet.h for an
11 // overview of the algorithm.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/Support/MathExtras.h"
18 #include <algorithm>
19 #include <cstdlib>
20
21 using namespace llvm;
22
23 void SmallPtrSetImpl::shrink_and_clear() {
24   assert(!isSmall() && "Can't shrink a small set!");
25   free(CurArray);
26
27   // Reduce the number of buckets.
28   CurArraySize = NumElements > 16 ? 1 << (Log2_32_Ceil(NumElements) + 1) : 32;
29   NumElements = NumTombstones = 0;
30
31   // Install the new array.  Clear all the buckets to empty.
32   CurArray = (const void**)malloc(sizeof(void*) * CurArraySize);
33   assert(CurArray && "Failed to allocate memory?");
34   memset(CurArray, -1, CurArraySize*sizeof(void*));
35 }
36
37 bool SmallPtrSetImpl::insert_imp(const void * Ptr) {
38   if (isSmall()) {
39     // Check to see if it is already in the set.
40     for (const void **APtr = SmallArray, **E = SmallArray+NumElements;
41          APtr != E; ++APtr)
42       if (*APtr == Ptr)
43         return false;
44     
45     // Nope, there isn't.  If we stay small, just 'pushback' now.
46     if (NumElements < CurArraySize-1) {
47       SmallArray[NumElements++] = Ptr;
48       return true;
49     }
50     // Otherwise, hit the big set case, which will call grow.
51   }
52   
53   if (NumElements*4 >= CurArraySize*3) {
54     // If more than 3/4 of the array is full, grow.
55     Grow(CurArraySize < 64 ? 128 : CurArraySize*2);
56   } else if (CurArraySize-(NumElements+NumTombstones) < CurArraySize/8) {
57     // If fewer of 1/8 of the array is empty (meaning that many are filled with
58     // tombstones), rehash.
59     Grow(CurArraySize);
60   }
61   
62   // Okay, we know we have space.  Find a hash bucket.
63   const void **Bucket = const_cast<const void**>(FindBucketFor(Ptr));
64   if (*Bucket == Ptr) return false; // Already inserted, good.
65   
66   // Otherwise, insert it!
67   if (*Bucket == getTombstoneMarker())
68     --NumTombstones;
69   *Bucket = Ptr;
70   ++NumElements;  // Track density.
71   return true;
72 }
73
74 bool SmallPtrSetImpl::erase_imp(const void * Ptr) {
75   if (isSmall()) {
76     // Check to see if it is in the set.
77     for (const void **APtr = SmallArray, **E = SmallArray+NumElements;
78          APtr != E; ++APtr)
79       if (*APtr == Ptr) {
80         // If it is in the set, replace this element.
81         *APtr = E[-1];
82         E[-1] = getEmptyMarker();
83         --NumElements;
84         return true;
85       }
86     
87     return false;
88   }
89   
90   // Okay, we know we have space.  Find a hash bucket.
91   void **Bucket = const_cast<void**>(FindBucketFor(Ptr));
92   if (*Bucket != Ptr) return false;  // Not in the set?
93
94   // Set this as a tombstone.
95   *Bucket = getTombstoneMarker();
96   --NumElements;
97   ++NumTombstones;
98   return true;
99 }
100
101 const void * const *SmallPtrSetImpl::FindBucketFor(const void *Ptr) const {
102   unsigned Bucket = DenseMapInfo<void *>::getHashValue(Ptr) & (CurArraySize-1);
103   unsigned ArraySize = CurArraySize;
104   unsigned ProbeAmt = 1;
105   const void *const *Array = CurArray;
106   const void *const *Tombstone = 0;
107   while (1) {
108     // Found Ptr's bucket?
109     if (Array[Bucket] == Ptr)
110       return Array+Bucket;
111     
112     // If we found an empty bucket, the pointer doesn't exist in the set.
113     // Return a tombstone if we've seen one so far, or the empty bucket if
114     // not.
115     if (Array[Bucket] == getEmptyMarker())
116       return Tombstone ? Tombstone : Array+Bucket;
117     
118     // If this is a tombstone, remember it.  If Ptr ends up not in the set, we
119     // prefer to return it than something that would require more probing.
120     if (Array[Bucket] == getTombstoneMarker() && !Tombstone)
121       Tombstone = Array+Bucket;  // Remember the first tombstone found.
122     
123     // It's a hash collision or a tombstone. Reprobe.
124     Bucket = (Bucket + ProbeAmt++) & (ArraySize-1);
125   }
126 }
127
128 /// Grow - Allocate a larger backing store for the buckets and move it over.
129 ///
130 void SmallPtrSetImpl::Grow(unsigned NewSize) {
131   // Allocate at twice as many buckets, but at least 128.
132   unsigned OldSize = CurArraySize;
133   
134   const void **OldBuckets = CurArray;
135   bool WasSmall = isSmall();
136   
137   // Install the new array.  Clear all the buckets to empty.
138   CurArray = (const void**)malloc(sizeof(void*) * NewSize);
139   assert(CurArray && "Failed to allocate memory?");
140   CurArraySize = NewSize;
141   memset(CurArray, -1, NewSize*sizeof(void*));
142   
143   // Copy over all the elements.
144   if (WasSmall) {
145     // Small sets store their elements in order.
146     for (const void **BucketPtr = OldBuckets, **E = OldBuckets+NumElements;
147          BucketPtr != E; ++BucketPtr) {
148       const void *Elt = *BucketPtr;
149       *const_cast<void**>(FindBucketFor(Elt)) = const_cast<void*>(Elt);
150     }
151   } else {
152     // Copy over all valid entries.
153     for (const void **BucketPtr = OldBuckets, **E = OldBuckets+OldSize;
154          BucketPtr != E; ++BucketPtr) {
155       // Copy over the element if it is valid.
156       const void *Elt = *BucketPtr;
157       if (Elt != getTombstoneMarker() && Elt != getEmptyMarker())
158         *const_cast<void**>(FindBucketFor(Elt)) = const_cast<void*>(Elt);
159     }
160     
161     free(OldBuckets);
162     NumTombstones = 0;
163   }
164 }
165
166 SmallPtrSetImpl::SmallPtrSetImpl(const void **SmallStorage,
167                                  const SmallPtrSetImpl& that) {
168   SmallArray = SmallStorage;
169
170   // If we're becoming small, prepare to insert into our stack space
171   if (that.isSmall()) {
172     CurArray = SmallArray;
173   // Otherwise, allocate new heap space (unless we were the same size)
174   } else {
175     CurArray = (const void**)malloc(sizeof(void*) * that.CurArraySize);
176     assert(CurArray && "Failed to allocate memory?");
177   }
178   
179   // Copy over the new array size
180   CurArraySize = that.CurArraySize;
181
182   // Copy over the contents from the other set
183   memcpy(CurArray, that.CurArray, sizeof(void*)*CurArraySize);
184   
185   NumElements = that.NumElements;
186   NumTombstones = that.NumTombstones;
187 }
188
189 #if LLVM_HAS_RVALUE_REFERENCES
190 SmallPtrSetImpl::SmallPtrSetImpl(const void **SmallStorage, unsigned SmallSize,
191                                  SmallPtrSetImpl &&that) {
192   SmallArray = SmallStorage;
193
194   // Copy over the basic members.
195   CurArraySize = that.CurArraySize;
196   NumElements = that.NumElements;
197   NumTombstones = that.NumTombstones;
198
199   // When small, just copy into our small buffer.
200   if (that.isSmall()) {
201     CurArray = SmallArray;
202     memcpy(CurArray, that.CurArray, sizeof(void *) * CurArraySize);
203     return;
204   }
205
206   // Otherwise, we steal the large memory allocation and no copy is needed.
207   CurArray = that.CurArray;
208   that.CurArray = that.SmallArray;
209
210   // Make the "that" object small and empty.
211   that.CurArraySize = SmallSize;
212   assert(that.CurArray == that.SmallArray);
213   that.NumElements = 0;
214   that.NumTombstones = 0;
215 }
216 #endif
217
218 /// CopyFrom - implement operator= from a smallptrset that has the same pointer
219 /// type, but may have a different small size.
220 void SmallPtrSetImpl::CopyFrom(const SmallPtrSetImpl &RHS) {
221   if (isSmall() && RHS.isSmall())
222     assert(CurArraySize == RHS.CurArraySize &&
223            "Cannot assign sets with different small sizes");
224
225   // If we're becoming small, prepare to insert into our stack space
226   if (RHS.isSmall()) {
227     if (!isSmall())
228       free(CurArray);
229     CurArray = SmallArray;
230   // Otherwise, allocate new heap space (unless we were the same size)
231   } else if (CurArraySize != RHS.CurArraySize) {
232     if (isSmall())
233       CurArray = (const void**)malloc(sizeof(void*) * RHS.CurArraySize);
234     else {
235       const void **T = (const void**)realloc(CurArray,
236                                              sizeof(void*) * RHS.CurArraySize);
237       if (!T)
238         free(CurArray);
239       CurArray = T;
240     }
241     assert(CurArray && "Failed to allocate memory?");
242   }
243   
244   // Copy over the new array size
245   CurArraySize = RHS.CurArraySize;
246
247   // Copy over the contents from the other set
248   memcpy(CurArray, RHS.CurArray, sizeof(void*)*CurArraySize);
249   
250   NumElements = RHS.NumElements;
251   NumTombstones = RHS.NumTombstones;
252 }
253
254 #if LLVM_HAS_RVALUE_REFERENCES
255 void SmallPtrSetImpl::MoveFrom(unsigned SmallSize, SmallPtrSetImpl &&RHS) {
256   if (!isSmall())
257     free(CurArray);
258
259   if (RHS.isSmall()) {
260     // Copy a small RHS rather than moving.
261     CurArray = SmallArray;
262     memcpy(CurArray, RHS.CurArray, sizeof(void*)*RHS.CurArraySize);
263   } else {
264     CurArray = RHS.CurArray;
265     RHS.CurArray = RHS.SmallArray;
266   }
267
268   // Copy the rest of the trivial members.
269   CurArraySize = RHS.CurArraySize;
270   NumElements = RHS.NumElements;
271   NumTombstones = RHS.NumTombstones;
272
273   // Make the RHS small and empty.
274   RHS.CurArraySize = SmallSize;
275   assert(RHS.CurArray == RHS.SmallArray);
276   RHS.NumElements = 0;
277   RHS.NumTombstones = 0;
278 }
279 #endif
280
281 void SmallPtrSetImpl::swap(SmallPtrSetImpl &RHS) {
282   if (this == &RHS) return;
283
284   // We can only avoid copying elements if neither set is small.
285   if (!this->isSmall() && !RHS.isSmall()) {
286     std::swap(this->CurArray, RHS.CurArray);
287     std::swap(this->CurArraySize, RHS.CurArraySize);
288     std::swap(this->NumElements, RHS.NumElements);
289     std::swap(this->NumTombstones, RHS.NumTombstones);
290     return;
291   }
292
293   // FIXME: From here on we assume that both sets have the same small size.
294
295   // If only RHS is small, copy the small elements into LHS and move the pointer
296   // from LHS to RHS.
297   if (!this->isSmall() && RHS.isSmall()) {
298     std::copy(RHS.SmallArray, RHS.SmallArray+RHS.CurArraySize,
299               this->SmallArray);
300     std::swap(this->NumElements, RHS.NumElements);
301     std::swap(this->CurArraySize, RHS.CurArraySize);
302     RHS.CurArray = this->CurArray;
303     RHS.NumTombstones = this->NumTombstones;
304     this->CurArray = this->SmallArray;
305     this->NumTombstones = 0;
306     return;
307   }
308
309   // If only LHS is small, copy the small elements into RHS and move the pointer
310   // from RHS to LHS.
311   if (this->isSmall() && !RHS.isSmall()) {
312     std::copy(this->SmallArray, this->SmallArray+this->CurArraySize,
313               RHS.SmallArray);
314     std::swap(RHS.NumElements, this->NumElements);
315     std::swap(RHS.CurArraySize, this->CurArraySize);
316     this->CurArray = RHS.CurArray;
317     this->NumTombstones = RHS.NumTombstones;
318     RHS.CurArray = RHS.SmallArray;
319     RHS.NumTombstones = 0;
320     return;
321   }
322
323   // Both a small, just swap the small elements.
324   assert(this->isSmall() && RHS.isSmall());
325   assert(this->CurArraySize == RHS.CurArraySize);
326   std::swap_ranges(this->SmallArray, this->SmallArray+this->CurArraySize,
327                    RHS.SmallArray);
328   std::swap(this->NumElements, RHS.NumElements);
329 }
330
331 SmallPtrSetImpl::~SmallPtrSetImpl() {
332   if (!isSmall())
333     free(CurArray);
334 }