Fix bug where sys::Wait could wait on wrong pid.
[oota-llvm.git] / lib / Support / ScaledNumber.cpp
1 //==- lib/Support/ScaledNumber.cpp - Support for scaled numbers -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of some scaled number algorithms.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Support/ScaledNumber.h"
15
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/Support/Debug.h"
18
19 using namespace llvm;
20 using namespace llvm::ScaledNumbers;
21
22 std::pair<uint64_t, int16_t> ScaledNumbers::multiply64(uint64_t LHS,
23                                                        uint64_t RHS) {
24   // Separate into two 32-bit digits (U.L).
25   auto getU = [](uint64_t N) { return N >> 32; };
26   auto getL = [](uint64_t N) { return N & UINT32_MAX; };
27   uint64_t UL = getU(LHS), LL = getL(LHS), UR = getU(RHS), LR = getL(RHS);
28
29   // Compute cross products.
30   uint64_t P1 = UL * UR, P2 = UL * LR, P3 = LL * UR, P4 = LL * LR;
31
32   // Sum into two 64-bit digits.
33   uint64_t Upper = P1, Lower = P4;
34   auto addWithCarry = [&](uint64_t N) {
35     uint64_t NewLower = Lower + (getL(N) << 32);
36     Upper += getU(N) + (NewLower < Lower);
37     Lower = NewLower;
38   };
39   addWithCarry(P2);
40   addWithCarry(P3);
41
42   // Check whether the upper digit is empty.
43   if (!Upper)
44     return std::make_pair(Lower, 0);
45
46   // Shift as little as possible to maximize precision.
47   unsigned LeadingZeros = countLeadingZeros(Upper);
48   int Shift = 64 - LeadingZeros;
49   if (LeadingZeros)
50     Upper = Upper << LeadingZeros | Lower >> Shift;
51   return getRounded(Upper, Shift,
52                     Shift && (Lower & UINT64_C(1) << (Shift - 1)));
53 }
54
55 static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); }
56
57 std::pair<uint32_t, int16_t> ScaledNumbers::divide32(uint32_t Dividend,
58                                                      uint32_t Divisor) {
59   assert(Dividend && "expected non-zero dividend");
60   assert(Divisor && "expected non-zero divisor");
61
62   // Use 64-bit math and canonicalize the dividend to gain precision.
63   uint64_t Dividend64 = Dividend;
64   int Shift = 0;
65   if (int Zeros = countLeadingZeros(Dividend64)) {
66     Shift -= Zeros;
67     Dividend64 <<= Zeros;
68   }
69   uint64_t Quotient = Dividend64 / Divisor;
70   uint64_t Remainder = Dividend64 % Divisor;
71
72   // If Quotient needs to be shifted, leave the rounding to getAdjusted().
73   if (Quotient > UINT32_MAX)
74     return getAdjusted<uint32_t>(Quotient, Shift);
75
76   // Round based on the value of the next bit.
77   return getRounded<uint32_t>(Quotient, Shift, Remainder >= getHalf(Divisor));
78 }
79
80 std::pair<uint64_t, int16_t> ScaledNumbers::divide64(uint64_t Dividend,
81                                                      uint64_t Divisor) {
82   assert(Dividend && "expected non-zero dividend");
83   assert(Divisor && "expected non-zero divisor");
84
85   // Minimize size of divisor.
86   int Shift = 0;
87   if (int Zeros = countTrailingZeros(Divisor)) {
88     Shift -= Zeros;
89     Divisor >>= Zeros;
90   }
91
92   // Check for powers of two.
93   if (Divisor == 1)
94     return std::make_pair(Dividend, Shift);
95
96   // Maximize size of dividend.
97   if (int Zeros = countLeadingZeros(Dividend)) {
98     Shift -= Zeros;
99     Dividend <<= Zeros;
100   }
101
102   // Start with the result of a divide.
103   uint64_t Quotient = Dividend / Divisor;
104   Dividend %= Divisor;
105
106   // Continue building the quotient with long division.
107   while (!(Quotient >> 63) && Dividend) {
108     // Shift Dividend and check for overflow.
109     bool IsOverflow = Dividend >> 63;
110     Dividend <<= 1;
111     --Shift;
112
113     // Get the next bit of Quotient.
114     Quotient <<= 1;
115     if (IsOverflow || Divisor <= Dividend) {
116       Quotient |= 1;
117       Dividend -= Divisor;
118     }
119   }
120
121   return getRounded(Quotient, Shift, Dividend >= getHalf(Divisor));
122 }
123
124 int ScaledNumbers::compareImpl(uint64_t L, uint64_t R, int ScaleDiff) {
125   assert(ScaleDiff >= 0 && "wrong argument order");
126   assert(ScaleDiff < 64 && "numbers too far apart");
127
128   uint64_t L_adjusted = L >> ScaleDiff;
129   if (L_adjusted < R)
130     return -1;
131   if (L_adjusted > R)
132     return 1;
133
134   return L > L_adjusted << ScaleDiff ? 1 : 0;
135 }
136
137 static void appendDigit(std::string &Str, unsigned D) {
138   assert(D < 10);
139   Str += '0' + D % 10;
140 }
141
142 static void appendNumber(std::string &Str, uint64_t N) {
143   while (N) {
144     appendDigit(Str, N % 10);
145     N /= 10;
146   }
147 }
148
149 static bool doesRoundUp(char Digit) {
150   switch (Digit) {
151   case '5':
152   case '6':
153   case '7':
154   case '8':
155   case '9':
156     return true;
157   default:
158     return false;
159   }
160 }
161
162 static std::string toStringAPFloat(uint64_t D, int E, unsigned Precision) {
163   assert(E >= ScaledNumbers::MinScale);
164   assert(E <= ScaledNumbers::MaxScale);
165
166   // Find a new E, but don't let it increase past MaxScale.
167   int LeadingZeros = ScaledNumberBase::countLeadingZeros64(D);
168   int NewE = std::min(ScaledNumbers::MaxScale, E + 63 - LeadingZeros);
169   int Shift = 63 - (NewE - E);
170   assert(Shift <= LeadingZeros);
171   assert(Shift == LeadingZeros || NewE == ScaledNumbers::MaxScale);
172   D <<= Shift;
173   E = NewE;
174
175   // Check for a denormal.
176   unsigned AdjustedE = E + 16383;
177   if (!(D >> 63)) {
178     assert(E == ScaledNumbers::MaxScale);
179     AdjustedE = 0;
180   }
181
182   // Build the float and print it.
183   uint64_t RawBits[2] = {D, AdjustedE};
184   APFloat Float(APFloat::x87DoubleExtended, APInt(80, RawBits));
185   SmallVector<char, 24> Chars;
186   Float.toString(Chars, Precision, 0);
187   return std::string(Chars.begin(), Chars.end());
188 }
189
190 static std::string stripTrailingZeros(const std::string &Float) {
191   size_t NonZero = Float.find_last_not_of('0');
192   assert(NonZero != std::string::npos && "no . in floating point string");
193
194   if (Float[NonZero] == '.')
195     ++NonZero;
196
197   return Float.substr(0, NonZero + 1);
198 }
199
200 std::string ScaledNumberBase::toString(uint64_t D, int16_t E, int Width,
201                                        unsigned Precision) {
202   if (!D)
203     return "0.0";
204
205   // Canonicalize exponent and digits.
206   uint64_t Above0 = 0;
207   uint64_t Below0 = 0;
208   uint64_t Extra = 0;
209   int ExtraShift = 0;
210   if (E == 0) {
211     Above0 = D;
212   } else if (E > 0) {
213     if (int Shift = std::min(int16_t(countLeadingZeros64(D)), E)) {
214       D <<= Shift;
215       E -= Shift;
216
217       if (!E)
218         Above0 = D;
219     }
220   } else if (E > -64) {
221     Above0 = D >> -E;
222     Below0 = D << (64 + E);
223   } else if (E == -64) {
224     // Special case: shift by 64 bits is undefined behavior.
225     Below0 = D;
226   } else if (E > -120) {
227     Below0 = D >> (-E - 64);
228     Extra = D << (128 + E);
229     ExtraShift = -64 - E;
230   }
231
232   // Fall back on APFloat for very small and very large numbers.
233   if (!Above0 && !Below0)
234     return toStringAPFloat(D, E, Precision);
235
236   // Append the digits before the decimal.
237   std::string Str;
238   size_t DigitsOut = 0;
239   if (Above0) {
240     appendNumber(Str, Above0);
241     DigitsOut = Str.size();
242   } else
243     appendDigit(Str, 0);
244   std::reverse(Str.begin(), Str.end());
245
246   // Return early if there's nothing after the decimal.
247   if (!Below0)
248     return Str + ".0";
249
250   // Append the decimal and beyond.
251   Str += '.';
252   uint64_t Error = UINT64_C(1) << (64 - Width);
253
254   // We need to shift Below0 to the right to make space for calculating
255   // digits.  Save the precision we're losing in Extra.
256   Extra = (Below0 & 0xf) << 56 | (Extra >> 8);
257   Below0 >>= 4;
258   size_t SinceDot = 0;
259   size_t AfterDot = Str.size();
260   do {
261     if (ExtraShift) {
262       --ExtraShift;
263       Error *= 5;
264     } else
265       Error *= 10;
266
267     Below0 *= 10;
268     Extra *= 10;
269     Below0 += (Extra >> 60);
270     Extra = Extra & (UINT64_MAX >> 4);
271     appendDigit(Str, Below0 >> 60);
272     Below0 = Below0 & (UINT64_MAX >> 4);
273     if (DigitsOut || Str.back() != '0')
274       ++DigitsOut;
275     ++SinceDot;
276   } while (Error && (Below0 << 4 | Extra >> 60) >= Error / 2 &&
277            (!Precision || DigitsOut <= Precision || SinceDot < 2));
278
279   // Return early for maximum precision.
280   if (!Precision || DigitsOut <= Precision)
281     return stripTrailingZeros(Str);
282
283   // Find where to truncate.
284   size_t Truncate =
285       std::max(Str.size() - (DigitsOut - Precision), AfterDot + 1);
286
287   // Check if there's anything to truncate.
288   if (Truncate >= Str.size())
289     return stripTrailingZeros(Str);
290
291   bool Carry = doesRoundUp(Str[Truncate]);
292   if (!Carry)
293     return stripTrailingZeros(Str.substr(0, Truncate));
294
295   // Round with the first truncated digit.
296   for (std::string::reverse_iterator I(Str.begin() + Truncate), E = Str.rend();
297        I != E; ++I) {
298     if (*I == '.')
299       continue;
300     if (*I == '9') {
301       *I = '0';
302       continue;
303     }
304
305     ++*I;
306     Carry = false;
307     break;
308   }
309
310   // Add "1" in front if we still need to carry.
311   return stripTrailingZeros(std::string(Carry, '1') + Str.substr(0, Truncate));
312 }
313
314 raw_ostream &ScaledNumberBase::print(raw_ostream &OS, uint64_t D, int16_t E,
315                                      int Width, unsigned Precision) {
316   return OS << toString(D, E, Width, Precision);
317 }
318
319 void ScaledNumberBase::dump(uint64_t D, int16_t E, int Width) {
320   print(dbgs(), D, E, Width, 0) << "[" << Width << ":" << D << "*2^" << E
321                                 << "]";
322 }