Add support for autodetection of ADM bdver2.
[oota-llvm.git] / lib / Support / Host.cpp
1 //===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This header file implements the operating system Host concept.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Support/Host.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringRef.h"
17 #include "llvm/ADT/StringSwitch.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/Config/config.h"
20 #include "llvm/Support/DataStream.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/raw_ostream.h"
23 #include <string.h>
24
25 // Include the platform-specific parts of this class.
26 #ifdef LLVM_ON_UNIX
27 #include "Unix/Host.inc"
28 #endif
29 #ifdef LLVM_ON_WIN32
30 #include "Windows/Host.inc"
31 #endif
32 #ifdef _MSC_VER
33 #include <intrin.h>
34 #endif
35 #if defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
36 #include <mach/mach.h>
37 #include <mach/mach_host.h>
38 #include <mach/host_info.h>
39 #include <mach/machine.h>
40 #endif
41
42 //===----------------------------------------------------------------------===//
43 //
44 //  Implementations of the CPU detection routines
45 //
46 //===----------------------------------------------------------------------===//
47
48 using namespace llvm;
49
50 #if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)\
51  || defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
52
53 /// GetX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in the
54 /// specified arguments.  If we can't run cpuid on the host, return true.
55 static bool GetX86CpuIDAndInfo(unsigned value, unsigned *rEAX,
56                             unsigned *rEBX, unsigned *rECX, unsigned *rEDX) {
57 #if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
58   #if defined(__GNUC__)
59     // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
60     asm ("movq\t%%rbx, %%rsi\n\t"
61          "cpuid\n\t"
62          "xchgq\t%%rbx, %%rsi\n\t"
63          : "=a" (*rEAX),
64            "=S" (*rEBX),
65            "=c" (*rECX),
66            "=d" (*rEDX)
67          :  "a" (value));
68     return false;
69   #elif defined(_MSC_VER)
70     int registers[4];
71     __cpuid(registers, value);
72     *rEAX = registers[0];
73     *rEBX = registers[1];
74     *rECX = registers[2];
75     *rEDX = registers[3];
76     return false;
77   #else
78     return true;
79   #endif
80 #elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
81   #if defined(__GNUC__)
82     asm ("movl\t%%ebx, %%esi\n\t"
83          "cpuid\n\t"
84          "xchgl\t%%ebx, %%esi\n\t"
85          : "=a" (*rEAX),
86            "=S" (*rEBX),
87            "=c" (*rECX),
88            "=d" (*rEDX)
89          :  "a" (value));
90     return false;
91   #elif defined(_MSC_VER)
92     __asm {
93       mov   eax,value
94       cpuid
95       mov   esi,rEAX
96       mov   dword ptr [esi],eax
97       mov   esi,rEBX
98       mov   dword ptr [esi],ebx
99       mov   esi,rECX
100       mov   dword ptr [esi],ecx
101       mov   esi,rEDX
102       mov   dword ptr [esi],edx
103     }
104     return false;
105 // pedantic #else returns to appease -Wunreachable-code (so we don't generate
106 // postprocessed code that looks like "return true; return false;")
107   #else
108     return true;
109   #endif
110 #else
111   return true;
112 #endif
113 }
114
115 static void DetectX86FamilyModel(unsigned EAX, unsigned &Family,
116                                  unsigned &Model) {
117   Family = (EAX >> 8) & 0xf; // Bits 8 - 11
118   Model  = (EAX >> 4) & 0xf; // Bits 4 - 7
119   if (Family == 6 || Family == 0xf) {
120     if (Family == 0xf)
121       // Examine extended family ID if family ID is F.
122       Family += (EAX >> 20) & 0xff;    // Bits 20 - 27
123     // Examine extended model ID if family ID is 6 or F.
124     Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
125   }
126 }
127
128 std::string sys::getHostCPUName() {
129   unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
130   if (GetX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX))
131     return "generic";
132   unsigned Family = 0;
133   unsigned Model  = 0;
134   DetectX86FamilyModel(EAX, Family, Model);
135
136   bool HasSSE3 = (ECX & 0x1);
137   GetX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
138   bool Em64T = (EDX >> 29) & 0x1;
139
140   union {
141     unsigned u[3];
142     char     c[12];
143   } text;
144
145   GetX86CpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1);
146   if (memcmp(text.c, "GenuineIntel", 12) == 0) {
147     switch (Family) {
148     case 3:
149       return "i386";
150     case 4:
151       switch (Model) {
152       case 0: // Intel486 DX processors
153       case 1: // Intel486 DX processors
154       case 2: // Intel486 SX processors
155       case 3: // Intel487 processors, IntelDX2 OverDrive processors,
156               // IntelDX2 processors
157       case 4: // Intel486 SL processor
158       case 5: // IntelSX2 processors
159       case 7: // Write-Back Enhanced IntelDX2 processors
160       case 8: // IntelDX4 OverDrive processors, IntelDX4 processors
161       default: return "i486";
162       }
163     case 5:
164       switch (Model) {
165       case  1: // Pentium OverDrive processor for Pentium processor (60, 66),
166                // Pentium processors (60, 66)
167       case  2: // Pentium OverDrive processor for Pentium processor (75, 90,
168                // 100, 120, 133), Pentium processors (75, 90, 100, 120, 133,
169                // 150, 166, 200)
170       case  3: // Pentium OverDrive processors for Intel486 processor-based
171                // systems
172         return "pentium";
173
174       case  4: // Pentium OverDrive processor with MMX technology for Pentium
175                // processor (75, 90, 100, 120, 133), Pentium processor with
176                // MMX technology (166, 200)
177         return "pentium-mmx";
178
179       default: return "pentium";
180       }
181     case 6:
182       switch (Model) {
183       case  1: // Pentium Pro processor
184         return "pentiumpro";
185
186       case  3: // Intel Pentium II OverDrive processor, Pentium II processor,
187                // model 03
188       case  5: // Pentium II processor, model 05, Pentium II Xeon processor,
189                // model 05, and Intel Celeron processor, model 05
190       case  6: // Celeron processor, model 06
191         return "pentium2";
192
193       case  7: // Pentium III processor, model 07, and Pentium III Xeon
194                // processor, model 07
195       case  8: // Pentium III processor, model 08, Pentium III Xeon processor,
196                // model 08, and Celeron processor, model 08
197       case 10: // Pentium III Xeon processor, model 0Ah
198       case 11: // Pentium III processor, model 0Bh
199         return "pentium3";
200
201       case  9: // Intel Pentium M processor, Intel Celeron M processor model 09.
202       case 13: // Intel Pentium M processor, Intel Celeron M processor, model
203                // 0Dh. All processors are manufactured using the 90 nm process.
204         return "pentium-m";
205
206       case 14: // Intel Core Duo processor, Intel Core Solo processor, model
207                // 0Eh. All processors are manufactured using the 65 nm process.
208         return "yonah";
209
210       case 15: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile
211                // processor, Intel Core 2 Quad processor, Intel Core 2 Quad
212                // mobile processor, Intel Core 2 Extreme processor, Intel
213                // Pentium Dual-Core processor, Intel Xeon processor, model
214                // 0Fh. All processors are manufactured using the 65 nm process.
215       case 22: // Intel Celeron processor model 16h. All processors are
216                // manufactured using the 65 nm process
217         return "core2";
218
219       case 21: // Intel EP80579 Integrated Processor and Intel EP80579
220                // Integrated Processor with Intel QuickAssist Technology
221         return "i686"; // FIXME: ???
222
223       case 23: // Intel Core 2 Extreme processor, Intel Xeon processor, model
224                // 17h. All processors are manufactured using the 45 nm process.
225                //
226                // 45nm: Penryn , Wolfdale, Yorkfield (XE)
227         return "penryn";
228
229       case 26: // Intel Core i7 processor and Intel Xeon processor. All
230                // processors are manufactured using the 45 nm process.
231       case 29: // Intel Xeon processor MP. All processors are manufactured using
232                // the 45 nm process.
233       case 30: // Intel(R) Core(TM) i7 CPU         870  @ 2.93GHz.
234                // As found in a Summer 2010 model iMac.
235       case 37: // Intel Core i7, laptop version.
236       case 44: // Intel Core i7 processor and Intel Xeon processor. All
237                // processors are manufactured using the 32 nm process.
238       case 46: // Nehalem EX
239       case 47: // Westmere EX
240         return "corei7";
241
242       // SandyBridge:
243       case 42: // Intel Core i7 processor. All processors are manufactured
244                // using the 32 nm process.
245       case 45:
246         return "corei7-avx";
247
248       // Ivy Bridge:
249       case 58:
250         return "core-avx-i";
251
252       case 28: // Most 45 nm Intel Atom processors
253       case 38: // 45 nm Atom Lincroft
254       case 39: // 32 nm Atom Medfield
255       case 53: // 32 nm Atom Midview
256       case 54: // 32 nm Atom Midview
257         return "atom";
258
259       default: return (Em64T) ? "x86-64" : "i686";
260       }
261     case 15: {
262       switch (Model) {
263       case  0: // Pentium 4 processor, Intel Xeon processor. All processors are
264                // model 00h and manufactured using the 0.18 micron process.
265       case  1: // Pentium 4 processor, Intel Xeon processor, Intel Xeon
266                // processor MP, and Intel Celeron processor. All processors are
267                // model 01h and manufactured using the 0.18 micron process.
268       case  2: // Pentium 4 processor, Mobile Intel Pentium 4 processor - M,
269                // Intel Xeon processor, Intel Xeon processor MP, Intel Celeron
270                // processor, and Mobile Intel Celeron processor. All processors
271                // are model 02h and manufactured using the 0.13 micron process.
272         return (Em64T) ? "x86-64" : "pentium4";
273
274       case  3: // Pentium 4 processor, Intel Xeon processor, Intel Celeron D
275                // processor. All processors are model 03h and manufactured using
276                // the 90 nm process.
277       case  4: // Pentium 4 processor, Pentium 4 processor Extreme Edition,
278                // Pentium D processor, Intel Xeon processor, Intel Xeon
279                // processor MP, Intel Celeron D processor. All processors are
280                // model 04h and manufactured using the 90 nm process.
281       case  6: // Pentium 4 processor, Pentium D processor, Pentium processor
282                // Extreme Edition, Intel Xeon processor, Intel Xeon processor
283                // MP, Intel Celeron D processor. All processors are model 06h
284                // and manufactured using the 65 nm process.
285         return (Em64T) ? "nocona" : "prescott";
286
287       default:
288         return (Em64T) ? "x86-64" : "pentium4";
289       }
290     }
291
292     default:
293       return "generic";
294     }
295   } else if (memcmp(text.c, "AuthenticAMD", 12) == 0) {
296     // FIXME: this poorly matches the generated SubtargetFeatureKV table.  There
297     // appears to be no way to generate the wide variety of AMD-specific targets
298     // from the information returned from CPUID.
299     switch (Family) {
300       case 4:
301         return "i486";
302       case 5:
303         switch (Model) {
304         case 6:
305         case 7:  return "k6";
306         case 8:  return "k6-2";
307         case 9:
308         case 13: return "k6-3";
309         case 10: return "geode";
310         default: return "pentium";
311         }
312       case 6:
313         switch (Model) {
314         case 4:  return "athlon-tbird";
315         case 6:
316         case 7:
317         case 8:  return "athlon-mp";
318         case 10: return "athlon-xp";
319         default: return "athlon";
320         }
321       case 15:
322         if (HasSSE3)
323           return "k8-sse3";
324         switch (Model) {
325         case 1:  return "opteron";
326         case 5:  return "athlon-fx"; // also opteron
327         default: return "athlon64";
328         }
329       case 16:
330         return "amdfam10";
331       case 20:
332         return "btver1";
333       case 21:
334         if (Model <= 15)
335           return "bdver1";
336         else if (Model <= 31)
337           return "bdver2";
338     default:
339       return "generic";
340     }
341   }
342   return "generic";
343 }
344 #elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
345 std::string sys::getHostCPUName() {
346   host_basic_info_data_t hostInfo;
347   mach_msg_type_number_t infoCount;
348
349   infoCount = HOST_BASIC_INFO_COUNT;
350   host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&hostInfo, 
351             &infoCount);
352             
353   if (hostInfo.cpu_type != CPU_TYPE_POWERPC) return "generic";
354
355   switch(hostInfo.cpu_subtype) {
356   case CPU_SUBTYPE_POWERPC_601:   return "601";
357   case CPU_SUBTYPE_POWERPC_602:   return "602";
358   case CPU_SUBTYPE_POWERPC_603:   return "603";
359   case CPU_SUBTYPE_POWERPC_603e:  return "603e";
360   case CPU_SUBTYPE_POWERPC_603ev: return "603ev";
361   case CPU_SUBTYPE_POWERPC_604:   return "604";
362   case CPU_SUBTYPE_POWERPC_604e:  return "604e";
363   case CPU_SUBTYPE_POWERPC_620:   return "620";
364   case CPU_SUBTYPE_POWERPC_750:   return "750";
365   case CPU_SUBTYPE_POWERPC_7400:  return "7400";
366   case CPU_SUBTYPE_POWERPC_7450:  return "7450";
367   case CPU_SUBTYPE_POWERPC_970:   return "970";
368   default: ;
369   }
370   
371   return "generic";
372 }
373 #elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__))
374 std::string sys::getHostCPUName() {
375   // Access to the Processor Version Register (PVR) on PowerPC is privileged,
376   // and so we must use an operating-system interface to determine the current
377   // processor type. On Linux, this is exposed through the /proc/cpuinfo file.
378   const char *generic = "generic";
379
380   // Note: We cannot mmap /proc/cpuinfo here and then process the resulting
381   // memory buffer because the 'file' has 0 size (it can be read from only
382   // as a stream).
383
384   std::string Err;
385   DataStreamer *DS = getDataFileStreamer("/proc/cpuinfo", &Err);
386   if (!DS) {
387     DEBUG(dbgs() << "Unable to open /proc/cpuinfo: " << Err << "\n");
388     return generic;
389   }
390
391   // The cpu line is second (after the 'processor: 0' line), so if this
392   // buffer is too small then something has changed (or is wrong).
393   char buffer[1024];
394   size_t CPUInfoSize = DS->GetBytes((unsigned char*) buffer, sizeof(buffer));
395   delete DS;
396
397   const char *CPUInfoStart = buffer;
398   const char *CPUInfoEnd = buffer + CPUInfoSize;
399
400   const char *CIP = CPUInfoStart;
401
402   const char *CPUStart = 0;
403   size_t CPULen = 0;
404
405   // We need to find the first line which starts with cpu, spaces, and a colon.
406   // After the colon, there may be some additional spaces and then the cpu type.
407   while (CIP < CPUInfoEnd && CPUStart == 0) {
408     if (CIP < CPUInfoEnd && *CIP == '\n')
409       ++CIP;
410
411     if (CIP < CPUInfoEnd && *CIP == 'c') {
412       ++CIP;
413       if (CIP < CPUInfoEnd && *CIP == 'p') {
414         ++CIP;
415         if (CIP < CPUInfoEnd && *CIP == 'u') {
416           ++CIP;
417           while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
418             ++CIP;
419   
420           if (CIP < CPUInfoEnd && *CIP == ':') {
421             ++CIP;
422             while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
423               ++CIP;
424   
425             if (CIP < CPUInfoEnd) {
426               CPUStart = CIP;
427               while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' &&
428                                           *CIP != ',' && *CIP != '\n'))
429                 ++CIP;
430               CPULen = CIP - CPUStart;
431             }
432           }
433         }
434       }
435     }
436
437     if (CPUStart == 0)
438       while (CIP < CPUInfoEnd && *CIP != '\n')
439         ++CIP;
440   }
441
442   if (CPUStart == 0)
443     return generic;
444
445   return StringSwitch<const char *>(StringRef(CPUStart, CPULen))
446     .Case("604e", "604e")
447     .Case("604", "604")
448     .Case("7400", "7400")
449     .Case("7410", "7400")
450     .Case("7447", "7400")
451     .Case("7455", "7450")
452     .Case("G4", "g4")
453     .Case("POWER4", "970")
454     .Case("PPC970FX", "970")
455     .Case("PPC970MP", "970")
456     .Case("G5", "g5")
457     .Case("POWER5", "g5")
458     .Case("A2", "a2")
459     .Case("POWER6", "pwr6")
460     .Case("POWER7", "pwr7")
461     .Default(generic);
462 }
463 #elif defined(__linux__) && defined(__arm__)
464 std::string sys::getHostCPUName() {
465   // The cpuid register on arm is not accessible from user space. On Linux,
466   // it is exposed through the /proc/cpuinfo file.
467   // Note: We cannot mmap /proc/cpuinfo here and then process the resulting
468   // memory buffer because the 'file' has 0 size (it can be read from only
469   // as a stream).
470
471   std::string Err;
472   DataStreamer *DS = getDataFileStreamer("/proc/cpuinfo", &Err);
473   if (!DS) {
474     DEBUG(dbgs() << "Unable to open /proc/cpuinfo: " << Err << "\n");
475     return "generic";
476   }
477
478   // Read 1024 bytes from /proc/cpuinfo, which should contain the CPU part line
479   // in all cases.
480   char buffer[1024];
481   size_t CPUInfoSize = DS->GetBytes((unsigned char*) buffer, sizeof(buffer));
482   delete DS;
483
484   StringRef Str(buffer, CPUInfoSize);
485
486   SmallVector<StringRef, 32> Lines;
487   Str.split(Lines, "\n");
488
489   // Look for the CPU implementer line.
490   StringRef Implementer;
491   for (unsigned I = 0, E = Lines.size(); I != E; ++I)
492     if (Lines[I].startswith("CPU implementer"))
493       Implementer = Lines[I].substr(15).ltrim("\t :");
494
495   if (Implementer == "0x41") // ARM Ltd.
496     // Look for the CPU part line.
497     for (unsigned I = 0, E = Lines.size(); I != E; ++I)
498       if (Lines[I].startswith("CPU part"))
499         // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
500         // values correspond to the "Part number" in the CP15/c0 register. The
501         // contents are specified in the various processor manuals.
502         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
503           .Case("0x926", "arm926ej-s")
504           .Case("0xb02", "mpcore")
505           .Case("0xb36", "arm1136j-s")
506           .Case("0xb56", "arm1156t2-s")
507           .Case("0xb76", "arm1176jz-s")
508           .Case("0xc08", "cortex-a8")
509           .Case("0xc09", "cortex-a9")
510           .Case("0xc0f", "cortex-a15")
511           .Case("0xc20", "cortex-m0")
512           .Case("0xc23", "cortex-m3")
513           .Case("0xc24", "cortex-m4")
514           .Default("generic");
515
516   return "generic";
517 }
518 #else
519 std::string sys::getHostCPUName() {
520   return "generic";
521 }
522 #endif
523
524 #if defined(__linux__) && defined(__arm__)
525 bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
526   std::string Err;
527   DataStreamer *DS = getDataFileStreamer("/proc/cpuinfo", &Err);
528   if (!DS) {
529     DEBUG(dbgs() << "Unable to open /proc/cpuinfo: " << Err << "\n");
530     return false;
531   }
532
533   // Read 1024 bytes from /proc/cpuinfo, which should contain the Features line
534   // in all cases.
535   char buffer[1024];
536   size_t CPUInfoSize = DS->GetBytes((unsigned char*) buffer, sizeof(buffer));
537   delete DS;
538
539   StringRef Str(buffer, CPUInfoSize);
540
541   SmallVector<StringRef, 32> Lines;
542   Str.split(Lines, "\n");
543
544   // Look for the CPU implementer line.
545   StringRef Implementer;
546   for (unsigned I = 0, E = Lines.size(); I != E; ++I)
547     if (Lines[I].startswith("CPU implementer"))
548       Implementer = Lines[I].substr(15).ltrim("\t :");
549
550   if (Implementer == "0x41") { // ARM Ltd.
551     SmallVector<StringRef, 32> CPUFeatures;
552
553     // Look for the CPU features.
554     for (unsigned I = 0, E = Lines.size(); I != E; ++I)
555       if (Lines[I].startswith("Features")) {
556         Lines[I].split(CPUFeatures, " ");
557         break;
558       }
559
560     for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
561       StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I])
562         .Case("half", "fp16")
563         .Case("neon", "neon")
564         .Case("vfpv3", "vfp3")
565         .Case("vfpv3d16", "d16")
566         .Case("vfpv4", "vfp4")
567         .Case("idiva", "hwdiv-arm")
568         .Case("idivt", "hwdiv")
569         .Default("");
570
571       if (LLVMFeatureStr != "")
572         Features.GetOrCreateValue(LLVMFeatureStr).setValue(true);
573     }
574
575     return true;
576   }
577
578   return false;
579 }
580 #else
581 bool sys::getHostCPUFeatures(StringMap<bool> &Features){
582   return false;
583 }
584 #endif
585
586 std::string sys::getProcessTriple() {
587   Triple PT(LLVM_HOSTTRIPLE);
588
589   if (sizeof(void *) == 8 && PT.isArch32Bit())
590     PT = PT.get64BitArchVariant();
591   if (sizeof(void *) == 4 && PT.isArch64Bit())
592     PT = PT.get32BitArchVariant();
593
594   return PT.str();
595 }