Simplify memory management with std::unique_ptr.
[oota-llvm.git] / lib / Support / BranchProbability.cpp
1 //===-------------- lib/Support/BranchProbability.cpp -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements Branch Probability class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Support/BranchProbability.h"
15 #include "llvm/Support/Debug.h"
16 #include "llvm/Support/Format.h"
17 #include "llvm/Support/raw_ostream.h"
18 #include <cassert>
19
20 using namespace llvm;
21
22 const uint32_t BranchProbability::D;
23
24 raw_ostream &BranchProbability::print(raw_ostream &OS) const {
25   if (isUnknown())
26     return OS << "?%";
27
28   // Get a percentage rounded to two decimal digits. This avoids
29   // implementation-defined rounding inside printf.
30   double Percent = rint(((double)N / D) * 100.0 * 100.0) / 100.0;
31   return OS << format("0x%08" PRIx32 " / 0x%08" PRIx32 " = %.2f%%", N, D,
32                       Percent);
33 }
34
35 void BranchProbability::dump() const { print(dbgs()) << '\n'; }
36
37 BranchProbability::BranchProbability(uint32_t Numerator, uint32_t Denominator) {
38   assert(Denominator > 0 && "Denominator cannot be 0!");
39   assert(Numerator <= Denominator && "Probability cannot be bigger than 1!");
40   if (Denominator == D)
41     N = Numerator;
42   else {
43     uint64_t Prob64 =
44         (Numerator * static_cast<uint64_t>(D) + Denominator / 2) / Denominator;
45     N = static_cast<uint32_t>(Prob64);
46   }
47 }
48
49 BranchProbability
50 BranchProbability::getBranchProbability(uint64_t Numerator,
51                                         uint64_t Denominator) {
52   assert(Numerator <= Denominator && "Probability cannot be bigger than 1!");
53   // Scale down Denominator to fit in a 32-bit integer.
54   int Scale = 0;
55   while (Denominator > UINT32_MAX) {
56     Denominator >>= 1;
57     Scale++;
58   }
59   return BranchProbability(Numerator >> Scale, Denominator);
60 }
61
62 // If ConstD is not zero, then replace D by ConstD so that division and modulo
63 // operations by D can be optimized, in case this function is not inlined by the
64 // compiler.
65 template <uint32_t ConstD>
66 static uint64_t scale(uint64_t Num, uint32_t N, uint32_t D) {
67   if (ConstD > 0)
68     D = ConstD;
69
70   assert(D && "divide by 0");
71
72   // Fast path for multiplying by 1.0.
73   if (!Num || D == N)
74     return Num;
75
76   // Split Num into upper and lower parts to multiply, then recombine.
77   uint64_t ProductHigh = (Num >> 32) * N;
78   uint64_t ProductLow = (Num & UINT32_MAX) * N;
79
80   // Split into 32-bit digits.
81   uint32_t Upper32 = ProductHigh >> 32;
82   uint32_t Lower32 = ProductLow & UINT32_MAX;
83   uint32_t Mid32Partial = ProductHigh & UINT32_MAX;
84   uint32_t Mid32 = Mid32Partial + (ProductLow >> 32);
85
86   // Carry.
87   Upper32 += Mid32 < Mid32Partial;
88
89   // Check for overflow.
90   if (Upper32 >= D)
91     return UINT64_MAX;
92
93   uint64_t Rem = (uint64_t(Upper32) << 32) | Mid32;
94   uint64_t UpperQ = Rem / D;
95
96   // Check for overflow.
97   if (UpperQ > UINT32_MAX)
98     return UINT64_MAX;
99
100   Rem = ((Rem % D) << 32) | Lower32;
101   uint64_t LowerQ = Rem / D;
102   uint64_t Q = (UpperQ << 32) + LowerQ;
103
104   // Check for overflow.
105   return Q < LowerQ ? UINT64_MAX : Q;
106 }
107
108 uint64_t BranchProbability::scale(uint64_t Num) const {
109   return ::scale<D>(Num, N, D);
110 }
111
112 uint64_t BranchProbability::scaleByInverse(uint64_t Num) const {
113   return ::scale<0>(Num, D, N);
114 }