Release build: guard dump functions with
[oota-llvm.git] / lib / MC / MCExpr.cpp
1 //===- MCExpr.cpp - Assembly Level Expression Implementation --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #define DEBUG_TYPE "mcexpr"
11 #include "llvm/MC/MCExpr.h"
12 #include "llvm/ADT/Statistic.h"
13 #include "llvm/ADT/StringSwitch.h"
14 #include "llvm/MC/MCAsmLayout.h"
15 #include "llvm/MC/MCAssembler.h"
16 #include "llvm/MC/MCContext.h"
17 #include "llvm/MC/MCObjectWriter.h"
18 #include "llvm/MC/MCSymbol.h"
19 #include "llvm/MC/MCValue.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/raw_ostream.h"
23 using namespace llvm;
24
25 namespace {
26 namespace stats {
27 STATISTIC(MCExprEvaluate, "Number of MCExpr evaluations");
28 }
29 }
30
31 void MCExpr::print(raw_ostream &OS) const {
32   switch (getKind()) {
33   case MCExpr::Target:
34     return cast<MCTargetExpr>(this)->PrintImpl(OS);
35   case MCExpr::Constant:
36     OS << cast<MCConstantExpr>(*this).getValue();
37     return;
38
39   case MCExpr::SymbolRef: {
40     const MCSymbolRefExpr &SRE = cast<MCSymbolRefExpr>(*this);
41     const MCSymbol &Sym = SRE.getSymbol();
42     // Parenthesize names that start with $ so that they don't look like
43     // absolute names.
44     bool UseParens = Sym.getName()[0] == '$';
45
46     if (SRE.getKind() == MCSymbolRefExpr::VK_PPC_DARWIN_HA16 ||
47         SRE.getKind() == MCSymbolRefExpr::VK_PPC_DARWIN_LO16) {
48       OS << MCSymbolRefExpr::getVariantKindName(SRE.getKind());
49       UseParens = true;
50     }
51
52     if (UseParens)
53       OS << '(' << Sym << ')';
54     else
55       OS << Sym;
56
57     if (SRE.getKind() == MCSymbolRefExpr::VK_ARM_PLT ||
58         SRE.getKind() == MCSymbolRefExpr::VK_ARM_TLSGD ||
59         SRE.getKind() == MCSymbolRefExpr::VK_ARM_GOT ||
60         SRE.getKind() == MCSymbolRefExpr::VK_ARM_GOTOFF ||
61         SRE.getKind() == MCSymbolRefExpr::VK_ARM_TPOFF ||
62         SRE.getKind() == MCSymbolRefExpr::VK_ARM_GOTTPOFF ||
63         SRE.getKind() == MCSymbolRefExpr::VK_ARM_TARGET1)
64       OS << MCSymbolRefExpr::getVariantKindName(SRE.getKind());
65     else if (SRE.getKind() != MCSymbolRefExpr::VK_None &&
66              SRE.getKind() != MCSymbolRefExpr::VK_PPC_DARWIN_HA16 &&
67              SRE.getKind() != MCSymbolRefExpr::VK_PPC_DARWIN_LO16)
68       OS << '@' << MCSymbolRefExpr::getVariantKindName(SRE.getKind());
69
70     return;
71   }
72
73   case MCExpr::Unary: {
74     const MCUnaryExpr &UE = cast<MCUnaryExpr>(*this);
75     switch (UE.getOpcode()) {
76     case MCUnaryExpr::LNot:  OS << '!'; break;
77     case MCUnaryExpr::Minus: OS << '-'; break;
78     case MCUnaryExpr::Not:   OS << '~'; break;
79     case MCUnaryExpr::Plus:  OS << '+'; break;
80     }
81     OS << *UE.getSubExpr();
82     return;
83   }
84
85   case MCExpr::Binary: {
86     const MCBinaryExpr &BE = cast<MCBinaryExpr>(*this);
87
88     // Only print parens around the LHS if it is non-trivial.
89     if (isa<MCConstantExpr>(BE.getLHS()) || isa<MCSymbolRefExpr>(BE.getLHS())) {
90       OS << *BE.getLHS();
91     } else {
92       OS << '(' << *BE.getLHS() << ')';
93     }
94
95     switch (BE.getOpcode()) {
96     case MCBinaryExpr::Add:
97       // Print "X-42" instead of "X+-42".
98       if (const MCConstantExpr *RHSC = dyn_cast<MCConstantExpr>(BE.getRHS())) {
99         if (RHSC->getValue() < 0) {
100           OS << RHSC->getValue();
101           return;
102         }
103       }
104
105       OS <<  '+';
106       break;
107     case MCBinaryExpr::And:  OS <<  '&'; break;
108     case MCBinaryExpr::Div:  OS <<  '/'; break;
109     case MCBinaryExpr::EQ:   OS << "=="; break;
110     case MCBinaryExpr::GT:   OS <<  '>'; break;
111     case MCBinaryExpr::GTE:  OS << ">="; break;
112     case MCBinaryExpr::LAnd: OS << "&&"; break;
113     case MCBinaryExpr::LOr:  OS << "||"; break;
114     case MCBinaryExpr::LT:   OS <<  '<'; break;
115     case MCBinaryExpr::LTE:  OS << "<="; break;
116     case MCBinaryExpr::Mod:  OS <<  '%'; break;
117     case MCBinaryExpr::Mul:  OS <<  '*'; break;
118     case MCBinaryExpr::NE:   OS << "!="; break;
119     case MCBinaryExpr::Or:   OS <<  '|'; break;
120     case MCBinaryExpr::Shl:  OS << "<<"; break;
121     case MCBinaryExpr::Shr:  OS << ">>"; break;
122     case MCBinaryExpr::Sub:  OS <<  '-'; break;
123     case MCBinaryExpr::Xor:  OS <<  '^'; break;
124     }
125
126     // Only print parens around the LHS if it is non-trivial.
127     if (isa<MCConstantExpr>(BE.getRHS()) || isa<MCSymbolRefExpr>(BE.getRHS())) {
128       OS << *BE.getRHS();
129     } else {
130       OS << '(' << *BE.getRHS() << ')';
131     }
132     return;
133   }
134   }
135
136   llvm_unreachable("Invalid expression kind!");
137 }
138
139 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
140 void MCExpr::dump() const {
141   print(dbgs());
142   dbgs() << '\n';
143 }
144 #endif
145
146 /* *** */
147
148 const MCBinaryExpr *MCBinaryExpr::Create(Opcode Opc, const MCExpr *LHS,
149                                          const MCExpr *RHS, MCContext &Ctx) {
150   return new (Ctx) MCBinaryExpr(Opc, LHS, RHS);
151 }
152
153 const MCUnaryExpr *MCUnaryExpr::Create(Opcode Opc, const MCExpr *Expr,
154                                        MCContext &Ctx) {
155   return new (Ctx) MCUnaryExpr(Opc, Expr);
156 }
157
158 const MCConstantExpr *MCConstantExpr::Create(int64_t Value, MCContext &Ctx) {
159   return new (Ctx) MCConstantExpr(Value);
160 }
161
162 /* *** */
163
164 const MCSymbolRefExpr *MCSymbolRefExpr::Create(const MCSymbol *Sym,
165                                                VariantKind Kind,
166                                                MCContext &Ctx) {
167   return new (Ctx) MCSymbolRefExpr(Sym, Kind);
168 }
169
170 const MCSymbolRefExpr *MCSymbolRefExpr::Create(StringRef Name, VariantKind Kind,
171                                                MCContext &Ctx) {
172   return Create(Ctx.GetOrCreateSymbol(Name), Kind, Ctx);
173 }
174
175 StringRef MCSymbolRefExpr::getVariantKindName(VariantKind Kind) {
176   switch (Kind) {
177   case VK_Invalid: return "<<invalid>>";
178   case VK_None: return "<<none>>";
179
180   case VK_GOT: return "GOT";
181   case VK_GOTOFF: return "GOTOFF";
182   case VK_GOTPCREL: return "GOTPCREL";
183   case VK_GOTTPOFF: return "GOTTPOFF";
184   case VK_INDNTPOFF: return "INDNTPOFF";
185   case VK_NTPOFF: return "NTPOFF";
186   case VK_GOTNTPOFF: return "GOTNTPOFF";
187   case VK_PLT: return "PLT";
188   case VK_TLSGD: return "TLSGD";
189   case VK_TLSLD: return "TLSLD";
190   case VK_TLSLDM: return "TLSLDM";
191   case VK_TPOFF: return "TPOFF";
192   case VK_DTPOFF: return "DTPOFF";
193   case VK_TLVP: return "TLVP";
194   case VK_SECREL: return "SECREL";
195   case VK_ARM_PLT: return "(PLT)";
196   case VK_ARM_GOT: return "(GOT)";
197   case VK_ARM_GOTOFF: return "(GOTOFF)";
198   case VK_ARM_TPOFF: return "(tpoff)";
199   case VK_ARM_GOTTPOFF: return "(gottpoff)";
200   case VK_ARM_TLSGD: return "(tlsgd)";
201   case VK_ARM_TARGET1: return "(target1)";
202   case VK_PPC_TOC: return "tocbase";
203   case VK_PPC_TOC_ENTRY: return "toc";
204   case VK_PPC_DARWIN_HA16: return "ha16";
205   case VK_PPC_DARWIN_LO16: return "lo16";
206   case VK_PPC_GAS_HA16: return "ha";
207   case VK_PPC_GAS_LO16: return "l";
208   case VK_PPC_TPREL16_HA: return "tprel@ha";
209   case VK_PPC_TPREL16_LO: return "tprel@l";
210   case VK_Mips_GPREL: return "GPREL";
211   case VK_Mips_GOT_CALL: return "GOT_CALL";
212   case VK_Mips_GOT16: return "GOT16";
213   case VK_Mips_GOT: return "GOT";
214   case VK_Mips_ABS_HI: return "ABS_HI";
215   case VK_Mips_ABS_LO: return "ABS_LO";
216   case VK_Mips_TLSGD: return "TLSGD";
217   case VK_Mips_TLSLDM: return "TLSLDM";
218   case VK_Mips_DTPREL_HI: return "DTPREL_HI";
219   case VK_Mips_DTPREL_LO: return "DTPREL_LO";
220   case VK_Mips_GOTTPREL: return "GOTTPREL";
221   case VK_Mips_TPREL_HI: return "TPREL_HI";
222   case VK_Mips_TPREL_LO: return "TPREL_LO";
223   case VK_Mips_GPOFF_HI: return "GPOFF_HI";
224   case VK_Mips_GPOFF_LO: return "GPOFF_LO";
225   case VK_Mips_GOT_DISP: return "GOT_DISP";
226   case VK_Mips_GOT_PAGE: return "GOT_PAGE";
227   case VK_Mips_GOT_OFST: return "GOT_OFST";
228   case VK_Mips_HIGHER:   return "HIGHER";
229   case VK_Mips_HIGHEST:  return "HIGHEST";
230   }
231   llvm_unreachable("Invalid variant kind");
232 }
233
234 MCSymbolRefExpr::VariantKind
235 MCSymbolRefExpr::getVariantKindForName(StringRef Name) {
236   return StringSwitch<VariantKind>(Name)
237     .Case("GOT", VK_GOT)
238     .Case("got", VK_GOT)
239     .Case("GOTOFF", VK_GOTOFF)
240     .Case("gotoff", VK_GOTOFF)
241     .Case("GOTPCREL", VK_GOTPCREL)
242     .Case("gotpcrel", VK_GOTPCREL)
243     .Case("GOTTPOFF", VK_GOTTPOFF)
244     .Case("gottpoff", VK_GOTTPOFF)
245     .Case("INDNTPOFF", VK_INDNTPOFF)
246     .Case("indntpoff", VK_INDNTPOFF)
247     .Case("NTPOFF", VK_NTPOFF)
248     .Case("ntpoff", VK_NTPOFF)
249     .Case("GOTNTPOFF", VK_GOTNTPOFF)
250     .Case("gotntpoff", VK_GOTNTPOFF)
251     .Case("PLT", VK_PLT)
252     .Case("plt", VK_PLT)
253     .Case("TLSGD", VK_TLSGD)
254     .Case("tlsgd", VK_TLSGD)
255     .Case("TLSLD", VK_TLSLD)
256     .Case("tlsld", VK_TLSLD)
257     .Case("TLSLDM", VK_TLSLDM)
258     .Case("tlsldm", VK_TLSLDM)
259     .Case("TPOFF", VK_TPOFF)
260     .Case("tpoff", VK_TPOFF)
261     .Case("DTPOFF", VK_DTPOFF)
262     .Case("dtpoff", VK_DTPOFF)
263     .Case("TLVP", VK_TLVP)
264     .Case("tlvp", VK_TLVP)
265     .Default(VK_Invalid);
266 }
267
268 /* *** */
269
270 void MCTargetExpr::Anchor() {}
271
272 /* *** */
273
274 bool MCExpr::EvaluateAsAbsolute(int64_t &Res) const {
275   return EvaluateAsAbsolute(Res, 0, 0, 0);
276 }
277
278 bool MCExpr::EvaluateAsAbsolute(int64_t &Res,
279                                 const MCAsmLayout &Layout) const {
280   return EvaluateAsAbsolute(Res, &Layout.getAssembler(), &Layout, 0);
281 }
282
283 bool MCExpr::EvaluateAsAbsolute(int64_t &Res,
284                                 const MCAsmLayout &Layout,
285                                 const SectionAddrMap &Addrs) const {
286   return EvaluateAsAbsolute(Res, &Layout.getAssembler(), &Layout, &Addrs);
287 }
288
289 bool MCExpr::EvaluateAsAbsolute(int64_t &Res, const MCAssembler &Asm) const {
290   return EvaluateAsAbsolute(Res, &Asm, 0, 0);
291 }
292
293 bool MCExpr::EvaluateAsAbsolute(int64_t &Res, const MCAssembler *Asm,
294                                 const MCAsmLayout *Layout,
295                                 const SectionAddrMap *Addrs) const {
296   MCValue Value;
297
298   // Fast path constants.
299   if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(this)) {
300     Res = CE->getValue();
301     return true;
302   }
303
304   // FIXME: The use if InSet = Addrs is a hack. Setting InSet causes us
305   // absolutize differences across sections and that is what the MachO writer
306   // uses Addrs for.
307   bool IsRelocatable =
308     EvaluateAsRelocatableImpl(Value, Asm, Layout, Addrs, /*InSet*/ Addrs);
309
310   // Record the current value.
311   Res = Value.getConstant();
312
313   return IsRelocatable && Value.isAbsolute();
314 }
315
316 /// \brief Helper method for \see EvaluateSymbolAdd().
317 static void AttemptToFoldSymbolOffsetDifference(const MCAssembler *Asm,
318                                                 const MCAsmLayout *Layout,
319                                                 const SectionAddrMap *Addrs,
320                                                 bool InSet,
321                                                 const MCSymbolRefExpr *&A,
322                                                 const MCSymbolRefExpr *&B,
323                                                 int64_t &Addend) {
324   if (!A || !B)
325     return;
326
327   const MCSymbol &SA = A->getSymbol();
328   const MCSymbol &SB = B->getSymbol();
329
330   if (SA.isUndefined() || SB.isUndefined())
331     return;
332
333   if (!Asm->getWriter().IsSymbolRefDifferenceFullyResolved(*Asm, A, B, InSet))
334     return;
335
336   MCSymbolData &AD = Asm->getSymbolData(SA);
337   MCSymbolData &BD = Asm->getSymbolData(SB);
338
339   if (AD.getFragment() == BD.getFragment()) {
340     Addend += (AD.getOffset() - BD.getOffset());
341
342     // Pointers to Thumb symbols need to have their low-bit set to allow
343     // for interworking.
344     if (Asm->isThumbFunc(&SA))
345       Addend |= 1;
346
347     // Clear the symbol expr pointers to indicate we have folded these
348     // operands.
349     A = B = 0;
350     return;
351   }
352
353   if (!Layout)
354     return;
355
356   const MCSectionData &SecA = *AD.getFragment()->getParent();
357   const MCSectionData &SecB = *BD.getFragment()->getParent();
358
359   if ((&SecA != &SecB) && !Addrs)
360     return;
361
362   // Eagerly evaluate.
363   Addend += (Layout->getSymbolOffset(&Asm->getSymbolData(A->getSymbol())) -
364              Layout->getSymbolOffset(&Asm->getSymbolData(B->getSymbol())));
365   if (Addrs && (&SecA != &SecB))
366     Addend += (Addrs->lookup(&SecA) - Addrs->lookup(&SecB));
367
368   // Pointers to Thumb symbols need to have their low-bit set to allow
369   // for interworking.
370   if (Asm->isThumbFunc(&SA))
371     Addend |= 1;
372
373   // Clear the symbol expr pointers to indicate we have folded these
374   // operands.
375   A = B = 0;
376 }
377
378 /// \brief Evaluate the result of an add between (conceptually) two MCValues.
379 ///
380 /// This routine conceptually attempts to construct an MCValue:
381 ///   Result = (Result_A - Result_B + Result_Cst)
382 /// from two MCValue's LHS and RHS where
383 ///   Result = LHS + RHS
384 /// and
385 ///   Result = (LHS_A - LHS_B + LHS_Cst) + (RHS_A - RHS_B + RHS_Cst).
386 ///
387 /// This routine attempts to aggresively fold the operands such that the result
388 /// is representable in an MCValue, but may not always succeed.
389 ///
390 /// \returns True on success, false if the result is not representable in an
391 /// MCValue.
392
393 /// NOTE: It is really important to have both the Asm and Layout arguments.
394 /// They might look redundant, but this function can be used before layout
395 /// is done (see the object streamer for example) and having the Asm argument
396 /// lets us avoid relaxations early.
397 static bool EvaluateSymbolicAdd(const MCAssembler *Asm,
398                                 const MCAsmLayout *Layout,
399                                 const SectionAddrMap *Addrs,
400                                 bool InSet,
401                                 const MCValue &LHS,const MCSymbolRefExpr *RHS_A,
402                                 const MCSymbolRefExpr *RHS_B, int64_t RHS_Cst,
403                                 MCValue &Res) {
404   // FIXME: This routine (and other evaluation parts) are *incredibly* sloppy
405   // about dealing with modifiers. This will ultimately bite us, one day.
406   const MCSymbolRefExpr *LHS_A = LHS.getSymA();
407   const MCSymbolRefExpr *LHS_B = LHS.getSymB();
408   int64_t LHS_Cst = LHS.getConstant();
409
410   // Fold the result constant immediately.
411   int64_t Result_Cst = LHS_Cst + RHS_Cst;
412
413   assert((!Layout || Asm) &&
414          "Must have an assembler object if layout is given!");
415
416   // If we have a layout, we can fold resolved differences.
417   if (Asm) {
418     // First, fold out any differences which are fully resolved. By
419     // reassociating terms in
420     //   Result = (LHS_A - LHS_B + LHS_Cst) + (RHS_A - RHS_B + RHS_Cst).
421     // we have the four possible differences:
422     //   (LHS_A - LHS_B),
423     //   (LHS_A - RHS_B),
424     //   (RHS_A - LHS_B),
425     //   (RHS_A - RHS_B).
426     // Since we are attempting to be as aggressive as possible about folding, we
427     // attempt to evaluate each possible alternative.
428     AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, LHS_A, LHS_B,
429                                         Result_Cst);
430     AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, LHS_A, RHS_B,
431                                         Result_Cst);
432     AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, RHS_A, LHS_B,
433                                         Result_Cst);
434     AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, RHS_A, RHS_B,
435                                         Result_Cst);
436   }
437
438   // We can't represent the addition or subtraction of two symbols.
439   if ((LHS_A && RHS_A) || (LHS_B && RHS_B))
440     return false;
441
442   // At this point, we have at most one additive symbol and one subtractive
443   // symbol -- find them.
444   const MCSymbolRefExpr *A = LHS_A ? LHS_A : RHS_A;
445   const MCSymbolRefExpr *B = LHS_B ? LHS_B : RHS_B;
446
447   // If we have a negated symbol, then we must have also have a non-negated
448   // symbol in order to encode the expression.
449   if (B && !A)
450     return false;
451
452   Res = MCValue::get(A, B, Result_Cst);
453   return true;
454 }
455
456 bool MCExpr::EvaluateAsRelocatable(MCValue &Res,
457                                    const MCAsmLayout &Layout) const {
458   return EvaluateAsRelocatableImpl(Res, &Layout.getAssembler(), &Layout,
459                                    0, false);
460 }
461
462 bool MCExpr::EvaluateAsRelocatableImpl(MCValue &Res,
463                                        const MCAssembler *Asm,
464                                        const MCAsmLayout *Layout,
465                                        const SectionAddrMap *Addrs,
466                                        bool InSet) const {
467   ++stats::MCExprEvaluate;
468
469   switch (getKind()) {
470   case Target:
471     return cast<MCTargetExpr>(this)->EvaluateAsRelocatableImpl(Res, Layout);
472
473   case Constant:
474     Res = MCValue::get(cast<MCConstantExpr>(this)->getValue());
475     return true;
476
477   case SymbolRef: {
478     const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(this);
479     const MCSymbol &Sym = SRE->getSymbol();
480
481     // Evaluate recursively if this is a variable.
482     if (Sym.isVariable() && SRE->getKind() == MCSymbolRefExpr::VK_None) {
483       bool Ret = Sym.getVariableValue()->EvaluateAsRelocatableImpl(Res, Asm,
484                                                                    Layout,
485                                                                    Addrs,
486                                                                    true);
487       // If we failed to simplify this to a constant, let the target
488       // handle it.
489       if (Ret && !Res.getSymA() && !Res.getSymB())
490         return true;
491     }
492
493     Res = MCValue::get(SRE, 0, 0);
494     return true;
495   }
496
497   case Unary: {
498     const MCUnaryExpr *AUE = cast<MCUnaryExpr>(this);
499     MCValue Value;
500
501     if (!AUE->getSubExpr()->EvaluateAsRelocatableImpl(Value, Asm, Layout,
502                                                       Addrs, InSet))
503       return false;
504
505     switch (AUE->getOpcode()) {
506     case MCUnaryExpr::LNot:
507       if (!Value.isAbsolute())
508         return false;
509       Res = MCValue::get(!Value.getConstant());
510       break;
511     case MCUnaryExpr::Minus:
512       /// -(a - b + const) ==> (b - a - const)
513       if (Value.getSymA() && !Value.getSymB())
514         return false;
515       Res = MCValue::get(Value.getSymB(), Value.getSymA(),
516                          -Value.getConstant());
517       break;
518     case MCUnaryExpr::Not:
519       if (!Value.isAbsolute())
520         return false;
521       Res = MCValue::get(~Value.getConstant());
522       break;
523     case MCUnaryExpr::Plus:
524       Res = Value;
525       break;
526     }
527
528     return true;
529   }
530
531   case Binary: {
532     const MCBinaryExpr *ABE = cast<MCBinaryExpr>(this);
533     MCValue LHSValue, RHSValue;
534
535     if (!ABE->getLHS()->EvaluateAsRelocatableImpl(LHSValue, Asm, Layout,
536                                                   Addrs, InSet) ||
537         !ABE->getRHS()->EvaluateAsRelocatableImpl(RHSValue, Asm, Layout,
538                                                   Addrs, InSet))
539       return false;
540
541     // We only support a few operations on non-constant expressions, handle
542     // those first.
543     if (!LHSValue.isAbsolute() || !RHSValue.isAbsolute()) {
544       switch (ABE->getOpcode()) {
545       default:
546         return false;
547       case MCBinaryExpr::Sub:
548         // Negate RHS and add.
549         return EvaluateSymbolicAdd(Asm, Layout, Addrs, InSet, LHSValue,
550                                    RHSValue.getSymB(), RHSValue.getSymA(),
551                                    -RHSValue.getConstant(),
552                                    Res);
553
554       case MCBinaryExpr::Add:
555         return EvaluateSymbolicAdd(Asm, Layout, Addrs, InSet, LHSValue,
556                                    RHSValue.getSymA(), RHSValue.getSymB(),
557                                    RHSValue.getConstant(),
558                                    Res);
559       }
560     }
561
562     // FIXME: We need target hooks for the evaluation. It may be limited in
563     // width, and gas defines the result of comparisons and right shifts
564     // differently from Apple as.
565     int64_t LHS = LHSValue.getConstant(), RHS = RHSValue.getConstant();
566     int64_t Result = 0;
567     switch (ABE->getOpcode()) {
568     case MCBinaryExpr::Add:  Result = LHS + RHS; break;
569     case MCBinaryExpr::And:  Result = LHS & RHS; break;
570     case MCBinaryExpr::Div:  Result = LHS / RHS; break;
571     case MCBinaryExpr::EQ:   Result = LHS == RHS; break;
572     case MCBinaryExpr::GT:   Result = LHS > RHS; break;
573     case MCBinaryExpr::GTE:  Result = LHS >= RHS; break;
574     case MCBinaryExpr::LAnd: Result = LHS && RHS; break;
575     case MCBinaryExpr::LOr:  Result = LHS || RHS; break;
576     case MCBinaryExpr::LT:   Result = LHS < RHS; break;
577     case MCBinaryExpr::LTE:  Result = LHS <= RHS; break;
578     case MCBinaryExpr::Mod:  Result = LHS % RHS; break;
579     case MCBinaryExpr::Mul:  Result = LHS * RHS; break;
580     case MCBinaryExpr::NE:   Result = LHS != RHS; break;
581     case MCBinaryExpr::Or:   Result = LHS | RHS; break;
582     case MCBinaryExpr::Shl:  Result = LHS << RHS; break;
583     case MCBinaryExpr::Shr:  Result = LHS >> RHS; break;
584     case MCBinaryExpr::Sub:  Result = LHS - RHS; break;
585     case MCBinaryExpr::Xor:  Result = LHS ^ RHS; break;
586     }
587
588     Res = MCValue::get(Result);
589     return true;
590   }
591   }
592
593   llvm_unreachable("Invalid assembly expression kind!");
594 }
595
596 const MCSection *MCExpr::FindAssociatedSection() const {
597   switch (getKind()) {
598   case Target:
599     // We never look through target specific expressions.
600     return cast<MCTargetExpr>(this)->FindAssociatedSection();
601
602   case Constant:
603     return MCSymbol::AbsolutePseudoSection;
604
605   case SymbolRef: {
606     const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(this);
607     const MCSymbol &Sym = SRE->getSymbol();
608
609     if (Sym.isDefined())
610       return &Sym.getSection();
611
612     return 0;
613   }
614
615   case Unary:
616     return cast<MCUnaryExpr>(this)->getSubExpr()->FindAssociatedSection();
617
618   case Binary: {
619     const MCBinaryExpr *BE = cast<MCBinaryExpr>(this);
620     const MCSection *LHS_S = BE->getLHS()->FindAssociatedSection();
621     const MCSection *RHS_S = BE->getRHS()->FindAssociatedSection();
622
623     // If either section is absolute, return the other.
624     if (LHS_S == MCSymbol::AbsolutePseudoSection)
625       return RHS_S;
626     if (RHS_S == MCSymbol::AbsolutePseudoSection)
627       return LHS_S;
628
629     // Otherwise, return the first non-null section.
630     return LHS_S ? LHS_S : RHS_S;
631   }
632   }
633
634   llvm_unreachable("Invalid assembly expression kind!");
635 }