Use the new script to sort the includes of every file under lib.
[oota-llvm.git] / lib / MC / MCAssembler.cpp
1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #define DEBUG_TYPE "assembler"
11 #include "llvm/MC/MCAssembler.h"
12 #include "llvm/ADT/Statistic.h"
13 #include "llvm/ADT/StringExtras.h"
14 #include "llvm/ADT/Twine.h"
15 #include "llvm/MC/MCAsmBackend.h"
16 #include "llvm/MC/MCAsmLayout.h"
17 #include "llvm/MC/MCCodeEmitter.h"
18 #include "llvm/MC/MCContext.h"
19 #include "llvm/MC/MCDwarf.h"
20 #include "llvm/MC/MCExpr.h"
21 #include "llvm/MC/MCFixupKindInfo.h"
22 #include "llvm/MC/MCObjectWriter.h"
23 #include "llvm/MC/MCSection.h"
24 #include "llvm/MC/MCSymbol.h"
25 #include "llvm/MC/MCValue.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/LEB128.h"
29 #include "llvm/Support/TargetRegistry.h"
30 #include "llvm/Support/raw_ostream.h"
31
32 using namespace llvm;
33
34 namespace {
35 namespace stats {
36 STATISTIC(EmittedFragments, "Number of emitted assembler fragments");
37 STATISTIC(evaluateFixup, "Number of evaluated fixups");
38 STATISTIC(FragmentLayouts, "Number of fragment layouts");
39 STATISTIC(ObjectBytes, "Number of emitted object file bytes");
40 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
41 STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
42 }
43 }
44
45 // FIXME FIXME FIXME: There are number of places in this file where we convert
46 // what is a 64-bit assembler value used for computation into a value in the
47 // object file, which may truncate it. We should detect that truncation where
48 // invalid and report errors back.
49
50 /* *** */
51
52 MCAsmLayout::MCAsmLayout(MCAssembler &Asm)
53   : Assembler(Asm), LastValidFragment()
54  {
55   // Compute the section layout order. Virtual sections must go last.
56   for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
57     if (!it->getSection().isVirtualSection())
58       SectionOrder.push_back(&*it);
59   for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
60     if (it->getSection().isVirtualSection())
61       SectionOrder.push_back(&*it);
62 }
63
64 bool MCAsmLayout::isFragmentUpToDate(const MCFragment *F) const {
65   const MCSectionData &SD = *F->getParent();
66   const MCFragment *LastValid = LastValidFragment.lookup(&SD);
67   if (!LastValid)
68     return false;
69   assert(LastValid->getParent() == F->getParent());
70   return F->getLayoutOrder() <= LastValid->getLayoutOrder();
71 }
72
73 void MCAsmLayout::Invalidate(MCFragment *F) {
74   // If this fragment wasn't already up-to-date, we don't need to do anything.
75   if (!isFragmentUpToDate(F))
76     return;
77
78   // Otherwise, reset the last valid fragment to this fragment.
79   const MCSectionData &SD = *F->getParent();
80   LastValidFragment[&SD] = F;
81 }
82
83 void MCAsmLayout::EnsureValid(const MCFragment *F) const {
84   MCSectionData &SD = *F->getParent();
85
86   MCFragment *Cur = LastValidFragment[&SD];
87   if (!Cur)
88     Cur = &*SD.begin();
89   else
90     Cur = Cur->getNextNode();
91
92   // Advance the layout position until the fragment is up-to-date.
93   while (!isFragmentUpToDate(F)) {
94     const_cast<MCAsmLayout*>(this)->LayoutFragment(Cur);
95     Cur = Cur->getNextNode();
96   }
97 }
98
99 uint64_t MCAsmLayout::getFragmentOffset(const MCFragment *F) const {
100   EnsureValid(F);
101   assert(F->Offset != ~UINT64_C(0) && "Address not set!");
102   return F->Offset;
103 }
104
105 uint64_t MCAsmLayout::getSymbolOffset(const MCSymbolData *SD) const {
106   const MCSymbol &S = SD->getSymbol();
107
108   // If this is a variable, then recursively evaluate now.
109   if (S.isVariable()) {
110     MCValue Target;
111     if (!S.getVariableValue()->EvaluateAsRelocatable(Target, *this))
112       report_fatal_error("unable to evaluate offset for variable '" +
113                          S.getName() + "'");
114
115     // Verify that any used symbols are defined.
116     if (Target.getSymA() && Target.getSymA()->getSymbol().isUndefined())
117       report_fatal_error("unable to evaluate offset to undefined symbol '" +
118                          Target.getSymA()->getSymbol().getName() + "'");
119     if (Target.getSymB() && Target.getSymB()->getSymbol().isUndefined())
120       report_fatal_error("unable to evaluate offset to undefined symbol '" +
121                          Target.getSymB()->getSymbol().getName() + "'");
122
123     uint64_t Offset = Target.getConstant();
124     if (Target.getSymA())
125       Offset += getSymbolOffset(&Assembler.getSymbolData(
126                                   Target.getSymA()->getSymbol()));
127     if (Target.getSymB())
128       Offset -= getSymbolOffset(&Assembler.getSymbolData(
129                                   Target.getSymB()->getSymbol()));
130     return Offset;
131   }
132
133   assert(SD->getFragment() && "Invalid getOffset() on undefined symbol!");
134   return getFragmentOffset(SD->getFragment()) + SD->getOffset();
135 }
136
137 uint64_t MCAsmLayout::getSectionAddressSize(const MCSectionData *SD) const {
138   // The size is the last fragment's end offset.
139   const MCFragment &F = SD->getFragmentList().back();
140   return getFragmentOffset(&F) + getAssembler().computeFragmentSize(*this, F);
141 }
142
143 uint64_t MCAsmLayout::getSectionFileSize(const MCSectionData *SD) const {
144   // Virtual sections have no file size.
145   if (SD->getSection().isVirtualSection())
146     return 0;
147
148   // Otherwise, the file size is the same as the address space size.
149   return getSectionAddressSize(SD);
150 }
151
152 /* *** */
153
154 MCFragment::MCFragment() : Kind(FragmentType(~0)) {
155 }
156
157 MCFragment::~MCFragment() {
158 }
159
160 MCFragment::MCFragment(FragmentType _Kind, MCSectionData *_Parent)
161   : Kind(_Kind), Parent(_Parent), Atom(0), Offset(~UINT64_C(0))
162 {
163   if (Parent)
164     Parent->getFragmentList().push_back(this);
165 }
166
167 /* *** */
168
169 MCSectionData::MCSectionData() : Section(0) {}
170
171 MCSectionData::MCSectionData(const MCSection &_Section, MCAssembler *A)
172   : Section(&_Section),
173     Ordinal(~UINT32_C(0)),
174     Alignment(1),
175     HasInstructions(false)
176 {
177   if (A)
178     A->getSectionList().push_back(this);
179 }
180
181 /* *** */
182
183 MCSymbolData::MCSymbolData() : Symbol(0) {}
184
185 MCSymbolData::MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment,
186                            uint64_t _Offset, MCAssembler *A)
187   : Symbol(&_Symbol), Fragment(_Fragment), Offset(_Offset),
188     IsExternal(false), IsPrivateExtern(false),
189     CommonSize(0), SymbolSize(0), CommonAlign(0),
190     Flags(0), Index(0)
191 {
192   if (A)
193     A->getSymbolList().push_back(this);
194 }
195
196 /* *** */
197
198 MCAssembler::MCAssembler(MCContext &Context_, MCAsmBackend &Backend_,
199                          MCCodeEmitter &Emitter_, MCObjectWriter &Writer_,
200                          raw_ostream &OS_)
201   : Context(Context_), Backend(Backend_), Emitter(Emitter_), Writer(Writer_),
202     OS(OS_), RelaxAll(false), NoExecStack(false), SubsectionsViaSymbols(false) {
203 }
204
205 MCAssembler::~MCAssembler() {
206 }
207
208 bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
209   // Non-temporary labels should always be visible to the linker.
210   if (!Symbol.isTemporary())
211     return true;
212
213   // Absolute temporary labels are never visible.
214   if (!Symbol.isInSection())
215     return false;
216
217   // Otherwise, check if the section requires symbols even for temporary labels.
218   return getBackend().doesSectionRequireSymbols(Symbol.getSection());
219 }
220
221 const MCSymbolData *MCAssembler::getAtom(const MCSymbolData *SD) const {
222   // Linker visible symbols define atoms.
223   if (isSymbolLinkerVisible(SD->getSymbol()))
224     return SD;
225
226   // Absolute and undefined symbols have no defining atom.
227   if (!SD->getFragment())
228     return 0;
229
230   // Non-linker visible symbols in sections which can't be atomized have no
231   // defining atom.
232   if (!getBackend().isSectionAtomizable(
233         SD->getFragment()->getParent()->getSection()))
234     return 0;
235
236   // Otherwise, return the atom for the containing fragment.
237   return SD->getFragment()->getAtom();
238 }
239
240 bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout,
241                                 const MCFixup &Fixup, const MCFragment *DF,
242                                 MCValue &Target, uint64_t &Value) const {
243   ++stats::evaluateFixup;
244
245   if (!Fixup.getValue()->EvaluateAsRelocatable(Target, Layout))
246     getContext().FatalError(Fixup.getLoc(), "expected relocatable expression");
247
248   bool IsPCRel = Backend.getFixupKindInfo(
249     Fixup.getKind()).Flags & MCFixupKindInfo::FKF_IsPCRel;
250
251   bool IsResolved;
252   if (IsPCRel) {
253     if (Target.getSymB()) {
254       IsResolved = false;
255     } else if (!Target.getSymA()) {
256       IsResolved = false;
257     } else {
258       const MCSymbolRefExpr *A = Target.getSymA();
259       const MCSymbol &SA = A->getSymbol();
260       if (A->getKind() != MCSymbolRefExpr::VK_None ||
261           SA.AliasedSymbol().isUndefined()) {
262         IsResolved = false;
263       } else {
264         const MCSymbolData &DataA = getSymbolData(SA);
265         IsResolved =
266           getWriter().IsSymbolRefDifferenceFullyResolvedImpl(*this, DataA,
267                                                              *DF, false, true);
268       }
269     }
270   } else {
271     IsResolved = Target.isAbsolute();
272   }
273
274   Value = Target.getConstant();
275
276   if (const MCSymbolRefExpr *A = Target.getSymA()) {
277     const MCSymbol &Sym = A->getSymbol().AliasedSymbol();
278     if (Sym.isDefined())
279       Value += Layout.getSymbolOffset(&getSymbolData(Sym));
280   }
281   if (const MCSymbolRefExpr *B = Target.getSymB()) {
282     const MCSymbol &Sym = B->getSymbol().AliasedSymbol();
283     if (Sym.isDefined())
284       Value -= Layout.getSymbolOffset(&getSymbolData(Sym));
285   }
286
287
288   bool ShouldAlignPC = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
289                          MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
290   assert((ShouldAlignPC ? IsPCRel : true) &&
291     "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
292
293   if (IsPCRel) {
294     uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();
295
296     // A number of ARM fixups in Thumb mode require that the effective PC
297     // address be determined as the 32-bit aligned version of the actual offset.
298     if (ShouldAlignPC) Offset &= ~0x3;
299     Value -= Offset;
300   }
301
302   // Let the backend adjust the fixup value if necessary, including whether
303   // we need a relocation.
304   Backend.processFixupValue(*this, Layout, Fixup, DF, Target, Value,
305                             IsResolved);
306
307   return IsResolved;
308 }
309
310 uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout,
311                                           const MCFragment &F) const {
312   switch (F.getKind()) {
313   case MCFragment::FT_Data:
314     return cast<MCDataFragment>(F).getContents().size();
315   case MCFragment::FT_Fill:
316     return cast<MCFillFragment>(F).getSize();
317   case MCFragment::FT_Inst:
318     return cast<MCInstFragment>(F).getInstSize();
319
320   case MCFragment::FT_LEB:
321     return cast<MCLEBFragment>(F).getContents().size();
322
323   case MCFragment::FT_Align: {
324     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
325     unsigned Offset = Layout.getFragmentOffset(&AF);
326     unsigned Size = OffsetToAlignment(Offset, AF.getAlignment());
327     // If we are padding with nops, force the padding to be larger than the
328     // minimum nop size.
329     if (Size > 0 && AF.hasEmitNops()) {
330       while (Size % getBackend().getMinimumNopSize())
331         Size += AF.getAlignment();
332     }
333     if (Size > AF.getMaxBytesToEmit())
334       return 0;
335     return Size;
336   }
337
338   case MCFragment::FT_Org: {
339     MCOrgFragment &OF = cast<MCOrgFragment>(F);
340     int64_t TargetLocation;
341     if (!OF.getOffset().EvaluateAsAbsolute(TargetLocation, Layout))
342       report_fatal_error("expected assembly-time absolute expression");
343
344     // FIXME: We need a way to communicate this error.
345     uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
346     int64_t Size = TargetLocation - FragmentOffset;
347     if (Size < 0 || Size >= 0x40000000)
348       report_fatal_error("invalid .org offset '" + Twine(TargetLocation) +
349                          "' (at offset '" + Twine(FragmentOffset) + "')");
350     return Size;
351   }
352
353   case MCFragment::FT_Dwarf:
354     return cast<MCDwarfLineAddrFragment>(F).getContents().size();
355   case MCFragment::FT_DwarfFrame:
356     return cast<MCDwarfCallFrameFragment>(F).getContents().size();
357   }
358
359   llvm_unreachable("invalid fragment kind");
360 }
361
362 void MCAsmLayout::LayoutFragment(MCFragment *F) {
363   MCFragment *Prev = F->getPrevNode();
364
365   // We should never try to recompute something which is up-to-date.
366   assert(!isFragmentUpToDate(F) && "Attempt to recompute up-to-date fragment!");
367   // We should never try to compute the fragment layout if it's predecessor
368   // isn't up-to-date.
369   assert((!Prev || isFragmentUpToDate(Prev)) &&
370          "Attempt to compute fragment before it's predecessor!");
371
372   ++stats::FragmentLayouts;
373
374   // Compute fragment offset and size.
375   uint64_t Offset = 0;
376   if (Prev)
377     Offset += Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev);
378
379   F->Offset = Offset;
380   LastValidFragment[F->getParent()] = F;
381 }
382
383 /// WriteFragmentData - Write the \p F data to the output file.
384 static void WriteFragmentData(const MCAssembler &Asm, const MCAsmLayout &Layout,
385                               const MCFragment &F) {
386   MCObjectWriter *OW = &Asm.getWriter();
387   uint64_t Start = OW->getStream().tell();
388   (void) Start;
389
390   ++stats::EmittedFragments;
391
392   // FIXME: Embed in fragments instead?
393   uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F);
394   switch (F.getKind()) {
395   case MCFragment::FT_Align: {
396     MCAlignFragment &AF = cast<MCAlignFragment>(F);
397     uint64_t Count = FragmentSize / AF.getValueSize();
398
399     assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
400
401     // FIXME: This error shouldn't actually occur (the front end should emit
402     // multiple .align directives to enforce the semantics it wants), but is
403     // severe enough that we want to report it. How to handle this?
404     if (Count * AF.getValueSize() != FragmentSize)
405       report_fatal_error("undefined .align directive, value size '" +
406                         Twine(AF.getValueSize()) +
407                         "' is not a divisor of padding size '" +
408                         Twine(FragmentSize) + "'");
409
410     // See if we are aligning with nops, and if so do that first to try to fill
411     // the Count bytes.  Then if that did not fill any bytes or there are any
412     // bytes left to fill use the Value and ValueSize to fill the rest.
413     // If we are aligning with nops, ask that target to emit the right data.
414     if (AF.hasEmitNops()) {
415       if (!Asm.getBackend().writeNopData(Count, OW))
416         report_fatal_error("unable to write nop sequence of " +
417                           Twine(Count) + " bytes");
418       break;
419     }
420
421     // Otherwise, write out in multiples of the value size.
422     for (uint64_t i = 0; i != Count; ++i) {
423       switch (AF.getValueSize()) {
424       default: llvm_unreachable("Invalid size!");
425       case 1: OW->Write8 (uint8_t (AF.getValue())); break;
426       case 2: OW->Write16(uint16_t(AF.getValue())); break;
427       case 4: OW->Write32(uint32_t(AF.getValue())); break;
428       case 8: OW->Write64(uint64_t(AF.getValue())); break;
429       }
430     }
431     break;
432   }
433
434   case MCFragment::FT_Data: {
435     MCDataFragment &DF = cast<MCDataFragment>(F);
436     assert(FragmentSize == DF.getContents().size() && "Invalid size!");
437     OW->WriteBytes(DF.getContents().str());
438     break;
439   }
440
441   case MCFragment::FT_Fill: {
442     MCFillFragment &FF = cast<MCFillFragment>(F);
443
444     assert(FF.getValueSize() && "Invalid virtual align in concrete fragment!");
445
446     for (uint64_t i = 0, e = FF.getSize() / FF.getValueSize(); i != e; ++i) {
447       switch (FF.getValueSize()) {
448       default: llvm_unreachable("Invalid size!");
449       case 1: OW->Write8 (uint8_t (FF.getValue())); break;
450       case 2: OW->Write16(uint16_t(FF.getValue())); break;
451       case 4: OW->Write32(uint32_t(FF.getValue())); break;
452       case 8: OW->Write64(uint64_t(FF.getValue())); break;
453       }
454     }
455     break;
456   }
457
458   case MCFragment::FT_Inst: {
459     MCInstFragment &IF = cast<MCInstFragment>(F);
460     OW->WriteBytes(StringRef(IF.getCode().begin(), IF.getCode().size()));
461     break;
462   }
463
464   case MCFragment::FT_LEB: {
465     MCLEBFragment &LF = cast<MCLEBFragment>(F);
466     OW->WriteBytes(LF.getContents().str());
467     break;
468   }
469
470   case MCFragment::FT_Org: {
471     MCOrgFragment &OF = cast<MCOrgFragment>(F);
472
473     for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
474       OW->Write8(uint8_t(OF.getValue()));
475
476     break;
477   }
478
479   case MCFragment::FT_Dwarf: {
480     const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
481     OW->WriteBytes(OF.getContents().str());
482     break;
483   }
484   case MCFragment::FT_DwarfFrame: {
485     const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
486     OW->WriteBytes(CF.getContents().str());
487     break;
488   }
489   }
490
491   assert(OW->getStream().tell() - Start == FragmentSize);
492 }
493
494 void MCAssembler::writeSectionData(const MCSectionData *SD,
495                                    const MCAsmLayout &Layout) const {
496   // Ignore virtual sections.
497   if (SD->getSection().isVirtualSection()) {
498     assert(Layout.getSectionFileSize(SD) == 0 && "Invalid size for section!");
499
500     // Check that contents are only things legal inside a virtual section.
501     for (MCSectionData::const_iterator it = SD->begin(),
502            ie = SD->end(); it != ie; ++it) {
503       switch (it->getKind()) {
504       default: llvm_unreachable("Invalid fragment in virtual section!");
505       case MCFragment::FT_Data: {
506         // Check that we aren't trying to write a non-zero contents (or fixups)
507         // into a virtual section. This is to support clients which use standard
508         // directives to fill the contents of virtual sections.
509         MCDataFragment &DF = cast<MCDataFragment>(*it);
510         assert(DF.fixup_begin() == DF.fixup_end() &&
511                "Cannot have fixups in virtual section!");
512         for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
513           assert(DF.getContents()[i] == 0 &&
514                  "Invalid data value for virtual section!");
515         break;
516       }
517       case MCFragment::FT_Align:
518         // Check that we aren't trying to write a non-zero value into a virtual
519         // section.
520         assert((!cast<MCAlignFragment>(it)->getValueSize() ||
521                 !cast<MCAlignFragment>(it)->getValue()) &&
522                "Invalid align in virtual section!");
523         break;
524       case MCFragment::FT_Fill:
525         assert(!cast<MCFillFragment>(it)->getValueSize() &&
526                "Invalid fill in virtual section!");
527         break;
528       }
529     }
530
531     return;
532   }
533
534   uint64_t Start = getWriter().getStream().tell();
535   (void)Start;
536
537   for (MCSectionData::const_iterator it = SD->begin(),
538          ie = SD->end(); it != ie; ++it)
539     WriteFragmentData(*this, Layout, *it);
540
541   assert(getWriter().getStream().tell() - Start ==
542          Layout.getSectionAddressSize(SD));
543 }
544
545
546 uint64_t MCAssembler::handleFixup(const MCAsmLayout &Layout,
547                                   MCFragment &F,
548                                   const MCFixup &Fixup) {
549    // Evaluate the fixup.
550    MCValue Target;
551    uint64_t FixedValue;
552    if (!evaluateFixup(Layout, Fixup, &F, Target, FixedValue)) {
553      // The fixup was unresolved, we need a relocation. Inform the object
554      // writer of the relocation, and give it an opportunity to adjust the
555      // fixup value if need be.
556      getWriter().RecordRelocation(*this, Layout, &F, Fixup, Target, FixedValue);
557    }
558    return FixedValue;
559  }
560
561 void MCAssembler::Finish() {
562   DEBUG_WITH_TYPE("mc-dump", {
563       llvm::errs() << "assembler backend - pre-layout\n--\n";
564       dump(); });
565
566   // Create the layout object.
567   MCAsmLayout Layout(*this);
568
569   // Create dummy fragments and assign section ordinals.
570   unsigned SectionIndex = 0;
571   for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
572     // Create dummy fragments to eliminate any empty sections, this simplifies
573     // layout.
574     if (it->getFragmentList().empty())
575       new MCDataFragment(it);
576
577     it->setOrdinal(SectionIndex++);
578   }
579
580   // Assign layout order indices to sections and fragments.
581   for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
582     MCSectionData *SD = Layout.getSectionOrder()[i];
583     SD->setLayoutOrder(i);
584
585     unsigned FragmentIndex = 0;
586     for (MCSectionData::iterator it2 = SD->begin(),
587            ie2 = SD->end(); it2 != ie2; ++it2)
588       it2->setLayoutOrder(FragmentIndex++);
589   }
590
591   // Layout until everything fits.
592   while (layoutOnce(Layout))
593     continue;
594
595   DEBUG_WITH_TYPE("mc-dump", {
596       llvm::errs() << "assembler backend - post-relaxation\n--\n";
597       dump(); });
598
599   // Finalize the layout, including fragment lowering.
600   finishLayout(Layout);
601
602   DEBUG_WITH_TYPE("mc-dump", {
603       llvm::errs() << "assembler backend - final-layout\n--\n";
604       dump(); });
605
606   uint64_t StartOffset = OS.tell();
607
608   // Allow the object writer a chance to perform post-layout binding (for
609   // example, to set the index fields in the symbol data).
610   getWriter().ExecutePostLayoutBinding(*this, Layout);
611
612   // Evaluate and apply the fixups, generating relocation entries as necessary.
613   for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
614     for (MCSectionData::iterator it2 = it->begin(),
615            ie2 = it->end(); it2 != ie2; ++it2) {
616       MCDataFragment *DF = dyn_cast<MCDataFragment>(it2);
617       if (DF) {
618         for (MCDataFragment::fixup_iterator it3 = DF->fixup_begin(),
619                ie3 = DF->fixup_end(); it3 != ie3; ++it3) {
620           MCFixup &Fixup = *it3;
621           uint64_t FixedValue = handleFixup(Layout, *DF, Fixup);
622           getBackend().applyFixup(Fixup, DF->getContents().data(),
623                                   DF->getContents().size(), FixedValue);
624         }
625       }
626       MCInstFragment *IF = dyn_cast<MCInstFragment>(it2);
627       if (IF) {
628         for (MCInstFragment::fixup_iterator it3 = IF->fixup_begin(),
629                ie3 = IF->fixup_end(); it3 != ie3; ++it3) {
630           MCFixup &Fixup = *it3;
631           uint64_t FixedValue = handleFixup(Layout, *IF, Fixup);
632           getBackend().applyFixup(Fixup, IF->getCode().data(),
633                                   IF->getCode().size(), FixedValue);
634         }
635       }
636     }
637   }
638
639   // Write the object file.
640   getWriter().WriteObject(*this, Layout);
641
642   stats::ObjectBytes += OS.tell() - StartOffset;
643 }
644
645 bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
646                                        const MCInstFragment *DF,
647                                        const MCAsmLayout &Layout) const {
648   if (getRelaxAll())
649     return true;
650
651   // If we cannot resolve the fixup value, it requires relaxation.
652   MCValue Target;
653   uint64_t Value;
654   if (!evaluateFixup(Layout, Fixup, DF, Target, Value))
655     return true;
656
657   return getBackend().fixupNeedsRelaxation(Fixup, Value, DF, Layout);
658 }
659
660 bool MCAssembler::fragmentNeedsRelaxation(const MCInstFragment *IF,
661                                           const MCAsmLayout &Layout) const {
662   // If this inst doesn't ever need relaxation, ignore it. This occurs when we
663   // are intentionally pushing out inst fragments, or because we relaxed a
664   // previous instruction to one that doesn't need relaxation.
665   if (!getBackend().mayNeedRelaxation(IF->getInst()))
666     return false;
667
668   for (MCInstFragment::const_fixup_iterator it = IF->fixup_begin(),
669          ie = IF->fixup_end(); it != ie; ++it)
670     if (fixupNeedsRelaxation(*it, IF, Layout))
671       return true;
672
673   return false;
674 }
675
676 bool MCAssembler::relaxInstruction(MCAsmLayout &Layout,
677                                    MCInstFragment &IF) {
678   if (!fragmentNeedsRelaxation(&IF, Layout))
679     return false;
680
681   ++stats::RelaxedInstructions;
682
683   // FIXME-PERF: We could immediately lower out instructions if we can tell
684   // they are fully resolved, to avoid retesting on later passes.
685
686   // Relax the fragment.
687
688   MCInst Relaxed;
689   getBackend().relaxInstruction(IF.getInst(), Relaxed);
690
691   // Encode the new instruction.
692   //
693   // FIXME-PERF: If it matters, we could let the target do this. It can
694   // probably do so more efficiently in many cases.
695   SmallVector<MCFixup, 4> Fixups;
696   SmallString<256> Code;
697   raw_svector_ostream VecOS(Code);
698   getEmitter().EncodeInstruction(Relaxed, VecOS, Fixups);
699   VecOS.flush();
700
701   // Update the instruction fragment.
702   IF.setInst(Relaxed);
703   IF.getCode() = Code;
704   IF.getFixups().clear();
705   // FIXME: Eliminate copy.
706   for (unsigned i = 0, e = Fixups.size(); i != e; ++i)
707     IF.getFixups().push_back(Fixups[i]);
708
709   return true;
710 }
711
712 bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
713   int64_t Value = 0;
714   uint64_t OldSize = LF.getContents().size();
715   bool IsAbs = LF.getValue().EvaluateAsAbsolute(Value, Layout);
716   (void)IsAbs;
717   assert(IsAbs);
718   SmallString<8> &Data = LF.getContents();
719   Data.clear();
720   raw_svector_ostream OSE(Data);
721   if (LF.isSigned())
722     encodeSLEB128(Value, OSE);
723   else
724     encodeULEB128(Value, OSE);
725   OSE.flush();
726   return OldSize != LF.getContents().size();
727 }
728
729 bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
730                                      MCDwarfLineAddrFragment &DF) {
731   int64_t AddrDelta = 0;
732   uint64_t OldSize = DF.getContents().size();
733   bool IsAbs = DF.getAddrDelta().EvaluateAsAbsolute(AddrDelta, Layout);
734   (void)IsAbs;
735   assert(IsAbs);
736   int64_t LineDelta;
737   LineDelta = DF.getLineDelta();
738   SmallString<8> &Data = DF.getContents();
739   Data.clear();
740   raw_svector_ostream OSE(Data);
741   MCDwarfLineAddr::Encode(LineDelta, AddrDelta, OSE);
742   OSE.flush();
743   return OldSize != Data.size();
744 }
745
746 bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
747                                               MCDwarfCallFrameFragment &DF) {
748   int64_t AddrDelta = 0;
749   uint64_t OldSize = DF.getContents().size();
750   bool IsAbs = DF.getAddrDelta().EvaluateAsAbsolute(AddrDelta, Layout);
751   (void)IsAbs;
752   assert(IsAbs);
753   SmallString<8> &Data = DF.getContents();
754   Data.clear();
755   raw_svector_ostream OSE(Data);
756   MCDwarfFrameEmitter::EncodeAdvanceLoc(AddrDelta, OSE);
757   OSE.flush();
758   return OldSize != Data.size();
759 }
760
761 bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout,
762                                     MCSectionData &SD) {
763   MCFragment *FirstInvalidFragment = NULL;
764   // Scan for fragments that need relaxation.
765   for (MCSectionData::iterator it2 = SD.begin(),
766          ie2 = SD.end(); it2 != ie2; ++it2) {
767     // Check if this is an fragment that needs relaxation.
768     bool relaxedFrag = false;
769     switch(it2->getKind()) {
770     default:
771           break;
772     case MCFragment::FT_Inst:
773       relaxedFrag = relaxInstruction(Layout, *cast<MCInstFragment>(it2));
774       break;
775     case MCFragment::FT_Dwarf:
776       relaxedFrag = relaxDwarfLineAddr(Layout,
777                                        *cast<MCDwarfLineAddrFragment>(it2));
778       break;
779     case MCFragment::FT_DwarfFrame:
780       relaxedFrag =
781         relaxDwarfCallFrameFragment(Layout,
782                                     *cast<MCDwarfCallFrameFragment>(it2));
783       break;
784     case MCFragment::FT_LEB:
785       relaxedFrag = relaxLEB(Layout, *cast<MCLEBFragment>(it2));
786       break;
787     }
788     // Update the layout, and remember that we relaxed.
789     if (relaxedFrag && !FirstInvalidFragment)
790       FirstInvalidFragment = it2;
791   }
792   if (FirstInvalidFragment) {
793     Layout.Invalidate(FirstInvalidFragment);
794     return true;
795   }
796   return false;
797 }
798
799 bool MCAssembler::layoutOnce(MCAsmLayout &Layout) {
800   ++stats::RelaxationSteps;
801
802   bool WasRelaxed = false;
803   for (iterator it = begin(), ie = end(); it != ie; ++it) {
804     MCSectionData &SD = *it;
805     while(layoutSectionOnce(Layout, SD))
806       WasRelaxed = true;
807   }
808
809   return WasRelaxed;
810 }
811
812 void MCAssembler::finishLayout(MCAsmLayout &Layout) {
813   // The layout is done. Mark every fragment as valid.
814   for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
815     Layout.getFragmentOffset(&*Layout.getSectionOrder()[i]->rbegin());
816   }
817 }
818
819 // Debugging methods
820
821 namespace llvm {
822
823 raw_ostream &operator<<(raw_ostream &OS, const MCFixup &AF) {
824   OS << "<MCFixup" << " Offset:" << AF.getOffset()
825      << " Value:" << *AF.getValue()
826      << " Kind:" << AF.getKind() << ">";
827   return OS;
828 }
829
830 }
831
832 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
833 void MCFragment::dump() {
834   raw_ostream &OS = llvm::errs();
835
836   OS << "<";
837   switch (getKind()) {
838   case MCFragment::FT_Align: OS << "MCAlignFragment"; break;
839   case MCFragment::FT_Data:  OS << "MCDataFragment"; break;
840   case MCFragment::FT_Fill:  OS << "MCFillFragment"; break;
841   case MCFragment::FT_Inst:  OS << "MCInstFragment"; break;
842   case MCFragment::FT_Org:   OS << "MCOrgFragment"; break;
843   case MCFragment::FT_Dwarf: OS << "MCDwarfFragment"; break;
844   case MCFragment::FT_DwarfFrame: OS << "MCDwarfCallFrameFragment"; break;
845   case MCFragment::FT_LEB:   OS << "MCLEBFragment"; break;
846   }
847
848   OS << "<MCFragment " << (void*) this << " LayoutOrder:" << LayoutOrder
849      << " Offset:" << Offset << ">";
850
851   switch (getKind()) {
852   case MCFragment::FT_Align: {
853     const MCAlignFragment *AF = cast<MCAlignFragment>(this);
854     if (AF->hasEmitNops())
855       OS << " (emit nops)";
856     OS << "\n       ";
857     OS << " Alignment:" << AF->getAlignment()
858        << " Value:" << AF->getValue() << " ValueSize:" << AF->getValueSize()
859        << " MaxBytesToEmit:" << AF->getMaxBytesToEmit() << ">";
860     break;
861   }
862   case MCFragment::FT_Data:  {
863     const MCDataFragment *DF = cast<MCDataFragment>(this);
864     OS << "\n       ";
865     OS << " Contents:[";
866     const SmallVectorImpl<char> &Contents = DF->getContents();
867     for (unsigned i = 0, e = Contents.size(); i != e; ++i) {
868       if (i) OS << ",";
869       OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
870     }
871     OS << "] (" << Contents.size() << " bytes)";
872
873     if (!DF->getFixups().empty()) {
874       OS << ",\n       ";
875       OS << " Fixups:[";
876       for (MCDataFragment::const_fixup_iterator it = DF->fixup_begin(),
877              ie = DF->fixup_end(); it != ie; ++it) {
878         if (it != DF->fixup_begin()) OS << ",\n                ";
879         OS << *it;
880       }
881       OS << "]";
882     }
883     break;
884   }
885   case MCFragment::FT_Fill:  {
886     const MCFillFragment *FF = cast<MCFillFragment>(this);
887     OS << " Value:" << FF->getValue() << " ValueSize:" << FF->getValueSize()
888        << " Size:" << FF->getSize();
889     break;
890   }
891   case MCFragment::FT_Inst:  {
892     const MCInstFragment *IF = cast<MCInstFragment>(this);
893     OS << "\n       ";
894     OS << " Inst:";
895     IF->getInst().dump_pretty(OS);
896     break;
897   }
898   case MCFragment::FT_Org:  {
899     const MCOrgFragment *OF = cast<MCOrgFragment>(this);
900     OS << "\n       ";
901     OS << " Offset:" << OF->getOffset() << " Value:" << OF->getValue();
902     break;
903   }
904   case MCFragment::FT_Dwarf:  {
905     const MCDwarfLineAddrFragment *OF = cast<MCDwarfLineAddrFragment>(this);
906     OS << "\n       ";
907     OS << " AddrDelta:" << OF->getAddrDelta()
908        << " LineDelta:" << OF->getLineDelta();
909     break;
910   }
911   case MCFragment::FT_DwarfFrame:  {
912     const MCDwarfCallFrameFragment *CF = cast<MCDwarfCallFrameFragment>(this);
913     OS << "\n       ";
914     OS << " AddrDelta:" << CF->getAddrDelta();
915     break;
916   }
917   case MCFragment::FT_LEB: {
918     const MCLEBFragment *LF = cast<MCLEBFragment>(this);
919     OS << "\n       ";
920     OS << " Value:" << LF->getValue() << " Signed:" << LF->isSigned();
921     break;
922   }
923   }
924   OS << ">";
925 }
926
927 void MCSectionData::dump() {
928   raw_ostream &OS = llvm::errs();
929
930   OS << "<MCSectionData";
931   OS << " Alignment:" << getAlignment() << " Fragments:[\n      ";
932   for (iterator it = begin(), ie = end(); it != ie; ++it) {
933     if (it != begin()) OS << ",\n      ";
934     it->dump();
935   }
936   OS << "]>";
937 }
938
939 void MCSymbolData::dump() {
940   raw_ostream &OS = llvm::errs();
941
942   OS << "<MCSymbolData Symbol:" << getSymbol()
943      << " Fragment:" << getFragment() << " Offset:" << getOffset()
944      << " Flags:" << getFlags() << " Index:" << getIndex();
945   if (isCommon())
946     OS << " (common, size:" << getCommonSize()
947        << " align: " << getCommonAlignment() << ")";
948   if (isExternal())
949     OS << " (external)";
950   if (isPrivateExtern())
951     OS << " (private extern)";
952   OS << ">";
953 }
954
955 void MCAssembler::dump() {
956   raw_ostream &OS = llvm::errs();
957
958   OS << "<MCAssembler\n";
959   OS << "  Sections:[\n    ";
960   for (iterator it = begin(), ie = end(); it != ie; ++it) {
961     if (it != begin()) OS << ",\n    ";
962     it->dump();
963   }
964   OS << "],\n";
965   OS << "  Symbols:[";
966
967   for (symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
968     if (it != symbol_begin()) OS << ",\n           ";
969     it->dump();
970   }
971   OS << "]>\n";
972 }
973 #endif
974
975 // anchors for MC*Fragment vtables
976 void MCDataFragment::anchor() { }
977 void MCInstFragment::anchor() { }
978 void MCAlignFragment::anchor() { }
979 void MCFillFragment::anchor() { }
980 void MCOrgFragment::anchor() { }
981 void MCLEBFragment::anchor() { }
982 void MCDwarfLineAddrFragment::anchor() { }
983 void MCDwarfCallFrameFragment::anchor() { }