1 //===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the LLVM module linker.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Linker/Linker.h"
15 #include "llvm-c/Linker.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DiagnosticInfo.h"
21 #include "llvm/IR/DiagnosticPrinter.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/TypeFinder.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Transforms/Utils/Cloning.h"
34 //===----------------------------------------------------------------------===//
35 // TypeMap implementation.
36 //===----------------------------------------------------------------------===//
39 typedef SmallPtrSet<StructType *, 32> TypeSet;
41 class TypeMapTy : public ValueMapTypeRemapper {
42 /// This is a mapping from a source type to a destination type to use.
43 DenseMap<Type*, Type*> MappedTypes;
45 /// When checking to see if two subgraphs are isomorphic, we speculatively
46 /// add types to MappedTypes, but keep track of them here in case we need to
48 SmallVector<Type*, 16> SpeculativeTypes;
50 /// This is a list of non-opaque structs in the source module that are mapped
51 /// to an opaque struct in the destination module.
52 SmallVector<StructType*, 16> SrcDefinitionsToResolve;
54 /// This is the set of opaque types in the destination modules who are
55 /// getting a body from the source module.
56 SmallPtrSet<StructType*, 16> DstResolvedOpaqueTypes;
59 TypeMapTy(TypeSet &Set) : DstStructTypesSet(Set) {}
61 TypeSet &DstStructTypesSet;
62 /// Indicate that the specified type in the destination module is conceptually
63 /// equivalent to the specified type in the source module.
64 void addTypeMapping(Type *DstTy, Type *SrcTy);
66 /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
67 /// module from a type definition in the source module.
68 void linkDefinedTypeBodies();
70 /// Return the mapped type to use for the specified input type from the
72 Type *get(Type *SrcTy);
74 FunctionType *get(FunctionType *T) {return cast<FunctionType>(get((Type*)T));}
76 /// Dump out the type map for debugging purposes.
78 for (DenseMap<Type*, Type*>::const_iterator
79 I = MappedTypes.begin(), E = MappedTypes.end(); I != E; ++I) {
80 dbgs() << "TypeMap: ";
81 I->first->print(dbgs());
83 I->second->print(dbgs());
89 Type *getImpl(Type *T);
90 /// Implement the ValueMapTypeRemapper interface.
91 Type *remapType(Type *SrcTy) override {
95 bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
99 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
100 Type *&Entry = MappedTypes[SrcTy];
103 if (DstTy == SrcTy) {
108 // Check to see if these types are recursively isomorphic and establish a
109 // mapping between them if so.
110 if (!areTypesIsomorphic(DstTy, SrcTy)) {
111 // Oops, they aren't isomorphic. Just discard this request by rolling out
112 // any speculative mappings we've established.
113 for (unsigned i = 0, e = SpeculativeTypes.size(); i != e; ++i)
114 MappedTypes.erase(SpeculativeTypes[i]);
116 SpeculativeTypes.clear();
119 /// Recursively walk this pair of types, returning true if they are isomorphic,
120 /// false if they are not.
121 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
122 // Two types with differing kinds are clearly not isomorphic.
123 if (DstTy->getTypeID() != SrcTy->getTypeID()) return false;
125 // If we have an entry in the MappedTypes table, then we have our answer.
126 Type *&Entry = MappedTypes[SrcTy];
128 return Entry == DstTy;
130 // Two identical types are clearly isomorphic. Remember this
131 // non-speculatively.
132 if (DstTy == SrcTy) {
137 // Okay, we have two types with identical kinds that we haven't seen before.
139 // If this is an opaque struct type, special case it.
140 if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
141 // Mapping an opaque type to any struct, just keep the dest struct.
142 if (SSTy->isOpaque()) {
144 SpeculativeTypes.push_back(SrcTy);
148 // Mapping a non-opaque source type to an opaque dest. If this is the first
149 // type that we're mapping onto this destination type then we succeed. Keep
150 // the dest, but fill it in later. This doesn't need to be speculative. If
151 // this is the second (different) type that we're trying to map onto the
152 // same opaque type then we fail.
153 if (cast<StructType>(DstTy)->isOpaque()) {
154 // We can only map one source type onto the opaque destination type.
155 if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)))
157 SrcDefinitionsToResolve.push_back(SSTy);
163 // If the number of subtypes disagree between the two types, then we fail.
164 if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
167 // Fail if any of the extra properties (e.g. array size) of the type disagree.
168 if (isa<IntegerType>(DstTy))
169 return false; // bitwidth disagrees.
170 if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
171 if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
174 } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
175 if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
177 } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
178 StructType *SSTy = cast<StructType>(SrcTy);
179 if (DSTy->isLiteral() != SSTy->isLiteral() ||
180 DSTy->isPacked() != SSTy->isPacked())
182 } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
183 if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
185 } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
186 if (DVTy->getNumElements() != cast<VectorType>(SrcTy)->getNumElements())
190 // Otherwise, we speculate that these two types will line up and recursively
191 // check the subelements.
193 SpeculativeTypes.push_back(SrcTy);
195 for (unsigned i = 0, e = SrcTy->getNumContainedTypes(); i != e; ++i)
196 if (!areTypesIsomorphic(DstTy->getContainedType(i),
197 SrcTy->getContainedType(i)))
200 // If everything seems to have lined up, then everything is great.
204 /// Produce a body for an opaque type in the dest module from a type definition
205 /// in the source module.
206 void TypeMapTy::linkDefinedTypeBodies() {
207 SmallVector<Type*, 16> Elements;
208 SmallString<16> TmpName;
210 // Note that processing entries in this loop (calling 'get') can add new
211 // entries to the SrcDefinitionsToResolve vector.
212 while (!SrcDefinitionsToResolve.empty()) {
213 StructType *SrcSTy = SrcDefinitionsToResolve.pop_back_val();
214 StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
216 // TypeMap is a many-to-one mapping, if there were multiple types that
217 // provide a body for DstSTy then previous iterations of this loop may have
218 // already handled it. Just ignore this case.
219 if (!DstSTy->isOpaque()) continue;
220 assert(!SrcSTy->isOpaque() && "Not resolving a definition?");
222 // Map the body of the source type over to a new body for the dest type.
223 Elements.resize(SrcSTy->getNumElements());
224 for (unsigned i = 0, e = Elements.size(); i != e; ++i)
225 Elements[i] = getImpl(SrcSTy->getElementType(i));
227 DstSTy->setBody(Elements, SrcSTy->isPacked());
229 // If DstSTy has no name or has a longer name than STy, then viciously steal
231 if (!SrcSTy->hasName()) continue;
232 StringRef SrcName = SrcSTy->getName();
234 if (!DstSTy->hasName() || DstSTy->getName().size() > SrcName.size()) {
235 TmpName.insert(TmpName.end(), SrcName.begin(), SrcName.end());
237 DstSTy->setName(TmpName.str());
242 DstResolvedOpaqueTypes.clear();
245 Type *TypeMapTy::get(Type *Ty) {
246 Type *Result = getImpl(Ty);
248 // If this caused a reference to any struct type, resolve it before returning.
249 if (!SrcDefinitionsToResolve.empty())
250 linkDefinedTypeBodies();
254 /// This is the recursive version of get().
255 Type *TypeMapTy::getImpl(Type *Ty) {
256 // If we already have an entry for this type, return it.
257 Type **Entry = &MappedTypes[Ty];
258 if (*Entry) return *Entry;
260 // If this is not a named struct type, then just map all of the elements and
261 // then rebuild the type from inside out.
262 if (!isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral()) {
263 // If there are no element types to map, then the type is itself. This is
264 // true for the anonymous {} struct, things like 'float', integers, etc.
265 if (Ty->getNumContainedTypes() == 0)
268 // Remap all of the elements, keeping track of whether any of them change.
269 bool AnyChange = false;
270 SmallVector<Type*, 4> ElementTypes;
271 ElementTypes.resize(Ty->getNumContainedTypes());
272 for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i) {
273 ElementTypes[i] = getImpl(Ty->getContainedType(i));
274 AnyChange |= ElementTypes[i] != Ty->getContainedType(i);
277 // If we found our type while recursively processing stuff, just use it.
278 Entry = &MappedTypes[Ty];
279 if (*Entry) return *Entry;
281 // If all of the element types mapped directly over, then the type is usable
286 // Otherwise, rebuild a modified type.
287 switch (Ty->getTypeID()) {
288 default: llvm_unreachable("unknown derived type to remap");
289 case Type::ArrayTyID:
290 return *Entry = ArrayType::get(ElementTypes[0],
291 cast<ArrayType>(Ty)->getNumElements());
292 case Type::VectorTyID:
293 return *Entry = VectorType::get(ElementTypes[0],
294 cast<VectorType>(Ty)->getNumElements());
295 case Type::PointerTyID:
296 return *Entry = PointerType::get(ElementTypes[0],
297 cast<PointerType>(Ty)->getAddressSpace());
298 case Type::FunctionTyID:
299 return *Entry = FunctionType::get(ElementTypes[0],
300 makeArrayRef(ElementTypes).slice(1),
301 cast<FunctionType>(Ty)->isVarArg());
302 case Type::StructTyID:
303 // Note that this is only reached for anonymous structs.
304 return *Entry = StructType::get(Ty->getContext(), ElementTypes,
305 cast<StructType>(Ty)->isPacked());
309 // Otherwise, this is an unmapped named struct. If the struct can be directly
310 // mapped over, just use it as-is. This happens in a case when the linked-in
311 // module has something like:
312 // %T = type {%T*, i32}
313 // @GV = global %T* null
314 // where T does not exist at all in the destination module.
316 // The other case we watch for is when the type is not in the destination
317 // module, but that it has to be rebuilt because it refers to something that
318 // is already mapped. For example, if the destination module has:
320 // and the source module has something like
321 // %A' = type { i32 }
322 // %B = type { %A'* }
323 // @GV = global %B* null
324 // then we want to create a new type: "%B = type { %A*}" and have it take the
325 // pristine "%B" name from the source module.
327 // To determine which case this is, we have to recursively walk the type graph
328 // speculating that we'll be able to reuse it unmodified. Only if this is
329 // safe would we map the entire thing over. Because this is an optimization,
330 // and is not required for the prettiness of the linked module, we just skip
331 // it and always rebuild a type here.
332 StructType *STy = cast<StructType>(Ty);
334 // If the type is opaque, we can just use it directly.
335 if (STy->isOpaque()) {
336 // A named structure type from src module is used. Add it to the Set of
337 // identified structs in the destination module.
338 DstStructTypesSet.insert(STy);
342 // Otherwise we create a new type and resolve its body later. This will be
343 // resolved by the top level of get().
344 SrcDefinitionsToResolve.push_back(STy);
345 StructType *DTy = StructType::create(STy->getContext());
346 // A new identified structure type was created. Add it to the set of
347 // identified structs in the destination module.
348 DstStructTypesSet.insert(DTy);
349 DstResolvedOpaqueTypes.insert(DTy);
353 //===----------------------------------------------------------------------===//
354 // ModuleLinker implementation.
355 //===----------------------------------------------------------------------===//
360 /// Creates prototypes for functions that are lazily linked on the fly. This
361 /// speeds up linking for modules with many/ lazily linked functions of which
363 class ValueMaterializerTy : public ValueMaterializer {
366 std::vector<Function*> &LazilyLinkFunctions;
368 ValueMaterializerTy(TypeMapTy &TypeMap, Module *DstM,
369 std::vector<Function*> &LazilyLinkFunctions) :
370 ValueMaterializer(), TypeMap(TypeMap), DstM(DstM),
371 LazilyLinkFunctions(LazilyLinkFunctions) {
374 Value *materializeValueFor(Value *V) override;
378 class LinkDiagnosticInfo : public DiagnosticInfo {
382 LinkDiagnosticInfo(DiagnosticSeverity Severity, const Twine &Msg);
383 void print(DiagnosticPrinter &DP) const override;
385 LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity,
387 : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {}
388 void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
391 /// This is an implementation class for the LinkModules function, which is the
392 /// entrypoint for this file.
397 ValueMaterializerTy ValMaterializer;
399 /// Mapping of values from what they used to be in Src, to what they are now
400 /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead
401 /// due to the use of Value handles which the Linker doesn't actually need,
402 /// but this allows us to reuse the ValueMapper code.
403 ValueToValueMapTy ValueMap;
405 struct AppendingVarInfo {
406 GlobalVariable *NewGV; // New aggregate global in dest module.
407 Constant *DstInit; // Old initializer from dest module.
408 Constant *SrcInit; // Old initializer from src module.
411 std::vector<AppendingVarInfo> AppendingVars;
413 unsigned Mode; // Mode to treat source module.
415 // Set of items not to link in from source.
416 SmallPtrSet<const Value*, 16> DoNotLinkFromSource;
418 // Vector of functions to lazily link in.
419 std::vector<Function*> LazilyLinkFunctions;
422 ModuleLinker(Module *dstM, TypeSet &Set, Module *srcM, unsigned mode)
423 : DstM(dstM), SrcM(srcM), TypeMap(Set),
424 ValMaterializer(TypeMap, DstM, LazilyLinkFunctions), Mode(mode) {}
429 bool shouldLinkFromSource(bool &LinkFromSrc, const GlobalValue &Dest,
430 const GlobalValue &Src);
432 /// Helper method for setting a message and returning an error code.
433 bool emitError(const Twine &Message) {
434 DstM->getContext().diagnose(LinkDiagnosticInfo(DS_Error, Message));
438 void emitWarning(const Twine &Message) {
439 DstM->getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message));
442 bool getComdatLeader(Module *M, StringRef ComdatName,
443 const GlobalVariable *&GVar);
444 bool computeResultingSelectionKind(StringRef ComdatName,
445 Comdat::SelectionKind Src,
446 Comdat::SelectionKind Dst,
447 Comdat::SelectionKind &Result,
449 std::map<const Comdat *, std::pair<Comdat::SelectionKind, bool>>
451 bool getComdatResult(const Comdat *SrcC, Comdat::SelectionKind &SK,
454 /// This analyzes the two global values and determines what the result will
455 /// look like in the destination module.
456 bool getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
457 GlobalValue::LinkageTypes <,
458 GlobalValue::VisibilityTypes &Vis,
461 /// Given a global in the source module, return the global in the
462 /// destination module that is being linked to, if any.
463 GlobalValue *getLinkedToGlobal(GlobalValue *SrcGV) {
464 // If the source has no name it can't link. If it has local linkage,
465 // there is no name match-up going on.
466 if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
469 // Otherwise see if we have a match in the destination module's symtab.
470 GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
471 if (!DGV) return nullptr;
473 // If we found a global with the same name in the dest module, but it has
474 // internal linkage, we are really not doing any linkage here.
475 if (DGV->hasLocalLinkage())
478 // Otherwise, we do in fact link to the destination global.
482 void computeTypeMapping();
484 void upgradeMismatchedGlobalArray(StringRef Name);
485 void upgradeMismatchedGlobals();
487 bool linkAppendingVarProto(GlobalVariable *DstGV, GlobalVariable *SrcGV);
488 bool linkGlobalProto(GlobalVariable *SrcGV);
489 bool linkFunctionProto(Function *SrcF);
490 bool linkAliasProto(GlobalAlias *SrcA);
491 bool linkModuleFlagsMetadata();
493 void linkAppendingVarInit(const AppendingVarInfo &AVI);
494 void linkGlobalInits();
495 void linkFunctionBody(Function *Dst, Function *Src);
496 void linkAliasBodies();
497 void linkNamedMDNodes();
501 /// The LLVM SymbolTable class autorenames globals that conflict in the symbol
502 /// table. This is good for all clients except for us. Go through the trouble
503 /// to force this back.
504 static void forceRenaming(GlobalValue *GV, StringRef Name) {
505 // If the global doesn't force its name or if it already has the right name,
506 // there is nothing for us to do.
507 if (GV->hasLocalLinkage() || GV->getName() == Name)
510 Module *M = GV->getParent();
512 // If there is a conflict, rename the conflict.
513 if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
514 GV->takeName(ConflictGV);
515 ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
516 assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
518 GV->setName(Name); // Force the name back
522 /// copy additional attributes (those not needed to construct a GlobalValue)
523 /// from the SrcGV to the DestGV.
524 static void copyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
525 // Use the maximum alignment, rather than just copying the alignment of SrcGV.
526 auto *DestGO = dyn_cast<GlobalObject>(DestGV);
529 Alignment = std::max(DestGO->getAlignment(), SrcGV->getAlignment());
531 DestGV->copyAttributesFrom(SrcGV);
534 DestGO->setAlignment(Alignment);
536 forceRenaming(DestGV, SrcGV->getName());
539 static bool isLessConstraining(GlobalValue::VisibilityTypes a,
540 GlobalValue::VisibilityTypes b) {
541 if (a == GlobalValue::HiddenVisibility)
543 if (b == GlobalValue::HiddenVisibility)
545 if (a == GlobalValue::ProtectedVisibility)
547 if (b == GlobalValue::ProtectedVisibility)
552 Value *ValueMaterializerTy::materializeValueFor(Value *V) {
553 Function *SF = dyn_cast<Function>(V);
557 Function *DF = Function::Create(TypeMap.get(SF->getFunctionType()),
558 SF->getLinkage(), SF->getName(), DstM);
559 copyGVAttributes(DF, SF);
561 if (Comdat *SC = SF->getComdat()) {
562 Comdat *DC = DstM->getOrInsertComdat(SC->getName());
566 LazilyLinkFunctions.push_back(SF);
570 bool ModuleLinker::getComdatLeader(Module *M, StringRef ComdatName,
571 const GlobalVariable *&GVar) {
572 const GlobalValue *GVal = M->getNamedValue(ComdatName);
573 if (const auto *GA = dyn_cast_or_null<GlobalAlias>(GVal)) {
574 GVal = GA->getBaseObject();
576 // We cannot resolve the size of the aliasee yet.
577 return emitError("Linking COMDATs named '" + ComdatName +
578 "': COMDAT key involves incomputable alias size.");
581 GVar = dyn_cast_or_null<GlobalVariable>(GVal);
584 "Linking COMDATs named '" + ComdatName +
585 "': GlobalVariable required for data dependent selection!");
590 bool ModuleLinker::computeResultingSelectionKind(StringRef ComdatName,
591 Comdat::SelectionKind Src,
592 Comdat::SelectionKind Dst,
593 Comdat::SelectionKind &Result,
595 // The ability to mix Comdat::SelectionKind::Any with
596 // Comdat::SelectionKind::Largest is a behavior that comes from COFF.
597 bool DstAnyOrLargest = Dst == Comdat::SelectionKind::Any ||
598 Dst == Comdat::SelectionKind::Largest;
599 bool SrcAnyOrLargest = Src == Comdat::SelectionKind::Any ||
600 Src == Comdat::SelectionKind::Largest;
601 if (DstAnyOrLargest && SrcAnyOrLargest) {
602 if (Dst == Comdat::SelectionKind::Largest ||
603 Src == Comdat::SelectionKind::Largest)
604 Result = Comdat::SelectionKind::Largest;
606 Result = Comdat::SelectionKind::Any;
607 } else if (Src == Dst) {
610 return emitError("Linking COMDATs named '" + ComdatName +
611 "': invalid selection kinds!");
615 case Comdat::SelectionKind::Any:
619 case Comdat::SelectionKind::NoDuplicates:
620 return emitError("Linking COMDATs named '" + ComdatName +
621 "': noduplicates has been violated!");
622 case Comdat::SelectionKind::ExactMatch:
623 case Comdat::SelectionKind::Largest:
624 case Comdat::SelectionKind::SameSize: {
625 const GlobalVariable *DstGV;
626 const GlobalVariable *SrcGV;
627 if (getComdatLeader(DstM, ComdatName, DstGV) ||
628 getComdatLeader(SrcM, ComdatName, SrcGV))
631 const DataLayout *DstDL = DstM->getDataLayout();
632 const DataLayout *SrcDL = SrcM->getDataLayout();
633 if (!DstDL || !SrcDL) {
635 "Linking COMDATs named '" + ComdatName +
636 "': can't do size dependent selection without DataLayout!");
639 DstDL->getTypeAllocSize(DstGV->getType()->getPointerElementType());
641 SrcDL->getTypeAllocSize(SrcGV->getType()->getPointerElementType());
642 if (Result == Comdat::SelectionKind::ExactMatch) {
643 if (SrcGV->getInitializer() != DstGV->getInitializer())
644 return emitError("Linking COMDATs named '" + ComdatName +
645 "': ExactMatch violated!");
647 } else if (Result == Comdat::SelectionKind::Largest) {
648 LinkFromSrc = SrcSize > DstSize;
649 } else if (Result == Comdat::SelectionKind::SameSize) {
650 if (SrcSize != DstSize)
651 return emitError("Linking COMDATs named '" + ComdatName +
652 "': SameSize violated!");
655 llvm_unreachable("unknown selection kind");
664 bool ModuleLinker::getComdatResult(const Comdat *SrcC,
665 Comdat::SelectionKind &Result,
667 Comdat::SelectionKind SSK = SrcC->getSelectionKind();
668 StringRef ComdatName = SrcC->getName();
669 Module::ComdatSymTabType &ComdatSymTab = DstM->getComdatSymbolTable();
670 Module::ComdatSymTabType::iterator DstCI = ComdatSymTab.find(ComdatName);
672 if (DstCI == ComdatSymTab.end()) {
673 // Use the comdat if it is only available in one of the modules.
679 const Comdat *DstC = &DstCI->second;
680 Comdat::SelectionKind DSK = DstC->getSelectionKind();
681 return computeResultingSelectionKind(ComdatName, SSK, DSK, Result,
685 bool ModuleLinker::shouldLinkFromSource(bool &LinkFromSrc,
686 const GlobalValue &Dest,
687 const GlobalValue &Src) {
688 bool SrcIsDeclaration = Src.isDeclarationForLinker();
689 bool DestIsDeclaration = Dest.isDeclarationForLinker();
691 // FIXME: Make datalayout mandatory and just use getDataLayout().
692 DataLayout DL(Dest.getParent());
694 if (SrcIsDeclaration) {
695 // If Src is external or if both Src & Dest are external.. Just link the
696 // external globals, we aren't adding anything.
697 if (Src.hasDLLImportStorageClass()) {
698 // If one of GVs is marked as DLLImport, result should be dllimport'ed.
699 LinkFromSrc = DestIsDeclaration;
702 // If the Dest is weak, use the source linkage.
703 LinkFromSrc = Dest.hasExternalWeakLinkage();
707 if (DestIsDeclaration) {
708 // If Dest is external but Src is not:
713 if (Src.hasCommonLinkage()) {
714 if (Dest.hasLinkOnceLinkage() || Dest.hasWeakLinkage()) {
719 if (!Dest.hasCommonLinkage()) {
724 uint64_t DestSize = DL.getTypeAllocSize(Dest.getType()->getElementType());
725 uint64_t SrcSize = DL.getTypeAllocSize(Src.getType()->getElementType());
726 LinkFromSrc = SrcSize > DestSize;
730 if (Src.isWeakForLinker()) {
731 assert(!Dest.hasExternalWeakLinkage());
732 assert(!Dest.hasAvailableExternallyLinkage());
734 if (Dest.hasLinkOnceLinkage() && Src.hasWeakLinkage()) {
743 if (Dest.isWeakForLinker()) {
744 assert(Src.hasExternalLinkage());
749 assert(!Src.hasExternalWeakLinkage());
750 assert(!Dest.hasExternalWeakLinkage());
751 assert(Dest.hasExternalLinkage() && Src.hasExternalLinkage() &&
752 "Unexpected linkage type!");
753 return emitError("Linking globals named '" + Src.getName() +
754 "': symbol multiply defined!");
757 /// This analyzes the two global values and determines what the result will look
758 /// like in the destination module. In particular, it computes the resultant
759 /// linkage type and visibility, computes whether the global in the source
760 /// should be copied over to the destination (replacing the existing one), and
761 /// computes whether this linkage is an error or not.
762 bool ModuleLinker::getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
763 GlobalValue::LinkageTypes <,
764 GlobalValue::VisibilityTypes &Vis,
766 assert(Dest && "Must have two globals being queried");
767 assert(!Src->hasLocalLinkage() &&
768 "If Src has internal linkage, Dest shouldn't be set!");
770 if (shouldLinkFromSource(LinkFromSrc, *Dest, *Src))
774 LT = Src->getLinkage();
776 LT = Dest->getLinkage();
778 // Compute the visibility. We follow the rules in the System V Application
780 assert(!GlobalValue::isLocalLinkage(LT) &&
781 "Symbols with local linkage should not be merged");
782 Vis = isLessConstraining(Src->getVisibility(), Dest->getVisibility()) ?
783 Dest->getVisibility() : Src->getVisibility();
787 /// Loop over all of the linked values to compute type mappings. For example,
788 /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
789 /// types 'Foo' but one got renamed when the module was loaded into the same
791 void ModuleLinker::computeTypeMapping() {
792 // Incorporate globals.
793 for (Module::global_iterator I = SrcM->global_begin(),
794 E = SrcM->global_end(); I != E; ++I) {
795 GlobalValue *DGV = getLinkedToGlobal(I);
798 if (!DGV->hasAppendingLinkage() || !I->hasAppendingLinkage()) {
799 TypeMap.addTypeMapping(DGV->getType(), I->getType());
803 // Unify the element type of appending arrays.
804 ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
805 ArrayType *SAT = cast<ArrayType>(I->getType()->getElementType());
806 TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
809 // Incorporate functions.
810 for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I) {
811 if (GlobalValue *DGV = getLinkedToGlobal(I))
812 TypeMap.addTypeMapping(DGV->getType(), I->getType());
815 // Incorporate types by name, scanning all the types in the source module.
816 // At this point, the destination module may have a type "%foo = { i32 }" for
817 // example. When the source module got loaded into the same LLVMContext, if
818 // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
819 TypeFinder SrcStructTypes;
820 SrcStructTypes.run(*SrcM, true);
821 SmallPtrSet<StructType*, 32> SrcStructTypesSet(SrcStructTypes.begin(),
822 SrcStructTypes.end());
824 for (unsigned i = 0, e = SrcStructTypes.size(); i != e; ++i) {
825 StructType *ST = SrcStructTypes[i];
826 if (!ST->hasName()) continue;
828 // Check to see if there is a dot in the name followed by a digit.
829 size_t DotPos = ST->getName().rfind('.');
830 if (DotPos == 0 || DotPos == StringRef::npos ||
831 ST->getName().back() == '.' ||
832 !isdigit(static_cast<unsigned char>(ST->getName()[DotPos+1])))
835 // Check to see if the destination module has a struct with the prefix name.
836 if (StructType *DST = DstM->getTypeByName(ST->getName().substr(0, DotPos)))
837 // Don't use it if this actually came from the source module. They're in
838 // the same LLVMContext after all. Also don't use it unless the type is
839 // actually used in the destination module. This can happen in situations
844 // %Z = type { %A } %B = type { %C.1 }
845 // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* }
846 // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] }
847 // %C = type { i8* } %B.3 = type { %C.1 }
849 // When we link Module B with Module A, the '%B' in Module B is
850 // used. However, that would then use '%C.1'. But when we process '%C.1',
851 // we prefer to take the '%C' version. So we are then left with both
852 // '%C.1' and '%C' being used for the same types. This leads to some
853 // variables using one type and some using the other.
854 if (!SrcStructTypesSet.count(DST) && TypeMap.DstStructTypesSet.count(DST))
855 TypeMap.addTypeMapping(DST, ST);
858 // Don't bother incorporating aliases, they aren't generally typed well.
860 // Now that we have discovered all of the type equivalences, get a body for
861 // any 'opaque' types in the dest module that are now resolved.
862 TypeMap.linkDefinedTypeBodies();
865 static void upgradeGlobalArray(GlobalVariable *GV) {
866 ArrayType *ATy = cast<ArrayType>(GV->getType()->getElementType());
867 StructType *OldTy = cast<StructType>(ATy->getElementType());
868 assert(OldTy->getNumElements() == 2 && "Expected to upgrade from 2 elements");
870 // Get the upgraded 3 element type.
871 PointerType *VoidPtrTy = Type::getInt8Ty(GV->getContext())->getPointerTo();
872 Type *Tys[3] = {OldTy->getElementType(0), OldTy->getElementType(1),
874 StructType *NewTy = StructType::get(GV->getContext(), Tys, false);
876 // Build new constants with a null third field filled in.
877 Constant *OldInitC = GV->getInitializer();
878 ConstantArray *OldInit = dyn_cast<ConstantArray>(OldInitC);
879 if (!OldInit && !isa<ConstantAggregateZero>(OldInitC))
880 // Invalid initializer; give up.
882 std::vector<Constant *> Initializers;
883 if (OldInit && OldInit->getNumOperands()) {
884 Value *Null = Constant::getNullValue(VoidPtrTy);
885 for (Use &U : OldInit->operands()) {
886 ConstantStruct *Init = cast<ConstantStruct>(U.get());
887 Initializers.push_back(ConstantStruct::get(
888 NewTy, Init->getOperand(0), Init->getOperand(1), Null, nullptr));
891 assert(Initializers.size() == ATy->getNumElements() &&
892 "Failed to copy all array elements");
894 // Replace the old GV with a new one.
895 ATy = ArrayType::get(NewTy, Initializers.size());
896 Constant *NewInit = ConstantArray::get(ATy, Initializers);
897 GlobalVariable *NewGV = new GlobalVariable(
898 *GV->getParent(), ATy, GV->isConstant(), GV->getLinkage(), NewInit, "",
899 GV, GV->getThreadLocalMode(), GV->getType()->getAddressSpace(),
900 GV->isExternallyInitialized());
901 NewGV->copyAttributesFrom(GV);
903 assert(GV->use_empty() && "program cannot use initializer list");
904 GV->eraseFromParent();
907 void ModuleLinker::upgradeMismatchedGlobalArray(StringRef Name) {
908 // Look for the global arrays.
909 auto *DstGV = dyn_cast_or_null<GlobalVariable>(DstM->getNamedValue(Name));
912 auto *SrcGV = dyn_cast_or_null<GlobalVariable>(SrcM->getNamedValue(Name));
916 // Check if the types already match.
917 auto *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
919 cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
923 // Grab the element types. We can only upgrade an array of a two-field
924 // struct. Only bother if the other one has three-fields.
925 auto *DstEltTy = cast<StructType>(DstTy->getElementType());
926 auto *SrcEltTy = cast<StructType>(SrcTy->getElementType());
927 if (DstEltTy->getNumElements() == 2 && SrcEltTy->getNumElements() == 3) {
928 upgradeGlobalArray(DstGV);
931 if (DstEltTy->getNumElements() == 3 && SrcEltTy->getNumElements() == 2)
932 upgradeGlobalArray(SrcGV);
934 // We can't upgrade any other differences.
937 void ModuleLinker::upgradeMismatchedGlobals() {
938 upgradeMismatchedGlobalArray("llvm.global_ctors");
939 upgradeMismatchedGlobalArray("llvm.global_dtors");
942 /// If there were any appending global variables, link them together now.
943 /// Return true on error.
944 bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
945 GlobalVariable *SrcGV) {
947 if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
948 return emitError("Linking globals named '" + SrcGV->getName() +
949 "': can only link appending global with another appending global!");
951 ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
953 cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
954 Type *EltTy = DstTy->getElementType();
956 // Check to see that they two arrays agree on type.
957 if (EltTy != SrcTy->getElementType())
958 return emitError("Appending variables with different element types!");
959 if (DstGV->isConstant() != SrcGV->isConstant())
960 return emitError("Appending variables linked with different const'ness!");
962 if (DstGV->getAlignment() != SrcGV->getAlignment())
964 "Appending variables with different alignment need to be linked!");
966 if (DstGV->getVisibility() != SrcGV->getVisibility())
968 "Appending variables with different visibility need to be linked!");
970 if (DstGV->hasUnnamedAddr() != SrcGV->hasUnnamedAddr())
972 "Appending variables with different unnamed_addr need to be linked!");
974 if (StringRef(DstGV->getSection()) != SrcGV->getSection())
976 "Appending variables with different section name need to be linked!");
978 uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements();
979 ArrayType *NewType = ArrayType::get(EltTy, NewSize);
981 // Create the new global variable.
983 new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(),
984 DstGV->getLinkage(), /*init*/nullptr, /*name*/"", DstGV,
985 DstGV->getThreadLocalMode(),
986 DstGV->getType()->getAddressSpace());
988 // Propagate alignment, visibility and section info.
989 copyGVAttributes(NG, DstGV);
991 AppendingVarInfo AVI;
993 AVI.DstInit = DstGV->getInitializer();
994 AVI.SrcInit = SrcGV->getInitializer();
995 AppendingVars.push_back(AVI);
997 // Replace any uses of the two global variables with uses of the new
999 ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
1001 DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
1002 DstGV->eraseFromParent();
1004 // Track the source variable so we don't try to link it.
1005 DoNotLinkFromSource.insert(SrcGV);
1010 /// Loop through the global variables in the src module and merge them into the
1012 bool ModuleLinker::linkGlobalProto(GlobalVariable *SGV) {
1013 GlobalValue *DGV = getLinkedToGlobal(SGV);
1014 llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
1015 bool HasUnnamedAddr = SGV->hasUnnamedAddr();
1016 unsigned Alignment = SGV->getAlignment();
1018 bool LinkFromSrc = false;
1019 Comdat *DC = nullptr;
1020 if (const Comdat *SC = SGV->getComdat()) {
1021 Comdat::SelectionKind SK;
1022 std::tie(SK, LinkFromSrc) = ComdatsChosen[SC];
1023 DC = DstM->getOrInsertComdat(SC->getName());
1024 DC->setSelectionKind(SK);
1029 // Concatenation of appending linkage variables is magic and handled later.
1030 if (DGV->hasAppendingLinkage() || SGV->hasAppendingLinkage())
1031 return linkAppendingVarProto(cast<GlobalVariable>(DGV), SGV);
1033 // Determine whether linkage of these two globals follows the source
1034 // module's definition or the destination module's definition.
1035 GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
1036 GlobalValue::VisibilityTypes NV;
1037 if (getLinkageResult(DGV, SGV, NewLinkage, NV, LinkFromSrc))
1040 HasUnnamedAddr = HasUnnamedAddr && DGV->hasUnnamedAddr();
1041 if (DGV->hasCommonLinkage() && SGV->hasCommonLinkage())
1042 Alignment = std::max(Alignment, DGV->getAlignment());
1043 else if (!LinkFromSrc)
1044 Alignment = DGV->getAlignment();
1046 // If we're not linking from the source, then keep the definition that we
1049 // Special case for const propagation.
1050 if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV)) {
1051 DGVar->setAlignment(Alignment);
1053 if (DGVar->isDeclaration() && SGV->isConstant() &&
1054 !DGVar->isConstant())
1055 DGVar->setConstant(true);
1058 // Set calculated linkage, visibility and unnamed_addr.
1059 DGV->setLinkage(NewLinkage);
1060 DGV->setVisibility(*NewVisibility);
1061 DGV->setUnnamedAddr(HasUnnamedAddr);
1066 // Make sure to remember this mapping.
1067 ValueMap[SGV] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGV->getType()));
1069 // Track the source global so that we don't attempt to copy it over when
1070 // processing global initializers.
1071 DoNotLinkFromSource.insert(SGV);
1077 // If the Comdat this variable was inside of wasn't selected, skip it.
1078 if (DC && !DGV && !LinkFromSrc) {
1079 DoNotLinkFromSource.insert(SGV);
1083 // No linking to be performed or linking from the source: simply create an
1084 // identical version of the symbol over in the dest module... the
1085 // initializer will be filled in later by LinkGlobalInits.
1086 GlobalVariable *NewDGV =
1087 new GlobalVariable(*DstM, TypeMap.get(SGV->getType()->getElementType()),
1088 SGV->isConstant(), SGV->getLinkage(), /*init*/nullptr,
1089 SGV->getName(), /*insertbefore*/nullptr,
1090 SGV->getThreadLocalMode(),
1091 SGV->getType()->getAddressSpace());
1092 // Propagate alignment, visibility and section info.
1093 copyGVAttributes(NewDGV, SGV);
1094 NewDGV->setAlignment(Alignment);
1096 NewDGV->setVisibility(*NewVisibility);
1097 NewDGV->setUnnamedAddr(HasUnnamedAddr);
1100 NewDGV->setComdat(DC);
1103 DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV, DGV->getType()));
1104 DGV->eraseFromParent();
1107 // Make sure to remember this mapping.
1108 ValueMap[SGV] = NewDGV;
1112 /// Link the function in the source module into the destination module if
1113 /// needed, setting up mapping information.
1114 bool ModuleLinker::linkFunctionProto(Function *SF) {
1115 GlobalValue *DGV = getLinkedToGlobal(SF);
1116 llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
1117 bool HasUnnamedAddr = SF->hasUnnamedAddr();
1119 bool LinkFromSrc = false;
1120 Comdat *DC = nullptr;
1121 if (const Comdat *SC = SF->getComdat()) {
1122 Comdat::SelectionKind SK;
1123 std::tie(SK, LinkFromSrc) = ComdatsChosen[SC];
1124 DC = DstM->getOrInsertComdat(SC->getName());
1125 DC->setSelectionKind(SK);
1130 GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
1131 GlobalValue::VisibilityTypes NV;
1132 if (getLinkageResult(DGV, SF, NewLinkage, NV, LinkFromSrc))
1135 HasUnnamedAddr = HasUnnamedAddr && DGV->hasUnnamedAddr();
1138 // Set calculated linkage
1139 DGV->setLinkage(NewLinkage);
1140 DGV->setVisibility(*NewVisibility);
1141 DGV->setUnnamedAddr(HasUnnamedAddr);
1146 // Make sure to remember this mapping.
1147 ValueMap[SF] = ConstantExpr::getBitCast(DGV, TypeMap.get(SF->getType()));
1149 // Track the function from the source module so we don't attempt to remap
1151 DoNotLinkFromSource.insert(SF);
1157 // If the function is to be lazily linked, don't create it just yet.
1158 // The ValueMaterializerTy will deal with creating it if it's used.
1159 if (!DGV && (SF->hasLocalLinkage() || SF->hasLinkOnceLinkage() ||
1160 SF->hasAvailableExternallyLinkage())) {
1161 DoNotLinkFromSource.insert(SF);
1165 // If the Comdat this function was inside of wasn't selected, skip it.
1166 if (DC && !DGV && !LinkFromSrc) {
1167 DoNotLinkFromSource.insert(SF);
1171 // If there is no linkage to be performed or we are linking from the source,
1173 Function *NewDF = Function::Create(TypeMap.get(SF->getFunctionType()),
1174 SF->getLinkage(), SF->getName(), DstM);
1175 copyGVAttributes(NewDF, SF);
1177 NewDF->setVisibility(*NewVisibility);
1178 NewDF->setUnnamedAddr(HasUnnamedAddr);
1181 NewDF->setComdat(DC);
1184 // Any uses of DF need to change to NewDF, with cast.
1185 DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DGV->getType()));
1186 DGV->eraseFromParent();
1189 ValueMap[SF] = NewDF;
1193 /// Set up prototypes for any aliases that come over from the source module.
1194 bool ModuleLinker::linkAliasProto(GlobalAlias *SGA) {
1195 GlobalValue *DGV = getLinkedToGlobal(SGA);
1196 llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
1197 bool HasUnnamedAddr = SGA->hasUnnamedAddr();
1199 bool LinkFromSrc = false;
1200 Comdat *DC = nullptr;
1201 if (const Comdat *SC = SGA->getComdat()) {
1202 Comdat::SelectionKind SK;
1203 std::tie(SK, LinkFromSrc) = ComdatsChosen[SC];
1204 DC = DstM->getOrInsertComdat(SC->getName());
1205 DC->setSelectionKind(SK);
1210 GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
1211 GlobalValue::VisibilityTypes NV;
1212 if (getLinkageResult(DGV, SGA, NewLinkage, NV, LinkFromSrc))
1215 HasUnnamedAddr = HasUnnamedAddr && DGV->hasUnnamedAddr();
1218 // Set calculated linkage.
1219 DGV->setLinkage(NewLinkage);
1220 DGV->setVisibility(*NewVisibility);
1221 DGV->setUnnamedAddr(HasUnnamedAddr);
1226 // Make sure to remember this mapping.
1227 ValueMap[SGA] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGA->getType()));
1229 // Track the alias from the source module so we don't attempt to remap it.
1230 DoNotLinkFromSource.insert(SGA);
1236 // If the Comdat this alias was inside of wasn't selected, skip it.
1237 if (DC && !DGV && !LinkFromSrc) {
1238 DoNotLinkFromSource.insert(SGA);
1242 // If there is no linkage to be performed or we're linking from the source,
1244 auto *PTy = cast<PointerType>(TypeMap.get(SGA->getType()));
1246 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
1247 SGA->getLinkage(), SGA->getName(), DstM);
1248 copyGVAttributes(NewDA, SGA);
1250 NewDA->setVisibility(*NewVisibility);
1251 NewDA->setUnnamedAddr(HasUnnamedAddr);
1254 // Any uses of DGV need to change to NewDA, with cast.
1255 DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDA, DGV->getType()));
1256 DGV->eraseFromParent();
1259 ValueMap[SGA] = NewDA;
1263 static void getArrayElements(Constant *C, SmallVectorImpl<Constant*> &Dest) {
1264 unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
1266 for (unsigned i = 0; i != NumElements; ++i)
1267 Dest.push_back(C->getAggregateElement(i));
1270 void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
1271 // Merge the initializer.
1272 SmallVector<Constant *, 16> DstElements;
1273 getArrayElements(AVI.DstInit, DstElements);
1275 SmallVector<Constant *, 16> SrcElements;
1276 getArrayElements(AVI.SrcInit, SrcElements);
1278 ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
1280 StringRef Name = AVI.NewGV->getName();
1281 bool IsNewStructor =
1282 (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") &&
1283 cast<StructType>(NewType->getElementType())->getNumElements() == 3;
1285 for (auto *V : SrcElements) {
1286 if (IsNewStructor) {
1287 Constant *Key = V->getAggregateElement(2);
1288 if (DoNotLinkFromSource.count(Key))
1291 DstElements.push_back(
1292 MapValue(V, ValueMap, RF_None, &TypeMap, &ValMaterializer));
1294 if (IsNewStructor) {
1295 NewType = ArrayType::get(NewType->getElementType(), DstElements.size());
1296 AVI.NewGV->mutateType(PointerType::get(NewType, 0));
1299 AVI.NewGV->setInitializer(ConstantArray::get(NewType, DstElements));
1302 /// Update the initializers in the Dest module now that all globals that may be
1303 /// referenced are in Dest.
1304 void ModuleLinker::linkGlobalInits() {
1305 // Loop over all of the globals in the src module, mapping them over as we go
1306 for (Module::const_global_iterator I = SrcM->global_begin(),
1307 E = SrcM->global_end(); I != E; ++I) {
1309 // Only process initialized GV's or ones not already in dest.
1310 if (!I->hasInitializer() || DoNotLinkFromSource.count(I)) continue;
1312 // Grab destination global variable.
1313 GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[I]);
1314 // Figure out what the initializer looks like in the dest module.
1315 DGV->setInitializer(MapValue(I->getInitializer(), ValueMap,
1316 RF_None, &TypeMap, &ValMaterializer));
1320 /// Copy the source function over into the dest function and fix up references
1321 /// to values. At this point we know that Dest is an external function, and
1322 /// that Src is not.
1323 void ModuleLinker::linkFunctionBody(Function *Dst, Function *Src) {
1324 assert(Src && Dst && Dst->isDeclaration() && !Src->isDeclaration());
1326 // Go through and convert function arguments over, remembering the mapping.
1327 Function::arg_iterator DI = Dst->arg_begin();
1328 for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
1329 I != E; ++I, ++DI) {
1330 DI->setName(I->getName()); // Copy the name over.
1332 // Add a mapping to our mapping.
1336 if (Mode == Linker::DestroySource) {
1337 // Splice the body of the source function into the dest function.
1338 Dst->getBasicBlockList().splice(Dst->end(), Src->getBasicBlockList());
1340 // At this point, all of the instructions and values of the function are now
1341 // copied over. The only problem is that they are still referencing values in
1342 // the Source function as operands. Loop through all of the operands of the
1343 // functions and patch them up to point to the local versions.
1344 for (Function::iterator BB = Dst->begin(), BE = Dst->end(); BB != BE; ++BB)
1345 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1346 RemapInstruction(I, ValueMap, RF_IgnoreMissingEntries,
1347 &TypeMap, &ValMaterializer);
1350 // Clone the body of the function into the dest function.
1351 SmallVector<ReturnInst*, 8> Returns; // Ignore returns.
1352 CloneFunctionInto(Dst, Src, ValueMap, false, Returns, "", nullptr,
1353 &TypeMap, &ValMaterializer);
1356 // There is no need to map the arguments anymore.
1357 for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
1363 /// Insert all of the aliases in Src into the Dest module.
1364 void ModuleLinker::linkAliasBodies() {
1365 for (Module::alias_iterator I = SrcM->alias_begin(), E = SrcM->alias_end();
1367 if (DoNotLinkFromSource.count(I))
1369 if (Constant *Aliasee = I->getAliasee()) {
1370 GlobalAlias *DA = cast<GlobalAlias>(ValueMap[I]);
1372 MapValue(Aliasee, ValueMap, RF_None, &TypeMap, &ValMaterializer);
1373 DA->setAliasee(Val);
1378 /// Insert all of the named MDNodes in Src into the Dest module.
1379 void ModuleLinker::linkNamedMDNodes() {
1380 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1381 for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
1382 E = SrcM->named_metadata_end(); I != E; ++I) {
1383 // Don't link module flags here. Do them separately.
1384 if (&*I == SrcModFlags) continue;
1385 NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
1386 // Add Src elements into Dest node.
1387 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1388 DestNMD->addOperand(MapValue(I->getOperand(i), ValueMap,
1389 RF_None, &TypeMap, &ValMaterializer));
1393 /// Merge the linker flags in Src into the Dest module.
1394 bool ModuleLinker::linkModuleFlagsMetadata() {
1395 // If the source module has no module flags, we are done.
1396 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1397 if (!SrcModFlags) return false;
1399 // If the destination module doesn't have module flags yet, then just copy
1400 // over the source module's flags.
1401 NamedMDNode *DstModFlags = DstM->getOrInsertModuleFlagsMetadata();
1402 if (DstModFlags->getNumOperands() == 0) {
1403 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
1404 DstModFlags->addOperand(SrcModFlags->getOperand(I));
1409 // First build a map of the existing module flags and requirements.
1410 DenseMap<MDString*, MDNode*> Flags;
1411 SmallSetVector<MDNode*, 16> Requirements;
1412 for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
1413 MDNode *Op = DstModFlags->getOperand(I);
1414 ConstantInt *Behavior = cast<ConstantInt>(Op->getOperand(0));
1415 MDString *ID = cast<MDString>(Op->getOperand(1));
1417 if (Behavior->getZExtValue() == Module::Require) {
1418 Requirements.insert(cast<MDNode>(Op->getOperand(2)));
1424 // Merge in the flags from the source module, and also collect its set of
1426 bool HasErr = false;
1427 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
1428 MDNode *SrcOp = SrcModFlags->getOperand(I);
1429 ConstantInt *SrcBehavior = cast<ConstantInt>(SrcOp->getOperand(0));
1430 MDString *ID = cast<MDString>(SrcOp->getOperand(1));
1431 MDNode *DstOp = Flags.lookup(ID);
1432 unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
1434 // If this is a requirement, add it and continue.
1435 if (SrcBehaviorValue == Module::Require) {
1436 // If the destination module does not already have this requirement, add
1438 if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
1439 DstModFlags->addOperand(SrcOp);
1444 // If there is no existing flag with this ID, just add it.
1447 DstModFlags->addOperand(SrcOp);
1451 // Otherwise, perform a merge.
1452 ConstantInt *DstBehavior = cast<ConstantInt>(DstOp->getOperand(0));
1453 unsigned DstBehaviorValue = DstBehavior->getZExtValue();
1455 // If either flag has override behavior, handle it first.
1456 if (DstBehaviorValue == Module::Override) {
1457 // Diagnose inconsistent flags which both have override behavior.
1458 if (SrcBehaviorValue == Module::Override &&
1459 SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1460 HasErr |= emitError("linking module flags '" + ID->getString() +
1461 "': IDs have conflicting override values");
1464 } else if (SrcBehaviorValue == Module::Override) {
1465 // Update the destination flag to that of the source.
1466 DstOp->replaceOperandWith(0, SrcBehavior);
1467 DstOp->replaceOperandWith(2, SrcOp->getOperand(2));
1471 // Diagnose inconsistent merge behavior types.
1472 if (SrcBehaviorValue != DstBehaviorValue) {
1473 HasErr |= emitError("linking module flags '" + ID->getString() +
1474 "': IDs have conflicting behaviors");
1478 // Perform the merge for standard behavior types.
1479 switch (SrcBehaviorValue) {
1480 case Module::Require:
1481 case Module::Override: llvm_unreachable("not possible");
1482 case Module::Error: {
1483 // Emit an error if the values differ.
1484 if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1485 HasErr |= emitError("linking module flags '" + ID->getString() +
1486 "': IDs have conflicting values");
1490 case Module::Warning: {
1491 // Emit a warning if the values differ.
1492 if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1493 emitWarning("linking module flags '" + ID->getString() +
1494 "': IDs have conflicting values");
1498 case Module::Append: {
1499 MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1500 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1501 unsigned NumOps = DstValue->getNumOperands() + SrcValue->getNumOperands();
1502 Value **VP, **Values = VP = new Value*[NumOps];
1503 for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i, ++VP)
1504 *VP = DstValue->getOperand(i);
1505 for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i, ++VP)
1506 *VP = SrcValue->getOperand(i);
1507 DstOp->replaceOperandWith(2, MDNode::get(DstM->getContext(),
1508 ArrayRef<Value*>(Values,
1513 case Module::AppendUnique: {
1514 SmallSetVector<Value*, 16> Elts;
1515 MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1516 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1517 for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i)
1518 Elts.insert(DstValue->getOperand(i));
1519 for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i)
1520 Elts.insert(SrcValue->getOperand(i));
1521 DstOp->replaceOperandWith(2, MDNode::get(DstM->getContext(),
1522 ArrayRef<Value*>(Elts.begin(),
1529 // Check all of the requirements.
1530 for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
1531 MDNode *Requirement = Requirements[I];
1532 MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1533 Value *ReqValue = Requirement->getOperand(1);
1535 MDNode *Op = Flags[Flag];
1536 if (!Op || Op->getOperand(2) != ReqValue) {
1537 HasErr |= emitError("linking module flags '" + Flag->getString() +
1538 "': does not have the required value");
1546 bool ModuleLinker::run() {
1547 assert(DstM && "Null destination module");
1548 assert(SrcM && "Null source module");
1550 // Inherit the target data from the source module if the destination module
1551 // doesn't have one already.
1552 if (!DstM->getDataLayout() && SrcM->getDataLayout())
1553 DstM->setDataLayout(SrcM->getDataLayout());
1555 // Copy the target triple from the source to dest if the dest's is empty.
1556 if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
1557 DstM->setTargetTriple(SrcM->getTargetTriple());
1559 if (SrcM->getDataLayout() && DstM->getDataLayout() &&
1560 *SrcM->getDataLayout() != *DstM->getDataLayout()) {
1561 emitWarning("Linking two modules of different data layouts: '" +
1562 SrcM->getModuleIdentifier() + "' is '" +
1563 SrcM->getDataLayoutStr() + "' whereas '" +
1564 DstM->getModuleIdentifier() + "' is '" +
1565 DstM->getDataLayoutStr() + "'\n");
1567 if (!SrcM->getTargetTriple().empty() &&
1568 DstM->getTargetTriple() != SrcM->getTargetTriple()) {
1569 emitWarning("Linking two modules of different target triples: " +
1570 SrcM->getModuleIdentifier() + "' is '" +
1571 SrcM->getTargetTriple() + "' whereas '" +
1572 DstM->getModuleIdentifier() + "' is '" +
1573 DstM->getTargetTriple() + "'\n");
1576 // Append the module inline asm string.
1577 if (!SrcM->getModuleInlineAsm().empty()) {
1578 if (DstM->getModuleInlineAsm().empty())
1579 DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm());
1581 DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+
1582 SrcM->getModuleInlineAsm());
1585 // Loop over all of the linked values to compute type mappings.
1586 computeTypeMapping();
1588 ComdatsChosen.clear();
1589 for (const StringMapEntry<llvm::Comdat> &SMEC : SrcM->getComdatSymbolTable()) {
1590 const Comdat &C = SMEC.getValue();
1591 if (ComdatsChosen.count(&C))
1593 Comdat::SelectionKind SK;
1595 if (getComdatResult(&C, SK, LinkFromSrc))
1597 ComdatsChosen[&C] = std::make_pair(SK, LinkFromSrc);
1600 // Upgrade mismatched global arrays.
1601 upgradeMismatchedGlobals();
1603 // Insert all of the globals in src into the DstM module... without linking
1604 // initializers (which could refer to functions not yet mapped over).
1605 for (Module::global_iterator I = SrcM->global_begin(),
1606 E = SrcM->global_end(); I != E; ++I)
1607 if (linkGlobalProto(I))
1610 // Link the functions together between the two modules, without doing function
1611 // bodies... this just adds external function prototypes to the DstM
1612 // function... We do this so that when we begin processing function bodies,
1613 // all of the global values that may be referenced are available in our
1615 for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
1616 if (linkFunctionProto(I))
1619 // If there were any aliases, link them now.
1620 for (Module::alias_iterator I = SrcM->alias_begin(),
1621 E = SrcM->alias_end(); I != E; ++I)
1622 if (linkAliasProto(I))
1625 for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
1626 linkAppendingVarInit(AppendingVars[i]);
1628 // Link in the function bodies that are defined in the source module into
1630 for (Module::iterator SF = SrcM->begin(), E = SrcM->end(); SF != E; ++SF) {
1631 // Skip if not linking from source.
1632 if (DoNotLinkFromSource.count(SF)) continue;
1634 Function *DF = cast<Function>(ValueMap[SF]);
1635 if (SF->hasPrefixData()) {
1636 // Link in the prefix data.
1637 DF->setPrefixData(MapValue(
1638 SF->getPrefixData(), ValueMap, RF_None, &TypeMap, &ValMaterializer));
1641 // Materialize if needed.
1642 if (SF->isMaterializable()) {
1643 if (std::error_code EC = SF->materialize())
1644 return emitError(EC.message());
1647 // Skip if no body (function is external).
1648 if (SF->isDeclaration())
1651 linkFunctionBody(DF, SF);
1652 SF->Dematerialize();
1655 // Resolve all uses of aliases with aliasees.
1658 // Remap all of the named MDNodes in Src into the DstM module. We do this
1659 // after linking GlobalValues so that MDNodes that reference GlobalValues
1660 // are properly remapped.
1663 // Merge the module flags into the DstM module.
1664 if (linkModuleFlagsMetadata())
1667 // Update the initializers in the DstM module now that all globals that may
1668 // be referenced are in DstM.
1671 // Process vector of lazily linked in functions.
1672 bool LinkedInAnyFunctions;
1674 LinkedInAnyFunctions = false;
1676 for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
1677 E = LazilyLinkFunctions.end(); I != E; ++I) {
1682 Function *DF = cast<Function>(ValueMap[SF]);
1683 if (SF->hasPrefixData()) {
1684 // Link in the prefix data.
1685 DF->setPrefixData(MapValue(SF->getPrefixData(),
1692 // Materialize if needed.
1693 if (SF->isMaterializable()) {
1694 if (std::error_code EC = SF->materialize())
1695 return emitError(EC.message());
1698 // Skip if no body (function is external).
1699 if (SF->isDeclaration())
1702 // Erase from vector *before* the function body is linked - linkFunctionBody could
1704 LazilyLinkFunctions.erase(I);
1706 // Link in function body.
1707 linkFunctionBody(DF, SF);
1708 SF->Dematerialize();
1710 // Set flag to indicate we may have more functions to lazily link in
1711 // since we linked in a function.
1712 LinkedInAnyFunctions = true;
1715 } while (LinkedInAnyFunctions);
1717 // Now that all of the types from the source are used, resolve any structs
1718 // copied over to the dest that didn't exist there.
1719 TypeMap.linkDefinedTypeBodies();
1724 Linker::Linker(Module *M) : Composite(M) {
1725 TypeFinder StructTypes;
1726 StructTypes.run(*M, true);
1727 IdentifiedStructTypes.insert(StructTypes.begin(), StructTypes.end());
1733 void Linker::deleteModule() {
1735 Composite = nullptr;
1738 bool Linker::linkInModule(Module *Src, unsigned Mode) {
1739 ModuleLinker TheLinker(Composite, IdentifiedStructTypes, Src, Mode);
1740 return TheLinker.run();
1743 //===----------------------------------------------------------------------===//
1744 // LinkModules entrypoint.
1745 //===----------------------------------------------------------------------===//
1747 /// This function links two modules together, with the resulting Dest module
1748 /// modified to be the composite of the two input modules. If an error occurs,
1749 /// true is returned and ErrorMsg (if not null) is set to indicate the problem.
1750 /// Upon failure, the Dest module could be in a modified state, and shouldn't be
1751 /// relied on to be consistent.
1752 bool Linker::LinkModules(Module *Dest, Module *Src, unsigned Mode) {
1754 return L.linkInModule(Src, Mode);
1757 //===----------------------------------------------------------------------===//
1759 //===----------------------------------------------------------------------===//
1761 static void bindingDiagnosticHandler(const llvm::DiagnosticInfo &DI,
1763 if (DI.getSeverity() != DS_Error)
1766 std::string *Message = (std::string *)Context;
1768 raw_string_ostream Stream(*Message);
1769 DiagnosticPrinterRawOStream DP(Stream);
1775 LLVMBool LLVMLinkModules(LLVMModuleRef Dest, LLVMModuleRef Src,
1776 LLVMLinkerMode Mode, char **OutMessages) {
1777 Module *D = unwrap(Dest);
1778 LLVMContext &Ctx = D->getContext();
1780 LLVMContext::DiagnosticHandlerTy OldHandler = Ctx.getDiagnosticHandler();
1781 void *OldDiagnosticContext = Ctx.getDiagnosticContext();
1782 std::string Message;
1783 Ctx.setDiagnosticHandler(bindingDiagnosticHandler, &Message);
1784 LLVMBool Result = Linker::LinkModules(D, unwrap(Src), Mode);
1785 Ctx.setDiagnosticHandler(OldHandler, OldDiagnosticContext);
1787 if (OutMessages && Result)
1788 *OutMessages = strdup(Message.c_str());