Polish atomic pointers
[oota-llvm.git] / lib / IR / Verifier.cpp
1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
12 //
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
15 //
16 //  * Both of a binary operator's parameters are of the same type
17 //  * Verify that the indices of mem access instructions match other operands
18 //  * Verify that arithmetic and other things are only performed on first-class
19 //    types.  Verify that shifts & logicals only happen on integrals f.e.
20 //  * All of the constants in a switch statement are of the correct type
21 //  * The code is in valid SSA form
22 //  * It should be illegal to put a label into any other type (like a structure)
23 //    or to return one. [except constant arrays!]
24 //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25 //  * PHI nodes must have an entry for each predecessor, with no extras.
26 //  * PHI nodes must be the first thing in a basic block, all grouped together
27 //  * PHI nodes must have at least one entry
28 //  * All basic blocks should only end with terminator insts, not contain them
29 //  * The entry node to a function must not have predecessors
30 //  * All Instructions must be embedded into a basic block
31 //  * Functions cannot take a void-typed parameter
32 //  * Verify that a function's argument list agrees with it's declared type.
33 //  * It is illegal to specify a name for a void value.
34 //  * It is illegal to have a internal global value with no initializer
35 //  * It is illegal to have a ret instruction that returns a value that does not
36 //    agree with the function return value type.
37 //  * Function call argument types match the function prototype
38 //  * A landing pad is defined by a landingpad instruction, and can be jumped to
39 //    only by the unwind edge of an invoke instruction.
40 //  * A landingpad instruction must be the first non-PHI instruction in the
41 //    block.
42 //  * Landingpad instructions must be in a function with a personality function.
43 //  * All other things that are tested by asserts spread about the code...
44 //
45 //===----------------------------------------------------------------------===//
46
47 #include "llvm/IR/Verifier.h"
48 #include "llvm/ADT/STLExtras.h"
49 #include "llvm/ADT/SetVector.h"
50 #include "llvm/ADT/SmallPtrSet.h"
51 #include "llvm/ADT/SmallVector.h"
52 #include "llvm/ADT/StringExtras.h"
53 #include "llvm/IR/CFG.h"
54 #include "llvm/IR/CallSite.h"
55 #include "llvm/IR/CallingConv.h"
56 #include "llvm/IR/ConstantRange.h"
57 #include "llvm/IR/Constants.h"
58 #include "llvm/IR/DataLayout.h"
59 #include "llvm/IR/DebugInfo.h"
60 #include "llvm/IR/DerivedTypes.h"
61 #include "llvm/IR/Dominators.h"
62 #include "llvm/IR/InlineAsm.h"
63 #include "llvm/IR/InstIterator.h"
64 #include "llvm/IR/InstVisitor.h"
65 #include "llvm/IR/IntrinsicInst.h"
66 #include "llvm/IR/LLVMContext.h"
67 #include "llvm/IR/Metadata.h"
68 #include "llvm/IR/Module.h"
69 #include "llvm/IR/PassManager.h"
70 #include "llvm/IR/Statepoint.h"
71 #include "llvm/Pass.h"
72 #include "llvm/Support/CommandLine.h"
73 #include "llvm/Support/Debug.h"
74 #include "llvm/Support/ErrorHandling.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include <algorithm>
77 #include <cstdarg>
78 using namespace llvm;
79
80 static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(true));
81
82 namespace {
83 struct VerifierSupport {
84   raw_ostream &OS;
85   const Module *M;
86
87   /// \brief Track the brokenness of the module while recursively visiting.
88   bool Broken;
89
90   explicit VerifierSupport(raw_ostream &OS)
91       : OS(OS), M(nullptr), Broken(false) {}
92
93 private:
94   template <class NodeTy> void Write(const ilist_iterator<NodeTy> &I) {
95     Write(&*I);
96   }
97
98   void Write(const Module *M) {
99     if (!M)
100       return;
101     OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
102   }
103
104   void Write(const Value *V) {
105     if (!V)
106       return;
107     if (isa<Instruction>(V)) {
108       OS << *V << '\n';
109     } else {
110       V->printAsOperand(OS, true, M);
111       OS << '\n';
112     }
113   }
114   void Write(ImmutableCallSite CS) {
115     Write(CS.getInstruction());
116   }
117
118   void Write(const Metadata *MD) {
119     if (!MD)
120       return;
121     MD->print(OS, M);
122     OS << '\n';
123   }
124
125   template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
126     Write(MD.get());
127   }
128
129   void Write(const NamedMDNode *NMD) {
130     if (!NMD)
131       return;
132     NMD->print(OS);
133     OS << '\n';
134   }
135
136   void Write(Type *T) {
137     if (!T)
138       return;
139     OS << ' ' << *T;
140   }
141
142   void Write(const Comdat *C) {
143     if (!C)
144       return;
145     OS << *C;
146   }
147
148   template <typename T1, typename... Ts>
149   void WriteTs(const T1 &V1, const Ts &... Vs) {
150     Write(V1);
151     WriteTs(Vs...);
152   }
153
154   template <typename... Ts> void WriteTs() {}
155
156 public:
157   /// \brief A check failed, so printout out the condition and the message.
158   ///
159   /// This provides a nice place to put a breakpoint if you want to see why
160   /// something is not correct.
161   void CheckFailed(const Twine &Message) {
162     OS << Message << '\n';
163     Broken = true;
164   }
165
166   /// \brief A check failed (with values to print).
167   ///
168   /// This calls the Message-only version so that the above is easier to set a
169   /// breakpoint on.
170   template <typename T1, typename... Ts>
171   void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
172     CheckFailed(Message);
173     WriteTs(V1, Vs...);
174   }
175 };
176
177 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
178   friend class InstVisitor<Verifier>;
179
180   LLVMContext *Context;
181   DominatorTree DT;
182
183   /// \brief When verifying a basic block, keep track of all of the
184   /// instructions we have seen so far.
185   ///
186   /// This allows us to do efficient dominance checks for the case when an
187   /// instruction has an operand that is an instruction in the same block.
188   SmallPtrSet<Instruction *, 16> InstsInThisBlock;
189
190   /// \brief Keep track of the metadata nodes that have been checked already.
191   SmallPtrSet<const Metadata *, 32> MDNodes;
192
193   /// \brief Track unresolved string-based type references.
194   SmallDenseMap<const MDString *, const MDNode *, 32> UnresolvedTypeRefs;
195
196   /// \brief The result type for a landingpad.
197   Type *LandingPadResultTy;
198
199   /// \brief Whether we've seen a call to @llvm.localescape in this function
200   /// already.
201   bool SawFrameEscape;
202
203   /// Stores the count of how many objects were passed to llvm.localescape for a
204   /// given function and the largest index passed to llvm.localrecover.
205   DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
206
207   /// Cache of constants visited in search of ConstantExprs.
208   SmallPtrSet<const Constant *, 32> ConstantExprVisited;
209
210   void checkAtomicMemAccessSize(const Module *M, Type *Ty,
211                                 const Instruction *I);
212 public:
213   explicit Verifier(raw_ostream &OS)
214       : VerifierSupport(OS), Context(nullptr), LandingPadResultTy(nullptr),
215         SawFrameEscape(false) {}
216
217   bool verify(const Function &F) {
218     M = F.getParent();
219     Context = &M->getContext();
220
221     // First ensure the function is well-enough formed to compute dominance
222     // information.
223     if (F.empty()) {
224       OS << "Function '" << F.getName()
225          << "' does not contain an entry block!\n";
226       return false;
227     }
228     for (Function::const_iterator I = F.begin(), E = F.end(); I != E; ++I) {
229       if (I->empty() || !I->back().isTerminator()) {
230         OS << "Basic Block in function '" << F.getName()
231            << "' does not have terminator!\n";
232         I->printAsOperand(OS, true);
233         OS << "\n";
234         return false;
235       }
236     }
237
238     // Now directly compute a dominance tree. We don't rely on the pass
239     // manager to provide this as it isolates us from a potentially
240     // out-of-date dominator tree and makes it significantly more complex to
241     // run this code outside of a pass manager.
242     // FIXME: It's really gross that we have to cast away constness here.
243     DT.recalculate(const_cast<Function &>(F));
244
245     Broken = false;
246     // FIXME: We strip const here because the inst visitor strips const.
247     visit(const_cast<Function &>(F));
248     InstsInThisBlock.clear();
249     LandingPadResultTy = nullptr;
250     SawFrameEscape = false;
251
252     return !Broken;
253   }
254
255   bool verify(const Module &M) {
256     this->M = &M;
257     Context = &M.getContext();
258     Broken = false;
259
260     // Scan through, checking all of the external function's linkage now...
261     for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
262       visitGlobalValue(*I);
263
264       // Check to make sure function prototypes are okay.
265       if (I->isDeclaration())
266         visitFunction(*I);
267     }
268
269     // Now that we've visited every function, verify that we never asked to
270     // recover a frame index that wasn't escaped.
271     verifyFrameRecoverIndices();
272
273     for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
274          I != E; ++I)
275       visitGlobalVariable(*I);
276
277     for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
278          I != E; ++I)
279       visitGlobalAlias(*I);
280
281     for (Module::const_named_metadata_iterator I = M.named_metadata_begin(),
282                                                E = M.named_metadata_end();
283          I != E; ++I)
284       visitNamedMDNode(*I);
285
286     for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
287       visitComdat(SMEC.getValue());
288
289     visitModuleFlags(M);
290     visitModuleIdents(M);
291
292     // Verify type referneces last.
293     verifyTypeRefs();
294
295     return !Broken;
296   }
297
298 private:
299   // Verification methods...
300   void visitGlobalValue(const GlobalValue &GV);
301   void visitGlobalVariable(const GlobalVariable &GV);
302   void visitGlobalAlias(const GlobalAlias &GA);
303   void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
304   void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
305                            const GlobalAlias &A, const Constant &C);
306   void visitNamedMDNode(const NamedMDNode &NMD);
307   void visitMDNode(const MDNode &MD);
308   void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
309   void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
310   void visitComdat(const Comdat &C);
311   void visitModuleIdents(const Module &M);
312   void visitModuleFlags(const Module &M);
313   void visitModuleFlag(const MDNode *Op,
314                        DenseMap<const MDString *, const MDNode *> &SeenIDs,
315                        SmallVectorImpl<const MDNode *> &Requirements);
316   void visitFunction(const Function &F);
317   void visitBasicBlock(BasicBlock &BB);
318   void visitRangeMetadata(Instruction& I, MDNode* Range, Type* Ty);
319   void visitDereferenceableMetadata(Instruction& I, MDNode* MD);
320
321   template <class Ty> bool isValidMetadataArray(const MDTuple &N);
322 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
323 #include "llvm/IR/Metadata.def"
324   void visitDIScope(const DIScope &N);
325   void visitDIVariable(const DIVariable &N);
326   void visitDILexicalBlockBase(const DILexicalBlockBase &N);
327   void visitDITemplateParameter(const DITemplateParameter &N);
328
329   void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
330
331   /// \brief Check for a valid string-based type reference.
332   ///
333   /// Checks if \c MD is a string-based type reference.  If it is, keeps track
334   /// of it (and its user, \c N) for error messages later.
335   bool isValidUUID(const MDNode &N, const Metadata *MD);
336
337   /// \brief Check for a valid type reference.
338   ///
339   /// Checks for subclasses of \a DIType, or \a isValidUUID().
340   bool isTypeRef(const MDNode &N, const Metadata *MD);
341
342   /// \brief Check for a valid scope reference.
343   ///
344   /// Checks for subclasses of \a DIScope, or \a isValidUUID().
345   bool isScopeRef(const MDNode &N, const Metadata *MD);
346
347   /// \brief Check for a valid debug info reference.
348   ///
349   /// Checks for subclasses of \a DINode, or \a isValidUUID().
350   bool isDIRef(const MDNode &N, const Metadata *MD);
351
352   // InstVisitor overrides...
353   using InstVisitor<Verifier>::visit;
354   void visit(Instruction &I);
355
356   void visitTruncInst(TruncInst &I);
357   void visitZExtInst(ZExtInst &I);
358   void visitSExtInst(SExtInst &I);
359   void visitFPTruncInst(FPTruncInst &I);
360   void visitFPExtInst(FPExtInst &I);
361   void visitFPToUIInst(FPToUIInst &I);
362   void visitFPToSIInst(FPToSIInst &I);
363   void visitUIToFPInst(UIToFPInst &I);
364   void visitSIToFPInst(SIToFPInst &I);
365   void visitIntToPtrInst(IntToPtrInst &I);
366   void visitPtrToIntInst(PtrToIntInst &I);
367   void visitBitCastInst(BitCastInst &I);
368   void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
369   void visitPHINode(PHINode &PN);
370   void visitBinaryOperator(BinaryOperator &B);
371   void visitICmpInst(ICmpInst &IC);
372   void visitFCmpInst(FCmpInst &FC);
373   void visitExtractElementInst(ExtractElementInst &EI);
374   void visitInsertElementInst(InsertElementInst &EI);
375   void visitShuffleVectorInst(ShuffleVectorInst &EI);
376   void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
377   void visitCallInst(CallInst &CI);
378   void visitInvokeInst(InvokeInst &II);
379   void visitGetElementPtrInst(GetElementPtrInst &GEP);
380   void visitLoadInst(LoadInst &LI);
381   void visitStoreInst(StoreInst &SI);
382   void verifyDominatesUse(Instruction &I, unsigned i);
383   void visitInstruction(Instruction &I);
384   void visitTerminatorInst(TerminatorInst &I);
385   void visitBranchInst(BranchInst &BI);
386   void visitReturnInst(ReturnInst &RI);
387   void visitSwitchInst(SwitchInst &SI);
388   void visitIndirectBrInst(IndirectBrInst &BI);
389   void visitSelectInst(SelectInst &SI);
390   void visitUserOp1(Instruction &I);
391   void visitUserOp2(Instruction &I) { visitUserOp1(I); }
392   void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
393   template <class DbgIntrinsicTy>
394   void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII);
395   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
396   void visitAtomicRMWInst(AtomicRMWInst &RMWI);
397   void visitFenceInst(FenceInst &FI);
398   void visitAllocaInst(AllocaInst &AI);
399   void visitExtractValueInst(ExtractValueInst &EVI);
400   void visitInsertValueInst(InsertValueInst &IVI);
401   void visitEHPadPredecessors(Instruction &I);
402   void visitLandingPadInst(LandingPadInst &LPI);
403   void visitCatchPadInst(CatchPadInst &CPI);
404   void visitCatchReturnInst(CatchReturnInst &CatchReturn);
405   void visitCleanupPadInst(CleanupPadInst &CPI);
406   void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
407   void visitCleanupReturnInst(CleanupReturnInst &CRI);
408
409   void VerifyCallSite(CallSite CS);
410   void verifyMustTailCall(CallInst &CI);
411   bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
412                         unsigned ArgNo, std::string &Suffix);
413   bool VerifyIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
414                            SmallVectorImpl<Type *> &ArgTys);
415   bool VerifyIntrinsicIsVarArg(bool isVarArg,
416                                ArrayRef<Intrinsic::IITDescriptor> &Infos);
417   bool VerifyAttributeCount(AttributeSet Attrs, unsigned Params);
418   void VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction,
419                             const Value *V);
420   void VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
421                             bool isReturnValue, const Value *V);
422   void VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
423                            const Value *V);
424   void VerifyFunctionMetadata(
425       const SmallVector<std::pair<unsigned, MDNode *>, 4> MDs);
426
427   void visitConstantExprsRecursively(const Constant *EntryC);
428   void visitConstantExpr(const ConstantExpr *CE);
429   void VerifyStatepoint(ImmutableCallSite CS);
430   void verifyFrameRecoverIndices();
431
432   // Module-level debug info verification...
433   void verifyTypeRefs();
434   template <class MapTy>
435   void verifyBitPieceExpression(const DbgInfoIntrinsic &I,
436                                 const MapTy &TypeRefs);
437   void visitUnresolvedTypeRef(const MDString *S, const MDNode *N);
438 };
439 } // End anonymous namespace
440
441 // Assert - We know that cond should be true, if not print an error message.
442 #define Assert(C, ...) \
443   do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (0)
444
445 void Verifier::visit(Instruction &I) {
446   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
447     Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
448   InstVisitor<Verifier>::visit(I);
449 }
450
451
452 void Verifier::visitGlobalValue(const GlobalValue &GV) {
453   Assert(!GV.isDeclaration() || GV.hasExternalLinkage() ||
454              GV.hasExternalWeakLinkage(),
455          "Global is external, but doesn't have external or weak linkage!", &GV);
456
457   Assert(GV.getAlignment() <= Value::MaximumAlignment,
458          "huge alignment values are unsupported", &GV);
459   Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
460          "Only global variables can have appending linkage!", &GV);
461
462   if (GV.hasAppendingLinkage()) {
463     const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
464     Assert(GVar && GVar->getValueType()->isArrayTy(),
465            "Only global arrays can have appending linkage!", GVar);
466   }
467
468   if (GV.isDeclarationForLinker())
469     Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
470 }
471
472 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
473   if (GV.hasInitializer()) {
474     Assert(GV.getInitializer()->getType() == GV.getType()->getElementType(),
475            "Global variable initializer type does not match global "
476            "variable type!",
477            &GV);
478
479     // If the global has common linkage, it must have a zero initializer and
480     // cannot be constant.
481     if (GV.hasCommonLinkage()) {
482       Assert(GV.getInitializer()->isNullValue(),
483              "'common' global must have a zero initializer!", &GV);
484       Assert(!GV.isConstant(), "'common' global may not be marked constant!",
485              &GV);
486       Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
487     }
488   } else {
489     Assert(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(),
490            "invalid linkage type for global declaration", &GV);
491   }
492
493   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
494                        GV.getName() == "llvm.global_dtors")) {
495     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
496            "invalid linkage for intrinsic global variable", &GV);
497     // Don't worry about emitting an error for it not being an array,
498     // visitGlobalValue will complain on appending non-array.
499     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
500       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
501       PointerType *FuncPtrTy =
502           FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
503       // FIXME: Reject the 2-field form in LLVM 4.0.
504       Assert(STy &&
505                  (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
506                  STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
507                  STy->getTypeAtIndex(1) == FuncPtrTy,
508              "wrong type for intrinsic global variable", &GV);
509       if (STy->getNumElements() == 3) {
510         Type *ETy = STy->getTypeAtIndex(2);
511         Assert(ETy->isPointerTy() &&
512                    cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
513                "wrong type for intrinsic global variable", &GV);
514       }
515     }
516   }
517
518   if (GV.hasName() && (GV.getName() == "llvm.used" ||
519                        GV.getName() == "llvm.compiler.used")) {
520     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
521            "invalid linkage for intrinsic global variable", &GV);
522     Type *GVType = GV.getValueType();
523     if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
524       PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
525       Assert(PTy, "wrong type for intrinsic global variable", &GV);
526       if (GV.hasInitializer()) {
527         const Constant *Init = GV.getInitializer();
528         const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
529         Assert(InitArray, "wrong initalizer for intrinsic global variable",
530                Init);
531         for (unsigned i = 0, e = InitArray->getNumOperands(); i != e; ++i) {
532           Value *V = Init->getOperand(i)->stripPointerCastsNoFollowAliases();
533           Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
534                      isa<GlobalAlias>(V),
535                  "invalid llvm.used member", V);
536           Assert(V->hasName(), "members of llvm.used must be named", V);
537         }
538       }
539     }
540   }
541
542   Assert(!GV.hasDLLImportStorageClass() ||
543              (GV.isDeclaration() && GV.hasExternalLinkage()) ||
544              GV.hasAvailableExternallyLinkage(),
545          "Global is marked as dllimport, but not external", &GV);
546
547   if (!GV.hasInitializer()) {
548     visitGlobalValue(GV);
549     return;
550   }
551
552   // Walk any aggregate initializers looking for bitcasts between address spaces
553   visitConstantExprsRecursively(GV.getInitializer());
554
555   visitGlobalValue(GV);
556 }
557
558 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
559   SmallPtrSet<const GlobalAlias*, 4> Visited;
560   Visited.insert(&GA);
561   visitAliaseeSubExpr(Visited, GA, C);
562 }
563
564 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
565                                    const GlobalAlias &GA, const Constant &C) {
566   if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
567     Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
568            &GA);
569
570     if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
571       Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
572
573       Assert(!GA2->mayBeOverridden(), "Alias cannot point to a weak alias",
574              &GA);
575     } else {
576       // Only continue verifying subexpressions of GlobalAliases.
577       // Do not recurse into global initializers.
578       return;
579     }
580   }
581
582   if (const auto *CE = dyn_cast<ConstantExpr>(&C))
583     visitConstantExprsRecursively(CE);
584
585   for (const Use &U : C.operands()) {
586     Value *V = &*U;
587     if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
588       visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
589     else if (const auto *C2 = dyn_cast<Constant>(V))
590       visitAliaseeSubExpr(Visited, GA, *C2);
591   }
592 }
593
594 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
595   Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
596          "Alias should have private, internal, linkonce, weak, linkonce_odr, "
597          "weak_odr, or external linkage!",
598          &GA);
599   const Constant *Aliasee = GA.getAliasee();
600   Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
601   Assert(GA.getType() == Aliasee->getType(),
602          "Alias and aliasee types should match!", &GA);
603
604   Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
605          "Aliasee should be either GlobalValue or ConstantExpr", &GA);
606
607   visitAliaseeSubExpr(GA, *Aliasee);
608
609   visitGlobalValue(GA);
610 }
611
612 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
613   for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
614     MDNode *MD = NMD.getOperand(i);
615
616     if (NMD.getName() == "llvm.dbg.cu") {
617       Assert(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
618     }
619
620     if (!MD)
621       continue;
622
623     visitMDNode(*MD);
624   }
625 }
626
627 void Verifier::visitMDNode(const MDNode &MD) {
628   // Only visit each node once.  Metadata can be mutually recursive, so this
629   // avoids infinite recursion here, as well as being an optimization.
630   if (!MDNodes.insert(&MD).second)
631     return;
632
633   switch (MD.getMetadataID()) {
634   default:
635     llvm_unreachable("Invalid MDNode subclass");
636   case Metadata::MDTupleKind:
637     break;
638 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
639   case Metadata::CLASS##Kind:                                                  \
640     visit##CLASS(cast<CLASS>(MD));                                             \
641     break;
642 #include "llvm/IR/Metadata.def"
643   }
644
645   for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
646     Metadata *Op = MD.getOperand(i);
647     if (!Op)
648       continue;
649     Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
650            &MD, Op);
651     if (auto *N = dyn_cast<MDNode>(Op)) {
652       visitMDNode(*N);
653       continue;
654     }
655     if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
656       visitValueAsMetadata(*V, nullptr);
657       continue;
658     }
659   }
660
661   // Check these last, so we diagnose problems in operands first.
662   Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
663   Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
664 }
665
666 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
667   Assert(MD.getValue(), "Expected valid value", &MD);
668   Assert(!MD.getValue()->getType()->isMetadataTy(),
669          "Unexpected metadata round-trip through values", &MD, MD.getValue());
670
671   auto *L = dyn_cast<LocalAsMetadata>(&MD);
672   if (!L)
673     return;
674
675   Assert(F, "function-local metadata used outside a function", L);
676
677   // If this was an instruction, bb, or argument, verify that it is in the
678   // function that we expect.
679   Function *ActualF = nullptr;
680   if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
681     Assert(I->getParent(), "function-local metadata not in basic block", L, I);
682     ActualF = I->getParent()->getParent();
683   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
684     ActualF = BB->getParent();
685   else if (Argument *A = dyn_cast<Argument>(L->getValue()))
686     ActualF = A->getParent();
687   assert(ActualF && "Unimplemented function local metadata case!");
688
689   Assert(ActualF == F, "function-local metadata used in wrong function", L);
690 }
691
692 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
693   Metadata *MD = MDV.getMetadata();
694   if (auto *N = dyn_cast<MDNode>(MD)) {
695     visitMDNode(*N);
696     return;
697   }
698
699   // Only visit each node once.  Metadata can be mutually recursive, so this
700   // avoids infinite recursion here, as well as being an optimization.
701   if (!MDNodes.insert(MD).second)
702     return;
703
704   if (auto *V = dyn_cast<ValueAsMetadata>(MD))
705     visitValueAsMetadata(*V, F);
706 }
707
708 bool Verifier::isValidUUID(const MDNode &N, const Metadata *MD) {
709   auto *S = dyn_cast<MDString>(MD);
710   if (!S)
711     return false;
712   if (S->getString().empty())
713     return false;
714
715   // Keep track of names of types referenced via UUID so we can check that they
716   // actually exist.
717   UnresolvedTypeRefs.insert(std::make_pair(S, &N));
718   return true;
719 }
720
721 /// \brief Check if a value can be a reference to a type.
722 bool Verifier::isTypeRef(const MDNode &N, const Metadata *MD) {
723   return !MD || isValidUUID(N, MD) || isa<DIType>(MD);
724 }
725
726 /// \brief Check if a value can be a ScopeRef.
727 bool Verifier::isScopeRef(const MDNode &N, const Metadata *MD) {
728   return !MD || isValidUUID(N, MD) || isa<DIScope>(MD);
729 }
730
731 /// \brief Check if a value can be a debug info ref.
732 bool Verifier::isDIRef(const MDNode &N, const Metadata *MD) {
733   return !MD || isValidUUID(N, MD) || isa<DINode>(MD);
734 }
735
736 template <class Ty>
737 bool isValidMetadataArrayImpl(const MDTuple &N, bool AllowNull) {
738   for (Metadata *MD : N.operands()) {
739     if (MD) {
740       if (!isa<Ty>(MD))
741         return false;
742     } else {
743       if (!AllowNull)
744         return false;
745     }
746   }
747   return true;
748 }
749
750 template <class Ty>
751 bool isValidMetadataArray(const MDTuple &N) {
752   return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ false);
753 }
754
755 template <class Ty>
756 bool isValidMetadataNullArray(const MDTuple &N) {
757   return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ true);
758 }
759
760 void Verifier::visitDILocation(const DILocation &N) {
761   Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
762          "location requires a valid scope", &N, N.getRawScope());
763   if (auto *IA = N.getRawInlinedAt())
764     Assert(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
765 }
766
767 void Verifier::visitGenericDINode(const GenericDINode &N) {
768   Assert(N.getTag(), "invalid tag", &N);
769 }
770
771 void Verifier::visitDIScope(const DIScope &N) {
772   if (auto *F = N.getRawFile())
773     Assert(isa<DIFile>(F), "invalid file", &N, F);
774 }
775
776 void Verifier::visitDISubrange(const DISubrange &N) {
777   Assert(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
778   Assert(N.getCount() >= -1, "invalid subrange count", &N);
779 }
780
781 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
782   Assert(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
783 }
784
785 void Verifier::visitDIBasicType(const DIBasicType &N) {
786   Assert(N.getTag() == dwarf::DW_TAG_base_type ||
787              N.getTag() == dwarf::DW_TAG_unspecified_type,
788          "invalid tag", &N);
789 }
790
791 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
792   // Common scope checks.
793   visitDIScope(N);
794
795   Assert(N.getTag() == dwarf::DW_TAG_typedef ||
796              N.getTag() == dwarf::DW_TAG_pointer_type ||
797              N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
798              N.getTag() == dwarf::DW_TAG_reference_type ||
799              N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
800              N.getTag() == dwarf::DW_TAG_const_type ||
801              N.getTag() == dwarf::DW_TAG_volatile_type ||
802              N.getTag() == dwarf::DW_TAG_restrict_type ||
803              N.getTag() == dwarf::DW_TAG_member ||
804              N.getTag() == dwarf::DW_TAG_inheritance ||
805              N.getTag() == dwarf::DW_TAG_friend,
806          "invalid tag", &N);
807   if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
808     Assert(isTypeRef(N, N.getExtraData()), "invalid pointer to member type", &N,
809            N.getExtraData());
810   }
811
812   Assert(isScopeRef(N, N.getScope()), "invalid scope", &N, N.getScope());
813   Assert(isTypeRef(N, N.getBaseType()), "invalid base type", &N,
814          N.getBaseType());
815 }
816
817 static bool hasConflictingReferenceFlags(unsigned Flags) {
818   return (Flags & DINode::FlagLValueReference) &&
819          (Flags & DINode::FlagRValueReference);
820 }
821
822 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
823   auto *Params = dyn_cast<MDTuple>(&RawParams);
824   Assert(Params, "invalid template params", &N, &RawParams);
825   for (Metadata *Op : Params->operands()) {
826     Assert(Op && isa<DITemplateParameter>(Op), "invalid template parameter", &N,
827            Params, Op);
828   }
829 }
830
831 void Verifier::visitDICompositeType(const DICompositeType &N) {
832   // Common scope checks.
833   visitDIScope(N);
834
835   Assert(N.getTag() == dwarf::DW_TAG_array_type ||
836              N.getTag() == dwarf::DW_TAG_structure_type ||
837              N.getTag() == dwarf::DW_TAG_union_type ||
838              N.getTag() == dwarf::DW_TAG_enumeration_type ||
839              N.getTag() == dwarf::DW_TAG_class_type,
840          "invalid tag", &N);
841
842   Assert(isScopeRef(N, N.getScope()), "invalid scope", &N, N.getScope());
843   Assert(isTypeRef(N, N.getBaseType()), "invalid base type", &N,
844          N.getBaseType());
845
846   Assert(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
847          "invalid composite elements", &N, N.getRawElements());
848   Assert(isTypeRef(N, N.getRawVTableHolder()), "invalid vtable holder", &N,
849          N.getRawVTableHolder());
850   Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
851          &N);
852   if (auto *Params = N.getRawTemplateParams())
853     visitTemplateParams(N, *Params);
854
855   if (N.getTag() == dwarf::DW_TAG_class_type ||
856       N.getTag() == dwarf::DW_TAG_union_type) {
857     Assert(N.getFile() && !N.getFile()->getFilename().empty(),
858            "class/union requires a filename", &N, N.getFile());
859   }
860 }
861
862 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
863   Assert(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
864   if (auto *Types = N.getRawTypeArray()) {
865     Assert(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
866     for (Metadata *Ty : N.getTypeArray()->operands()) {
867       Assert(isTypeRef(N, Ty), "invalid subroutine type ref", &N, Types, Ty);
868     }
869   }
870   Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
871          &N);
872 }
873
874 void Verifier::visitDIFile(const DIFile &N) {
875   Assert(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
876 }
877
878 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
879   Assert(N.isDistinct(), "compile units must be distinct", &N);
880   Assert(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
881
882   // Don't bother verifying the compilation directory or producer string
883   // as those could be empty.
884   Assert(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
885          N.getRawFile());
886   Assert(!N.getFile()->getFilename().empty(), "invalid filename", &N,
887          N.getFile());
888
889   if (auto *Array = N.getRawEnumTypes()) {
890     Assert(isa<MDTuple>(Array), "invalid enum list", &N, Array);
891     for (Metadata *Op : N.getEnumTypes()->operands()) {
892       auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
893       Assert(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
894              "invalid enum type", &N, N.getEnumTypes(), Op);
895     }
896   }
897   if (auto *Array = N.getRawRetainedTypes()) {
898     Assert(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
899     for (Metadata *Op : N.getRetainedTypes()->operands()) {
900       Assert(Op && isa<DIType>(Op), "invalid retained type", &N, Op);
901     }
902   }
903   if (auto *Array = N.getRawSubprograms()) {
904     Assert(isa<MDTuple>(Array), "invalid subprogram list", &N, Array);
905     for (Metadata *Op : N.getSubprograms()->operands()) {
906       Assert(Op && isa<DISubprogram>(Op), "invalid subprogram ref", &N, Op);
907     }
908   }
909   if (auto *Array = N.getRawGlobalVariables()) {
910     Assert(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
911     for (Metadata *Op : N.getGlobalVariables()->operands()) {
912       Assert(Op && isa<DIGlobalVariable>(Op), "invalid global variable ref", &N,
913              Op);
914     }
915   }
916   if (auto *Array = N.getRawImportedEntities()) {
917     Assert(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
918     for (Metadata *Op : N.getImportedEntities()->operands()) {
919       Assert(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", &N,
920              Op);
921     }
922   }
923   if (auto *Array = N.getRawMacros()) {
924     Assert(isa<MDTuple>(Array), "invalid macro list", &N, Array);
925     for (Metadata *Op : N.getMacros()->operands()) {
926       Assert(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
927     }
928   }
929 }
930
931 void Verifier::visitDISubprogram(const DISubprogram &N) {
932   Assert(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
933   Assert(isScopeRef(N, N.getRawScope()), "invalid scope", &N, N.getRawScope());
934   if (auto *T = N.getRawType())
935     Assert(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
936   Assert(isTypeRef(N, N.getRawContainingType()), "invalid containing type", &N,
937          N.getRawContainingType());
938   if (auto *Params = N.getRawTemplateParams())
939     visitTemplateParams(N, *Params);
940   if (auto *S = N.getRawDeclaration()) {
941     Assert(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
942            "invalid subprogram declaration", &N, S);
943   }
944   if (auto *RawVars = N.getRawVariables()) {
945     auto *Vars = dyn_cast<MDTuple>(RawVars);
946     Assert(Vars, "invalid variable list", &N, RawVars);
947     for (Metadata *Op : Vars->operands()) {
948       Assert(Op && isa<DILocalVariable>(Op), "invalid local variable", &N, Vars,
949              Op);
950     }
951   }
952   Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
953          &N);
954
955   if (N.isDefinition())
956     Assert(N.isDistinct(), "subprogram definitions must be distinct", &N);
957 }
958
959 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
960   Assert(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
961   Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
962          "invalid local scope", &N, N.getRawScope());
963 }
964
965 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
966   visitDILexicalBlockBase(N);
967
968   Assert(N.getLine() || !N.getColumn(),
969          "cannot have column info without line info", &N);
970 }
971
972 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
973   visitDILexicalBlockBase(N);
974 }
975
976 void Verifier::visitDINamespace(const DINamespace &N) {
977   Assert(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
978   if (auto *S = N.getRawScope())
979     Assert(isa<DIScope>(S), "invalid scope ref", &N, S);
980 }
981
982 void Verifier::visitDIMacro(const DIMacro &N) {
983   Assert(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
984          N.getMacinfoType() == dwarf::DW_MACINFO_undef,
985          "invalid macinfo type", &N);
986   Assert(!N.getName().empty(), "anonymous macro", &N);
987 }
988
989 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
990   Assert(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
991          "invalid macinfo type", &N);
992   if (auto *F = N.getRawFile())
993     Assert(isa<DIFile>(F), "invalid file", &N, F);
994
995   if (auto *Array = N.getRawElements()) {
996     Assert(isa<MDTuple>(Array), "invalid macro list", &N, Array);
997     for (Metadata *Op : N.getElements()->operands()) {
998       Assert(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
999     }
1000   }
1001 }
1002
1003 void Verifier::visitDIModule(const DIModule &N) {
1004   Assert(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1005   Assert(!N.getName().empty(), "anonymous module", &N);
1006 }
1007
1008 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1009   Assert(isTypeRef(N, N.getType()), "invalid type ref", &N, N.getType());
1010 }
1011
1012 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1013   visitDITemplateParameter(N);
1014
1015   Assert(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1016          &N);
1017 }
1018
1019 void Verifier::visitDITemplateValueParameter(
1020     const DITemplateValueParameter &N) {
1021   visitDITemplateParameter(N);
1022
1023   Assert(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1024              N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1025              N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1026          "invalid tag", &N);
1027 }
1028
1029 void Verifier::visitDIVariable(const DIVariable &N) {
1030   if (auto *S = N.getRawScope())
1031     Assert(isa<DIScope>(S), "invalid scope", &N, S);
1032   Assert(isTypeRef(N, N.getRawType()), "invalid type ref", &N, N.getRawType());
1033   if (auto *F = N.getRawFile())
1034     Assert(isa<DIFile>(F), "invalid file", &N, F);
1035 }
1036
1037 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1038   // Checks common to all variables.
1039   visitDIVariable(N);
1040
1041   Assert(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1042   Assert(!N.getName().empty(), "missing global variable name", &N);
1043   if (auto *V = N.getRawVariable()) {
1044     Assert(isa<ConstantAsMetadata>(V) &&
1045                !isa<Function>(cast<ConstantAsMetadata>(V)->getValue()),
1046            "invalid global varaible ref", &N, V);
1047   }
1048   if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1049     Assert(isa<DIDerivedType>(Member), "invalid static data member declaration",
1050            &N, Member);
1051   }
1052 }
1053
1054 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1055   // Checks common to all variables.
1056   visitDIVariable(N);
1057
1058   Assert(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1059   Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1060          "local variable requires a valid scope", &N, N.getRawScope());
1061 }
1062
1063 void Verifier::visitDIExpression(const DIExpression &N) {
1064   Assert(N.isValid(), "invalid expression", &N);
1065 }
1066
1067 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1068   Assert(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1069   if (auto *T = N.getRawType())
1070     Assert(isTypeRef(N, T), "invalid type ref", &N, T);
1071   if (auto *F = N.getRawFile())
1072     Assert(isa<DIFile>(F), "invalid file", &N, F);
1073 }
1074
1075 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1076   Assert(N.getTag() == dwarf::DW_TAG_imported_module ||
1077              N.getTag() == dwarf::DW_TAG_imported_declaration,
1078          "invalid tag", &N);
1079   if (auto *S = N.getRawScope())
1080     Assert(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1081   Assert(isDIRef(N, N.getEntity()), "invalid imported entity", &N,
1082          N.getEntity());
1083 }
1084
1085 void Verifier::visitComdat(const Comdat &C) {
1086   // The Module is invalid if the GlobalValue has private linkage.  Entities
1087   // with private linkage don't have entries in the symbol table.
1088   if (const GlobalValue *GV = M->getNamedValue(C.getName()))
1089     Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1090            GV);
1091 }
1092
1093 void Verifier::visitModuleIdents(const Module &M) {
1094   const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1095   if (!Idents) 
1096     return;
1097   
1098   // llvm.ident takes a list of metadata entry. Each entry has only one string.
1099   // Scan each llvm.ident entry and make sure that this requirement is met.
1100   for (unsigned i = 0, e = Idents->getNumOperands(); i != e; ++i) {
1101     const MDNode *N = Idents->getOperand(i);
1102     Assert(N->getNumOperands() == 1,
1103            "incorrect number of operands in llvm.ident metadata", N);
1104     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1105            ("invalid value for llvm.ident metadata entry operand"
1106             "(the operand should be a string)"),
1107            N->getOperand(0));
1108   } 
1109 }
1110
1111 void Verifier::visitModuleFlags(const Module &M) {
1112   const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1113   if (!Flags) return;
1114
1115   // Scan each flag, and track the flags and requirements.
1116   DenseMap<const MDString*, const MDNode*> SeenIDs;
1117   SmallVector<const MDNode*, 16> Requirements;
1118   for (unsigned I = 0, E = Flags->getNumOperands(); I != E; ++I) {
1119     visitModuleFlag(Flags->getOperand(I), SeenIDs, Requirements);
1120   }
1121
1122   // Validate that the requirements in the module are valid.
1123   for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
1124     const MDNode *Requirement = Requirements[I];
1125     const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1126     const Metadata *ReqValue = Requirement->getOperand(1);
1127
1128     const MDNode *Op = SeenIDs.lookup(Flag);
1129     if (!Op) {
1130       CheckFailed("invalid requirement on flag, flag is not present in module",
1131                   Flag);
1132       continue;
1133     }
1134
1135     if (Op->getOperand(2) != ReqValue) {
1136       CheckFailed(("invalid requirement on flag, "
1137                    "flag does not have the required value"),
1138                   Flag);
1139       continue;
1140     }
1141   }
1142 }
1143
1144 void
1145 Verifier::visitModuleFlag(const MDNode *Op,
1146                           DenseMap<const MDString *, const MDNode *> &SeenIDs,
1147                           SmallVectorImpl<const MDNode *> &Requirements) {
1148   // Each module flag should have three arguments, the merge behavior (a
1149   // constant int), the flag ID (an MDString), and the value.
1150   Assert(Op->getNumOperands() == 3,
1151          "incorrect number of operands in module flag", Op);
1152   Module::ModFlagBehavior MFB;
1153   if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1154     Assert(
1155         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1156         "invalid behavior operand in module flag (expected constant integer)",
1157         Op->getOperand(0));
1158     Assert(false,
1159            "invalid behavior operand in module flag (unexpected constant)",
1160            Op->getOperand(0));
1161   }
1162   MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1163   Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1164          Op->getOperand(1));
1165
1166   // Sanity check the values for behaviors with additional requirements.
1167   switch (MFB) {
1168   case Module::Error:
1169   case Module::Warning:
1170   case Module::Override:
1171     // These behavior types accept any value.
1172     break;
1173
1174   case Module::Require: {
1175     // The value should itself be an MDNode with two operands, a flag ID (an
1176     // MDString), and a value.
1177     MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1178     Assert(Value && Value->getNumOperands() == 2,
1179            "invalid value for 'require' module flag (expected metadata pair)",
1180            Op->getOperand(2));
1181     Assert(isa<MDString>(Value->getOperand(0)),
1182            ("invalid value for 'require' module flag "
1183             "(first value operand should be a string)"),
1184            Value->getOperand(0));
1185
1186     // Append it to the list of requirements, to check once all module flags are
1187     // scanned.
1188     Requirements.push_back(Value);
1189     break;
1190   }
1191
1192   case Module::Append:
1193   case Module::AppendUnique: {
1194     // These behavior types require the operand be an MDNode.
1195     Assert(isa<MDNode>(Op->getOperand(2)),
1196            "invalid value for 'append'-type module flag "
1197            "(expected a metadata node)",
1198            Op->getOperand(2));
1199     break;
1200   }
1201   }
1202
1203   // Unless this is a "requires" flag, check the ID is unique.
1204   if (MFB != Module::Require) {
1205     bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1206     Assert(Inserted,
1207            "module flag identifiers must be unique (or of 'require' type)", ID);
1208   }
1209 }
1210
1211 void Verifier::VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
1212                                     bool isFunction, const Value *V) {
1213   unsigned Slot = ~0U;
1214   for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I)
1215     if (Attrs.getSlotIndex(I) == Idx) {
1216       Slot = I;
1217       break;
1218     }
1219
1220   assert(Slot != ~0U && "Attribute set inconsistency!");
1221
1222   for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot);
1223          I != E; ++I) {
1224     if (I->isStringAttribute())
1225       continue;
1226
1227     if (I->getKindAsEnum() == Attribute::NoReturn ||
1228         I->getKindAsEnum() == Attribute::NoUnwind ||
1229         I->getKindAsEnum() == Attribute::NoInline ||
1230         I->getKindAsEnum() == Attribute::AlwaysInline ||
1231         I->getKindAsEnum() == Attribute::OptimizeForSize ||
1232         I->getKindAsEnum() == Attribute::StackProtect ||
1233         I->getKindAsEnum() == Attribute::StackProtectReq ||
1234         I->getKindAsEnum() == Attribute::StackProtectStrong ||
1235         I->getKindAsEnum() == Attribute::SafeStack ||
1236         I->getKindAsEnum() == Attribute::NoRedZone ||
1237         I->getKindAsEnum() == Attribute::NoImplicitFloat ||
1238         I->getKindAsEnum() == Attribute::Naked ||
1239         I->getKindAsEnum() == Attribute::InlineHint ||
1240         I->getKindAsEnum() == Attribute::StackAlignment ||
1241         I->getKindAsEnum() == Attribute::UWTable ||
1242         I->getKindAsEnum() == Attribute::NonLazyBind ||
1243         I->getKindAsEnum() == Attribute::ReturnsTwice ||
1244         I->getKindAsEnum() == Attribute::SanitizeAddress ||
1245         I->getKindAsEnum() == Attribute::SanitizeThread ||
1246         I->getKindAsEnum() == Attribute::SanitizeMemory ||
1247         I->getKindAsEnum() == Attribute::MinSize ||
1248         I->getKindAsEnum() == Attribute::NoDuplicate ||
1249         I->getKindAsEnum() == Attribute::Builtin ||
1250         I->getKindAsEnum() == Attribute::NoBuiltin ||
1251         I->getKindAsEnum() == Attribute::Cold ||
1252         I->getKindAsEnum() == Attribute::OptimizeNone ||
1253         I->getKindAsEnum() == Attribute::JumpTable ||
1254         I->getKindAsEnum() == Attribute::Convergent ||
1255         I->getKindAsEnum() == Attribute::ArgMemOnly ||
1256         I->getKindAsEnum() == Attribute::NoRecurse ||
1257         I->getKindAsEnum() == Attribute::InaccessibleMemOnly ||
1258         I->getKindAsEnum() == Attribute::InaccessibleMemOrArgMemOnly) {
1259       if (!isFunction) {
1260         CheckFailed("Attribute '" + I->getAsString() +
1261                     "' only applies to functions!", V);
1262         return;
1263       }
1264     } else if (I->getKindAsEnum() == Attribute::ReadOnly ||
1265                I->getKindAsEnum() == Attribute::ReadNone) {
1266       if (Idx == 0) {
1267         CheckFailed("Attribute '" + I->getAsString() +
1268                     "' does not apply to function returns");
1269         return;
1270       }
1271     } else if (isFunction) {
1272       CheckFailed("Attribute '" + I->getAsString() +
1273                   "' does not apply to functions!", V);
1274       return;
1275     }
1276   }
1277 }
1278
1279 // VerifyParameterAttrs - Check the given attributes for an argument or return
1280 // value of the specified type.  The value V is printed in error messages.
1281 void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
1282                                     bool isReturnValue, const Value *V) {
1283   if (!Attrs.hasAttributes(Idx))
1284     return;
1285
1286   VerifyAttributeTypes(Attrs, Idx, false, V);
1287
1288   if (isReturnValue)
1289     Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
1290                !Attrs.hasAttribute(Idx, Attribute::Nest) &&
1291                !Attrs.hasAttribute(Idx, Attribute::StructRet) &&
1292                !Attrs.hasAttribute(Idx, Attribute::NoCapture) &&
1293                !Attrs.hasAttribute(Idx, Attribute::Returned) &&
1294                !Attrs.hasAttribute(Idx, Attribute::InAlloca),
1295            "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and "
1296            "'returned' do not apply to return values!",
1297            V);
1298
1299   // Check for mutually incompatible attributes.  Only inreg is compatible with
1300   // sret.
1301   unsigned AttrCount = 0;
1302   AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal);
1303   AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca);
1304   AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) ||
1305                Attrs.hasAttribute(Idx, Attribute::InReg);
1306   AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest);
1307   Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
1308                          "and 'sret' are incompatible!",
1309          V);
1310
1311   Assert(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
1312            Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
1313          "Attributes "
1314          "'inalloca and readonly' are incompatible!",
1315          V);
1316
1317   Assert(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
1318            Attrs.hasAttribute(Idx, Attribute::Returned)),
1319          "Attributes "
1320          "'sret and returned' are incompatible!",
1321          V);
1322
1323   Assert(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
1324            Attrs.hasAttribute(Idx, Attribute::SExt)),
1325          "Attributes "
1326          "'zeroext and signext' are incompatible!",
1327          V);
1328
1329   Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
1330            Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
1331          "Attributes "
1332          "'readnone and readonly' are incompatible!",
1333          V);
1334
1335   Assert(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
1336            Attrs.hasAttribute(Idx, Attribute::AlwaysInline)),
1337          "Attributes "
1338          "'noinline and alwaysinline' are incompatible!",
1339          V);
1340
1341   Assert(!AttrBuilder(Attrs, Idx)
1342               .overlaps(AttributeFuncs::typeIncompatible(Ty)),
1343          "Wrong types for attribute: " +
1344          AttributeSet::get(*Context, Idx,
1345                         AttributeFuncs::typeIncompatible(Ty)).getAsString(Idx),
1346          V);
1347
1348   if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1349     SmallPtrSet<Type*, 4> Visited;
1350     if (!PTy->getElementType()->isSized(&Visited)) {
1351       Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
1352                  !Attrs.hasAttribute(Idx, Attribute::InAlloca),
1353              "Attributes 'byval' and 'inalloca' do not support unsized types!",
1354              V);
1355     }
1356   } else {
1357     Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal),
1358            "Attribute 'byval' only applies to parameters with pointer type!",
1359            V);
1360   }
1361 }
1362
1363 // VerifyFunctionAttrs - Check parameter attributes against a function type.
1364 // The value V is printed in error messages.
1365 void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
1366                                    const Value *V) {
1367   if (Attrs.isEmpty())
1368     return;
1369
1370   bool SawNest = false;
1371   bool SawReturned = false;
1372   bool SawSRet = false;
1373
1374   for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1375     unsigned Idx = Attrs.getSlotIndex(i);
1376
1377     Type *Ty;
1378     if (Idx == 0)
1379       Ty = FT->getReturnType();
1380     else if (Idx-1 < FT->getNumParams())
1381       Ty = FT->getParamType(Idx-1);
1382     else
1383       break;  // VarArgs attributes, verified elsewhere.
1384
1385     VerifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V);
1386
1387     if (Idx == 0)
1388       continue;
1389
1390     if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
1391       Assert(!SawNest, "More than one parameter has attribute nest!", V);
1392       SawNest = true;
1393     }
1394
1395     if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
1396       Assert(!SawReturned, "More than one parameter has attribute returned!",
1397              V);
1398       Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
1399              "Incompatible "
1400              "argument and return types for 'returned' attribute",
1401              V);
1402       SawReturned = true;
1403     }
1404
1405     if (Attrs.hasAttribute(Idx, Attribute::StructRet)) {
1406       Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1407       Assert(Idx == 1 || Idx == 2,
1408              "Attribute 'sret' is not on first or second parameter!", V);
1409       SawSRet = true;
1410     }
1411
1412     if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) {
1413       Assert(Idx == FT->getNumParams(), "inalloca isn't on the last parameter!",
1414              V);
1415     }
1416   }
1417
1418   if (!Attrs.hasAttributes(AttributeSet::FunctionIndex))
1419     return;
1420
1421   VerifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V);
1422
1423   Assert(
1424       !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
1425         Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly)),
1426       "Attributes 'readnone and readonly' are incompatible!", V);
1427
1428   Assert(
1429       !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
1430         Attrs.hasAttribute(AttributeSet::FunctionIndex, 
1431                            Attribute::InaccessibleMemOrArgMemOnly)),
1432       "Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!", V);
1433
1434   Assert(
1435       !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
1436         Attrs.hasAttribute(AttributeSet::FunctionIndex, 
1437                            Attribute::InaccessibleMemOnly)),
1438       "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
1439
1440   Assert(
1441       !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline) &&
1442         Attrs.hasAttribute(AttributeSet::FunctionIndex,
1443                            Attribute::AlwaysInline)),
1444       "Attributes 'noinline and alwaysinline' are incompatible!", V);
1445
1446   if (Attrs.hasAttribute(AttributeSet::FunctionIndex, 
1447                          Attribute::OptimizeNone)) {
1448     Assert(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline),
1449            "Attribute 'optnone' requires 'noinline'!", V);
1450
1451     Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
1452                                Attribute::OptimizeForSize),
1453            "Attributes 'optsize and optnone' are incompatible!", V);
1454
1455     Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize),
1456            "Attributes 'minsize and optnone' are incompatible!", V);
1457   }
1458
1459   if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
1460                          Attribute::JumpTable)) {
1461     const GlobalValue *GV = cast<GlobalValue>(V);
1462     Assert(GV->hasUnnamedAddr(),
1463            "Attribute 'jumptable' requires 'unnamed_addr'", V);
1464   }
1465 }
1466
1467 void Verifier::VerifyFunctionMetadata(
1468     const SmallVector<std::pair<unsigned, MDNode *>, 4> MDs) {
1469   if (MDs.empty())
1470     return;
1471
1472   for (unsigned i = 0; i < MDs.size(); i++) {
1473     if (MDs[i].first == LLVMContext::MD_prof) {
1474       MDNode *MD = MDs[i].second;
1475       Assert(MD->getNumOperands() == 2,
1476              "!prof annotations should have exactly 2 operands", MD);
1477
1478       // Check first operand.
1479       Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
1480              MD);
1481       Assert(isa<MDString>(MD->getOperand(0)),
1482              "expected string with name of the !prof annotation", MD);
1483       MDString *MDS = cast<MDString>(MD->getOperand(0));
1484       StringRef ProfName = MDS->getString();
1485       Assert(ProfName.equals("function_entry_count"),
1486              "first operand should be 'function_entry_count'", MD);
1487
1488       // Check second operand.
1489       Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
1490              MD);
1491       Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
1492              "expected integer argument to function_entry_count", MD);
1493     }
1494   }
1495 }
1496
1497 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1498   if (!ConstantExprVisited.insert(EntryC).second)
1499     return;
1500
1501   SmallVector<const Constant *, 16> Stack;
1502   Stack.push_back(EntryC);
1503
1504   while (!Stack.empty()) {
1505     const Constant *C = Stack.pop_back_val();
1506
1507     // Check this constant expression.
1508     if (const auto *CE = dyn_cast<ConstantExpr>(C))
1509       visitConstantExpr(CE);
1510
1511     // Visit all sub-expressions.
1512     for (const Use &U : C->operands()) {
1513       const auto *OpC = dyn_cast<Constant>(U);
1514       if (!OpC)
1515         continue;
1516       if (isa<GlobalValue>(OpC))
1517         continue; // Global values get visited separately.
1518       if (!ConstantExprVisited.insert(OpC).second)
1519         continue;
1520       Stack.push_back(OpC);
1521     }
1522   }
1523 }
1524
1525 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1526   if (CE->getOpcode() != Instruction::BitCast)
1527     return;
1528
1529   Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
1530                                CE->getType()),
1531          "Invalid bitcast", CE);
1532 }
1533
1534 bool Verifier::VerifyAttributeCount(AttributeSet Attrs, unsigned Params) {
1535   if (Attrs.getNumSlots() == 0)
1536     return true;
1537
1538   unsigned LastSlot = Attrs.getNumSlots() - 1;
1539   unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
1540   if (LastIndex <= Params
1541       || (LastIndex == AttributeSet::FunctionIndex
1542           && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
1543     return true;
1544
1545   return false;
1546 }
1547
1548 /// \brief Verify that statepoint intrinsic is well formed.
1549 void Verifier::VerifyStatepoint(ImmutableCallSite CS) {
1550   assert(CS.getCalledFunction() &&
1551          CS.getCalledFunction()->getIntrinsicID() ==
1552            Intrinsic::experimental_gc_statepoint);
1553
1554   const Instruction &CI = *CS.getInstruction();
1555
1556   Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&
1557          !CS.onlyAccessesArgMemory(),
1558          "gc.statepoint must read and write all memory to preserve "
1559          "reordering restrictions required by safepoint semantics",
1560          &CI);
1561
1562   const Value *IDV = CS.getArgument(0);
1563   Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",
1564          &CI);
1565
1566   const Value *NumPatchBytesV = CS.getArgument(1);
1567   Assert(isa<ConstantInt>(NumPatchBytesV),
1568          "gc.statepoint number of patchable bytes must be a constant integer",
1569          &CI);
1570   const int64_t NumPatchBytes =
1571       cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
1572   assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
1573   Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "
1574                              "positive",
1575          &CI);
1576
1577   const Value *Target = CS.getArgument(2);
1578   auto *PT = dyn_cast<PointerType>(Target->getType());
1579   Assert(PT && PT->getElementType()->isFunctionTy(),
1580          "gc.statepoint callee must be of function pointer type", &CI, Target);
1581   FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1582
1583   const Value *NumCallArgsV = CS.getArgument(3);
1584   Assert(isa<ConstantInt>(NumCallArgsV),
1585          "gc.statepoint number of arguments to underlying call "
1586          "must be constant integer",
1587          &CI);
1588   const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
1589   Assert(NumCallArgs >= 0,
1590          "gc.statepoint number of arguments to underlying call "
1591          "must be positive",
1592          &CI);
1593   const int NumParams = (int)TargetFuncType->getNumParams();
1594   if (TargetFuncType->isVarArg()) {
1595     Assert(NumCallArgs >= NumParams,
1596            "gc.statepoint mismatch in number of vararg call args", &CI);
1597
1598     // TODO: Remove this limitation
1599     Assert(TargetFuncType->getReturnType()->isVoidTy(),
1600            "gc.statepoint doesn't support wrapping non-void "
1601            "vararg functions yet",
1602            &CI);
1603   } else
1604     Assert(NumCallArgs == NumParams,
1605            "gc.statepoint mismatch in number of call args", &CI);
1606
1607   const Value *FlagsV = CS.getArgument(4);
1608   Assert(isa<ConstantInt>(FlagsV),
1609          "gc.statepoint flags must be constant integer", &CI);
1610   const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
1611   Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
1612          "unknown flag used in gc.statepoint flags argument", &CI);
1613
1614   // Verify that the types of the call parameter arguments match
1615   // the type of the wrapped callee.
1616   for (int i = 0; i < NumParams; i++) {
1617     Type *ParamType = TargetFuncType->getParamType(i);
1618     Type *ArgType = CS.getArgument(5 + i)->getType();
1619     Assert(ArgType == ParamType,
1620            "gc.statepoint call argument does not match wrapped "
1621            "function type",
1622            &CI);
1623   }
1624
1625   const int EndCallArgsInx = 4 + NumCallArgs;
1626
1627   const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
1628   Assert(isa<ConstantInt>(NumTransitionArgsV),
1629          "gc.statepoint number of transition arguments "
1630          "must be constant integer",
1631          &CI);
1632   const int NumTransitionArgs =
1633       cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
1634   Assert(NumTransitionArgs >= 0,
1635          "gc.statepoint number of transition arguments must be positive", &CI);
1636   const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
1637
1638   const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
1639   Assert(isa<ConstantInt>(NumDeoptArgsV),
1640          "gc.statepoint number of deoptimization arguments "
1641          "must be constant integer",
1642          &CI);
1643   const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
1644   Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "
1645                             "must be positive",
1646          &CI);
1647
1648   const int ExpectedNumArgs =
1649       7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
1650   Assert(ExpectedNumArgs <= (int)CS.arg_size(),
1651          "gc.statepoint too few arguments according to length fields", &CI);
1652
1653   // Check that the only uses of this gc.statepoint are gc.result or 
1654   // gc.relocate calls which are tied to this statepoint and thus part
1655   // of the same statepoint sequence
1656   for (const User *U : CI.users()) {
1657     const CallInst *Call = dyn_cast<const CallInst>(U);
1658     Assert(Call, "illegal use of statepoint token", &CI, U);
1659     if (!Call) continue;
1660     Assert(isGCRelocate(Call) || isGCResult(Call),
1661            "gc.result or gc.relocate are the only value uses"
1662            "of a gc.statepoint",
1663            &CI, U);
1664     if (isGCResult(Call)) {
1665       Assert(Call->getArgOperand(0) == &CI,
1666              "gc.result connected to wrong gc.statepoint", &CI, Call);
1667     } else if (isGCRelocate(Call)) {
1668       Assert(Call->getArgOperand(0) == &CI,
1669              "gc.relocate connected to wrong gc.statepoint", &CI, Call);
1670     }
1671   }
1672
1673   // Note: It is legal for a single derived pointer to be listed multiple
1674   // times.  It's non-optimal, but it is legal.  It can also happen after
1675   // insertion if we strip a bitcast away.
1676   // Note: It is really tempting to check that each base is relocated and
1677   // that a derived pointer is never reused as a base pointer.  This turns
1678   // out to be problematic since optimizations run after safepoint insertion
1679   // can recognize equality properties that the insertion logic doesn't know
1680   // about.  See example statepoint.ll in the verifier subdirectory
1681 }
1682
1683 void Verifier::verifyFrameRecoverIndices() {
1684   for (auto &Counts : FrameEscapeInfo) {
1685     Function *F = Counts.first;
1686     unsigned EscapedObjectCount = Counts.second.first;
1687     unsigned MaxRecoveredIndex = Counts.second.second;
1688     Assert(MaxRecoveredIndex <= EscapedObjectCount,
1689            "all indices passed to llvm.localrecover must be less than the "
1690            "number of arguments passed ot llvm.localescape in the parent "
1691            "function",
1692            F);
1693   }
1694 }
1695
1696 // visitFunction - Verify that a function is ok.
1697 //
1698 void Verifier::visitFunction(const Function &F) {
1699   // Check function arguments.
1700   FunctionType *FT = F.getFunctionType();
1701   unsigned NumArgs = F.arg_size();
1702
1703   Assert(Context == &F.getContext(),
1704          "Function context does not match Module context!", &F);
1705
1706   Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
1707   Assert(FT->getNumParams() == NumArgs,
1708          "# formal arguments must match # of arguments for function type!", &F,
1709          FT);
1710   Assert(F.getReturnType()->isFirstClassType() ||
1711              F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
1712          "Functions cannot return aggregate values!", &F);
1713
1714   Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
1715          "Invalid struct return type!", &F);
1716
1717   AttributeSet Attrs = F.getAttributes();
1718
1719   Assert(VerifyAttributeCount(Attrs, FT->getNumParams()),
1720          "Attribute after last parameter!", &F);
1721
1722   // Check function attributes.
1723   VerifyFunctionAttrs(FT, Attrs, &F);
1724
1725   // On function declarations/definitions, we do not support the builtin
1726   // attribute. We do not check this in VerifyFunctionAttrs since that is
1727   // checking for Attributes that can/can not ever be on functions.
1728   Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::Builtin),
1729          "Attribute 'builtin' can only be applied to a callsite.", &F);
1730
1731   // Check that this function meets the restrictions on this calling convention.
1732   // Sometimes varargs is used for perfectly forwarding thunks, so some of these
1733   // restrictions can be lifted.
1734   switch (F.getCallingConv()) {
1735   default:
1736   case CallingConv::C:
1737     break;
1738   case CallingConv::Fast:
1739   case CallingConv::Cold:
1740   case CallingConv::Intel_OCL_BI:
1741   case CallingConv::PTX_Kernel:
1742   case CallingConv::PTX_Device:
1743     Assert(!F.isVarArg(), "Calling convention does not support varargs or "
1744                           "perfect forwarding!",
1745            &F);
1746     break;
1747   }
1748
1749   bool isLLVMdotName = F.getName().size() >= 5 &&
1750                        F.getName().substr(0, 5) == "llvm.";
1751
1752   // Check that the argument values match the function type for this function...
1753   unsigned i = 0;
1754   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
1755        ++I, ++i) {
1756     Assert(I->getType() == FT->getParamType(i),
1757            "Argument value does not match function argument type!", I,
1758            FT->getParamType(i));
1759     Assert(I->getType()->isFirstClassType(),
1760            "Function arguments must have first-class types!", I);
1761     if (!isLLVMdotName) {
1762       Assert(!I->getType()->isMetadataTy(),
1763              "Function takes metadata but isn't an intrinsic", I, &F);
1764       Assert(!I->getType()->isTokenTy(),
1765              "Function takes token but isn't an intrinsic", I, &F);
1766     }
1767   }
1768
1769   if (!isLLVMdotName)
1770     Assert(!F.getReturnType()->isTokenTy(),
1771            "Functions returns a token but isn't an intrinsic", &F);
1772
1773   // Get the function metadata attachments.
1774   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1775   F.getAllMetadata(MDs);
1776   assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
1777   VerifyFunctionMetadata(MDs);
1778
1779   // Check validity of the personality function
1780   if (F.hasPersonalityFn()) {
1781     auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
1782     if (Per)
1783       Assert(Per->getParent() == F.getParent(),
1784              "Referencing personality function in another module!",
1785              &F, F.getParent(), Per, Per->getParent());
1786   }
1787
1788   if (F.isMaterializable()) {
1789     // Function has a body somewhere we can't see.
1790     Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
1791            MDs.empty() ? nullptr : MDs.front().second);
1792   } else if (F.isDeclaration()) {
1793     Assert(F.hasExternalLinkage() || F.hasExternalWeakLinkage(),
1794            "invalid linkage type for function declaration", &F);
1795     Assert(MDs.empty(), "function without a body cannot have metadata", &F,
1796            MDs.empty() ? nullptr : MDs.front().second);
1797     Assert(!F.hasPersonalityFn(),
1798            "Function declaration shouldn't have a personality routine", &F);
1799   } else {
1800     // Verify that this function (which has a body) is not named "llvm.*".  It
1801     // is not legal to define intrinsics.
1802     Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
1803
1804     // Check the entry node
1805     const BasicBlock *Entry = &F.getEntryBlock();
1806     Assert(pred_empty(Entry),
1807            "Entry block to function must not have predecessors!", Entry);
1808
1809     // The address of the entry block cannot be taken, unless it is dead.
1810     if (Entry->hasAddressTaken()) {
1811       Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
1812              "blockaddress may not be used with the entry block!", Entry);
1813     }
1814
1815     // Visit metadata attachments.
1816     for (const auto &I : MDs) {
1817       // Verify that the attachment is legal.
1818       switch (I.first) {
1819       default:
1820         break;
1821       case LLVMContext::MD_dbg:
1822         Assert(isa<DISubprogram>(I.second),
1823                "function !dbg attachment must be a subprogram", &F, I.second);
1824         break;
1825       }
1826
1827       // Verify the metadata itself.
1828       visitMDNode(*I.second);
1829     }
1830   }
1831
1832   // If this function is actually an intrinsic, verify that it is only used in
1833   // direct call/invokes, never having its "address taken".
1834   if (F.getIntrinsicID()) {
1835     const User *U;
1836     if (F.hasAddressTaken(&U))
1837       Assert(0, "Invalid user of intrinsic instruction!", U);
1838   }
1839
1840   Assert(!F.hasDLLImportStorageClass() ||
1841              (F.isDeclaration() && F.hasExternalLinkage()) ||
1842              F.hasAvailableExternallyLinkage(),
1843          "Function is marked as dllimport, but not external.", &F);
1844
1845   auto *N = F.getSubprogram();
1846   if (!N)
1847     return;
1848
1849   // Check that all !dbg attachments lead to back to N (or, at least, another
1850   // subprogram that describes the same function).
1851   //
1852   // FIXME: Check this incrementally while visiting !dbg attachments.
1853   // FIXME: Only check when N is the canonical subprogram for F.
1854   SmallPtrSet<const MDNode *, 32> Seen;
1855   for (auto &BB : F)
1856     for (auto &I : BB) {
1857       // Be careful about using DILocation here since we might be dealing with
1858       // broken code (this is the Verifier after all).
1859       DILocation *DL =
1860           dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
1861       if (!DL)
1862         continue;
1863       if (!Seen.insert(DL).second)
1864         continue;
1865
1866       DILocalScope *Scope = DL->getInlinedAtScope();
1867       if (Scope && !Seen.insert(Scope).second)
1868         continue;
1869
1870       DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
1871
1872       // Scope and SP could be the same MDNode and we don't want to skip
1873       // validation in that case
1874       if (SP && ((Scope != SP) && !Seen.insert(SP).second))
1875         continue;
1876
1877       // FIXME: Once N is canonical, check "SP == &N".
1878       Assert(SP->describes(&F),
1879              "!dbg attachment points at wrong subprogram for function", N, &F,
1880              &I, DL, Scope, SP);
1881     }
1882 }
1883
1884 // verifyBasicBlock - Verify that a basic block is well formed...
1885 //
1886 void Verifier::visitBasicBlock(BasicBlock &BB) {
1887   InstsInThisBlock.clear();
1888
1889   // Ensure that basic blocks have terminators!
1890   Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
1891
1892   // Check constraints that this basic block imposes on all of the PHI nodes in
1893   // it.
1894   if (isa<PHINode>(BB.front())) {
1895     SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
1896     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
1897     std::sort(Preds.begin(), Preds.end());
1898     PHINode *PN;
1899     for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
1900       // Ensure that PHI nodes have at least one entry!
1901       Assert(PN->getNumIncomingValues() != 0,
1902              "PHI nodes must have at least one entry.  If the block is dead, "
1903              "the PHI should be removed!",
1904              PN);
1905       Assert(PN->getNumIncomingValues() == Preds.size(),
1906              "PHINode should have one entry for each predecessor of its "
1907              "parent basic block!",
1908              PN);
1909
1910       // Get and sort all incoming values in the PHI node...
1911       Values.clear();
1912       Values.reserve(PN->getNumIncomingValues());
1913       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1914         Values.push_back(std::make_pair(PN->getIncomingBlock(i),
1915                                         PN->getIncomingValue(i)));
1916       std::sort(Values.begin(), Values.end());
1917
1918       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
1919         // Check to make sure that if there is more than one entry for a
1920         // particular basic block in this PHI node, that the incoming values are
1921         // all identical.
1922         //
1923         Assert(i == 0 || Values[i].first != Values[i - 1].first ||
1924                    Values[i].second == Values[i - 1].second,
1925                "PHI node has multiple entries for the same basic block with "
1926                "different incoming values!",
1927                PN, Values[i].first, Values[i].second, Values[i - 1].second);
1928
1929         // Check to make sure that the predecessors and PHI node entries are
1930         // matched up.
1931         Assert(Values[i].first == Preds[i],
1932                "PHI node entries do not match predecessors!", PN,
1933                Values[i].first, Preds[i]);
1934       }
1935     }
1936   }
1937
1938   // Check that all instructions have their parent pointers set up correctly.
1939   for (auto &I : BB)
1940   {
1941     Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
1942   }
1943 }
1944
1945 void Verifier::visitTerminatorInst(TerminatorInst &I) {
1946   // Ensure that terminators only exist at the end of the basic block.
1947   Assert(&I == I.getParent()->getTerminator(),
1948          "Terminator found in the middle of a basic block!", I.getParent());
1949   visitInstruction(I);
1950 }
1951
1952 void Verifier::visitBranchInst(BranchInst &BI) {
1953   if (BI.isConditional()) {
1954     Assert(BI.getCondition()->getType()->isIntegerTy(1),
1955            "Branch condition is not 'i1' type!", &BI, BI.getCondition());
1956   }
1957   visitTerminatorInst(BI);
1958 }
1959
1960 void Verifier::visitReturnInst(ReturnInst &RI) {
1961   Function *F = RI.getParent()->getParent();
1962   unsigned N = RI.getNumOperands();
1963   if (F->getReturnType()->isVoidTy())
1964     Assert(N == 0,
1965            "Found return instr that returns non-void in Function of void "
1966            "return type!",
1967            &RI, F->getReturnType());
1968   else
1969     Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
1970            "Function return type does not match operand "
1971            "type of return inst!",
1972            &RI, F->getReturnType());
1973
1974   // Check to make sure that the return value has necessary properties for
1975   // terminators...
1976   visitTerminatorInst(RI);
1977 }
1978
1979 void Verifier::visitSwitchInst(SwitchInst &SI) {
1980   // Check to make sure that all of the constants in the switch instruction
1981   // have the same type as the switched-on value.
1982   Type *SwitchTy = SI.getCondition()->getType();
1983   SmallPtrSet<ConstantInt*, 32> Constants;
1984   for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
1985     Assert(i.getCaseValue()->getType() == SwitchTy,
1986            "Switch constants must all be same type as switch value!", &SI);
1987     Assert(Constants.insert(i.getCaseValue()).second,
1988            "Duplicate integer as switch case", &SI, i.getCaseValue());
1989   }
1990
1991   visitTerminatorInst(SI);
1992 }
1993
1994 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
1995   Assert(BI.getAddress()->getType()->isPointerTy(),
1996          "Indirectbr operand must have pointer type!", &BI);
1997   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
1998     Assert(BI.getDestination(i)->getType()->isLabelTy(),
1999            "Indirectbr destinations must all have pointer type!", &BI);
2000
2001   visitTerminatorInst(BI);
2002 }
2003
2004 void Verifier::visitSelectInst(SelectInst &SI) {
2005   Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2006                                          SI.getOperand(2)),
2007          "Invalid operands for select instruction!", &SI);
2008
2009   Assert(SI.getTrueValue()->getType() == SI.getType(),
2010          "Select values must have same type as select instruction!", &SI);
2011   visitInstruction(SI);
2012 }
2013
2014 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2015 /// a pass, if any exist, it's an error.
2016 ///
2017 void Verifier::visitUserOp1(Instruction &I) {
2018   Assert(0, "User-defined operators should not live outside of a pass!", &I);
2019 }
2020
2021 void Verifier::visitTruncInst(TruncInst &I) {
2022   // Get the source and destination types
2023   Type *SrcTy = I.getOperand(0)->getType();
2024   Type *DestTy = I.getType();
2025
2026   // Get the size of the types in bits, we'll need this later
2027   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2028   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2029
2030   Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2031   Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2032   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2033          "trunc source and destination must both be a vector or neither", &I);
2034   Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2035
2036   visitInstruction(I);
2037 }
2038
2039 void Verifier::visitZExtInst(ZExtInst &I) {
2040   // Get the source and destination types
2041   Type *SrcTy = I.getOperand(0)->getType();
2042   Type *DestTy = I.getType();
2043
2044   // Get the size of the types in bits, we'll need this later
2045   Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2046   Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2047   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2048          "zext source and destination must both be a vector or neither", &I);
2049   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2050   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2051
2052   Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2053
2054   visitInstruction(I);
2055 }
2056
2057 void Verifier::visitSExtInst(SExtInst &I) {
2058   // Get the source and destination types
2059   Type *SrcTy = I.getOperand(0)->getType();
2060   Type *DestTy = I.getType();
2061
2062   // Get the size of the types in bits, we'll need this later
2063   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2064   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2065
2066   Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2067   Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2068   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2069          "sext source and destination must both be a vector or neither", &I);
2070   Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2071
2072   visitInstruction(I);
2073 }
2074
2075 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2076   // Get the source and destination types
2077   Type *SrcTy = I.getOperand(0)->getType();
2078   Type *DestTy = I.getType();
2079   // Get the size of the types in bits, we'll need this later
2080   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2081   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2082
2083   Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2084   Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2085   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2086          "fptrunc source and destination must both be a vector or neither", &I);
2087   Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2088
2089   visitInstruction(I);
2090 }
2091
2092 void Verifier::visitFPExtInst(FPExtInst &I) {
2093   // Get the source and destination types
2094   Type *SrcTy = I.getOperand(0)->getType();
2095   Type *DestTy = I.getType();
2096
2097   // Get the size of the types in bits, we'll need this later
2098   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2099   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2100
2101   Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2102   Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2103   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2104          "fpext source and destination must both be a vector or neither", &I);
2105   Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2106
2107   visitInstruction(I);
2108 }
2109
2110 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2111   // Get the source and destination types
2112   Type *SrcTy = I.getOperand(0)->getType();
2113   Type *DestTy = I.getType();
2114
2115   bool SrcVec = SrcTy->isVectorTy();
2116   bool DstVec = DestTy->isVectorTy();
2117
2118   Assert(SrcVec == DstVec,
2119          "UIToFP source and dest must both be vector or scalar", &I);
2120   Assert(SrcTy->isIntOrIntVectorTy(),
2121          "UIToFP source must be integer or integer vector", &I);
2122   Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2123          &I);
2124
2125   if (SrcVec && DstVec)
2126     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2127                cast<VectorType>(DestTy)->getNumElements(),
2128            "UIToFP source and dest vector length mismatch", &I);
2129
2130   visitInstruction(I);
2131 }
2132
2133 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2134   // Get the source and destination types
2135   Type *SrcTy = I.getOperand(0)->getType();
2136   Type *DestTy = I.getType();
2137
2138   bool SrcVec = SrcTy->isVectorTy();
2139   bool DstVec = DestTy->isVectorTy();
2140
2141   Assert(SrcVec == DstVec,
2142          "SIToFP source and dest must both be vector or scalar", &I);
2143   Assert(SrcTy->isIntOrIntVectorTy(),
2144          "SIToFP source must be integer or integer vector", &I);
2145   Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2146          &I);
2147
2148   if (SrcVec && DstVec)
2149     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2150                cast<VectorType>(DestTy)->getNumElements(),
2151            "SIToFP source and dest vector length mismatch", &I);
2152
2153   visitInstruction(I);
2154 }
2155
2156 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2157   // Get the source and destination types
2158   Type *SrcTy = I.getOperand(0)->getType();
2159   Type *DestTy = I.getType();
2160
2161   bool SrcVec = SrcTy->isVectorTy();
2162   bool DstVec = DestTy->isVectorTy();
2163
2164   Assert(SrcVec == DstVec,
2165          "FPToUI source and dest must both be vector or scalar", &I);
2166   Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2167          &I);
2168   Assert(DestTy->isIntOrIntVectorTy(),
2169          "FPToUI result must be integer or integer vector", &I);
2170
2171   if (SrcVec && DstVec)
2172     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2173                cast<VectorType>(DestTy)->getNumElements(),
2174            "FPToUI source and dest vector length mismatch", &I);
2175
2176   visitInstruction(I);
2177 }
2178
2179 void Verifier::visitFPToSIInst(FPToSIInst &I) {
2180   // Get the source and destination types
2181   Type *SrcTy = I.getOperand(0)->getType();
2182   Type *DestTy = I.getType();
2183
2184   bool SrcVec = SrcTy->isVectorTy();
2185   bool DstVec = DestTy->isVectorTy();
2186
2187   Assert(SrcVec == DstVec,
2188          "FPToSI source and dest must both be vector or scalar", &I);
2189   Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2190          &I);
2191   Assert(DestTy->isIntOrIntVectorTy(),
2192          "FPToSI result must be integer or integer vector", &I);
2193
2194   if (SrcVec && DstVec)
2195     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2196                cast<VectorType>(DestTy)->getNumElements(),
2197            "FPToSI source and dest vector length mismatch", &I);
2198
2199   visitInstruction(I);
2200 }
2201
2202 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2203   // Get the source and destination types
2204   Type *SrcTy = I.getOperand(0)->getType();
2205   Type *DestTy = I.getType();
2206
2207   Assert(SrcTy->getScalarType()->isPointerTy(),
2208          "PtrToInt source must be pointer", &I);
2209   Assert(DestTy->getScalarType()->isIntegerTy(),
2210          "PtrToInt result must be integral", &I);
2211   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2212          &I);
2213
2214   if (SrcTy->isVectorTy()) {
2215     VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2216     VectorType *VDest = dyn_cast<VectorType>(DestTy);
2217     Assert(VSrc->getNumElements() == VDest->getNumElements(),
2218            "PtrToInt Vector width mismatch", &I);
2219   }
2220
2221   visitInstruction(I);
2222 }
2223
2224 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2225   // Get the source and destination types
2226   Type *SrcTy = I.getOperand(0)->getType();
2227   Type *DestTy = I.getType();
2228
2229   Assert(SrcTy->getScalarType()->isIntegerTy(),
2230          "IntToPtr source must be an integral", &I);
2231   Assert(DestTy->getScalarType()->isPointerTy(),
2232          "IntToPtr result must be a pointer", &I);
2233   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2234          &I);
2235   if (SrcTy->isVectorTy()) {
2236     VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2237     VectorType *VDest = dyn_cast<VectorType>(DestTy);
2238     Assert(VSrc->getNumElements() == VDest->getNumElements(),
2239            "IntToPtr Vector width mismatch", &I);
2240   }
2241   visitInstruction(I);
2242 }
2243
2244 void Verifier::visitBitCastInst(BitCastInst &I) {
2245   Assert(
2246       CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2247       "Invalid bitcast", &I);
2248   visitInstruction(I);
2249 }
2250
2251 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2252   Type *SrcTy = I.getOperand(0)->getType();
2253   Type *DestTy = I.getType();
2254
2255   Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2256          &I);
2257   Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2258          &I);
2259   Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
2260          "AddrSpaceCast must be between different address spaces", &I);
2261   if (SrcTy->isVectorTy())
2262     Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
2263            "AddrSpaceCast vector pointer number of elements mismatch", &I);
2264   visitInstruction(I);
2265 }
2266
2267 /// visitPHINode - Ensure that a PHI node is well formed.
2268 ///
2269 void Verifier::visitPHINode(PHINode &PN) {
2270   // Ensure that the PHI nodes are all grouped together at the top of the block.
2271   // This can be tested by checking whether the instruction before this is
2272   // either nonexistent (because this is begin()) or is a PHI node.  If not,
2273   // then there is some other instruction before a PHI.
2274   Assert(&PN == &PN.getParent()->front() ||
2275              isa<PHINode>(--BasicBlock::iterator(&PN)),
2276          "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
2277
2278   // Check that a PHI doesn't yield a Token.
2279   Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
2280
2281   // Check that all of the values of the PHI node have the same type as the
2282   // result, and that the incoming blocks are really basic blocks.
2283   for (Value *IncValue : PN.incoming_values()) {
2284     Assert(PN.getType() == IncValue->getType(),
2285            "PHI node operands are not the same type as the result!", &PN);
2286   }
2287
2288   // All other PHI node constraints are checked in the visitBasicBlock method.
2289
2290   visitInstruction(PN);
2291 }
2292
2293 void Verifier::VerifyCallSite(CallSite CS) {
2294   Instruction *I = CS.getInstruction();
2295
2296   Assert(CS.getCalledValue()->getType()->isPointerTy(),
2297          "Called function must be a pointer!", I);
2298   PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
2299
2300   Assert(FPTy->getElementType()->isFunctionTy(),
2301          "Called function is not pointer to function type!", I);
2302
2303   Assert(FPTy->getElementType() == CS.getFunctionType(),
2304          "Called function is not the same type as the call!", I);
2305
2306   FunctionType *FTy = CS.getFunctionType();
2307
2308   // Verify that the correct number of arguments are being passed
2309   if (FTy->isVarArg())
2310     Assert(CS.arg_size() >= FTy->getNumParams(),
2311            "Called function requires more parameters than were provided!", I);
2312   else
2313     Assert(CS.arg_size() == FTy->getNumParams(),
2314            "Incorrect number of arguments passed to called function!", I);
2315
2316   // Verify that all arguments to the call match the function type.
2317   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2318     Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),
2319            "Call parameter type does not match function signature!",
2320            CS.getArgument(i), FTy->getParamType(i), I);
2321
2322   AttributeSet Attrs = CS.getAttributes();
2323
2324   Assert(VerifyAttributeCount(Attrs, CS.arg_size()),
2325          "Attribute after last parameter!", I);
2326
2327   // Verify call attributes.
2328   VerifyFunctionAttrs(FTy, Attrs, I);
2329
2330   // Conservatively check the inalloca argument.
2331   // We have a bug if we can find that there is an underlying alloca without
2332   // inalloca.
2333   if (CS.hasInAllocaArgument()) {
2334     Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
2335     if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2336       Assert(AI->isUsedWithInAlloca(),
2337              "inalloca argument for call has mismatched alloca", AI, I);
2338   }
2339
2340   if (FTy->isVarArg()) {
2341     // FIXME? is 'nest' even legal here?
2342     bool SawNest = false;
2343     bool SawReturned = false;
2344
2345     for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) {
2346       if (Attrs.hasAttribute(Idx, Attribute::Nest))
2347         SawNest = true;
2348       if (Attrs.hasAttribute(Idx, Attribute::Returned))
2349         SawReturned = true;
2350     }
2351
2352     // Check attributes on the varargs part.
2353     for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
2354       Type *Ty = CS.getArgument(Idx-1)->getType();
2355       VerifyParameterAttrs(Attrs, Idx, Ty, false, I);
2356
2357       if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
2358         Assert(!SawNest, "More than one parameter has attribute nest!", I);
2359         SawNest = true;
2360       }
2361
2362       if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
2363         Assert(!SawReturned, "More than one parameter has attribute returned!",
2364                I);
2365         Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
2366                "Incompatible argument and return types for 'returned' "
2367                "attribute",
2368                I);
2369         SawReturned = true;
2370       }
2371
2372       Assert(!Attrs.hasAttribute(Idx, Attribute::StructRet),
2373              "Attribute 'sret' cannot be used for vararg call arguments!", I);
2374
2375       if (Attrs.hasAttribute(Idx, Attribute::InAlloca))
2376         Assert(Idx == CS.arg_size(), "inalloca isn't on the last argument!", I);
2377     }
2378   }
2379
2380   // Verify that there's no metadata unless it's a direct call to an intrinsic.
2381   if (CS.getCalledFunction() == nullptr ||
2382       !CS.getCalledFunction()->getName().startswith("llvm.")) {
2383     for (Type *ParamTy : FTy->params()) {
2384       Assert(!ParamTy->isMetadataTy(),
2385              "Function has metadata parameter but isn't an intrinsic", I);
2386       Assert(!ParamTy->isTokenTy(),
2387              "Function has token parameter but isn't an intrinsic", I);
2388     }
2389   }
2390
2391   // Verify that indirect calls don't return tokens.
2392   if (CS.getCalledFunction() == nullptr)
2393     Assert(!FTy->getReturnType()->isTokenTy(),
2394            "Return type cannot be token for indirect call!");
2395
2396   if (Function *F = CS.getCalledFunction())
2397     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2398       visitIntrinsicCallSite(ID, CS);
2399
2400   // Verify that a callsite has at most one "deopt" and one "funclet" operand
2401   // bundle.
2402   bool FoundDeoptBundle = false, FoundFuncletBundle = false;
2403   for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) {
2404     OperandBundleUse BU = CS.getOperandBundleAt(i);
2405     uint32_t Tag = BU.getTagID();
2406     if (Tag == LLVMContext::OB_deopt) {
2407       Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I);
2408       FoundDeoptBundle = true;
2409     }
2410     if (Tag == LLVMContext::OB_funclet) {
2411       Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I);
2412       FoundFuncletBundle = true;
2413       Assert(BU.Inputs.size() == 1,
2414              "Expected exactly one funclet bundle operand", I);
2415       Assert(isa<FuncletPadInst>(BU.Inputs.front()),
2416              "Funclet bundle operands should correspond to a FuncletPadInst",
2417              I);
2418     }
2419   }
2420
2421   visitInstruction(*I);
2422 }
2423
2424 /// Two types are "congruent" if they are identical, or if they are both pointer
2425 /// types with different pointee types and the same address space.
2426 static bool isTypeCongruent(Type *L, Type *R) {
2427   if (L == R)
2428     return true;
2429   PointerType *PL = dyn_cast<PointerType>(L);
2430   PointerType *PR = dyn_cast<PointerType>(R);
2431   if (!PL || !PR)
2432     return false;
2433   return PL->getAddressSpace() == PR->getAddressSpace();
2434 }
2435
2436 static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) {
2437   static const Attribute::AttrKind ABIAttrs[] = {
2438       Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
2439       Attribute::InReg, Attribute::Returned};
2440   AttrBuilder Copy;
2441   for (auto AK : ABIAttrs) {
2442     if (Attrs.hasAttribute(I + 1, AK))
2443       Copy.addAttribute(AK);
2444   }
2445   if (Attrs.hasAttribute(I + 1, Attribute::Alignment))
2446     Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1));
2447   return Copy;
2448 }
2449
2450 void Verifier::verifyMustTailCall(CallInst &CI) {
2451   Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
2452
2453   // - The caller and callee prototypes must match.  Pointer types of
2454   //   parameters or return types may differ in pointee type, but not
2455   //   address space.
2456   Function *F = CI.getParent()->getParent();
2457   FunctionType *CallerTy = F->getFunctionType();
2458   FunctionType *CalleeTy = CI.getFunctionType();
2459   Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
2460          "cannot guarantee tail call due to mismatched parameter counts", &CI);
2461   Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
2462          "cannot guarantee tail call due to mismatched varargs", &CI);
2463   Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
2464          "cannot guarantee tail call due to mismatched return types", &CI);
2465   for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2466     Assert(
2467         isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
2468         "cannot guarantee tail call due to mismatched parameter types", &CI);
2469   }
2470
2471   // - The calling conventions of the caller and callee must match.
2472   Assert(F->getCallingConv() == CI.getCallingConv(),
2473          "cannot guarantee tail call due to mismatched calling conv", &CI);
2474
2475   // - All ABI-impacting function attributes, such as sret, byval, inreg,
2476   //   returned, and inalloca, must match.
2477   AttributeSet CallerAttrs = F->getAttributes();
2478   AttributeSet CalleeAttrs = CI.getAttributes();
2479   for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2480     AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
2481     AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
2482     Assert(CallerABIAttrs == CalleeABIAttrs,
2483            "cannot guarantee tail call due to mismatched ABI impacting "
2484            "function attributes",
2485            &CI, CI.getOperand(I));
2486   }
2487
2488   // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
2489   //   or a pointer bitcast followed by a ret instruction.
2490   // - The ret instruction must return the (possibly bitcasted) value
2491   //   produced by the call or void.
2492   Value *RetVal = &CI;
2493   Instruction *Next = CI.getNextNode();
2494
2495   // Handle the optional bitcast.
2496   if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
2497     Assert(BI->getOperand(0) == RetVal,
2498            "bitcast following musttail call must use the call", BI);
2499     RetVal = BI;
2500     Next = BI->getNextNode();
2501   }
2502
2503   // Check the return.
2504   ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
2505   Assert(Ret, "musttail call must be precede a ret with an optional bitcast",
2506          &CI);
2507   Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
2508          "musttail call result must be returned", Ret);
2509 }
2510
2511 void Verifier::visitCallInst(CallInst &CI) {
2512   VerifyCallSite(&CI);
2513
2514   if (CI.isMustTailCall())
2515     verifyMustTailCall(CI);
2516 }
2517
2518 void Verifier::visitInvokeInst(InvokeInst &II) {
2519   VerifyCallSite(&II);
2520
2521   // Verify that the first non-PHI instruction of the unwind destination is an
2522   // exception handling instruction.
2523   Assert(
2524       II.getUnwindDest()->isEHPad(),
2525       "The unwind destination does not have an exception handling instruction!",
2526       &II);
2527
2528   visitTerminatorInst(II);
2529 }
2530
2531 /// visitBinaryOperator - Check that both arguments to the binary operator are
2532 /// of the same type!
2533 ///
2534 void Verifier::visitBinaryOperator(BinaryOperator &B) {
2535   Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
2536          "Both operands to a binary operator are not of the same type!", &B);
2537
2538   switch (B.getOpcode()) {
2539   // Check that integer arithmetic operators are only used with
2540   // integral operands.
2541   case Instruction::Add:
2542   case Instruction::Sub:
2543   case Instruction::Mul:
2544   case Instruction::SDiv:
2545   case Instruction::UDiv:
2546   case Instruction::SRem:
2547   case Instruction::URem:
2548     Assert(B.getType()->isIntOrIntVectorTy(),
2549            "Integer arithmetic operators only work with integral types!", &B);
2550     Assert(B.getType() == B.getOperand(0)->getType(),
2551            "Integer arithmetic operators must have same type "
2552            "for operands and result!",
2553            &B);
2554     break;
2555   // Check that floating-point arithmetic operators are only used with
2556   // floating-point operands.
2557   case Instruction::FAdd:
2558   case Instruction::FSub:
2559   case Instruction::FMul:
2560   case Instruction::FDiv:
2561   case Instruction::FRem:
2562     Assert(B.getType()->isFPOrFPVectorTy(),
2563            "Floating-point arithmetic operators only work with "
2564            "floating-point types!",
2565            &B);
2566     Assert(B.getType() == B.getOperand(0)->getType(),
2567            "Floating-point arithmetic operators must have same type "
2568            "for operands and result!",
2569            &B);
2570     break;
2571   // Check that logical operators are only used with integral operands.
2572   case Instruction::And:
2573   case Instruction::Or:
2574   case Instruction::Xor:
2575     Assert(B.getType()->isIntOrIntVectorTy(),
2576            "Logical operators only work with integral types!", &B);
2577     Assert(B.getType() == B.getOperand(0)->getType(),
2578            "Logical operators must have same type for operands and result!",
2579            &B);
2580     break;
2581   case Instruction::Shl:
2582   case Instruction::LShr:
2583   case Instruction::AShr:
2584     Assert(B.getType()->isIntOrIntVectorTy(),
2585            "Shifts only work with integral types!", &B);
2586     Assert(B.getType() == B.getOperand(0)->getType(),
2587            "Shift return type must be same as operands!", &B);
2588     break;
2589   default:
2590     llvm_unreachable("Unknown BinaryOperator opcode!");
2591   }
2592
2593   visitInstruction(B);
2594 }
2595
2596 void Verifier::visitICmpInst(ICmpInst &IC) {
2597   // Check that the operands are the same type
2598   Type *Op0Ty = IC.getOperand(0)->getType();
2599   Type *Op1Ty = IC.getOperand(1)->getType();
2600   Assert(Op0Ty == Op1Ty,
2601          "Both operands to ICmp instruction are not of the same type!", &IC);
2602   // Check that the operands are the right type
2603   Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
2604          "Invalid operand types for ICmp instruction", &IC);
2605   // Check that the predicate is valid.
2606   Assert(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
2607              IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
2608          "Invalid predicate in ICmp instruction!", &IC);
2609
2610   visitInstruction(IC);
2611 }
2612
2613 void Verifier::visitFCmpInst(FCmpInst &FC) {
2614   // Check that the operands are the same type
2615   Type *Op0Ty = FC.getOperand(0)->getType();
2616   Type *Op1Ty = FC.getOperand(1)->getType();
2617   Assert(Op0Ty == Op1Ty,
2618          "Both operands to FCmp instruction are not of the same type!", &FC);
2619   // Check that the operands are the right type
2620   Assert(Op0Ty->isFPOrFPVectorTy(),
2621          "Invalid operand types for FCmp instruction", &FC);
2622   // Check that the predicate is valid.
2623   Assert(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
2624              FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
2625          "Invalid predicate in FCmp instruction!", &FC);
2626
2627   visitInstruction(FC);
2628 }
2629
2630 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
2631   Assert(
2632       ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
2633       "Invalid extractelement operands!", &EI);
2634   visitInstruction(EI);
2635 }
2636
2637 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
2638   Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
2639                                             IE.getOperand(2)),
2640          "Invalid insertelement operands!", &IE);
2641   visitInstruction(IE);
2642 }
2643
2644 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
2645   Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
2646                                             SV.getOperand(2)),
2647          "Invalid shufflevector operands!", &SV);
2648   visitInstruction(SV);
2649 }
2650
2651 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
2652   Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
2653
2654   Assert(isa<PointerType>(TargetTy),
2655          "GEP base pointer is not a vector or a vector of pointers", &GEP);
2656   Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
2657   SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
2658   Type *ElTy =
2659       GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
2660   Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
2661
2662   Assert(GEP.getType()->getScalarType()->isPointerTy() &&
2663              GEP.getResultElementType() == ElTy,
2664          "GEP is not of right type for indices!", &GEP, ElTy);
2665
2666   if (GEP.getType()->isVectorTy()) {
2667     // Additional checks for vector GEPs.
2668     unsigned GEPWidth = GEP.getType()->getVectorNumElements();
2669     if (GEP.getPointerOperandType()->isVectorTy())
2670       Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
2671              "Vector GEP result width doesn't match operand's", &GEP);
2672     for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
2673       Type *IndexTy = Idxs[i]->getType();
2674       if (IndexTy->isVectorTy()) {
2675         unsigned IndexWidth = IndexTy->getVectorNumElements();
2676         Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
2677       }
2678       Assert(IndexTy->getScalarType()->isIntegerTy(),
2679              "All GEP indices should be of integer type");
2680     }
2681   }
2682   visitInstruction(GEP);
2683 }
2684
2685 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
2686   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
2687 }
2688
2689 void Verifier::visitRangeMetadata(Instruction& I,
2690                                   MDNode* Range, Type* Ty) {
2691   assert(Range &&
2692          Range == I.getMetadata(LLVMContext::MD_range) &&
2693          "precondition violation");
2694
2695   unsigned NumOperands = Range->getNumOperands();
2696   Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
2697   unsigned NumRanges = NumOperands / 2;
2698   Assert(NumRanges >= 1, "It should have at least one range!", Range);
2699
2700   ConstantRange LastRange(1); // Dummy initial value
2701   for (unsigned i = 0; i < NumRanges; ++i) {
2702     ConstantInt *Low =
2703         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
2704     Assert(Low, "The lower limit must be an integer!", Low);
2705     ConstantInt *High =
2706         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
2707     Assert(High, "The upper limit must be an integer!", High);
2708     Assert(High->getType() == Low->getType() && High->getType() == Ty,
2709            "Range types must match instruction type!", &I);
2710
2711     APInt HighV = High->getValue();
2712     APInt LowV = Low->getValue();
2713     ConstantRange CurRange(LowV, HighV);
2714     Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
2715            "Range must not be empty!", Range);
2716     if (i != 0) {
2717       Assert(CurRange.intersectWith(LastRange).isEmptySet(),
2718              "Intervals are overlapping", Range);
2719       Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
2720              Range);
2721       Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
2722              Range);
2723     }
2724     LastRange = ConstantRange(LowV, HighV);
2725   }
2726   if (NumRanges > 2) {
2727     APInt FirstLow =
2728         mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
2729     APInt FirstHigh =
2730         mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
2731     ConstantRange FirstRange(FirstLow, FirstHigh);
2732     Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
2733            "Intervals are overlapping", Range);
2734     Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
2735            Range);
2736   }
2737 }
2738
2739 void Verifier::checkAtomicMemAccessSize(const Module *M, Type *Ty,
2740                                         const Instruction *I) {
2741   unsigned Size = M->getDataLayout().getTypeSizeInBits(Ty);
2742   Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
2743   Assert(!(Size & (Size - 1)),
2744          "atomic memory access' operand must have a power-of-two size", Ty, I);
2745 }
2746
2747 void Verifier::visitLoadInst(LoadInst &LI) {
2748   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
2749   Assert(PTy, "Load operand must be a pointer.", &LI);
2750   Type *ElTy = LI.getType();
2751   Assert(LI.getAlignment() <= Value::MaximumAlignment,
2752          "huge alignment values are unsupported", &LI);
2753   if (LI.isAtomic()) {
2754     Assert(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
2755            "Load cannot have Release ordering", &LI);
2756     Assert(LI.getAlignment() != 0,
2757            "Atomic load must specify explicit alignment", &LI);
2758     Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
2759                ElTy->isFloatingPointTy(),
2760            "atomic load operand must have integer, pointer, or floating point "
2761            "type!",
2762            ElTy, &LI);
2763     checkAtomicMemAccessSize(M, ElTy, &LI);
2764   } else {
2765     Assert(LI.getSynchScope() == CrossThread,
2766            "Non-atomic load cannot have SynchronizationScope specified", &LI);
2767   }
2768
2769   visitInstruction(LI);
2770 }
2771
2772 void Verifier::visitStoreInst(StoreInst &SI) {
2773   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
2774   Assert(PTy, "Store operand must be a pointer.", &SI);
2775   Type *ElTy = PTy->getElementType();
2776   Assert(ElTy == SI.getOperand(0)->getType(),
2777          "Stored value type does not match pointer operand type!", &SI, ElTy);
2778   Assert(SI.getAlignment() <= Value::MaximumAlignment,
2779          "huge alignment values are unsupported", &SI);
2780   if (SI.isAtomic()) {
2781     Assert(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
2782            "Store cannot have Acquire ordering", &SI);
2783     Assert(SI.getAlignment() != 0,
2784            "Atomic store must specify explicit alignment", &SI);
2785     Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
2786                ElTy->isFloatingPointTy(),
2787            "atomic store operand must have integer, pointer, or floating point "
2788            "type!",
2789            ElTy, &SI);
2790     checkAtomicMemAccessSize(M, ElTy, &SI);
2791   } else {
2792     Assert(SI.getSynchScope() == CrossThread,
2793            "Non-atomic store cannot have SynchronizationScope specified", &SI);
2794   }
2795   visitInstruction(SI);
2796 }
2797
2798 void Verifier::visitAllocaInst(AllocaInst &AI) {
2799   SmallPtrSet<Type*, 4> Visited;
2800   PointerType *PTy = AI.getType();
2801   Assert(PTy->getAddressSpace() == 0,
2802          "Allocation instruction pointer not in the generic address space!",
2803          &AI);
2804   Assert(AI.getAllocatedType()->isSized(&Visited),
2805          "Cannot allocate unsized type", &AI);
2806   Assert(AI.getArraySize()->getType()->isIntegerTy(),
2807          "Alloca array size must have integer type", &AI);
2808   Assert(AI.getAlignment() <= Value::MaximumAlignment,
2809          "huge alignment values are unsupported", &AI);
2810
2811   visitInstruction(AI);
2812 }
2813
2814 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
2815
2816   // FIXME: more conditions???
2817   Assert(CXI.getSuccessOrdering() != NotAtomic,
2818          "cmpxchg instructions must be atomic.", &CXI);
2819   Assert(CXI.getFailureOrdering() != NotAtomic,
2820          "cmpxchg instructions must be atomic.", &CXI);
2821   Assert(CXI.getSuccessOrdering() != Unordered,
2822          "cmpxchg instructions cannot be unordered.", &CXI);
2823   Assert(CXI.getFailureOrdering() != Unordered,
2824          "cmpxchg instructions cannot be unordered.", &CXI);
2825   Assert(CXI.getSuccessOrdering() >= CXI.getFailureOrdering(),
2826          "cmpxchg instructions be at least as constrained on success as fail",
2827          &CXI);
2828   Assert(CXI.getFailureOrdering() != Release &&
2829              CXI.getFailureOrdering() != AcquireRelease,
2830          "cmpxchg failure ordering cannot include release semantics", &CXI);
2831
2832   PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
2833   Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
2834   Type *ElTy = PTy->getElementType();
2835   Assert(ElTy->isIntegerTy(), "cmpxchg operand must have integer type!", &CXI,
2836          ElTy);
2837   checkAtomicMemAccessSize(M, ElTy, &CXI);
2838   Assert(ElTy == CXI.getOperand(1)->getType(),
2839          "Expected value type does not match pointer operand type!", &CXI,
2840          ElTy);
2841   Assert(ElTy == CXI.getOperand(2)->getType(),
2842          "Stored value type does not match pointer operand type!", &CXI, ElTy);
2843   visitInstruction(CXI);
2844 }
2845
2846 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
2847   Assert(RMWI.getOrdering() != NotAtomic,
2848          "atomicrmw instructions must be atomic.", &RMWI);
2849   Assert(RMWI.getOrdering() != Unordered,
2850          "atomicrmw instructions cannot be unordered.", &RMWI);
2851   PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
2852   Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
2853   Type *ElTy = PTy->getElementType();
2854   Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",
2855          &RMWI, ElTy);
2856   checkAtomicMemAccessSize(M, ElTy, &RMWI);
2857   Assert(ElTy == RMWI.getOperand(1)->getType(),
2858          "Argument value type does not match pointer operand type!", &RMWI,
2859          ElTy);
2860   Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
2861              RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
2862          "Invalid binary operation!", &RMWI);
2863   visitInstruction(RMWI);
2864 }
2865
2866 void Verifier::visitFenceInst(FenceInst &FI) {
2867   const AtomicOrdering Ordering = FI.getOrdering();
2868   Assert(Ordering == Acquire || Ordering == Release ||
2869              Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
2870          "fence instructions may only have "
2871          "acquire, release, acq_rel, or seq_cst ordering.",
2872          &FI);
2873   visitInstruction(FI);
2874 }
2875
2876 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
2877   Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
2878                                           EVI.getIndices()) == EVI.getType(),
2879          "Invalid ExtractValueInst operands!", &EVI);
2880
2881   visitInstruction(EVI);
2882 }
2883
2884 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
2885   Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
2886                                           IVI.getIndices()) ==
2887              IVI.getOperand(1)->getType(),
2888          "Invalid InsertValueInst operands!", &IVI);
2889
2890   visitInstruction(IVI);
2891 }
2892
2893 void Verifier::visitEHPadPredecessors(Instruction &I) {
2894   assert(I.isEHPad());
2895
2896   BasicBlock *BB = I.getParent();
2897   Function *F = BB->getParent();
2898
2899   Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
2900
2901   if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
2902     // The landingpad instruction defines its parent as a landing pad block. The
2903     // landing pad block may be branched to only by the unwind edge of an
2904     // invoke.
2905     for (BasicBlock *PredBB : predecessors(BB)) {
2906       const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
2907       Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
2908              "Block containing LandingPadInst must be jumped to "
2909              "only by the unwind edge of an invoke.",
2910              LPI);
2911     }
2912     return;
2913   }
2914   if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
2915     if (!pred_empty(BB))
2916       Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
2917              "Block containg CatchPadInst must be jumped to "
2918              "only by its catchswitch.",
2919              CPI);
2920     return;
2921   }
2922
2923   for (BasicBlock *PredBB : predecessors(BB)) {
2924     TerminatorInst *TI = PredBB->getTerminator();
2925     if (auto *II = dyn_cast<InvokeInst>(TI)) {
2926       Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
2927              "EH pad must be jumped to via an unwind edge", &I, II);
2928     } else if (!isa<CleanupReturnInst>(TI) && !isa<CatchSwitchInst>(TI)) {
2929       Assert(false, "EH pad must be jumped to via an unwind edge", &I, TI);
2930     }
2931   }
2932 }
2933
2934 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
2935   // The landingpad instruction is ill-formed if it doesn't have any clauses and
2936   // isn't a cleanup.
2937   Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
2938          "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
2939
2940   visitEHPadPredecessors(LPI);
2941
2942   if (!LandingPadResultTy)
2943     LandingPadResultTy = LPI.getType();
2944   else
2945     Assert(LandingPadResultTy == LPI.getType(),
2946            "The landingpad instruction should have a consistent result type "
2947            "inside a function.",
2948            &LPI);
2949
2950   Function *F = LPI.getParent()->getParent();
2951   Assert(F->hasPersonalityFn(),
2952          "LandingPadInst needs to be in a function with a personality.", &LPI);
2953
2954   // The landingpad instruction must be the first non-PHI instruction in the
2955   // block.
2956   Assert(LPI.getParent()->getLandingPadInst() == &LPI,
2957          "LandingPadInst not the first non-PHI instruction in the block.",
2958          &LPI);
2959
2960   for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
2961     Constant *Clause = LPI.getClause(i);
2962     if (LPI.isCatch(i)) {
2963       Assert(isa<PointerType>(Clause->getType()),
2964              "Catch operand does not have pointer type!", &LPI);
2965     } else {
2966       Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
2967       Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
2968              "Filter operand is not an array of constants!", &LPI);
2969     }
2970   }
2971
2972   visitInstruction(LPI);
2973 }
2974
2975 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
2976   visitEHPadPredecessors(CPI);
2977
2978   BasicBlock *BB = CPI.getParent();
2979
2980   Function *F = BB->getParent();
2981   Assert(F->hasPersonalityFn(),
2982          "CatchPadInst needs to be in a function with a personality.", &CPI);
2983
2984   Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
2985          "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
2986          CPI.getParentPad());
2987
2988   // The catchpad instruction must be the first non-PHI instruction in the
2989   // block.
2990   Assert(BB->getFirstNonPHI() == &CPI,
2991          "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
2992
2993   visitInstruction(CPI);
2994 }
2995
2996 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
2997   Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
2998          "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
2999          CatchReturn.getOperand(0));
3000
3001   visitTerminatorInst(CatchReturn);
3002 }
3003
3004 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3005   visitEHPadPredecessors(CPI);
3006
3007   BasicBlock *BB = CPI.getParent();
3008
3009   Function *F = BB->getParent();
3010   Assert(F->hasPersonalityFn(),
3011          "CleanupPadInst needs to be in a function with a personality.", &CPI);
3012
3013   // The cleanuppad instruction must be the first non-PHI instruction in the
3014   // block.
3015   Assert(BB->getFirstNonPHI() == &CPI,
3016          "CleanupPadInst not the first non-PHI instruction in the block.",
3017          &CPI);
3018
3019   auto *ParentPad = CPI.getParentPad();
3020   Assert(isa<CatchSwitchInst>(ParentPad) || isa<ConstantTokenNone>(ParentPad) ||
3021              isa<CleanupPadInst>(ParentPad) || isa<CatchPadInst>(ParentPad),
3022          "CleanupPadInst has an invalid parent.", &CPI);
3023
3024   User *FirstUser = nullptr;
3025   BasicBlock *FirstUnwindDest = nullptr;
3026   for (User *U : CPI.users()) {
3027     BasicBlock *UnwindDest;
3028     if (CleanupReturnInst *CRI = dyn_cast<CleanupReturnInst>(U)) {
3029       UnwindDest = CRI->getUnwindDest();
3030     } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
3031       continue;
3032     } else if (CallSite(U)) {
3033       continue;
3034     } else {
3035       Assert(false, "bogus cleanuppad use", &CPI);
3036     }
3037
3038     if (!FirstUser) {
3039       FirstUser = U;
3040       FirstUnwindDest = UnwindDest;
3041     } else {
3042       Assert(
3043           UnwindDest == FirstUnwindDest,
3044           "cleanupret instructions from the same cleanuppad must have the same "
3045           "unwind destination",
3046           FirstUser, U);
3047     }
3048   }
3049
3050   visitInstruction(CPI);
3051 }
3052
3053 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3054   visitEHPadPredecessors(CatchSwitch);
3055
3056   BasicBlock *BB = CatchSwitch.getParent();
3057
3058   Function *F = BB->getParent();
3059   Assert(F->hasPersonalityFn(),
3060          "CatchSwitchInst needs to be in a function with a personality.",
3061          &CatchSwitch);
3062
3063   // The catchswitch instruction must be the first non-PHI instruction in the
3064   // block.
3065   Assert(BB->getFirstNonPHI() == &CatchSwitch,
3066          "CatchSwitchInst not the first non-PHI instruction in the block.",
3067          &CatchSwitch);
3068
3069   if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3070     Instruction *I = UnwindDest->getFirstNonPHI();
3071     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3072            "CatchSwitchInst must unwind to an EH block which is not a "
3073            "landingpad.",
3074            &CatchSwitch);
3075   }
3076
3077   auto *ParentPad = CatchSwitch.getParentPad();
3078   Assert(isa<CatchSwitchInst>(ParentPad) || isa<ConstantTokenNone>(ParentPad) ||
3079              isa<CleanupPadInst>(ParentPad) || isa<CatchPadInst>(ParentPad),
3080          "CatchSwitchInst has an invalid parent.", ParentPad);
3081
3082   visitTerminatorInst(CatchSwitch);
3083 }
3084
3085 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3086   Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
3087          "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
3088          CRI.getOperand(0));
3089
3090   if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3091     Instruction *I = UnwindDest->getFirstNonPHI();
3092     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3093            "CleanupReturnInst must unwind to an EH block which is not a "
3094            "landingpad.",
3095            &CRI);
3096   }
3097
3098   visitTerminatorInst(CRI);
3099 }
3100
3101 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3102   Instruction *Op = cast<Instruction>(I.getOperand(i));
3103   // If the we have an invalid invoke, don't try to compute the dominance.
3104   // We already reject it in the invoke specific checks and the dominance
3105   // computation doesn't handle multiple edges.
3106   if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3107     if (II->getNormalDest() == II->getUnwindDest())
3108       return;
3109   }
3110
3111   const Use &U = I.getOperandUse(i);
3112   Assert(InstsInThisBlock.count(Op) || DT.dominates(Op, U),
3113          "Instruction does not dominate all uses!", Op, &I);
3114 }
3115
3116 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
3117   Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
3118          "apply only to pointer types", &I);
3119   Assert(isa<LoadInst>(I),
3120          "dereferenceable, dereferenceable_or_null apply only to load"
3121          " instructions, use attributes for calls or invokes", &I);
3122   Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
3123          "take one operand!", &I);
3124   ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
3125   Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
3126          "dereferenceable_or_null metadata value must be an i64!", &I);
3127 }
3128
3129 /// verifyInstruction - Verify that an instruction is well formed.
3130 ///
3131 void Verifier::visitInstruction(Instruction &I) {
3132   BasicBlock *BB = I.getParent();
3133   Assert(BB, "Instruction not embedded in basic block!", &I);
3134
3135   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
3136     for (User *U : I.users()) {
3137       Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
3138              "Only PHI nodes may reference their own value!", &I);
3139     }
3140   }
3141
3142   // Check that void typed values don't have names
3143   Assert(!I.getType()->isVoidTy() || !I.hasName(),
3144          "Instruction has a name, but provides a void value!", &I);
3145
3146   // Check that the return value of the instruction is either void or a legal
3147   // value type.
3148   Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
3149          "Instruction returns a non-scalar type!", &I);
3150
3151   // Check that the instruction doesn't produce metadata. Calls are already
3152   // checked against the callee type.
3153   Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
3154          "Invalid use of metadata!", &I);
3155
3156   // Check that all uses of the instruction, if they are instructions
3157   // themselves, actually have parent basic blocks.  If the use is not an
3158   // instruction, it is an error!
3159   for (Use &U : I.uses()) {
3160     if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
3161       Assert(Used->getParent() != nullptr,
3162              "Instruction referencing"
3163              " instruction not embedded in a basic block!",
3164              &I, Used);
3165     else {
3166       CheckFailed("Use of instruction is not an instruction!", U);
3167       return;
3168     }
3169   }
3170
3171   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
3172     Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
3173
3174     // Check to make sure that only first-class-values are operands to
3175     // instructions.
3176     if (!I.getOperand(i)->getType()->isFirstClassType()) {
3177       Assert(0, "Instruction operands must be first-class values!", &I);
3178     }
3179
3180     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
3181       // Check to make sure that the "address of" an intrinsic function is never
3182       // taken.
3183       Assert(
3184           !F->isIntrinsic() ||
3185               i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),
3186           "Cannot take the address of an intrinsic!", &I);
3187       Assert(
3188           !F->isIntrinsic() || isa<CallInst>(I) ||
3189               F->getIntrinsicID() == Intrinsic::donothing ||
3190               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
3191               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
3192               F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,
3193           "Cannot invoke an intrinsinc other than"
3194           " donothing or patchpoint",
3195           &I);
3196       Assert(F->getParent() == M, "Referencing function in another module!",
3197              &I, M, F, F->getParent());
3198     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
3199       Assert(OpBB->getParent() == BB->getParent(),
3200              "Referring to a basic block in another function!", &I);
3201     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
3202       Assert(OpArg->getParent() == BB->getParent(),
3203              "Referring to an argument in another function!", &I);
3204     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
3205       Assert(GV->getParent() == M, "Referencing global in another module!", &I, M, GV, GV->getParent());
3206     } else if (isa<Instruction>(I.getOperand(i))) {
3207       verifyDominatesUse(I, i);
3208     } else if (isa<InlineAsm>(I.getOperand(i))) {
3209       Assert((i + 1 == e && isa<CallInst>(I)) ||
3210                  (i + 3 == e && isa<InvokeInst>(I)),
3211              "Cannot take the address of an inline asm!", &I);
3212     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
3213       if (CE->getType()->isPtrOrPtrVectorTy()) {
3214         // If we have a ConstantExpr pointer, we need to see if it came from an
3215         // illegal bitcast (inttoptr <constant int> )
3216         visitConstantExprsRecursively(CE);
3217       }
3218     }
3219   }
3220
3221   if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
3222     Assert(I.getType()->isFPOrFPVectorTy(),
3223            "fpmath requires a floating point result!", &I);
3224     Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
3225     if (ConstantFP *CFP0 =
3226             mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
3227       APFloat Accuracy = CFP0->getValueAPF();
3228       Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
3229              "fpmath accuracy not a positive number!", &I);
3230     } else {
3231       Assert(false, "invalid fpmath accuracy!", &I);
3232     }
3233   }
3234
3235   if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
3236     Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
3237            "Ranges are only for loads, calls and invokes!", &I);
3238     visitRangeMetadata(I, Range, I.getType());
3239   }
3240
3241   if (I.getMetadata(LLVMContext::MD_nonnull)) {
3242     Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
3243            &I);
3244     Assert(isa<LoadInst>(I),
3245            "nonnull applies only to load instructions, use attributes"
3246            " for calls or invokes",
3247            &I);
3248   }
3249
3250   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
3251     visitDereferenceableMetadata(I, MD);
3252
3253   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
3254     visitDereferenceableMetadata(I, MD);
3255
3256   if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
3257     Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
3258            &I);
3259     Assert(isa<LoadInst>(I), "align applies only to load instructions, "
3260            "use attributes for calls or invokes", &I);
3261     Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
3262     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
3263     Assert(CI && CI->getType()->isIntegerTy(64),
3264            "align metadata value must be an i64!", &I);
3265     uint64_t Align = CI->getZExtValue();
3266     Assert(isPowerOf2_64(Align),
3267            "align metadata value must be a power of 2!", &I);
3268     Assert(Align <= Value::MaximumAlignment,
3269            "alignment is larger that implementation defined limit", &I);
3270   }
3271
3272   if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
3273     Assert(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
3274     visitMDNode(*N);
3275   }
3276
3277   InstsInThisBlock.insert(&I);
3278 }
3279
3280 /// VerifyIntrinsicType - Verify that the specified type (which comes from an
3281 /// intrinsic argument or return value) matches the type constraints specified
3282 /// by the .td file (e.g. an "any integer" argument really is an integer).
3283 ///
3284 /// This return true on error but does not print a message.
3285 bool Verifier::VerifyIntrinsicType(Type *Ty,
3286                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
3287                                    SmallVectorImpl<Type*> &ArgTys) {
3288   using namespace Intrinsic;
3289
3290   // If we ran out of descriptors, there are too many arguments.
3291   if (Infos.empty()) return true;
3292   IITDescriptor D = Infos.front();
3293   Infos = Infos.slice(1);
3294
3295   switch (D.Kind) {
3296   case IITDescriptor::Void: return !Ty->isVoidTy();
3297   case IITDescriptor::VarArg: return true;
3298   case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
3299   case IITDescriptor::Token: return !Ty->isTokenTy();
3300   case IITDescriptor::Metadata: return !Ty->isMetadataTy();
3301   case IITDescriptor::Half: return !Ty->isHalfTy();
3302   case IITDescriptor::Float: return !Ty->isFloatTy();
3303   case IITDescriptor::Double: return !Ty->isDoubleTy();
3304   case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
3305   case IITDescriptor::Vector: {
3306     VectorType *VT = dyn_cast<VectorType>(Ty);
3307     return !VT || VT->getNumElements() != D.Vector_Width ||
3308            VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys);
3309   }
3310   case IITDescriptor::Pointer: {
3311     PointerType *PT = dyn_cast<PointerType>(Ty);
3312     return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
3313            VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys);
3314   }
3315
3316   case IITDescriptor::Struct: {
3317     StructType *ST = dyn_cast<StructType>(Ty);
3318     if (!ST || ST->getNumElements() != D.Struct_NumElements)
3319       return true;
3320
3321     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
3322       if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys))
3323         return true;
3324     return false;
3325   }
3326
3327   case IITDescriptor::Argument:
3328     // Two cases here - If this is the second occurrence of an argument, verify
3329     // that the later instance matches the previous instance.
3330     if (D.getArgumentNumber() < ArgTys.size())
3331       return Ty != ArgTys[D.getArgumentNumber()];
3332
3333     // Otherwise, if this is the first instance of an argument, record it and
3334     // verify the "Any" kind.
3335     assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
3336     ArgTys.push_back(Ty);
3337
3338     switch (D.getArgumentKind()) {
3339     case IITDescriptor::AK_Any:        return false; // Success
3340     case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
3341     case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
3342     case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
3343     case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
3344     }
3345     llvm_unreachable("all argument kinds not covered");
3346
3347   case IITDescriptor::ExtendArgument: {
3348     // This may only be used when referring to a previous vector argument.
3349     if (D.getArgumentNumber() >= ArgTys.size())
3350       return true;
3351
3352     Type *NewTy = ArgTys[D.getArgumentNumber()];
3353     if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
3354       NewTy = VectorType::getExtendedElementVectorType(VTy);
3355     else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
3356       NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
3357     else
3358       return true;
3359
3360     return Ty != NewTy;
3361   }
3362   case IITDescriptor::TruncArgument: {
3363     // This may only be used when referring to a previous vector argument.
3364     if (D.getArgumentNumber() >= ArgTys.size())
3365       return true;
3366
3367     Type *NewTy = ArgTys[D.getArgumentNumber()];
3368     if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
3369       NewTy = VectorType::getTruncatedElementVectorType(VTy);
3370     else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
3371       NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
3372     else
3373       return true;
3374
3375     return Ty != NewTy;
3376   }
3377   case IITDescriptor::HalfVecArgument:
3378     // This may only be used when referring to a previous vector argument.
3379     return D.getArgumentNumber() >= ArgTys.size() ||
3380            !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
3381            VectorType::getHalfElementsVectorType(
3382                          cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
3383   case IITDescriptor::SameVecWidthArgument: {
3384     if (D.getArgumentNumber() >= ArgTys.size())
3385       return true;
3386     VectorType * ReferenceType =
3387       dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
3388     VectorType *ThisArgType = dyn_cast<VectorType>(Ty);
3389     if (!ThisArgType || !ReferenceType || 
3390         (ReferenceType->getVectorNumElements() !=
3391          ThisArgType->getVectorNumElements()))
3392       return true;
3393     return VerifyIntrinsicType(ThisArgType->getVectorElementType(),
3394                                Infos, ArgTys);
3395   }
3396   case IITDescriptor::PtrToArgument: {
3397     if (D.getArgumentNumber() >= ArgTys.size())
3398       return true;
3399     Type * ReferenceType = ArgTys[D.getArgumentNumber()];
3400     PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
3401     return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
3402   }
3403   case IITDescriptor::VecOfPtrsToElt: {
3404     if (D.getArgumentNumber() >= ArgTys.size())
3405       return true;
3406     VectorType * ReferenceType =
3407       dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
3408     VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
3409     if (!ThisArgVecTy || !ReferenceType || 
3410         (ReferenceType->getVectorNumElements() !=
3411          ThisArgVecTy->getVectorNumElements()))
3412       return true;
3413     PointerType *ThisArgEltTy =
3414       dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
3415     if (!ThisArgEltTy)
3416       return true;
3417     return ThisArgEltTy->getElementType() !=
3418            ReferenceType->getVectorElementType();
3419   }
3420   }
3421   llvm_unreachable("unhandled");
3422 }
3423
3424 /// \brief Verify if the intrinsic has variable arguments.
3425 /// This method is intended to be called after all the fixed arguments have been
3426 /// verified first.
3427 ///
3428 /// This method returns true on error and does not print an error message.
3429 bool
3430 Verifier::VerifyIntrinsicIsVarArg(bool isVarArg,
3431                                   ArrayRef<Intrinsic::IITDescriptor> &Infos) {
3432   using namespace Intrinsic;
3433
3434   // If there are no descriptors left, then it can't be a vararg.
3435   if (Infos.empty())
3436     return isVarArg;
3437
3438   // There should be only one descriptor remaining at this point.
3439   if (Infos.size() != 1)
3440     return true;
3441
3442   // Check and verify the descriptor.
3443   IITDescriptor D = Infos.front();
3444   Infos = Infos.slice(1);
3445   if (D.Kind == IITDescriptor::VarArg)
3446     return !isVarArg;
3447
3448   return true;
3449 }
3450
3451 /// Allow intrinsics to be verified in different ways.
3452 void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
3453   Function *IF = CS.getCalledFunction();
3454   Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
3455          IF);
3456
3457   // Verify that the intrinsic prototype lines up with what the .td files
3458   // describe.
3459   FunctionType *IFTy = IF->getFunctionType();
3460   bool IsVarArg = IFTy->isVarArg();
3461
3462   SmallVector<Intrinsic::IITDescriptor, 8> Table;
3463   getIntrinsicInfoTableEntries(ID, Table);
3464   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
3465
3466   SmallVector<Type *, 4> ArgTys;
3467   Assert(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),
3468          "Intrinsic has incorrect return type!", IF);
3469   for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
3470     Assert(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),
3471            "Intrinsic has incorrect argument type!", IF);
3472
3473   // Verify if the intrinsic call matches the vararg property.
3474   if (IsVarArg)
3475     Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
3476            "Intrinsic was not defined with variable arguments!", IF);
3477   else
3478     Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
3479            "Callsite was not defined with variable arguments!", IF);
3480
3481   // All descriptors should be absorbed by now.
3482   Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
3483
3484   // Now that we have the intrinsic ID and the actual argument types (and we
3485   // know they are legal for the intrinsic!) get the intrinsic name through the
3486   // usual means.  This allows us to verify the mangling of argument types into
3487   // the name.
3488   const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
3489   Assert(ExpectedName == IF->getName(),
3490          "Intrinsic name not mangled correctly for type arguments! "
3491          "Should be: " +
3492              ExpectedName,
3493          IF);
3494
3495   // If the intrinsic takes MDNode arguments, verify that they are either global
3496   // or are local to *this* function.
3497   for (Value *V : CS.args()) 
3498     if (auto *MD = dyn_cast<MetadataAsValue>(V))
3499       visitMetadataAsValue(*MD, CS.getCaller());
3500
3501   switch (ID) {
3502   default:
3503     break;
3504   case Intrinsic::ctlz:  // llvm.ctlz
3505   case Intrinsic::cttz:  // llvm.cttz
3506     Assert(isa<ConstantInt>(CS.getArgOperand(1)),
3507            "is_zero_undef argument of bit counting intrinsics must be a "
3508            "constant int",
3509            CS);
3510     break;
3511   case Intrinsic::dbg_declare: // llvm.dbg.declare
3512     Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),
3513            "invalid llvm.dbg.declare intrinsic call 1", CS);
3514     visitDbgIntrinsic("declare", cast<DbgDeclareInst>(*CS.getInstruction()));
3515     break;
3516   case Intrinsic::dbg_value: // llvm.dbg.value
3517     visitDbgIntrinsic("value", cast<DbgValueInst>(*CS.getInstruction()));
3518     break;
3519   case Intrinsic::memcpy:
3520   case Intrinsic::memmove:
3521   case Intrinsic::memset: {
3522     ConstantInt *AlignCI = dyn_cast<ConstantInt>(CS.getArgOperand(3));
3523     Assert(AlignCI,
3524            "alignment argument of memory intrinsics must be a constant int",
3525            CS);
3526     const APInt &AlignVal = AlignCI->getValue();
3527     Assert(AlignCI->isZero() || AlignVal.isPowerOf2(),
3528            "alignment argument of memory intrinsics must be a power of 2", CS);
3529     Assert(isa<ConstantInt>(CS.getArgOperand(4)),
3530            "isvolatile argument of memory intrinsics must be a constant int",
3531            CS);
3532     break;
3533   }
3534   case Intrinsic::gcroot:
3535   case Intrinsic::gcwrite:
3536   case Intrinsic::gcread:
3537     if (ID == Intrinsic::gcroot) {
3538       AllocaInst *AI =
3539         dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts());
3540       Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS);
3541       Assert(isa<Constant>(CS.getArgOperand(1)),
3542              "llvm.gcroot parameter #2 must be a constant.", CS);
3543       if (!AI->getAllocatedType()->isPointerTy()) {
3544         Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),
3545                "llvm.gcroot parameter #1 must either be a pointer alloca, "
3546                "or argument #2 must be a non-null constant.",
3547                CS);
3548       }
3549     }
3550
3551     Assert(CS.getParent()->getParent()->hasGC(),
3552            "Enclosing function does not use GC.", CS);
3553     break;
3554   case Intrinsic::init_trampoline:
3555     Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),
3556            "llvm.init_trampoline parameter #2 must resolve to a function.",
3557            CS);
3558     break;
3559   case Intrinsic::prefetch:
3560     Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&
3561                isa<ConstantInt>(CS.getArgOperand(2)) &&
3562                cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&
3563                cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,
3564            "invalid arguments to llvm.prefetch", CS);
3565     break;
3566   case Intrinsic::stackprotector:
3567     Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),
3568            "llvm.stackprotector parameter #2 must resolve to an alloca.", CS);
3569     break;
3570   case Intrinsic::lifetime_start:
3571   case Intrinsic::lifetime_end:
3572   case Intrinsic::invariant_start:
3573     Assert(isa<ConstantInt>(CS.getArgOperand(0)),
3574            "size argument of memory use markers must be a constant integer",
3575            CS);
3576     break;
3577   case Intrinsic::invariant_end:
3578     Assert(isa<ConstantInt>(CS.getArgOperand(1)),
3579            "llvm.invariant.end parameter #2 must be a constant integer", CS);
3580     break;
3581
3582   case Intrinsic::localescape: {
3583     BasicBlock *BB = CS.getParent();
3584     Assert(BB == &BB->getParent()->front(),
3585            "llvm.localescape used outside of entry block", CS);
3586     Assert(!SawFrameEscape,
3587            "multiple calls to llvm.localescape in one function", CS);
3588     for (Value *Arg : CS.args()) {
3589       if (isa<ConstantPointerNull>(Arg))
3590         continue; // Null values are allowed as placeholders.
3591       auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
3592       Assert(AI && AI->isStaticAlloca(),
3593              "llvm.localescape only accepts static allocas", CS);
3594     }
3595     FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
3596     SawFrameEscape = true;
3597     break;
3598   }
3599   case Intrinsic::localrecover: {
3600     Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
3601     Function *Fn = dyn_cast<Function>(FnArg);
3602     Assert(Fn && !Fn->isDeclaration(),
3603            "llvm.localrecover first "
3604            "argument must be function defined in this module",
3605            CS);
3606     auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
3607     Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",
3608            CS);
3609     auto &Entry = FrameEscapeInfo[Fn];
3610     Entry.second = unsigned(
3611         std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
3612     break;
3613   }
3614
3615   case Intrinsic::experimental_gc_statepoint:
3616     Assert(!CS.isInlineAsm(),
3617            "gc.statepoint support for inline assembly unimplemented", CS);
3618     Assert(CS.getParent()->getParent()->hasGC(),
3619            "Enclosing function does not use GC.", CS);
3620
3621     VerifyStatepoint(CS);
3622     break;
3623   case Intrinsic::experimental_gc_result_int:
3624   case Intrinsic::experimental_gc_result_float:
3625   case Intrinsic::experimental_gc_result_ptr:
3626   case Intrinsic::experimental_gc_result: {
3627     Assert(CS.getParent()->getParent()->hasGC(),
3628            "Enclosing function does not use GC.", CS);
3629     // Are we tied to a statepoint properly?
3630     CallSite StatepointCS(CS.getArgOperand(0));
3631     const Function *StatepointFn =
3632       StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
3633     Assert(StatepointFn && StatepointFn->isDeclaration() &&
3634                StatepointFn->getIntrinsicID() ==
3635                    Intrinsic::experimental_gc_statepoint,
3636            "gc.result operand #1 must be from a statepoint", CS,
3637            CS.getArgOperand(0));
3638
3639     // Assert that result type matches wrapped callee.
3640     const Value *Target = StatepointCS.getArgument(2);
3641     auto *PT = cast<PointerType>(Target->getType());
3642     auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
3643     Assert(CS.getType() == TargetFuncType->getReturnType(),
3644            "gc.result result type does not match wrapped callee", CS);
3645     break;
3646   }
3647   case Intrinsic::experimental_gc_relocate: {
3648     Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS);
3649
3650     // Check that this relocate is correctly tied to the statepoint
3651
3652     // This is case for relocate on the unwinding path of an invoke statepoint
3653     if (ExtractValueInst *ExtractValue =
3654           dyn_cast<ExtractValueInst>(CS.getArgOperand(0))) {
3655       Assert(isa<LandingPadInst>(ExtractValue->getAggregateOperand()),
3656              "gc relocate on unwind path incorrectly linked to the statepoint",
3657              CS);
3658
3659       const BasicBlock *InvokeBB =
3660         ExtractValue->getParent()->getUniquePredecessor();
3661
3662       // Landingpad relocates should have only one predecessor with invoke
3663       // statepoint terminator
3664       Assert(InvokeBB, "safepoints should have unique landingpads",
3665              ExtractValue->getParent());
3666       Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
3667              InvokeBB);
3668       Assert(isStatepoint(InvokeBB->getTerminator()),
3669              "gc relocate should be linked to a statepoint", InvokeBB);
3670     }
3671     else {
3672       // In all other cases relocate should be tied to the statepoint directly.
3673       // This covers relocates on a normal return path of invoke statepoint and
3674       // relocates of a call statepoint
3675       auto Token = CS.getArgOperand(0);
3676       Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
3677              "gc relocate is incorrectly tied to the statepoint", CS, Token);
3678     }
3679
3680     // Verify rest of the relocate arguments
3681
3682     GCRelocateOperands Ops(CS);
3683     ImmutableCallSite StatepointCS(Ops.getStatepoint());
3684
3685     // Both the base and derived must be piped through the safepoint
3686     Value* Base = CS.getArgOperand(1);
3687     Assert(isa<ConstantInt>(Base),
3688            "gc.relocate operand #2 must be integer offset", CS);
3689
3690     Value* Derived = CS.getArgOperand(2);
3691     Assert(isa<ConstantInt>(Derived),
3692            "gc.relocate operand #3 must be integer offset", CS);
3693
3694     const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
3695     const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
3696     // Check the bounds
3697     Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),
3698            "gc.relocate: statepoint base index out of bounds", CS);
3699     Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),
3700            "gc.relocate: statepoint derived index out of bounds", CS);
3701
3702     // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
3703     // section of the statepoint's argument
3704     Assert(StatepointCS.arg_size() > 0,
3705            "gc.statepoint: insufficient arguments");
3706     Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),
3707            "gc.statement: number of call arguments must be constant integer");
3708     const unsigned NumCallArgs =
3709         cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
3710     Assert(StatepointCS.arg_size() > NumCallArgs + 5,
3711            "gc.statepoint: mismatch in number of call arguments");
3712     Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),
3713            "gc.statepoint: number of transition arguments must be "
3714            "a constant integer");
3715     const int NumTransitionArgs =
3716         cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
3717             ->getZExtValue();
3718     const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
3719     Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),
3720            "gc.statepoint: number of deoptimization arguments must be "
3721            "a constant integer");
3722     const int NumDeoptArgs =
3723       cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))->getZExtValue();
3724     const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
3725     const int GCParamArgsEnd = StatepointCS.arg_size();
3726     Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
3727            "gc.relocate: statepoint base index doesn't fall within the "
3728            "'gc parameters' section of the statepoint call",
3729            CS);
3730     Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
3731            "gc.relocate: statepoint derived index doesn't fall within the "
3732            "'gc parameters' section of the statepoint call",
3733            CS);
3734
3735     // Relocated value must be a pointer type, but gc_relocate does not need to return the
3736     // same pointer type as the relocated pointer. It can be casted to the correct type later
3737     // if it's desired. However, they must have the same address space.
3738     GCRelocateOperands Operands(CS);
3739     Assert(Operands.getDerivedPtr()->getType()->isPointerTy(),
3740            "gc.relocate: relocated value must be a gc pointer", CS);
3741
3742     // gc_relocate return type must be a pointer type, and is verified earlier in
3743     // VerifyIntrinsicType().
3744     Assert(cast<PointerType>(CS.getType())->getAddressSpace() ==
3745            cast<PointerType>(Operands.getDerivedPtr()->getType())->getAddressSpace(),
3746            "gc.relocate: relocating a pointer shouldn't change its address space", CS);
3747     break;
3748   }
3749   case Intrinsic::eh_exceptioncode:
3750   case Intrinsic::eh_exceptionpointer: {
3751     Assert(isa<CatchPadInst>(CS.getArgOperand(0)),
3752            "eh.exceptionpointer argument must be a catchpad", CS);
3753     break;
3754   }
3755   };
3756 }
3757
3758 /// \brief Carefully grab the subprogram from a local scope.
3759 ///
3760 /// This carefully grabs the subprogram from a local scope, avoiding the
3761 /// built-in assertions that would typically fire.
3762 static DISubprogram *getSubprogram(Metadata *LocalScope) {
3763   if (!LocalScope)
3764     return nullptr;
3765
3766   if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
3767     return SP;
3768
3769   if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
3770     return getSubprogram(LB->getRawScope());
3771
3772   // Just return null; broken scope chains are checked elsewhere.
3773   assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
3774   return nullptr;
3775 }
3776
3777 template <class DbgIntrinsicTy>
3778 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII) {
3779   auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
3780   Assert(isa<ValueAsMetadata>(MD) ||
3781              (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
3782          "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
3783   Assert(isa<DILocalVariable>(DII.getRawVariable()),
3784          "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
3785          DII.getRawVariable());
3786   Assert(isa<DIExpression>(DII.getRawExpression()),
3787          "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
3788          DII.getRawExpression());
3789
3790   // Ignore broken !dbg attachments; they're checked elsewhere.
3791   if (MDNode *N = DII.getDebugLoc().getAsMDNode())
3792     if (!isa<DILocation>(N))
3793       return;
3794
3795   BasicBlock *BB = DII.getParent();
3796   Function *F = BB ? BB->getParent() : nullptr;
3797
3798   // The scopes for variables and !dbg attachments must agree.
3799   DILocalVariable *Var = DII.getVariable();
3800   DILocation *Loc = DII.getDebugLoc();
3801   Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
3802          &DII, BB, F);
3803
3804   DISubprogram *VarSP = getSubprogram(Var->getRawScope());
3805   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
3806   if (!VarSP || !LocSP)
3807     return; // Broken scope chains are checked elsewhere.
3808
3809   Assert(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
3810                              " variable and !dbg attachment",
3811          &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
3812          Loc->getScope()->getSubprogram());
3813 }
3814
3815 template <class MapTy>
3816 static uint64_t getVariableSize(const DILocalVariable &V, const MapTy &Map) {
3817   // Be careful of broken types (checked elsewhere).
3818   const Metadata *RawType = V.getRawType();
3819   while (RawType) {
3820     // Try to get the size directly.
3821     if (auto *T = dyn_cast<DIType>(RawType))
3822       if (uint64_t Size = T->getSizeInBits())
3823         return Size;
3824
3825     if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
3826       // Look at the base type.
3827       RawType = DT->getRawBaseType();
3828       continue;
3829     }
3830
3831     if (auto *S = dyn_cast<MDString>(RawType)) {
3832       // Don't error on missing types (checked elsewhere).
3833       RawType = Map.lookup(S);
3834       continue;
3835     }
3836
3837     // Missing type or size.
3838     break;
3839   }
3840
3841   // Fail gracefully.
3842   return 0;
3843 }
3844
3845 template <class MapTy>
3846 void Verifier::verifyBitPieceExpression(const DbgInfoIntrinsic &I,
3847                                         const MapTy &TypeRefs) {
3848   DILocalVariable *V;
3849   DIExpression *E;
3850   if (auto *DVI = dyn_cast<DbgValueInst>(&I)) {
3851     V = dyn_cast_or_null<DILocalVariable>(DVI->getRawVariable());
3852     E = dyn_cast_or_null<DIExpression>(DVI->getRawExpression());
3853   } else {
3854     auto *DDI = cast<DbgDeclareInst>(&I);
3855     V = dyn_cast_or_null<DILocalVariable>(DDI->getRawVariable());
3856     E = dyn_cast_or_null<DIExpression>(DDI->getRawExpression());
3857   }
3858
3859   // We don't know whether this intrinsic verified correctly.
3860   if (!V || !E || !E->isValid())
3861     return;
3862
3863   // Nothing to do if this isn't a bit piece expression.
3864   if (!E->isBitPiece())
3865     return;
3866
3867   // The frontend helps out GDB by emitting the members of local anonymous
3868   // unions as artificial local variables with shared storage. When SROA splits
3869   // the storage for artificial local variables that are smaller than the entire
3870   // union, the overhang piece will be outside of the allotted space for the
3871   // variable and this check fails.
3872   // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
3873   if (V->isArtificial())
3874     return;
3875
3876   // If there's no size, the type is broken, but that should be checked
3877   // elsewhere.
3878   uint64_t VarSize = getVariableSize(*V, TypeRefs);
3879   if (!VarSize)
3880     return;
3881
3882   unsigned PieceSize = E->getBitPieceSize();
3883   unsigned PieceOffset = E->getBitPieceOffset();
3884   Assert(PieceSize + PieceOffset <= VarSize,
3885          "piece is larger than or outside of variable", &I, V, E);
3886   Assert(PieceSize != VarSize, "piece covers entire variable", &I, V, E);
3887 }
3888
3889 void Verifier::visitUnresolvedTypeRef(const MDString *S, const MDNode *N) {
3890   // This is in its own function so we get an error for each bad type ref (not
3891   // just the first).
3892   Assert(false, "unresolved type ref", S, N);
3893 }
3894
3895 void Verifier::verifyTypeRefs() {
3896   auto *CUs = M->getNamedMetadata("llvm.dbg.cu");
3897   if (!CUs)
3898     return;
3899
3900   // Visit all the compile units again to map the type references.
3901   SmallDenseMap<const MDString *, const DIType *, 32> TypeRefs;
3902   for (auto *CU : CUs->operands())
3903     if (auto Ts = cast<DICompileUnit>(CU)->getRetainedTypes())
3904       for (DIType *Op : Ts)
3905         if (auto *T = dyn_cast_or_null<DICompositeType>(Op))
3906           if (auto *S = T->getRawIdentifier()) {
3907             UnresolvedTypeRefs.erase(S);
3908             TypeRefs.insert(std::make_pair(S, T));
3909           }
3910
3911   // Verify debug info intrinsic bit piece expressions.  This needs a second
3912   // pass through the intructions, since we haven't built TypeRefs yet when
3913   // verifying functions, and simply queuing the DbgInfoIntrinsics to evaluate
3914   // later/now would queue up some that could be later deleted.
3915   for (const Function &F : *M)
3916     for (const BasicBlock &BB : F)
3917       for (const Instruction &I : BB)
3918         if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
3919           verifyBitPieceExpression(*DII, TypeRefs);
3920
3921   // Return early if all typerefs were resolved.
3922   if (UnresolvedTypeRefs.empty())
3923     return;
3924
3925   // Sort the unresolved references by name so the output is deterministic.
3926   typedef std::pair<const MDString *, const MDNode *> TypeRef;
3927   SmallVector<TypeRef, 32> Unresolved(UnresolvedTypeRefs.begin(),
3928                                       UnresolvedTypeRefs.end());
3929   std::sort(Unresolved.begin(), Unresolved.end(),
3930             [](const TypeRef &LHS, const TypeRef &RHS) {
3931     return LHS.first->getString() < RHS.first->getString();
3932   });
3933
3934   // Visit the unresolved refs (printing out the errors).
3935   for (const TypeRef &TR : Unresolved)
3936     visitUnresolvedTypeRef(TR.first, TR.second);
3937 }
3938
3939 //===----------------------------------------------------------------------===//
3940 //  Implement the public interfaces to this file...
3941 //===----------------------------------------------------------------------===//
3942
3943 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
3944   Function &F = const_cast<Function &>(f);
3945   assert(!F.isDeclaration() && "Cannot verify external functions");
3946
3947   raw_null_ostream NullStr;
3948   Verifier V(OS ? *OS : NullStr);
3949
3950   // Note that this function's return value is inverted from what you would
3951   // expect of a function called "verify".
3952   return !V.verify(F);
3953 }
3954
3955 bool llvm::verifyModule(const Module &M, raw_ostream *OS) {
3956   raw_null_ostream NullStr;
3957   Verifier V(OS ? *OS : NullStr);
3958
3959   bool Broken = false;
3960   for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I)
3961     if (!I->isDeclaration() && !I->isMaterializable())
3962       Broken |= !V.verify(*I);
3963
3964   // Note that this function's return value is inverted from what you would
3965   // expect of a function called "verify".
3966   return !V.verify(M) || Broken;
3967 }
3968
3969 namespace {
3970 struct VerifierLegacyPass : public FunctionPass {
3971   static char ID;
3972
3973   Verifier V;
3974   bool FatalErrors;
3975
3976   VerifierLegacyPass() : FunctionPass(ID), V(dbgs()), FatalErrors(true) {
3977     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
3978   }
3979   explicit VerifierLegacyPass(bool FatalErrors)
3980       : FunctionPass(ID), V(dbgs()), FatalErrors(FatalErrors) {
3981     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
3982   }
3983
3984   bool runOnFunction(Function &F) override {
3985     if (!V.verify(F) && FatalErrors)
3986       report_fatal_error("Broken function found, compilation aborted!");
3987
3988     return false;
3989   }
3990
3991   bool doFinalization(Module &M) override {
3992     if (!V.verify(M) && FatalErrors)
3993       report_fatal_error("Broken module found, compilation aborted!");
3994
3995     return false;
3996   }
3997
3998   void getAnalysisUsage(AnalysisUsage &AU) const override {
3999     AU.setPreservesAll();
4000   }
4001 };
4002 }
4003
4004 char VerifierLegacyPass::ID = 0;
4005 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
4006
4007 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
4008   return new VerifierLegacyPass(FatalErrors);
4009 }
4010
4011 PreservedAnalyses VerifierPass::run(Module &M) {
4012   if (verifyModule(M, &dbgs()) && FatalErrors)
4013     report_fatal_error("Broken module found, compilation aborted!");
4014
4015   return PreservedAnalyses::all();
4016 }
4017
4018 PreservedAnalyses VerifierPass::run(Function &F) {
4019   if (verifyFunction(F, &dbgs()) && FatalErrors)
4020     report_fatal_error("Broken function found, compilation aborted!");
4021
4022   return PreservedAnalyses::all();
4023 }