1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
16 // * Both of a binary operator's parameters are of the same type
17 // * Verify that the indices of mem access instructions match other operands
18 // * Verify that arithmetic and other things are only performed on first-class
19 // types. Verify that shifts & logicals only happen on integrals f.e.
20 // * All of the constants in a switch statement are of the correct type
21 // * The code is in valid SSA form
22 // * It should be illegal to put a label into any other type (like a structure)
23 // or to return one. [except constant arrays!]
24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25 // * PHI nodes must have an entry for each predecessor, with no extras.
26 // * PHI nodes must be the first thing in a basic block, all grouped together
27 // * PHI nodes must have at least one entry
28 // * All basic blocks should only end with terminator insts, not contain them
29 // * The entry node to a function must not have predecessors
30 // * All Instructions must be embedded into a basic block
31 // * Functions cannot take a void-typed parameter
32 // * Verify that a function's argument list agrees with it's declared type.
33 // * It is illegal to specify a name for a void value.
34 // * It is illegal to have a internal global value with no initializer
35 // * It is illegal to have a ret instruction that returns a value that does not
36 // agree with the function return value type.
37 // * Function call argument types match the function prototype
38 // * A landing pad is defined by a landingpad instruction, and can be jumped to
39 // only by the unwind edge of an invoke instruction.
40 // * A landingpad instruction must be the first non-PHI instruction in the
42 // * Landingpad instructions must be in a function with a personality function.
43 // * All other things that are tested by asserts spread about the code...
45 //===----------------------------------------------------------------------===//
47 #include "llvm/IR/Verifier.h"
48 #include "llvm/ADT/MapVector.h"
49 #include "llvm/ADT/STLExtras.h"
50 #include "llvm/ADT/SetVector.h"
51 #include "llvm/ADT/SmallPtrSet.h"
52 #include "llvm/ADT/SmallVector.h"
53 #include "llvm/ADT/StringExtras.h"
54 #include "llvm/IR/CFG.h"
55 #include "llvm/IR/CallSite.h"
56 #include "llvm/IR/CallingConv.h"
57 #include "llvm/IR/ConstantRange.h"
58 #include "llvm/IR/Constants.h"
59 #include "llvm/IR/DataLayout.h"
60 #include "llvm/IR/DebugInfo.h"
61 #include "llvm/IR/DerivedTypes.h"
62 #include "llvm/IR/Dominators.h"
63 #include "llvm/IR/InlineAsm.h"
64 #include "llvm/IR/InstIterator.h"
65 #include "llvm/IR/InstVisitor.h"
66 #include "llvm/IR/IntrinsicInst.h"
67 #include "llvm/IR/LLVMContext.h"
68 #include "llvm/IR/Metadata.h"
69 #include "llvm/IR/Module.h"
70 #include "llvm/IR/PassManager.h"
71 #include "llvm/IR/Statepoint.h"
72 #include "llvm/Pass.h"
73 #include "llvm/Support/CommandLine.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/raw_ostream.h"
81 static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(true));
84 struct VerifierSupport {
88 /// \brief Track the brokenness of the module while recursively visiting.
91 explicit VerifierSupport(raw_ostream &OS)
92 : OS(OS), M(nullptr), Broken(false) {}
95 template <class NodeTy> void Write(const ilist_iterator<NodeTy> &I) {
99 void Write(const Module *M) {
102 OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
105 void Write(const Value *V) {
108 if (isa<Instruction>(V)) {
111 V->printAsOperand(OS, true, M);
115 void Write(ImmutableCallSite CS) {
116 Write(CS.getInstruction());
119 void Write(const Metadata *MD) {
126 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
130 void Write(const NamedMDNode *NMD) {
137 void Write(Type *T) {
143 void Write(const Comdat *C) {
149 template <typename T> void Write(ArrayRef<T> Vs) {
150 for (const T &V : Vs)
154 template <typename T1, typename... Ts>
155 void WriteTs(const T1 &V1, const Ts &... Vs) {
160 template <typename... Ts> void WriteTs() {}
163 /// \brief A check failed, so printout out the condition and the message.
165 /// This provides a nice place to put a breakpoint if you want to see why
166 /// something is not correct.
167 void CheckFailed(const Twine &Message) {
168 OS << Message << '\n';
172 /// \brief A check failed (with values to print).
174 /// This calls the Message-only version so that the above is easier to set a
176 template <typename T1, typename... Ts>
177 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
178 CheckFailed(Message);
183 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
184 friend class InstVisitor<Verifier>;
186 LLVMContext *Context;
189 /// \brief When verifying a basic block, keep track of all of the
190 /// instructions we have seen so far.
192 /// This allows us to do efficient dominance checks for the case when an
193 /// instruction has an operand that is an instruction in the same block.
194 SmallPtrSet<Instruction *, 16> InstsInThisBlock;
196 /// \brief Keep track of the metadata nodes that have been checked already.
197 SmallPtrSet<const Metadata *, 32> MDNodes;
199 /// \brief Track unresolved string-based type references.
200 SmallDenseMap<const MDString *, const MDNode *, 32> UnresolvedTypeRefs;
202 /// \brief The result type for a landingpad.
203 Type *LandingPadResultTy;
205 /// \brief Whether we've seen a call to @llvm.localescape in this function
209 /// Stores the count of how many objects were passed to llvm.localescape for a
210 /// given function and the largest index passed to llvm.localrecover.
211 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
213 // Maps catchswitches and cleanuppads that unwind to siblings to the
214 // terminators that indicate the unwind, used to detect cycles therein.
215 MapVector<Instruction *, TerminatorInst *> SiblingFuncletInfo;
217 /// Cache of constants visited in search of ConstantExprs.
218 SmallPtrSet<const Constant *, 32> ConstantExprVisited;
220 void checkAtomicMemAccessSize(const Module *M, Type *Ty,
221 const Instruction *I);
223 explicit Verifier(raw_ostream &OS)
224 : VerifierSupport(OS), Context(nullptr), LandingPadResultTy(nullptr),
225 SawFrameEscape(false) {}
227 bool verify(const Function &F) {
229 Context = &M->getContext();
231 // First ensure the function is well-enough formed to compute dominance
234 OS << "Function '" << F.getName()
235 << "' does not contain an entry block!\n";
238 for (Function::const_iterator I = F.begin(), E = F.end(); I != E; ++I) {
239 if (I->empty() || !I->back().isTerminator()) {
240 OS << "Basic Block in function '" << F.getName()
241 << "' does not have terminator!\n";
242 I->printAsOperand(OS, true);
248 // Now directly compute a dominance tree. We don't rely on the pass
249 // manager to provide this as it isolates us from a potentially
250 // out-of-date dominator tree and makes it significantly more complex to
251 // run this code outside of a pass manager.
252 // FIXME: It's really gross that we have to cast away constness here.
253 DT.recalculate(const_cast<Function &>(F));
256 // FIXME: We strip const here because the inst visitor strips const.
257 visit(const_cast<Function &>(F));
258 verifySiblingFuncletUnwinds();
259 InstsInThisBlock.clear();
260 LandingPadResultTy = nullptr;
261 SawFrameEscape = false;
262 SiblingFuncletInfo.clear();
267 bool verify(const Module &M) {
269 Context = &M.getContext();
272 // Scan through, checking all of the external function's linkage now...
273 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
274 visitGlobalValue(*I);
276 // Check to make sure function prototypes are okay.
277 if (I->isDeclaration())
281 // Now that we've visited every function, verify that we never asked to
282 // recover a frame index that wasn't escaped.
283 verifyFrameRecoverIndices();
285 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
287 visitGlobalVariable(*I);
289 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
291 visitGlobalAlias(*I);
293 for (Module::const_named_metadata_iterator I = M.named_metadata_begin(),
294 E = M.named_metadata_end();
296 visitNamedMDNode(*I);
298 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
299 visitComdat(SMEC.getValue());
302 visitModuleIdents(M);
304 // Verify type referneces last.
311 // Verification methods...
312 void visitGlobalValue(const GlobalValue &GV);
313 void visitGlobalVariable(const GlobalVariable &GV);
314 void visitGlobalAlias(const GlobalAlias &GA);
315 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
316 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
317 const GlobalAlias &A, const Constant &C);
318 void visitNamedMDNode(const NamedMDNode &NMD);
319 void visitMDNode(const MDNode &MD);
320 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
321 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
322 void visitComdat(const Comdat &C);
323 void visitModuleIdents(const Module &M);
324 void visitModuleFlags(const Module &M);
325 void visitModuleFlag(const MDNode *Op,
326 DenseMap<const MDString *, const MDNode *> &SeenIDs,
327 SmallVectorImpl<const MDNode *> &Requirements);
328 void visitFunction(const Function &F);
329 void visitBasicBlock(BasicBlock &BB);
330 void visitRangeMetadata(Instruction& I, MDNode* Range, Type* Ty);
331 void visitDereferenceableMetadata(Instruction& I, MDNode* MD);
333 template <class Ty> bool isValidMetadataArray(const MDTuple &N);
334 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
335 #include "llvm/IR/Metadata.def"
336 void visitDIScope(const DIScope &N);
337 void visitDIVariable(const DIVariable &N);
338 void visitDILexicalBlockBase(const DILexicalBlockBase &N);
339 void visitDITemplateParameter(const DITemplateParameter &N);
341 void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
343 /// \brief Check for a valid string-based type reference.
345 /// Checks if \c MD is a string-based type reference. If it is, keeps track
346 /// of it (and its user, \c N) for error messages later.
347 bool isValidUUID(const MDNode &N, const Metadata *MD);
349 /// \brief Check for a valid type reference.
351 /// Checks for subclasses of \a DIType, or \a isValidUUID().
352 bool isTypeRef(const MDNode &N, const Metadata *MD);
354 /// \brief Check for a valid scope reference.
356 /// Checks for subclasses of \a DIScope, or \a isValidUUID().
357 bool isScopeRef(const MDNode &N, const Metadata *MD);
359 /// \brief Check for a valid debug info reference.
361 /// Checks for subclasses of \a DINode, or \a isValidUUID().
362 bool isDIRef(const MDNode &N, const Metadata *MD);
364 // InstVisitor overrides...
365 using InstVisitor<Verifier>::visit;
366 void visit(Instruction &I);
368 void visitTruncInst(TruncInst &I);
369 void visitZExtInst(ZExtInst &I);
370 void visitSExtInst(SExtInst &I);
371 void visitFPTruncInst(FPTruncInst &I);
372 void visitFPExtInst(FPExtInst &I);
373 void visitFPToUIInst(FPToUIInst &I);
374 void visitFPToSIInst(FPToSIInst &I);
375 void visitUIToFPInst(UIToFPInst &I);
376 void visitSIToFPInst(SIToFPInst &I);
377 void visitIntToPtrInst(IntToPtrInst &I);
378 void visitPtrToIntInst(PtrToIntInst &I);
379 void visitBitCastInst(BitCastInst &I);
380 void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
381 void visitPHINode(PHINode &PN);
382 void visitBinaryOperator(BinaryOperator &B);
383 void visitICmpInst(ICmpInst &IC);
384 void visitFCmpInst(FCmpInst &FC);
385 void visitExtractElementInst(ExtractElementInst &EI);
386 void visitInsertElementInst(InsertElementInst &EI);
387 void visitShuffleVectorInst(ShuffleVectorInst &EI);
388 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
389 void visitCallInst(CallInst &CI);
390 void visitInvokeInst(InvokeInst &II);
391 void visitGetElementPtrInst(GetElementPtrInst &GEP);
392 void visitLoadInst(LoadInst &LI);
393 void visitStoreInst(StoreInst &SI);
394 void verifyDominatesUse(Instruction &I, unsigned i);
395 void visitInstruction(Instruction &I);
396 void visitTerminatorInst(TerminatorInst &I);
397 void visitBranchInst(BranchInst &BI);
398 void visitReturnInst(ReturnInst &RI);
399 void visitSwitchInst(SwitchInst &SI);
400 void visitIndirectBrInst(IndirectBrInst &BI);
401 void visitSelectInst(SelectInst &SI);
402 void visitUserOp1(Instruction &I);
403 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
404 void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
405 template <class DbgIntrinsicTy>
406 void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII);
407 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
408 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
409 void visitFenceInst(FenceInst &FI);
410 void visitAllocaInst(AllocaInst &AI);
411 void visitExtractValueInst(ExtractValueInst &EVI);
412 void visitInsertValueInst(InsertValueInst &IVI);
413 void visitEHPadPredecessors(Instruction &I);
414 void visitLandingPadInst(LandingPadInst &LPI);
415 void visitCatchPadInst(CatchPadInst &CPI);
416 void visitCatchReturnInst(CatchReturnInst &CatchReturn);
417 void visitCleanupPadInst(CleanupPadInst &CPI);
418 void visitFuncletPadInst(FuncletPadInst &FPI);
419 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
420 void visitCleanupReturnInst(CleanupReturnInst &CRI);
422 void VerifyCallSite(CallSite CS);
423 void verifyMustTailCall(CallInst &CI);
424 bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
425 unsigned ArgNo, std::string &Suffix);
426 bool VerifyIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
427 SmallVectorImpl<Type *> &ArgTys);
428 bool VerifyIntrinsicIsVarArg(bool isVarArg,
429 ArrayRef<Intrinsic::IITDescriptor> &Infos);
430 bool VerifyAttributeCount(AttributeSet Attrs, unsigned Params);
431 void VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction,
433 void VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
434 bool isReturnValue, const Value *V);
435 void VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
437 void VerifyFunctionMetadata(
438 const SmallVector<std::pair<unsigned, MDNode *>, 4> MDs);
440 void visitConstantExprsRecursively(const Constant *EntryC);
441 void visitConstantExpr(const ConstantExpr *CE);
442 void VerifyStatepoint(ImmutableCallSite CS);
443 void verifyFrameRecoverIndices();
444 void verifySiblingFuncletUnwinds();
446 // Module-level debug info verification...
447 void verifyTypeRefs();
448 template <class MapTy>
449 void verifyBitPieceExpression(const DbgInfoIntrinsic &I,
450 const MapTy &TypeRefs);
451 void visitUnresolvedTypeRef(const MDString *S, const MDNode *N);
453 } // End anonymous namespace
455 // Assert - We know that cond should be true, if not print an error message.
456 #define Assert(C, ...) \
457 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (0)
459 void Verifier::visit(Instruction &I) {
460 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
461 Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
462 InstVisitor<Verifier>::visit(I);
466 void Verifier::visitGlobalValue(const GlobalValue &GV) {
467 Assert(!GV.isDeclaration() || GV.hasExternalLinkage() ||
468 GV.hasExternalWeakLinkage(),
469 "Global is external, but doesn't have external or weak linkage!", &GV);
471 Assert(GV.getAlignment() <= Value::MaximumAlignment,
472 "huge alignment values are unsupported", &GV);
473 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
474 "Only global variables can have appending linkage!", &GV);
476 if (GV.hasAppendingLinkage()) {
477 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
478 Assert(GVar && GVar->getValueType()->isArrayTy(),
479 "Only global arrays can have appending linkage!", GVar);
482 if (GV.isDeclarationForLinker())
483 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
486 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
487 if (GV.hasInitializer()) {
488 Assert(GV.getInitializer()->getType() == GV.getType()->getElementType(),
489 "Global variable initializer type does not match global "
493 // If the global has common linkage, it must have a zero initializer and
494 // cannot be constant.
495 if (GV.hasCommonLinkage()) {
496 Assert(GV.getInitializer()->isNullValue(),
497 "'common' global must have a zero initializer!", &GV);
498 Assert(!GV.isConstant(), "'common' global may not be marked constant!",
500 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
503 Assert(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(),
504 "invalid linkage type for global declaration", &GV);
507 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
508 GV.getName() == "llvm.global_dtors")) {
509 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
510 "invalid linkage for intrinsic global variable", &GV);
511 // Don't worry about emitting an error for it not being an array,
512 // visitGlobalValue will complain on appending non-array.
513 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
514 StructType *STy = dyn_cast<StructType>(ATy->getElementType());
515 PointerType *FuncPtrTy =
516 FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
517 // FIXME: Reject the 2-field form in LLVM 4.0.
519 (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
520 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
521 STy->getTypeAtIndex(1) == FuncPtrTy,
522 "wrong type for intrinsic global variable", &GV);
523 if (STy->getNumElements() == 3) {
524 Type *ETy = STy->getTypeAtIndex(2);
525 Assert(ETy->isPointerTy() &&
526 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
527 "wrong type for intrinsic global variable", &GV);
532 if (GV.hasName() && (GV.getName() == "llvm.used" ||
533 GV.getName() == "llvm.compiler.used")) {
534 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
535 "invalid linkage for intrinsic global variable", &GV);
536 Type *GVType = GV.getValueType();
537 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
538 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
539 Assert(PTy, "wrong type for intrinsic global variable", &GV);
540 if (GV.hasInitializer()) {
541 const Constant *Init = GV.getInitializer();
542 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
543 Assert(InitArray, "wrong initalizer for intrinsic global variable",
545 for (unsigned i = 0, e = InitArray->getNumOperands(); i != e; ++i) {
546 Value *V = Init->getOperand(i)->stripPointerCastsNoFollowAliases();
547 Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
549 "invalid llvm.used member", V);
550 Assert(V->hasName(), "members of llvm.used must be named", V);
556 Assert(!GV.hasDLLImportStorageClass() ||
557 (GV.isDeclaration() && GV.hasExternalLinkage()) ||
558 GV.hasAvailableExternallyLinkage(),
559 "Global is marked as dllimport, but not external", &GV);
561 if (!GV.hasInitializer()) {
562 visitGlobalValue(GV);
566 // Walk any aggregate initializers looking for bitcasts between address spaces
567 visitConstantExprsRecursively(GV.getInitializer());
569 visitGlobalValue(GV);
572 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
573 SmallPtrSet<const GlobalAlias*, 4> Visited;
575 visitAliaseeSubExpr(Visited, GA, C);
578 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
579 const GlobalAlias &GA, const Constant &C) {
580 if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
581 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
584 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
585 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
587 Assert(!GA2->mayBeOverridden(), "Alias cannot point to a weak alias",
590 // Only continue verifying subexpressions of GlobalAliases.
591 // Do not recurse into global initializers.
596 if (const auto *CE = dyn_cast<ConstantExpr>(&C))
597 visitConstantExprsRecursively(CE);
599 for (const Use &U : C.operands()) {
601 if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
602 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
603 else if (const auto *C2 = dyn_cast<Constant>(V))
604 visitAliaseeSubExpr(Visited, GA, *C2);
608 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
609 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
610 "Alias should have private, internal, linkonce, weak, linkonce_odr, "
611 "weak_odr, or external linkage!",
613 const Constant *Aliasee = GA.getAliasee();
614 Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
615 Assert(GA.getType() == Aliasee->getType(),
616 "Alias and aliasee types should match!", &GA);
618 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
619 "Aliasee should be either GlobalValue or ConstantExpr", &GA);
621 visitAliaseeSubExpr(GA, *Aliasee);
623 visitGlobalValue(GA);
626 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
627 for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
628 MDNode *MD = NMD.getOperand(i);
630 if (NMD.getName() == "llvm.dbg.cu") {
631 Assert(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
641 void Verifier::visitMDNode(const MDNode &MD) {
642 // Only visit each node once. Metadata can be mutually recursive, so this
643 // avoids infinite recursion here, as well as being an optimization.
644 if (!MDNodes.insert(&MD).second)
647 switch (MD.getMetadataID()) {
649 llvm_unreachable("Invalid MDNode subclass");
650 case Metadata::MDTupleKind:
652 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
653 case Metadata::CLASS##Kind: \
654 visit##CLASS(cast<CLASS>(MD)); \
656 #include "llvm/IR/Metadata.def"
659 for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
660 Metadata *Op = MD.getOperand(i);
663 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
665 if (auto *N = dyn_cast<MDNode>(Op)) {
669 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
670 visitValueAsMetadata(*V, nullptr);
675 // Check these last, so we diagnose problems in operands first.
676 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
677 Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
680 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
681 Assert(MD.getValue(), "Expected valid value", &MD);
682 Assert(!MD.getValue()->getType()->isMetadataTy(),
683 "Unexpected metadata round-trip through values", &MD, MD.getValue());
685 auto *L = dyn_cast<LocalAsMetadata>(&MD);
689 Assert(F, "function-local metadata used outside a function", L);
691 // If this was an instruction, bb, or argument, verify that it is in the
692 // function that we expect.
693 Function *ActualF = nullptr;
694 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
695 Assert(I->getParent(), "function-local metadata not in basic block", L, I);
696 ActualF = I->getParent()->getParent();
697 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
698 ActualF = BB->getParent();
699 else if (Argument *A = dyn_cast<Argument>(L->getValue()))
700 ActualF = A->getParent();
701 assert(ActualF && "Unimplemented function local metadata case!");
703 Assert(ActualF == F, "function-local metadata used in wrong function", L);
706 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
707 Metadata *MD = MDV.getMetadata();
708 if (auto *N = dyn_cast<MDNode>(MD)) {
713 // Only visit each node once. Metadata can be mutually recursive, so this
714 // avoids infinite recursion here, as well as being an optimization.
715 if (!MDNodes.insert(MD).second)
718 if (auto *V = dyn_cast<ValueAsMetadata>(MD))
719 visitValueAsMetadata(*V, F);
722 bool Verifier::isValidUUID(const MDNode &N, const Metadata *MD) {
723 auto *S = dyn_cast<MDString>(MD);
726 if (S->getString().empty())
729 // Keep track of names of types referenced via UUID so we can check that they
731 UnresolvedTypeRefs.insert(std::make_pair(S, &N));
735 /// \brief Check if a value can be a reference to a type.
736 bool Verifier::isTypeRef(const MDNode &N, const Metadata *MD) {
737 return !MD || isValidUUID(N, MD) || isa<DIType>(MD);
740 /// \brief Check if a value can be a ScopeRef.
741 bool Verifier::isScopeRef(const MDNode &N, const Metadata *MD) {
742 return !MD || isValidUUID(N, MD) || isa<DIScope>(MD);
745 /// \brief Check if a value can be a debug info ref.
746 bool Verifier::isDIRef(const MDNode &N, const Metadata *MD) {
747 return !MD || isValidUUID(N, MD) || isa<DINode>(MD);
751 bool isValidMetadataArrayImpl(const MDTuple &N, bool AllowNull) {
752 for (Metadata *MD : N.operands()) {
765 bool isValidMetadataArray(const MDTuple &N) {
766 return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ false);
770 bool isValidMetadataNullArray(const MDTuple &N) {
771 return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ true);
774 void Verifier::visitDILocation(const DILocation &N) {
775 Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
776 "location requires a valid scope", &N, N.getRawScope());
777 if (auto *IA = N.getRawInlinedAt())
778 Assert(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
781 void Verifier::visitGenericDINode(const GenericDINode &N) {
782 Assert(N.getTag(), "invalid tag", &N);
785 void Verifier::visitDIScope(const DIScope &N) {
786 if (auto *F = N.getRawFile())
787 Assert(isa<DIFile>(F), "invalid file", &N, F);
790 void Verifier::visitDISubrange(const DISubrange &N) {
791 Assert(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
792 Assert(N.getCount() >= -1, "invalid subrange count", &N);
795 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
796 Assert(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
799 void Verifier::visitDIBasicType(const DIBasicType &N) {
800 Assert(N.getTag() == dwarf::DW_TAG_base_type ||
801 N.getTag() == dwarf::DW_TAG_unspecified_type,
805 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
806 // Common scope checks.
809 Assert(N.getTag() == dwarf::DW_TAG_typedef ||
810 N.getTag() == dwarf::DW_TAG_pointer_type ||
811 N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
812 N.getTag() == dwarf::DW_TAG_reference_type ||
813 N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
814 N.getTag() == dwarf::DW_TAG_const_type ||
815 N.getTag() == dwarf::DW_TAG_volatile_type ||
816 N.getTag() == dwarf::DW_TAG_restrict_type ||
817 N.getTag() == dwarf::DW_TAG_member ||
818 N.getTag() == dwarf::DW_TAG_inheritance ||
819 N.getTag() == dwarf::DW_TAG_friend,
821 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
822 Assert(isTypeRef(N, N.getExtraData()), "invalid pointer to member type", &N,
826 Assert(isScopeRef(N, N.getScope()), "invalid scope", &N, N.getScope());
827 Assert(isTypeRef(N, N.getBaseType()), "invalid base type", &N,
831 static bool hasConflictingReferenceFlags(unsigned Flags) {
832 return (Flags & DINode::FlagLValueReference) &&
833 (Flags & DINode::FlagRValueReference);
836 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
837 auto *Params = dyn_cast<MDTuple>(&RawParams);
838 Assert(Params, "invalid template params", &N, &RawParams);
839 for (Metadata *Op : Params->operands()) {
840 Assert(Op && isa<DITemplateParameter>(Op), "invalid template parameter", &N,
845 void Verifier::visitDICompositeType(const DICompositeType &N) {
846 // Common scope checks.
849 Assert(N.getTag() == dwarf::DW_TAG_array_type ||
850 N.getTag() == dwarf::DW_TAG_structure_type ||
851 N.getTag() == dwarf::DW_TAG_union_type ||
852 N.getTag() == dwarf::DW_TAG_enumeration_type ||
853 N.getTag() == dwarf::DW_TAG_class_type,
856 Assert(isScopeRef(N, N.getScope()), "invalid scope", &N, N.getScope());
857 Assert(isTypeRef(N, N.getBaseType()), "invalid base type", &N,
860 Assert(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
861 "invalid composite elements", &N, N.getRawElements());
862 Assert(isTypeRef(N, N.getRawVTableHolder()), "invalid vtable holder", &N,
863 N.getRawVTableHolder());
864 Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
866 if (auto *Params = N.getRawTemplateParams())
867 visitTemplateParams(N, *Params);
869 if (N.getTag() == dwarf::DW_TAG_class_type ||
870 N.getTag() == dwarf::DW_TAG_union_type) {
871 Assert(N.getFile() && !N.getFile()->getFilename().empty(),
872 "class/union requires a filename", &N, N.getFile());
876 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
877 Assert(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
878 if (auto *Types = N.getRawTypeArray()) {
879 Assert(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
880 for (Metadata *Ty : N.getTypeArray()->operands()) {
881 Assert(isTypeRef(N, Ty), "invalid subroutine type ref", &N, Types, Ty);
884 Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
888 void Verifier::visitDIFile(const DIFile &N) {
889 Assert(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
892 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
893 Assert(N.isDistinct(), "compile units must be distinct", &N);
894 Assert(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
896 // Don't bother verifying the compilation directory or producer string
897 // as those could be empty.
898 Assert(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
900 Assert(!N.getFile()->getFilename().empty(), "invalid filename", &N,
903 if (auto *Array = N.getRawEnumTypes()) {
904 Assert(isa<MDTuple>(Array), "invalid enum list", &N, Array);
905 for (Metadata *Op : N.getEnumTypes()->operands()) {
906 auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
907 Assert(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
908 "invalid enum type", &N, N.getEnumTypes(), Op);
911 if (auto *Array = N.getRawRetainedTypes()) {
912 Assert(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
913 for (Metadata *Op : N.getRetainedTypes()->operands()) {
914 Assert(Op && isa<DIType>(Op), "invalid retained type", &N, Op);
917 if (auto *Array = N.getRawSubprograms()) {
918 Assert(isa<MDTuple>(Array), "invalid subprogram list", &N, Array);
919 for (Metadata *Op : N.getSubprograms()->operands()) {
920 Assert(Op && isa<DISubprogram>(Op), "invalid subprogram ref", &N, Op);
923 if (auto *Array = N.getRawGlobalVariables()) {
924 Assert(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
925 for (Metadata *Op : N.getGlobalVariables()->operands()) {
926 Assert(Op && isa<DIGlobalVariable>(Op), "invalid global variable ref", &N,
930 if (auto *Array = N.getRawImportedEntities()) {
931 Assert(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
932 for (Metadata *Op : N.getImportedEntities()->operands()) {
933 Assert(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", &N,
937 if (auto *Array = N.getRawMacros()) {
938 Assert(isa<MDTuple>(Array), "invalid macro list", &N, Array);
939 for (Metadata *Op : N.getMacros()->operands()) {
940 Assert(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
945 void Verifier::visitDISubprogram(const DISubprogram &N) {
946 Assert(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
947 Assert(isScopeRef(N, N.getRawScope()), "invalid scope", &N, N.getRawScope());
948 if (auto *T = N.getRawType())
949 Assert(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
950 Assert(isTypeRef(N, N.getRawContainingType()), "invalid containing type", &N,
951 N.getRawContainingType());
952 if (auto *Params = N.getRawTemplateParams())
953 visitTemplateParams(N, *Params);
954 if (auto *S = N.getRawDeclaration()) {
955 Assert(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
956 "invalid subprogram declaration", &N, S);
958 if (auto *RawVars = N.getRawVariables()) {
959 auto *Vars = dyn_cast<MDTuple>(RawVars);
960 Assert(Vars, "invalid variable list", &N, RawVars);
961 for (Metadata *Op : Vars->operands()) {
962 Assert(Op && isa<DILocalVariable>(Op), "invalid local variable", &N, Vars,
966 Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
969 if (N.isDefinition())
970 Assert(N.isDistinct(), "subprogram definitions must be distinct", &N);
973 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
974 Assert(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
975 Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
976 "invalid local scope", &N, N.getRawScope());
979 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
980 visitDILexicalBlockBase(N);
982 Assert(N.getLine() || !N.getColumn(),
983 "cannot have column info without line info", &N);
986 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
987 visitDILexicalBlockBase(N);
990 void Verifier::visitDINamespace(const DINamespace &N) {
991 Assert(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
992 if (auto *S = N.getRawScope())
993 Assert(isa<DIScope>(S), "invalid scope ref", &N, S);
996 void Verifier::visitDIMacro(const DIMacro &N) {
997 Assert(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
998 N.getMacinfoType() == dwarf::DW_MACINFO_undef,
999 "invalid macinfo type", &N);
1000 Assert(!N.getName().empty(), "anonymous macro", &N);
1001 if (!N.getValue().empty()) {
1002 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1006 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1007 Assert(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1008 "invalid macinfo type", &N);
1009 if (auto *F = N.getRawFile())
1010 Assert(isa<DIFile>(F), "invalid file", &N, F);
1012 if (auto *Array = N.getRawElements()) {
1013 Assert(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1014 for (Metadata *Op : N.getElements()->operands()) {
1015 Assert(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1020 void Verifier::visitDIModule(const DIModule &N) {
1021 Assert(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1022 Assert(!N.getName().empty(), "anonymous module", &N);
1025 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1026 Assert(isTypeRef(N, N.getType()), "invalid type ref", &N, N.getType());
1029 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1030 visitDITemplateParameter(N);
1032 Assert(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1036 void Verifier::visitDITemplateValueParameter(
1037 const DITemplateValueParameter &N) {
1038 visitDITemplateParameter(N);
1040 Assert(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1041 N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1042 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1046 void Verifier::visitDIVariable(const DIVariable &N) {
1047 if (auto *S = N.getRawScope())
1048 Assert(isa<DIScope>(S), "invalid scope", &N, S);
1049 Assert(isTypeRef(N, N.getRawType()), "invalid type ref", &N, N.getRawType());
1050 if (auto *F = N.getRawFile())
1051 Assert(isa<DIFile>(F), "invalid file", &N, F);
1054 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1055 // Checks common to all variables.
1058 Assert(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1059 Assert(!N.getName().empty(), "missing global variable name", &N);
1060 if (auto *V = N.getRawVariable()) {
1061 Assert(isa<ConstantAsMetadata>(V) &&
1062 !isa<Function>(cast<ConstantAsMetadata>(V)->getValue()),
1063 "invalid global varaible ref", &N, V);
1065 if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1066 Assert(isa<DIDerivedType>(Member), "invalid static data member declaration",
1071 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1072 // Checks common to all variables.
1075 Assert(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1076 Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1077 "local variable requires a valid scope", &N, N.getRawScope());
1080 void Verifier::visitDIExpression(const DIExpression &N) {
1081 Assert(N.isValid(), "invalid expression", &N);
1084 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1085 Assert(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1086 if (auto *T = N.getRawType())
1087 Assert(isTypeRef(N, T), "invalid type ref", &N, T);
1088 if (auto *F = N.getRawFile())
1089 Assert(isa<DIFile>(F), "invalid file", &N, F);
1092 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1093 Assert(N.getTag() == dwarf::DW_TAG_imported_module ||
1094 N.getTag() == dwarf::DW_TAG_imported_declaration,
1096 if (auto *S = N.getRawScope())
1097 Assert(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1098 Assert(isDIRef(N, N.getEntity()), "invalid imported entity", &N,
1102 void Verifier::visitComdat(const Comdat &C) {
1103 // The Module is invalid if the GlobalValue has private linkage. Entities
1104 // with private linkage don't have entries in the symbol table.
1105 if (const GlobalValue *GV = M->getNamedValue(C.getName()))
1106 Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1110 void Verifier::visitModuleIdents(const Module &M) {
1111 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1115 // llvm.ident takes a list of metadata entry. Each entry has only one string.
1116 // Scan each llvm.ident entry and make sure that this requirement is met.
1117 for (unsigned i = 0, e = Idents->getNumOperands(); i != e; ++i) {
1118 const MDNode *N = Idents->getOperand(i);
1119 Assert(N->getNumOperands() == 1,
1120 "incorrect number of operands in llvm.ident metadata", N);
1121 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1122 ("invalid value for llvm.ident metadata entry operand"
1123 "(the operand should be a string)"),
1128 void Verifier::visitModuleFlags(const Module &M) {
1129 const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1132 // Scan each flag, and track the flags and requirements.
1133 DenseMap<const MDString*, const MDNode*> SeenIDs;
1134 SmallVector<const MDNode*, 16> Requirements;
1135 for (unsigned I = 0, E = Flags->getNumOperands(); I != E; ++I) {
1136 visitModuleFlag(Flags->getOperand(I), SeenIDs, Requirements);
1139 // Validate that the requirements in the module are valid.
1140 for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
1141 const MDNode *Requirement = Requirements[I];
1142 const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1143 const Metadata *ReqValue = Requirement->getOperand(1);
1145 const MDNode *Op = SeenIDs.lookup(Flag);
1147 CheckFailed("invalid requirement on flag, flag is not present in module",
1152 if (Op->getOperand(2) != ReqValue) {
1153 CheckFailed(("invalid requirement on flag, "
1154 "flag does not have the required value"),
1162 Verifier::visitModuleFlag(const MDNode *Op,
1163 DenseMap<const MDString *, const MDNode *> &SeenIDs,
1164 SmallVectorImpl<const MDNode *> &Requirements) {
1165 // Each module flag should have three arguments, the merge behavior (a
1166 // constant int), the flag ID (an MDString), and the value.
1167 Assert(Op->getNumOperands() == 3,
1168 "incorrect number of operands in module flag", Op);
1169 Module::ModFlagBehavior MFB;
1170 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1172 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1173 "invalid behavior operand in module flag (expected constant integer)",
1176 "invalid behavior operand in module flag (unexpected constant)",
1179 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1180 Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1183 // Sanity check the values for behaviors with additional requirements.
1186 case Module::Warning:
1187 case Module::Override:
1188 // These behavior types accept any value.
1191 case Module::Require: {
1192 // The value should itself be an MDNode with two operands, a flag ID (an
1193 // MDString), and a value.
1194 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1195 Assert(Value && Value->getNumOperands() == 2,
1196 "invalid value for 'require' module flag (expected metadata pair)",
1198 Assert(isa<MDString>(Value->getOperand(0)),
1199 ("invalid value for 'require' module flag "
1200 "(first value operand should be a string)"),
1201 Value->getOperand(0));
1203 // Append it to the list of requirements, to check once all module flags are
1205 Requirements.push_back(Value);
1209 case Module::Append:
1210 case Module::AppendUnique: {
1211 // These behavior types require the operand be an MDNode.
1212 Assert(isa<MDNode>(Op->getOperand(2)),
1213 "invalid value for 'append'-type module flag "
1214 "(expected a metadata node)",
1220 // Unless this is a "requires" flag, check the ID is unique.
1221 if (MFB != Module::Require) {
1222 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1224 "module flag identifiers must be unique (or of 'require' type)", ID);
1228 void Verifier::VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
1229 bool isFunction, const Value *V) {
1230 unsigned Slot = ~0U;
1231 for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I)
1232 if (Attrs.getSlotIndex(I) == Idx) {
1237 assert(Slot != ~0U && "Attribute set inconsistency!");
1239 for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot);
1241 if (I->isStringAttribute())
1244 if (I->getKindAsEnum() == Attribute::NoReturn ||
1245 I->getKindAsEnum() == Attribute::NoUnwind ||
1246 I->getKindAsEnum() == Attribute::NoInline ||
1247 I->getKindAsEnum() == Attribute::AlwaysInline ||
1248 I->getKindAsEnum() == Attribute::OptimizeForSize ||
1249 I->getKindAsEnum() == Attribute::StackProtect ||
1250 I->getKindAsEnum() == Attribute::StackProtectReq ||
1251 I->getKindAsEnum() == Attribute::StackProtectStrong ||
1252 I->getKindAsEnum() == Attribute::SafeStack ||
1253 I->getKindAsEnum() == Attribute::NoRedZone ||
1254 I->getKindAsEnum() == Attribute::NoImplicitFloat ||
1255 I->getKindAsEnum() == Attribute::Naked ||
1256 I->getKindAsEnum() == Attribute::InlineHint ||
1257 I->getKindAsEnum() == Attribute::StackAlignment ||
1258 I->getKindAsEnum() == Attribute::UWTable ||
1259 I->getKindAsEnum() == Attribute::NonLazyBind ||
1260 I->getKindAsEnum() == Attribute::ReturnsTwice ||
1261 I->getKindAsEnum() == Attribute::SanitizeAddress ||
1262 I->getKindAsEnum() == Attribute::SanitizeThread ||
1263 I->getKindAsEnum() == Attribute::SanitizeMemory ||
1264 I->getKindAsEnum() == Attribute::MinSize ||
1265 I->getKindAsEnum() == Attribute::NoDuplicate ||
1266 I->getKindAsEnum() == Attribute::Builtin ||
1267 I->getKindAsEnum() == Attribute::NoBuiltin ||
1268 I->getKindAsEnum() == Attribute::Cold ||
1269 I->getKindAsEnum() == Attribute::OptimizeNone ||
1270 I->getKindAsEnum() == Attribute::JumpTable ||
1271 I->getKindAsEnum() == Attribute::Convergent ||
1272 I->getKindAsEnum() == Attribute::ArgMemOnly ||
1273 I->getKindAsEnum() == Attribute::NoRecurse ||
1274 I->getKindAsEnum() == Attribute::InaccessibleMemOnly ||
1275 I->getKindAsEnum() == Attribute::InaccessibleMemOrArgMemOnly) {
1277 CheckFailed("Attribute '" + I->getAsString() +
1278 "' only applies to functions!", V);
1281 } else if (I->getKindAsEnum() == Attribute::ReadOnly ||
1282 I->getKindAsEnum() == Attribute::ReadNone) {
1284 CheckFailed("Attribute '" + I->getAsString() +
1285 "' does not apply to function returns");
1288 } else if (isFunction) {
1289 CheckFailed("Attribute '" + I->getAsString() +
1290 "' does not apply to functions!", V);
1296 // VerifyParameterAttrs - Check the given attributes for an argument or return
1297 // value of the specified type. The value V is printed in error messages.
1298 void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
1299 bool isReturnValue, const Value *V) {
1300 if (!Attrs.hasAttributes(Idx))
1303 VerifyAttributeTypes(Attrs, Idx, false, V);
1306 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
1307 !Attrs.hasAttribute(Idx, Attribute::Nest) &&
1308 !Attrs.hasAttribute(Idx, Attribute::StructRet) &&
1309 !Attrs.hasAttribute(Idx, Attribute::NoCapture) &&
1310 !Attrs.hasAttribute(Idx, Attribute::Returned) &&
1311 !Attrs.hasAttribute(Idx, Attribute::InAlloca),
1312 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and "
1313 "'returned' do not apply to return values!",
1316 // Check for mutually incompatible attributes. Only inreg is compatible with
1318 unsigned AttrCount = 0;
1319 AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal);
1320 AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca);
1321 AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) ||
1322 Attrs.hasAttribute(Idx, Attribute::InReg);
1323 AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest);
1324 Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
1325 "and 'sret' are incompatible!",
1328 Assert(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
1329 Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
1331 "'inalloca and readonly' are incompatible!",
1334 Assert(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
1335 Attrs.hasAttribute(Idx, Attribute::Returned)),
1337 "'sret and returned' are incompatible!",
1340 Assert(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
1341 Attrs.hasAttribute(Idx, Attribute::SExt)),
1343 "'zeroext and signext' are incompatible!",
1346 Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
1347 Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
1349 "'readnone and readonly' are incompatible!",
1352 Assert(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
1353 Attrs.hasAttribute(Idx, Attribute::AlwaysInline)),
1355 "'noinline and alwaysinline' are incompatible!",
1358 Assert(!AttrBuilder(Attrs, Idx)
1359 .overlaps(AttributeFuncs::typeIncompatible(Ty)),
1360 "Wrong types for attribute: " +
1361 AttributeSet::get(*Context, Idx,
1362 AttributeFuncs::typeIncompatible(Ty)).getAsString(Idx),
1365 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1366 SmallPtrSet<Type*, 4> Visited;
1367 if (!PTy->getElementType()->isSized(&Visited)) {
1368 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
1369 !Attrs.hasAttribute(Idx, Attribute::InAlloca),
1370 "Attributes 'byval' and 'inalloca' do not support unsized types!",
1374 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal),
1375 "Attribute 'byval' only applies to parameters with pointer type!",
1380 // VerifyFunctionAttrs - Check parameter attributes against a function type.
1381 // The value V is printed in error messages.
1382 void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
1384 if (Attrs.isEmpty())
1387 bool SawNest = false;
1388 bool SawReturned = false;
1389 bool SawSRet = false;
1391 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1392 unsigned Idx = Attrs.getSlotIndex(i);
1396 Ty = FT->getReturnType();
1397 else if (Idx-1 < FT->getNumParams())
1398 Ty = FT->getParamType(Idx-1);
1400 break; // VarArgs attributes, verified elsewhere.
1402 VerifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V);
1407 if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
1408 Assert(!SawNest, "More than one parameter has attribute nest!", V);
1412 if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
1413 Assert(!SawReturned, "More than one parameter has attribute returned!",
1415 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
1417 "argument and return types for 'returned' attribute",
1422 if (Attrs.hasAttribute(Idx, Attribute::StructRet)) {
1423 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1424 Assert(Idx == 1 || Idx == 2,
1425 "Attribute 'sret' is not on first or second parameter!", V);
1429 if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) {
1430 Assert(Idx == FT->getNumParams(), "inalloca isn't on the last parameter!",
1435 if (!Attrs.hasAttributes(AttributeSet::FunctionIndex))
1438 VerifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V);
1441 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
1442 Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly)),
1443 "Attributes 'readnone and readonly' are incompatible!", V);
1446 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
1447 Attrs.hasAttribute(AttributeSet::FunctionIndex,
1448 Attribute::InaccessibleMemOrArgMemOnly)),
1449 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!", V);
1452 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
1453 Attrs.hasAttribute(AttributeSet::FunctionIndex,
1454 Attribute::InaccessibleMemOnly)),
1455 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
1458 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline) &&
1459 Attrs.hasAttribute(AttributeSet::FunctionIndex,
1460 Attribute::AlwaysInline)),
1461 "Attributes 'noinline and alwaysinline' are incompatible!", V);
1463 if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
1464 Attribute::OptimizeNone)) {
1465 Assert(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline),
1466 "Attribute 'optnone' requires 'noinline'!", V);
1468 Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
1469 Attribute::OptimizeForSize),
1470 "Attributes 'optsize and optnone' are incompatible!", V);
1472 Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize),
1473 "Attributes 'minsize and optnone' are incompatible!", V);
1476 if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
1477 Attribute::JumpTable)) {
1478 const GlobalValue *GV = cast<GlobalValue>(V);
1479 Assert(GV->hasUnnamedAddr(),
1480 "Attribute 'jumptable' requires 'unnamed_addr'", V);
1484 void Verifier::VerifyFunctionMetadata(
1485 const SmallVector<std::pair<unsigned, MDNode *>, 4> MDs) {
1489 for (unsigned i = 0; i < MDs.size(); i++) {
1490 if (MDs[i].first == LLVMContext::MD_prof) {
1491 MDNode *MD = MDs[i].second;
1492 Assert(MD->getNumOperands() == 2,
1493 "!prof annotations should have exactly 2 operands", MD);
1495 // Check first operand.
1496 Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
1498 Assert(isa<MDString>(MD->getOperand(0)),
1499 "expected string with name of the !prof annotation", MD);
1500 MDString *MDS = cast<MDString>(MD->getOperand(0));
1501 StringRef ProfName = MDS->getString();
1502 Assert(ProfName.equals("function_entry_count"),
1503 "first operand should be 'function_entry_count'", MD);
1505 // Check second operand.
1506 Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
1508 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
1509 "expected integer argument to function_entry_count", MD);
1514 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1515 if (!ConstantExprVisited.insert(EntryC).second)
1518 SmallVector<const Constant *, 16> Stack;
1519 Stack.push_back(EntryC);
1521 while (!Stack.empty()) {
1522 const Constant *C = Stack.pop_back_val();
1524 // Check this constant expression.
1525 if (const auto *CE = dyn_cast<ConstantExpr>(C))
1526 visitConstantExpr(CE);
1528 // Visit all sub-expressions.
1529 for (const Use &U : C->operands()) {
1530 const auto *OpC = dyn_cast<Constant>(U);
1533 if (isa<GlobalValue>(OpC))
1534 continue; // Global values get visited separately.
1535 if (!ConstantExprVisited.insert(OpC).second)
1537 Stack.push_back(OpC);
1542 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1543 if (CE->getOpcode() != Instruction::BitCast)
1546 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
1548 "Invalid bitcast", CE);
1551 bool Verifier::VerifyAttributeCount(AttributeSet Attrs, unsigned Params) {
1552 if (Attrs.getNumSlots() == 0)
1555 unsigned LastSlot = Attrs.getNumSlots() - 1;
1556 unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
1557 if (LastIndex <= Params
1558 || (LastIndex == AttributeSet::FunctionIndex
1559 && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
1565 /// \brief Verify that statepoint intrinsic is well formed.
1566 void Verifier::VerifyStatepoint(ImmutableCallSite CS) {
1567 assert(CS.getCalledFunction() &&
1568 CS.getCalledFunction()->getIntrinsicID() ==
1569 Intrinsic::experimental_gc_statepoint);
1571 const Instruction &CI = *CS.getInstruction();
1573 Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&
1574 !CS.onlyAccessesArgMemory(),
1575 "gc.statepoint must read and write all memory to preserve "
1576 "reordering restrictions required by safepoint semantics",
1579 const Value *IDV = CS.getArgument(0);
1580 Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",
1583 const Value *NumPatchBytesV = CS.getArgument(1);
1584 Assert(isa<ConstantInt>(NumPatchBytesV),
1585 "gc.statepoint number of patchable bytes must be a constant integer",
1587 const int64_t NumPatchBytes =
1588 cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
1589 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
1590 Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "
1594 const Value *Target = CS.getArgument(2);
1595 auto *PT = dyn_cast<PointerType>(Target->getType());
1596 Assert(PT && PT->getElementType()->isFunctionTy(),
1597 "gc.statepoint callee must be of function pointer type", &CI, Target);
1598 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1600 const Value *NumCallArgsV = CS.getArgument(3);
1601 Assert(isa<ConstantInt>(NumCallArgsV),
1602 "gc.statepoint number of arguments to underlying call "
1603 "must be constant integer",
1605 const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
1606 Assert(NumCallArgs >= 0,
1607 "gc.statepoint number of arguments to underlying call "
1610 const int NumParams = (int)TargetFuncType->getNumParams();
1611 if (TargetFuncType->isVarArg()) {
1612 Assert(NumCallArgs >= NumParams,
1613 "gc.statepoint mismatch in number of vararg call args", &CI);
1615 // TODO: Remove this limitation
1616 Assert(TargetFuncType->getReturnType()->isVoidTy(),
1617 "gc.statepoint doesn't support wrapping non-void "
1618 "vararg functions yet",
1621 Assert(NumCallArgs == NumParams,
1622 "gc.statepoint mismatch in number of call args", &CI);
1624 const Value *FlagsV = CS.getArgument(4);
1625 Assert(isa<ConstantInt>(FlagsV),
1626 "gc.statepoint flags must be constant integer", &CI);
1627 const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
1628 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
1629 "unknown flag used in gc.statepoint flags argument", &CI);
1631 // Verify that the types of the call parameter arguments match
1632 // the type of the wrapped callee.
1633 for (int i = 0; i < NumParams; i++) {
1634 Type *ParamType = TargetFuncType->getParamType(i);
1635 Type *ArgType = CS.getArgument(5 + i)->getType();
1636 Assert(ArgType == ParamType,
1637 "gc.statepoint call argument does not match wrapped "
1642 const int EndCallArgsInx = 4 + NumCallArgs;
1644 const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
1645 Assert(isa<ConstantInt>(NumTransitionArgsV),
1646 "gc.statepoint number of transition arguments "
1647 "must be constant integer",
1649 const int NumTransitionArgs =
1650 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
1651 Assert(NumTransitionArgs >= 0,
1652 "gc.statepoint number of transition arguments must be positive", &CI);
1653 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
1655 const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
1656 Assert(isa<ConstantInt>(NumDeoptArgsV),
1657 "gc.statepoint number of deoptimization arguments "
1658 "must be constant integer",
1660 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
1661 Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "
1665 const int ExpectedNumArgs =
1666 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
1667 Assert(ExpectedNumArgs <= (int)CS.arg_size(),
1668 "gc.statepoint too few arguments according to length fields", &CI);
1670 // Check that the only uses of this gc.statepoint are gc.result or
1671 // gc.relocate calls which are tied to this statepoint and thus part
1672 // of the same statepoint sequence
1673 for (const User *U : CI.users()) {
1674 const CallInst *Call = dyn_cast<const CallInst>(U);
1675 Assert(Call, "illegal use of statepoint token", &CI, U);
1676 if (!Call) continue;
1677 Assert(isa<GCRelocateInst>(Call) || isGCResult(Call),
1678 "gc.result or gc.relocate are the only value uses"
1679 "of a gc.statepoint",
1681 if (isGCResult(Call)) {
1682 Assert(Call->getArgOperand(0) == &CI,
1683 "gc.result connected to wrong gc.statepoint", &CI, Call);
1684 } else if (isa<GCRelocateInst>(Call)) {
1685 Assert(Call->getArgOperand(0) == &CI,
1686 "gc.relocate connected to wrong gc.statepoint", &CI, Call);
1690 // Note: It is legal for a single derived pointer to be listed multiple
1691 // times. It's non-optimal, but it is legal. It can also happen after
1692 // insertion if we strip a bitcast away.
1693 // Note: It is really tempting to check that each base is relocated and
1694 // that a derived pointer is never reused as a base pointer. This turns
1695 // out to be problematic since optimizations run after safepoint insertion
1696 // can recognize equality properties that the insertion logic doesn't know
1697 // about. See example statepoint.ll in the verifier subdirectory
1700 void Verifier::verifyFrameRecoverIndices() {
1701 for (auto &Counts : FrameEscapeInfo) {
1702 Function *F = Counts.first;
1703 unsigned EscapedObjectCount = Counts.second.first;
1704 unsigned MaxRecoveredIndex = Counts.second.second;
1705 Assert(MaxRecoveredIndex <= EscapedObjectCount,
1706 "all indices passed to llvm.localrecover must be less than the "
1707 "number of arguments passed ot llvm.localescape in the parent "
1713 static Instruction *getSuccPad(TerminatorInst *Terminator) {
1714 BasicBlock *UnwindDest;
1715 if (auto *II = dyn_cast<InvokeInst>(Terminator))
1716 UnwindDest = II->getUnwindDest();
1717 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
1718 UnwindDest = CSI->getUnwindDest();
1720 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
1721 return UnwindDest->getFirstNonPHI();
1724 void Verifier::verifySiblingFuncletUnwinds() {
1725 SmallPtrSet<Instruction *, 8> Visited;
1726 SmallPtrSet<Instruction *, 8> Active;
1727 for (const auto &Pair : SiblingFuncletInfo) {
1728 Instruction *PredPad = Pair.first;
1729 if (Visited.count(PredPad))
1731 Active.insert(PredPad);
1732 TerminatorInst *Terminator = Pair.second;
1734 Instruction *SuccPad = getSuccPad(Terminator);
1735 if (Active.count(SuccPad)) {
1736 // Found a cycle; report error
1737 Instruction *CyclePad = SuccPad;
1738 SmallVector<Instruction *, 8> CycleNodes;
1740 CycleNodes.push_back(CyclePad);
1741 TerminatorInst *CycleTerminator = SiblingFuncletInfo[CyclePad];
1742 if (CycleTerminator != CyclePad)
1743 CycleNodes.push_back(CycleTerminator);
1744 CyclePad = getSuccPad(CycleTerminator);
1745 } while (CyclePad != SuccPad);
1746 Assert(false, "EH pads can't handle each other's exceptions",
1747 ArrayRef<Instruction *>(CycleNodes));
1749 // Don't re-walk a node we've already checked
1750 if (!Visited.insert(SuccPad).second)
1752 // Walk to this successor if it has a map entry.
1754 auto TermI = SiblingFuncletInfo.find(PredPad);
1755 if (TermI == SiblingFuncletInfo.end())
1757 Terminator = TermI->second;
1758 Active.insert(PredPad);
1760 // Each node only has one successor, so we've walked all the active
1761 // nodes' successors.
1766 // visitFunction - Verify that a function is ok.
1768 void Verifier::visitFunction(const Function &F) {
1769 // Check function arguments.
1770 FunctionType *FT = F.getFunctionType();
1771 unsigned NumArgs = F.arg_size();
1773 Assert(Context == &F.getContext(),
1774 "Function context does not match Module context!", &F);
1776 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
1777 Assert(FT->getNumParams() == NumArgs,
1778 "# formal arguments must match # of arguments for function type!", &F,
1780 Assert(F.getReturnType()->isFirstClassType() ||
1781 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
1782 "Functions cannot return aggregate values!", &F);
1784 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
1785 "Invalid struct return type!", &F);
1787 AttributeSet Attrs = F.getAttributes();
1789 Assert(VerifyAttributeCount(Attrs, FT->getNumParams()),
1790 "Attribute after last parameter!", &F);
1792 // Check function attributes.
1793 VerifyFunctionAttrs(FT, Attrs, &F);
1795 // On function declarations/definitions, we do not support the builtin
1796 // attribute. We do not check this in VerifyFunctionAttrs since that is
1797 // checking for Attributes that can/can not ever be on functions.
1798 Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::Builtin),
1799 "Attribute 'builtin' can only be applied to a callsite.", &F);
1801 // Check that this function meets the restrictions on this calling convention.
1802 // Sometimes varargs is used for perfectly forwarding thunks, so some of these
1803 // restrictions can be lifted.
1804 switch (F.getCallingConv()) {
1806 case CallingConv::C:
1808 case CallingConv::Fast:
1809 case CallingConv::Cold:
1810 case CallingConv::Intel_OCL_BI:
1811 case CallingConv::PTX_Kernel:
1812 case CallingConv::PTX_Device:
1813 Assert(!F.isVarArg(), "Calling convention does not support varargs or "
1814 "perfect forwarding!",
1819 bool isLLVMdotName = F.getName().size() >= 5 &&
1820 F.getName().substr(0, 5) == "llvm.";
1822 // Check that the argument values match the function type for this function...
1824 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
1826 Assert(I->getType() == FT->getParamType(i),
1827 "Argument value does not match function argument type!", I,
1828 FT->getParamType(i));
1829 Assert(I->getType()->isFirstClassType(),
1830 "Function arguments must have first-class types!", I);
1831 if (!isLLVMdotName) {
1832 Assert(!I->getType()->isMetadataTy(),
1833 "Function takes metadata but isn't an intrinsic", I, &F);
1834 Assert(!I->getType()->isTokenTy(),
1835 "Function takes token but isn't an intrinsic", I, &F);
1840 Assert(!F.getReturnType()->isTokenTy(),
1841 "Functions returns a token but isn't an intrinsic", &F);
1843 // Get the function metadata attachments.
1844 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1845 F.getAllMetadata(MDs);
1846 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
1847 VerifyFunctionMetadata(MDs);
1849 // Check validity of the personality function
1850 if (F.hasPersonalityFn()) {
1851 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
1853 Assert(Per->getParent() == F.getParent(),
1854 "Referencing personality function in another module!",
1855 &F, F.getParent(), Per, Per->getParent());
1858 if (F.isMaterializable()) {
1859 // Function has a body somewhere we can't see.
1860 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
1861 MDs.empty() ? nullptr : MDs.front().second);
1862 } else if (F.isDeclaration()) {
1863 Assert(F.hasExternalLinkage() || F.hasExternalWeakLinkage(),
1864 "invalid linkage type for function declaration", &F);
1865 Assert(MDs.empty(), "function without a body cannot have metadata", &F,
1866 MDs.empty() ? nullptr : MDs.front().second);
1867 Assert(!F.hasPersonalityFn(),
1868 "Function declaration shouldn't have a personality routine", &F);
1870 // Verify that this function (which has a body) is not named "llvm.*". It
1871 // is not legal to define intrinsics.
1872 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
1874 // Check the entry node
1875 const BasicBlock *Entry = &F.getEntryBlock();
1876 Assert(pred_empty(Entry),
1877 "Entry block to function must not have predecessors!", Entry);
1879 // The address of the entry block cannot be taken, unless it is dead.
1880 if (Entry->hasAddressTaken()) {
1881 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
1882 "blockaddress may not be used with the entry block!", Entry);
1885 // Visit metadata attachments.
1886 for (const auto &I : MDs) {
1887 // Verify that the attachment is legal.
1891 case LLVMContext::MD_dbg:
1892 Assert(isa<DISubprogram>(I.second),
1893 "function !dbg attachment must be a subprogram", &F, I.second);
1897 // Verify the metadata itself.
1898 visitMDNode(*I.second);
1902 // If this function is actually an intrinsic, verify that it is only used in
1903 // direct call/invokes, never having its "address taken".
1904 // Only do this if the module is materialized, otherwise we don't have all the
1906 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
1908 if (F.hasAddressTaken(&U))
1909 Assert(0, "Invalid user of intrinsic instruction!", U);
1912 Assert(!F.hasDLLImportStorageClass() ||
1913 (F.isDeclaration() && F.hasExternalLinkage()) ||
1914 F.hasAvailableExternallyLinkage(),
1915 "Function is marked as dllimport, but not external.", &F);
1917 auto *N = F.getSubprogram();
1921 // Check that all !dbg attachments lead to back to N (or, at least, another
1922 // subprogram that describes the same function).
1924 // FIXME: Check this incrementally while visiting !dbg attachments.
1925 // FIXME: Only check when N is the canonical subprogram for F.
1926 SmallPtrSet<const MDNode *, 32> Seen;
1928 for (auto &I : BB) {
1929 // Be careful about using DILocation here since we might be dealing with
1930 // broken code (this is the Verifier after all).
1932 dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
1935 if (!Seen.insert(DL).second)
1938 DILocalScope *Scope = DL->getInlinedAtScope();
1939 if (Scope && !Seen.insert(Scope).second)
1942 DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
1944 // Scope and SP could be the same MDNode and we don't want to skip
1945 // validation in that case
1946 if (SP && ((Scope != SP) && !Seen.insert(SP).second))
1949 // FIXME: Once N is canonical, check "SP == &N".
1950 Assert(SP->describes(&F),
1951 "!dbg attachment points at wrong subprogram for function", N, &F,
1956 // verifyBasicBlock - Verify that a basic block is well formed...
1958 void Verifier::visitBasicBlock(BasicBlock &BB) {
1959 InstsInThisBlock.clear();
1961 // Ensure that basic blocks have terminators!
1962 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
1964 // Check constraints that this basic block imposes on all of the PHI nodes in
1966 if (isa<PHINode>(BB.front())) {
1967 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
1968 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
1969 std::sort(Preds.begin(), Preds.end());
1971 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
1972 // Ensure that PHI nodes have at least one entry!
1973 Assert(PN->getNumIncomingValues() != 0,
1974 "PHI nodes must have at least one entry. If the block is dead, "
1975 "the PHI should be removed!",
1977 Assert(PN->getNumIncomingValues() == Preds.size(),
1978 "PHINode should have one entry for each predecessor of its "
1979 "parent basic block!",
1982 // Get and sort all incoming values in the PHI node...
1984 Values.reserve(PN->getNumIncomingValues());
1985 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1986 Values.push_back(std::make_pair(PN->getIncomingBlock(i),
1987 PN->getIncomingValue(i)));
1988 std::sort(Values.begin(), Values.end());
1990 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
1991 // Check to make sure that if there is more than one entry for a
1992 // particular basic block in this PHI node, that the incoming values are
1995 Assert(i == 0 || Values[i].first != Values[i - 1].first ||
1996 Values[i].second == Values[i - 1].second,
1997 "PHI node has multiple entries for the same basic block with "
1998 "different incoming values!",
1999 PN, Values[i].first, Values[i].second, Values[i - 1].second);
2001 // Check to make sure that the predecessors and PHI node entries are
2003 Assert(Values[i].first == Preds[i],
2004 "PHI node entries do not match predecessors!", PN,
2005 Values[i].first, Preds[i]);
2010 // Check that all instructions have their parent pointers set up correctly.
2013 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2017 void Verifier::visitTerminatorInst(TerminatorInst &I) {
2018 // Ensure that terminators only exist at the end of the basic block.
2019 Assert(&I == I.getParent()->getTerminator(),
2020 "Terminator found in the middle of a basic block!", I.getParent());
2021 visitInstruction(I);
2024 void Verifier::visitBranchInst(BranchInst &BI) {
2025 if (BI.isConditional()) {
2026 Assert(BI.getCondition()->getType()->isIntegerTy(1),
2027 "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2029 visitTerminatorInst(BI);
2032 void Verifier::visitReturnInst(ReturnInst &RI) {
2033 Function *F = RI.getParent()->getParent();
2034 unsigned N = RI.getNumOperands();
2035 if (F->getReturnType()->isVoidTy())
2037 "Found return instr that returns non-void in Function of void "
2039 &RI, F->getReturnType());
2041 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2042 "Function return type does not match operand "
2043 "type of return inst!",
2044 &RI, F->getReturnType());
2046 // Check to make sure that the return value has necessary properties for
2048 visitTerminatorInst(RI);
2051 void Verifier::visitSwitchInst(SwitchInst &SI) {
2052 // Check to make sure that all of the constants in the switch instruction
2053 // have the same type as the switched-on value.
2054 Type *SwitchTy = SI.getCondition()->getType();
2055 SmallPtrSet<ConstantInt*, 32> Constants;
2056 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
2057 Assert(i.getCaseValue()->getType() == SwitchTy,
2058 "Switch constants must all be same type as switch value!", &SI);
2059 Assert(Constants.insert(i.getCaseValue()).second,
2060 "Duplicate integer as switch case", &SI, i.getCaseValue());
2063 visitTerminatorInst(SI);
2066 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2067 Assert(BI.getAddress()->getType()->isPointerTy(),
2068 "Indirectbr operand must have pointer type!", &BI);
2069 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2070 Assert(BI.getDestination(i)->getType()->isLabelTy(),
2071 "Indirectbr destinations must all have pointer type!", &BI);
2073 visitTerminatorInst(BI);
2076 void Verifier::visitSelectInst(SelectInst &SI) {
2077 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2079 "Invalid operands for select instruction!", &SI);
2081 Assert(SI.getTrueValue()->getType() == SI.getType(),
2082 "Select values must have same type as select instruction!", &SI);
2083 visitInstruction(SI);
2086 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2087 /// a pass, if any exist, it's an error.
2089 void Verifier::visitUserOp1(Instruction &I) {
2090 Assert(0, "User-defined operators should not live outside of a pass!", &I);
2093 void Verifier::visitTruncInst(TruncInst &I) {
2094 // Get the source and destination types
2095 Type *SrcTy = I.getOperand(0)->getType();
2096 Type *DestTy = I.getType();
2098 // Get the size of the types in bits, we'll need this later
2099 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2100 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2102 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2103 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2104 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2105 "trunc source and destination must both be a vector or neither", &I);
2106 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2108 visitInstruction(I);
2111 void Verifier::visitZExtInst(ZExtInst &I) {
2112 // Get the source and destination types
2113 Type *SrcTy = I.getOperand(0)->getType();
2114 Type *DestTy = I.getType();
2116 // Get the size of the types in bits, we'll need this later
2117 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2118 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2119 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2120 "zext source and destination must both be a vector or neither", &I);
2121 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2122 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2124 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2126 visitInstruction(I);
2129 void Verifier::visitSExtInst(SExtInst &I) {
2130 // Get the source and destination types
2131 Type *SrcTy = I.getOperand(0)->getType();
2132 Type *DestTy = I.getType();
2134 // Get the size of the types in bits, we'll need this later
2135 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2136 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2138 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2139 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2140 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2141 "sext source and destination must both be a vector or neither", &I);
2142 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2144 visitInstruction(I);
2147 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2148 // Get the source and destination types
2149 Type *SrcTy = I.getOperand(0)->getType();
2150 Type *DestTy = I.getType();
2151 // Get the size of the types in bits, we'll need this later
2152 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2153 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2155 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2156 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2157 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2158 "fptrunc source and destination must both be a vector or neither", &I);
2159 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2161 visitInstruction(I);
2164 void Verifier::visitFPExtInst(FPExtInst &I) {
2165 // Get the source and destination types
2166 Type *SrcTy = I.getOperand(0)->getType();
2167 Type *DestTy = I.getType();
2169 // Get the size of the types in bits, we'll need this later
2170 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2171 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2173 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2174 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2175 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2176 "fpext source and destination must both be a vector or neither", &I);
2177 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2179 visitInstruction(I);
2182 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2183 // Get the source and destination types
2184 Type *SrcTy = I.getOperand(0)->getType();
2185 Type *DestTy = I.getType();
2187 bool SrcVec = SrcTy->isVectorTy();
2188 bool DstVec = DestTy->isVectorTy();
2190 Assert(SrcVec == DstVec,
2191 "UIToFP source and dest must both be vector or scalar", &I);
2192 Assert(SrcTy->isIntOrIntVectorTy(),
2193 "UIToFP source must be integer or integer vector", &I);
2194 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2197 if (SrcVec && DstVec)
2198 Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2199 cast<VectorType>(DestTy)->getNumElements(),
2200 "UIToFP source and dest vector length mismatch", &I);
2202 visitInstruction(I);
2205 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2206 // Get the source and destination types
2207 Type *SrcTy = I.getOperand(0)->getType();
2208 Type *DestTy = I.getType();
2210 bool SrcVec = SrcTy->isVectorTy();
2211 bool DstVec = DestTy->isVectorTy();
2213 Assert(SrcVec == DstVec,
2214 "SIToFP source and dest must both be vector or scalar", &I);
2215 Assert(SrcTy->isIntOrIntVectorTy(),
2216 "SIToFP source must be integer or integer vector", &I);
2217 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2220 if (SrcVec && DstVec)
2221 Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2222 cast<VectorType>(DestTy)->getNumElements(),
2223 "SIToFP source and dest vector length mismatch", &I);
2225 visitInstruction(I);
2228 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2229 // Get the source and destination types
2230 Type *SrcTy = I.getOperand(0)->getType();
2231 Type *DestTy = I.getType();
2233 bool SrcVec = SrcTy->isVectorTy();
2234 bool DstVec = DestTy->isVectorTy();
2236 Assert(SrcVec == DstVec,
2237 "FPToUI source and dest must both be vector or scalar", &I);
2238 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2240 Assert(DestTy->isIntOrIntVectorTy(),
2241 "FPToUI result must be integer or integer vector", &I);
2243 if (SrcVec && DstVec)
2244 Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2245 cast<VectorType>(DestTy)->getNumElements(),
2246 "FPToUI source and dest vector length mismatch", &I);
2248 visitInstruction(I);
2251 void Verifier::visitFPToSIInst(FPToSIInst &I) {
2252 // Get the source and destination types
2253 Type *SrcTy = I.getOperand(0)->getType();
2254 Type *DestTy = I.getType();
2256 bool SrcVec = SrcTy->isVectorTy();
2257 bool DstVec = DestTy->isVectorTy();
2259 Assert(SrcVec == DstVec,
2260 "FPToSI source and dest must both be vector or scalar", &I);
2261 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2263 Assert(DestTy->isIntOrIntVectorTy(),
2264 "FPToSI result must be integer or integer vector", &I);
2266 if (SrcVec && DstVec)
2267 Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2268 cast<VectorType>(DestTy)->getNumElements(),
2269 "FPToSI source and dest vector length mismatch", &I);
2271 visitInstruction(I);
2274 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2275 // Get the source and destination types
2276 Type *SrcTy = I.getOperand(0)->getType();
2277 Type *DestTy = I.getType();
2279 Assert(SrcTy->getScalarType()->isPointerTy(),
2280 "PtrToInt source must be pointer", &I);
2281 Assert(DestTy->getScalarType()->isIntegerTy(),
2282 "PtrToInt result must be integral", &I);
2283 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2286 if (SrcTy->isVectorTy()) {
2287 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2288 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2289 Assert(VSrc->getNumElements() == VDest->getNumElements(),
2290 "PtrToInt Vector width mismatch", &I);
2293 visitInstruction(I);
2296 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2297 // Get the source and destination types
2298 Type *SrcTy = I.getOperand(0)->getType();
2299 Type *DestTy = I.getType();
2301 Assert(SrcTy->getScalarType()->isIntegerTy(),
2302 "IntToPtr source must be an integral", &I);
2303 Assert(DestTy->getScalarType()->isPointerTy(),
2304 "IntToPtr result must be a pointer", &I);
2305 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2307 if (SrcTy->isVectorTy()) {
2308 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2309 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2310 Assert(VSrc->getNumElements() == VDest->getNumElements(),
2311 "IntToPtr Vector width mismatch", &I);
2313 visitInstruction(I);
2316 void Verifier::visitBitCastInst(BitCastInst &I) {
2318 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2319 "Invalid bitcast", &I);
2320 visitInstruction(I);
2323 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2324 Type *SrcTy = I.getOperand(0)->getType();
2325 Type *DestTy = I.getType();
2327 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2329 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2331 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
2332 "AddrSpaceCast must be between different address spaces", &I);
2333 if (SrcTy->isVectorTy())
2334 Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
2335 "AddrSpaceCast vector pointer number of elements mismatch", &I);
2336 visitInstruction(I);
2339 /// visitPHINode - Ensure that a PHI node is well formed.
2341 void Verifier::visitPHINode(PHINode &PN) {
2342 // Ensure that the PHI nodes are all grouped together at the top of the block.
2343 // This can be tested by checking whether the instruction before this is
2344 // either nonexistent (because this is begin()) or is a PHI node. If not,
2345 // then there is some other instruction before a PHI.
2346 Assert(&PN == &PN.getParent()->front() ||
2347 isa<PHINode>(--BasicBlock::iterator(&PN)),
2348 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
2350 // Check that a PHI doesn't yield a Token.
2351 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
2353 // Check that all of the values of the PHI node have the same type as the
2354 // result, and that the incoming blocks are really basic blocks.
2355 for (Value *IncValue : PN.incoming_values()) {
2356 Assert(PN.getType() == IncValue->getType(),
2357 "PHI node operands are not the same type as the result!", &PN);
2360 // All other PHI node constraints are checked in the visitBasicBlock method.
2362 visitInstruction(PN);
2365 void Verifier::VerifyCallSite(CallSite CS) {
2366 Instruction *I = CS.getInstruction();
2368 Assert(CS.getCalledValue()->getType()->isPointerTy(),
2369 "Called function must be a pointer!", I);
2370 PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
2372 Assert(FPTy->getElementType()->isFunctionTy(),
2373 "Called function is not pointer to function type!", I);
2375 Assert(FPTy->getElementType() == CS.getFunctionType(),
2376 "Called function is not the same type as the call!", I);
2378 FunctionType *FTy = CS.getFunctionType();
2380 // Verify that the correct number of arguments are being passed
2381 if (FTy->isVarArg())
2382 Assert(CS.arg_size() >= FTy->getNumParams(),
2383 "Called function requires more parameters than were provided!", I);
2385 Assert(CS.arg_size() == FTy->getNumParams(),
2386 "Incorrect number of arguments passed to called function!", I);
2388 // Verify that all arguments to the call match the function type.
2389 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2390 Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),
2391 "Call parameter type does not match function signature!",
2392 CS.getArgument(i), FTy->getParamType(i), I);
2394 AttributeSet Attrs = CS.getAttributes();
2396 Assert(VerifyAttributeCount(Attrs, CS.arg_size()),
2397 "Attribute after last parameter!", I);
2399 // Verify call attributes.
2400 VerifyFunctionAttrs(FTy, Attrs, I);
2402 // Conservatively check the inalloca argument.
2403 // We have a bug if we can find that there is an underlying alloca without
2405 if (CS.hasInAllocaArgument()) {
2406 Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
2407 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2408 Assert(AI->isUsedWithInAlloca(),
2409 "inalloca argument for call has mismatched alloca", AI, I);
2412 if (FTy->isVarArg()) {
2413 // FIXME? is 'nest' even legal here?
2414 bool SawNest = false;
2415 bool SawReturned = false;
2417 for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) {
2418 if (Attrs.hasAttribute(Idx, Attribute::Nest))
2420 if (Attrs.hasAttribute(Idx, Attribute::Returned))
2424 // Check attributes on the varargs part.
2425 for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
2426 Type *Ty = CS.getArgument(Idx-1)->getType();
2427 VerifyParameterAttrs(Attrs, Idx, Ty, false, I);
2429 if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
2430 Assert(!SawNest, "More than one parameter has attribute nest!", I);
2434 if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
2435 Assert(!SawReturned, "More than one parameter has attribute returned!",
2437 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
2438 "Incompatible argument and return types for 'returned' "
2444 Assert(!Attrs.hasAttribute(Idx, Attribute::StructRet),
2445 "Attribute 'sret' cannot be used for vararg call arguments!", I);
2447 if (Attrs.hasAttribute(Idx, Attribute::InAlloca))
2448 Assert(Idx == CS.arg_size(), "inalloca isn't on the last argument!", I);
2452 // Verify that there's no metadata unless it's a direct call to an intrinsic.
2453 if (CS.getCalledFunction() == nullptr ||
2454 !CS.getCalledFunction()->getName().startswith("llvm.")) {
2455 for (Type *ParamTy : FTy->params()) {
2456 Assert(!ParamTy->isMetadataTy(),
2457 "Function has metadata parameter but isn't an intrinsic", I);
2458 Assert(!ParamTy->isTokenTy(),
2459 "Function has token parameter but isn't an intrinsic", I);
2463 // Verify that indirect calls don't return tokens.
2464 if (CS.getCalledFunction() == nullptr)
2465 Assert(!FTy->getReturnType()->isTokenTy(),
2466 "Return type cannot be token for indirect call!");
2468 if (Function *F = CS.getCalledFunction())
2469 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2470 visitIntrinsicCallSite(ID, CS);
2472 // Verify that a callsite has at most one "deopt" and one "funclet" operand
2474 bool FoundDeoptBundle = false, FoundFuncletBundle = false;
2475 for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) {
2476 OperandBundleUse BU = CS.getOperandBundleAt(i);
2477 uint32_t Tag = BU.getTagID();
2478 if (Tag == LLVMContext::OB_deopt) {
2479 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I);
2480 FoundDeoptBundle = true;
2482 if (Tag == LLVMContext::OB_funclet) {
2483 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I);
2484 FoundFuncletBundle = true;
2485 Assert(BU.Inputs.size() == 1,
2486 "Expected exactly one funclet bundle operand", I);
2487 Assert(isa<FuncletPadInst>(BU.Inputs.front()),
2488 "Funclet bundle operands should correspond to a FuncletPadInst",
2493 visitInstruction(*I);
2496 /// Two types are "congruent" if they are identical, or if they are both pointer
2497 /// types with different pointee types and the same address space.
2498 static bool isTypeCongruent(Type *L, Type *R) {
2501 PointerType *PL = dyn_cast<PointerType>(L);
2502 PointerType *PR = dyn_cast<PointerType>(R);
2505 return PL->getAddressSpace() == PR->getAddressSpace();
2508 static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) {
2509 static const Attribute::AttrKind ABIAttrs[] = {
2510 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
2511 Attribute::InReg, Attribute::Returned};
2513 for (auto AK : ABIAttrs) {
2514 if (Attrs.hasAttribute(I + 1, AK))
2515 Copy.addAttribute(AK);
2517 if (Attrs.hasAttribute(I + 1, Attribute::Alignment))
2518 Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1));
2522 void Verifier::verifyMustTailCall(CallInst &CI) {
2523 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
2525 // - The caller and callee prototypes must match. Pointer types of
2526 // parameters or return types may differ in pointee type, but not
2528 Function *F = CI.getParent()->getParent();
2529 FunctionType *CallerTy = F->getFunctionType();
2530 FunctionType *CalleeTy = CI.getFunctionType();
2531 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
2532 "cannot guarantee tail call due to mismatched parameter counts", &CI);
2533 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
2534 "cannot guarantee tail call due to mismatched varargs", &CI);
2535 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
2536 "cannot guarantee tail call due to mismatched return types", &CI);
2537 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2539 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
2540 "cannot guarantee tail call due to mismatched parameter types", &CI);
2543 // - The calling conventions of the caller and callee must match.
2544 Assert(F->getCallingConv() == CI.getCallingConv(),
2545 "cannot guarantee tail call due to mismatched calling conv", &CI);
2547 // - All ABI-impacting function attributes, such as sret, byval, inreg,
2548 // returned, and inalloca, must match.
2549 AttributeSet CallerAttrs = F->getAttributes();
2550 AttributeSet CalleeAttrs = CI.getAttributes();
2551 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2552 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
2553 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
2554 Assert(CallerABIAttrs == CalleeABIAttrs,
2555 "cannot guarantee tail call due to mismatched ABI impacting "
2556 "function attributes",
2557 &CI, CI.getOperand(I));
2560 // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
2561 // or a pointer bitcast followed by a ret instruction.
2562 // - The ret instruction must return the (possibly bitcasted) value
2563 // produced by the call or void.
2564 Value *RetVal = &CI;
2565 Instruction *Next = CI.getNextNode();
2567 // Handle the optional bitcast.
2568 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
2569 Assert(BI->getOperand(0) == RetVal,
2570 "bitcast following musttail call must use the call", BI);
2572 Next = BI->getNextNode();
2575 // Check the return.
2576 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
2577 Assert(Ret, "musttail call must be precede a ret with an optional bitcast",
2579 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
2580 "musttail call result must be returned", Ret);
2583 void Verifier::visitCallInst(CallInst &CI) {
2584 VerifyCallSite(&CI);
2586 if (CI.isMustTailCall())
2587 verifyMustTailCall(CI);
2590 void Verifier::visitInvokeInst(InvokeInst &II) {
2591 VerifyCallSite(&II);
2593 // Verify that the first non-PHI instruction of the unwind destination is an
2594 // exception handling instruction.
2596 II.getUnwindDest()->isEHPad(),
2597 "The unwind destination does not have an exception handling instruction!",
2600 visitTerminatorInst(II);
2603 /// visitBinaryOperator - Check that both arguments to the binary operator are
2604 /// of the same type!
2606 void Verifier::visitBinaryOperator(BinaryOperator &B) {
2607 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
2608 "Both operands to a binary operator are not of the same type!", &B);
2610 switch (B.getOpcode()) {
2611 // Check that integer arithmetic operators are only used with
2612 // integral operands.
2613 case Instruction::Add:
2614 case Instruction::Sub:
2615 case Instruction::Mul:
2616 case Instruction::SDiv:
2617 case Instruction::UDiv:
2618 case Instruction::SRem:
2619 case Instruction::URem:
2620 Assert(B.getType()->isIntOrIntVectorTy(),
2621 "Integer arithmetic operators only work with integral types!", &B);
2622 Assert(B.getType() == B.getOperand(0)->getType(),
2623 "Integer arithmetic operators must have same type "
2624 "for operands and result!",
2627 // Check that floating-point arithmetic operators are only used with
2628 // floating-point operands.
2629 case Instruction::FAdd:
2630 case Instruction::FSub:
2631 case Instruction::FMul:
2632 case Instruction::FDiv:
2633 case Instruction::FRem:
2634 Assert(B.getType()->isFPOrFPVectorTy(),
2635 "Floating-point arithmetic operators only work with "
2636 "floating-point types!",
2638 Assert(B.getType() == B.getOperand(0)->getType(),
2639 "Floating-point arithmetic operators must have same type "
2640 "for operands and result!",
2643 // Check that logical operators are only used with integral operands.
2644 case Instruction::And:
2645 case Instruction::Or:
2646 case Instruction::Xor:
2647 Assert(B.getType()->isIntOrIntVectorTy(),
2648 "Logical operators only work with integral types!", &B);
2649 Assert(B.getType() == B.getOperand(0)->getType(),
2650 "Logical operators must have same type for operands and result!",
2653 case Instruction::Shl:
2654 case Instruction::LShr:
2655 case Instruction::AShr:
2656 Assert(B.getType()->isIntOrIntVectorTy(),
2657 "Shifts only work with integral types!", &B);
2658 Assert(B.getType() == B.getOperand(0)->getType(),
2659 "Shift return type must be same as operands!", &B);
2662 llvm_unreachable("Unknown BinaryOperator opcode!");
2665 visitInstruction(B);
2668 void Verifier::visitICmpInst(ICmpInst &IC) {
2669 // Check that the operands are the same type
2670 Type *Op0Ty = IC.getOperand(0)->getType();
2671 Type *Op1Ty = IC.getOperand(1)->getType();
2672 Assert(Op0Ty == Op1Ty,
2673 "Both operands to ICmp instruction are not of the same type!", &IC);
2674 // Check that the operands are the right type
2675 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
2676 "Invalid operand types for ICmp instruction", &IC);
2677 // Check that the predicate is valid.
2678 Assert(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
2679 IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
2680 "Invalid predicate in ICmp instruction!", &IC);
2682 visitInstruction(IC);
2685 void Verifier::visitFCmpInst(FCmpInst &FC) {
2686 // Check that the operands are the same type
2687 Type *Op0Ty = FC.getOperand(0)->getType();
2688 Type *Op1Ty = FC.getOperand(1)->getType();
2689 Assert(Op0Ty == Op1Ty,
2690 "Both operands to FCmp instruction are not of the same type!", &FC);
2691 // Check that the operands are the right type
2692 Assert(Op0Ty->isFPOrFPVectorTy(),
2693 "Invalid operand types for FCmp instruction", &FC);
2694 // Check that the predicate is valid.
2695 Assert(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
2696 FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
2697 "Invalid predicate in FCmp instruction!", &FC);
2699 visitInstruction(FC);
2702 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
2704 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
2705 "Invalid extractelement operands!", &EI);
2706 visitInstruction(EI);
2709 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
2710 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
2712 "Invalid insertelement operands!", &IE);
2713 visitInstruction(IE);
2716 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
2717 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
2719 "Invalid shufflevector operands!", &SV);
2720 visitInstruction(SV);
2723 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
2724 Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
2726 Assert(isa<PointerType>(TargetTy),
2727 "GEP base pointer is not a vector or a vector of pointers", &GEP);
2728 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
2729 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
2731 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
2732 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
2734 Assert(GEP.getType()->getScalarType()->isPointerTy() &&
2735 GEP.getResultElementType() == ElTy,
2736 "GEP is not of right type for indices!", &GEP, ElTy);
2738 if (GEP.getType()->isVectorTy()) {
2739 // Additional checks for vector GEPs.
2740 unsigned GEPWidth = GEP.getType()->getVectorNumElements();
2741 if (GEP.getPointerOperandType()->isVectorTy())
2742 Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
2743 "Vector GEP result width doesn't match operand's", &GEP);
2744 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
2745 Type *IndexTy = Idxs[i]->getType();
2746 if (IndexTy->isVectorTy()) {
2747 unsigned IndexWidth = IndexTy->getVectorNumElements();
2748 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
2750 Assert(IndexTy->getScalarType()->isIntegerTy(),
2751 "All GEP indices should be of integer type");
2754 visitInstruction(GEP);
2757 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
2758 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
2761 void Verifier::visitRangeMetadata(Instruction& I,
2762 MDNode* Range, Type* Ty) {
2764 Range == I.getMetadata(LLVMContext::MD_range) &&
2765 "precondition violation");
2767 unsigned NumOperands = Range->getNumOperands();
2768 Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
2769 unsigned NumRanges = NumOperands / 2;
2770 Assert(NumRanges >= 1, "It should have at least one range!", Range);
2772 ConstantRange LastRange(1); // Dummy initial value
2773 for (unsigned i = 0; i < NumRanges; ++i) {
2775 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
2776 Assert(Low, "The lower limit must be an integer!", Low);
2778 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
2779 Assert(High, "The upper limit must be an integer!", High);
2780 Assert(High->getType() == Low->getType() && High->getType() == Ty,
2781 "Range types must match instruction type!", &I);
2783 APInt HighV = High->getValue();
2784 APInt LowV = Low->getValue();
2785 ConstantRange CurRange(LowV, HighV);
2786 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
2787 "Range must not be empty!", Range);
2789 Assert(CurRange.intersectWith(LastRange).isEmptySet(),
2790 "Intervals are overlapping", Range);
2791 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
2793 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
2796 LastRange = ConstantRange(LowV, HighV);
2798 if (NumRanges > 2) {
2800 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
2802 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
2803 ConstantRange FirstRange(FirstLow, FirstHigh);
2804 Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
2805 "Intervals are overlapping", Range);
2806 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
2811 void Verifier::checkAtomicMemAccessSize(const Module *M, Type *Ty,
2812 const Instruction *I) {
2813 unsigned Size = M->getDataLayout().getTypeSizeInBits(Ty);
2814 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
2815 Assert(!(Size & (Size - 1)),
2816 "atomic memory access' operand must have a power-of-two size", Ty, I);
2819 void Verifier::visitLoadInst(LoadInst &LI) {
2820 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
2821 Assert(PTy, "Load operand must be a pointer.", &LI);
2822 Type *ElTy = LI.getType();
2823 Assert(LI.getAlignment() <= Value::MaximumAlignment,
2824 "huge alignment values are unsupported", &LI);
2825 if (LI.isAtomic()) {
2826 Assert(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
2827 "Load cannot have Release ordering", &LI);
2828 Assert(LI.getAlignment() != 0,
2829 "Atomic load must specify explicit alignment", &LI);
2830 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
2831 ElTy->isFloatingPointTy(),
2832 "atomic load operand must have integer, pointer, or floating point "
2835 checkAtomicMemAccessSize(M, ElTy, &LI);
2837 Assert(LI.getSynchScope() == CrossThread,
2838 "Non-atomic load cannot have SynchronizationScope specified", &LI);
2841 visitInstruction(LI);
2844 void Verifier::visitStoreInst(StoreInst &SI) {
2845 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
2846 Assert(PTy, "Store operand must be a pointer.", &SI);
2847 Type *ElTy = PTy->getElementType();
2848 Assert(ElTy == SI.getOperand(0)->getType(),
2849 "Stored value type does not match pointer operand type!", &SI, ElTy);
2850 Assert(SI.getAlignment() <= Value::MaximumAlignment,
2851 "huge alignment values are unsupported", &SI);
2852 if (SI.isAtomic()) {
2853 Assert(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
2854 "Store cannot have Acquire ordering", &SI);
2855 Assert(SI.getAlignment() != 0,
2856 "Atomic store must specify explicit alignment", &SI);
2857 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
2858 ElTy->isFloatingPointTy(),
2859 "atomic store operand must have integer, pointer, or floating point "
2862 checkAtomicMemAccessSize(M, ElTy, &SI);
2864 Assert(SI.getSynchScope() == CrossThread,
2865 "Non-atomic store cannot have SynchronizationScope specified", &SI);
2867 visitInstruction(SI);
2870 void Verifier::visitAllocaInst(AllocaInst &AI) {
2871 SmallPtrSet<Type*, 4> Visited;
2872 PointerType *PTy = AI.getType();
2873 Assert(PTy->getAddressSpace() == 0,
2874 "Allocation instruction pointer not in the generic address space!",
2876 Assert(AI.getAllocatedType()->isSized(&Visited),
2877 "Cannot allocate unsized type", &AI);
2878 Assert(AI.getArraySize()->getType()->isIntegerTy(),
2879 "Alloca array size must have integer type", &AI);
2880 Assert(AI.getAlignment() <= Value::MaximumAlignment,
2881 "huge alignment values are unsupported", &AI);
2883 visitInstruction(AI);
2886 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
2888 // FIXME: more conditions???
2889 Assert(CXI.getSuccessOrdering() != NotAtomic,
2890 "cmpxchg instructions must be atomic.", &CXI);
2891 Assert(CXI.getFailureOrdering() != NotAtomic,
2892 "cmpxchg instructions must be atomic.", &CXI);
2893 Assert(CXI.getSuccessOrdering() != Unordered,
2894 "cmpxchg instructions cannot be unordered.", &CXI);
2895 Assert(CXI.getFailureOrdering() != Unordered,
2896 "cmpxchg instructions cannot be unordered.", &CXI);
2897 Assert(CXI.getSuccessOrdering() >= CXI.getFailureOrdering(),
2898 "cmpxchg instructions be at least as constrained on success as fail",
2900 Assert(CXI.getFailureOrdering() != Release &&
2901 CXI.getFailureOrdering() != AcquireRelease,
2902 "cmpxchg failure ordering cannot include release semantics", &CXI);
2904 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
2905 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
2906 Type *ElTy = PTy->getElementType();
2907 Assert(ElTy->isIntegerTy(), "cmpxchg operand must have integer type!", &CXI,
2909 checkAtomicMemAccessSize(M, ElTy, &CXI);
2910 Assert(ElTy == CXI.getOperand(1)->getType(),
2911 "Expected value type does not match pointer operand type!", &CXI,
2913 Assert(ElTy == CXI.getOperand(2)->getType(),
2914 "Stored value type does not match pointer operand type!", &CXI, ElTy);
2915 visitInstruction(CXI);
2918 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
2919 Assert(RMWI.getOrdering() != NotAtomic,
2920 "atomicrmw instructions must be atomic.", &RMWI);
2921 Assert(RMWI.getOrdering() != Unordered,
2922 "atomicrmw instructions cannot be unordered.", &RMWI);
2923 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
2924 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
2925 Type *ElTy = PTy->getElementType();
2926 Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",
2928 checkAtomicMemAccessSize(M, ElTy, &RMWI);
2929 Assert(ElTy == RMWI.getOperand(1)->getType(),
2930 "Argument value type does not match pointer operand type!", &RMWI,
2932 Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
2933 RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
2934 "Invalid binary operation!", &RMWI);
2935 visitInstruction(RMWI);
2938 void Verifier::visitFenceInst(FenceInst &FI) {
2939 const AtomicOrdering Ordering = FI.getOrdering();
2940 Assert(Ordering == Acquire || Ordering == Release ||
2941 Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
2942 "fence instructions may only have "
2943 "acquire, release, acq_rel, or seq_cst ordering.",
2945 visitInstruction(FI);
2948 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
2949 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
2950 EVI.getIndices()) == EVI.getType(),
2951 "Invalid ExtractValueInst operands!", &EVI);
2953 visitInstruction(EVI);
2956 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
2957 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
2958 IVI.getIndices()) ==
2959 IVI.getOperand(1)->getType(),
2960 "Invalid InsertValueInst operands!", &IVI);
2962 visitInstruction(IVI);
2965 static Value *getParentPad(Value *EHPad) {
2966 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
2967 return FPI->getParentPad();
2969 return cast<CatchSwitchInst>(EHPad)->getParentPad();
2972 void Verifier::visitEHPadPredecessors(Instruction &I) {
2973 assert(I.isEHPad());
2975 BasicBlock *BB = I.getParent();
2976 Function *F = BB->getParent();
2978 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
2980 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
2981 // The landingpad instruction defines its parent as a landing pad block. The
2982 // landing pad block may be branched to only by the unwind edge of an
2984 for (BasicBlock *PredBB : predecessors(BB)) {
2985 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
2986 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
2987 "Block containing LandingPadInst must be jumped to "
2988 "only by the unwind edge of an invoke.",
2993 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
2994 if (!pred_empty(BB))
2995 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
2996 "Block containg CatchPadInst must be jumped to "
2997 "only by its catchswitch.",
3002 // Verify that each pred has a legal terminator with a legal to/from EH
3003 // pad relationship.
3004 Instruction *ToPad = &I;
3005 Value *ToPadParent = getParentPad(ToPad);
3006 for (BasicBlock *PredBB : predecessors(BB)) {
3007 TerminatorInst *TI = PredBB->getTerminator();
3009 if (auto *II = dyn_cast<InvokeInst>(TI)) {
3010 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3011 "EH pad must be jumped to via an unwind edge", ToPad, II);
3012 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3013 FromPad = Bundle->Inputs[0];
3015 FromPad = ConstantTokenNone::get(II->getContext());
3016 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3017 FromPad = CRI->getCleanupPad();
3018 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3019 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3022 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3025 // The edge may exit from zero or more nested pads.
3026 for (;; FromPad = getParentPad(FromPad)) {
3027 Assert(FromPad != ToPad,
3028 "EH pad cannot handle exceptions raised within it", FromPad, TI);
3029 if (FromPad == ToPadParent) {
3030 // This is a legal unwind edge.
3033 Assert(!isa<ConstantTokenNone>(FromPad),
3034 "A single unwind edge may only enter one EH pad", TI);
3039 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3040 // The landingpad instruction is ill-formed if it doesn't have any clauses and
3042 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
3043 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
3045 visitEHPadPredecessors(LPI);
3047 if (!LandingPadResultTy)
3048 LandingPadResultTy = LPI.getType();
3050 Assert(LandingPadResultTy == LPI.getType(),
3051 "The landingpad instruction should have a consistent result type "
3052 "inside a function.",
3055 Function *F = LPI.getParent()->getParent();
3056 Assert(F->hasPersonalityFn(),
3057 "LandingPadInst needs to be in a function with a personality.", &LPI);
3059 // The landingpad instruction must be the first non-PHI instruction in the
3061 Assert(LPI.getParent()->getLandingPadInst() == &LPI,
3062 "LandingPadInst not the first non-PHI instruction in the block.",
3065 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3066 Constant *Clause = LPI.getClause(i);
3067 if (LPI.isCatch(i)) {
3068 Assert(isa<PointerType>(Clause->getType()),
3069 "Catch operand does not have pointer type!", &LPI);
3071 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
3072 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
3073 "Filter operand is not an array of constants!", &LPI);
3077 visitInstruction(LPI);
3080 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3081 visitEHPadPredecessors(CPI);
3083 BasicBlock *BB = CPI.getParent();
3085 Function *F = BB->getParent();
3086 Assert(F->hasPersonalityFn(),
3087 "CatchPadInst needs to be in a function with a personality.", &CPI);
3089 Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
3090 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
3091 CPI.getParentPad());
3093 // The catchpad instruction must be the first non-PHI instruction in the
3095 Assert(BB->getFirstNonPHI() == &CPI,
3096 "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
3098 visitFuncletPadInst(CPI);
3101 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3102 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
3103 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
3104 CatchReturn.getOperand(0));
3106 visitTerminatorInst(CatchReturn);
3109 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3110 visitEHPadPredecessors(CPI);
3112 BasicBlock *BB = CPI.getParent();
3114 Function *F = BB->getParent();
3115 Assert(F->hasPersonalityFn(),
3116 "CleanupPadInst needs to be in a function with a personality.", &CPI);
3118 // The cleanuppad instruction must be the first non-PHI instruction in the
3120 Assert(BB->getFirstNonPHI() == &CPI,
3121 "CleanupPadInst not the first non-PHI instruction in the block.",
3124 auto *ParentPad = CPI.getParentPad();
3125 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3126 "CleanupPadInst has an invalid parent.", &CPI);
3128 visitFuncletPadInst(CPI);
3131 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3132 User *FirstUser = nullptr;
3133 Value *FirstUnwindPad = nullptr;
3134 SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3135 while (!Worklist.empty()) {
3136 FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3137 Value *UnresolvedAncestorPad = nullptr;
3138 for (User *U : CurrentPad->users()) {
3139 BasicBlock *UnwindDest;
3140 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3141 UnwindDest = CRI->getUnwindDest();
3142 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3143 // We allow catchswitch unwind to caller to nest
3144 // within an outer pad that unwinds somewhere else,
3145 // because catchswitch doesn't have a nounwind variant.
3146 // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3147 if (CSI->unwindsToCaller())
3149 UnwindDest = CSI->getUnwindDest();
3150 } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3151 UnwindDest = II->getUnwindDest();
3152 } else if (isa<CallInst>(U)) {
3153 // Calls which don't unwind may be found inside funclet
3154 // pads that unwind somewhere else. We don't *require*
3155 // such calls to be annotated nounwind.
3157 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3158 // The unwind dest for a cleanup can only be found by
3159 // recursive search. Add it to the worklist, and we'll
3160 // search for its first use that determines where it unwinds.
3161 Worklist.push_back(CPI);
3164 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
3171 UnwindPad = UnwindDest->getFirstNonPHI();
3172 Value *UnwindParent = getParentPad(UnwindPad);
3173 // Ignore unwind edges that don't exit CurrentPad.
3174 if (UnwindParent == CurrentPad)
3176 // Determine whether the original funclet pad is exited,
3177 // and if we are scanning nested pads determine how many
3178 // of them are exited so we can stop searching their
3180 Value *ExitedPad = CurrentPad;
3183 if (ExitedPad == &FPI) {
3185 // Now we can resolve any ancestors of CurrentPad up to
3186 // FPI, but not including FPI since we need to make sure
3187 // to check all direct users of FPI for consistency.
3188 UnresolvedAncestorPad = &FPI;
3191 Value *ExitedParent = getParentPad(ExitedPad);
3192 if (ExitedParent == UnwindParent) {
3193 // ExitedPad is the ancestor-most pad which this unwind
3194 // edge exits, so we can resolve up to it, meaning that
3195 // ExitedParent is the first ancestor still unresolved.
3196 UnresolvedAncestorPad = ExitedParent;
3199 ExitedPad = ExitedParent;
3200 } while (!isa<ConstantTokenNone>(ExitedPad));
3202 // Unwinding to caller exits all pads.
3203 UnwindPad = ConstantTokenNone::get(FPI.getContext());
3205 UnresolvedAncestorPad = &FPI;
3209 // This unwind edge exits FPI. Make sure it agrees with other
3212 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
3213 "pad must have the same unwind "
3215 &FPI, U, FirstUser);
3218 FirstUnwindPad = UnwindPad;
3219 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3220 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3221 getParentPad(UnwindPad) == getParentPad(&FPI))
3222 SiblingFuncletInfo[&FPI] = cast<TerminatorInst>(U);
3225 // Make sure we visit all uses of FPI, but for nested pads stop as
3226 // soon as we know where they unwind to.
3227 if (CurrentPad != &FPI)
3230 if (UnresolvedAncestorPad) {
3231 if (CurrentPad == UnresolvedAncestorPad) {
3232 // When CurrentPad is FPI itself, we don't mark it as resolved even if
3233 // we've found an unwind edge that exits it, because we need to verify
3234 // all direct uses of FPI.
3235 assert(CurrentPad == &FPI);
3238 // Pop off the worklist any nested pads that we've found an unwind
3239 // destination for. The pads on the worklist are the uncles,
3240 // great-uncles, etc. of CurrentPad. We've found an unwind destination
3241 // for all ancestors of CurrentPad up to but not including
3242 // UnresolvedAncestorPad.
3243 Value *ResolvedPad = CurrentPad;
3244 while (!Worklist.empty()) {
3245 Value *UnclePad = Worklist.back();
3246 Value *AncestorPad = getParentPad(UnclePad);
3247 // Walk ResolvedPad up the ancestor list until we either find the
3248 // uncle's parent or the last resolved ancestor.
3249 while (ResolvedPad != AncestorPad) {
3250 Value *ResolvedParent = getParentPad(ResolvedPad);
3251 if (ResolvedParent == UnresolvedAncestorPad) {
3254 ResolvedPad = ResolvedParent;
3256 // If the resolved ancestor search didn't find the uncle's parent,
3257 // then the uncle is not yet resolved.
3258 if (ResolvedPad != AncestorPad)
3260 // This uncle is resolved, so pop it from the worklist.
3261 Worklist.pop_back();
3266 if (FirstUnwindPad) {
3267 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3268 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3269 Value *SwitchUnwindPad;
3270 if (SwitchUnwindDest)
3271 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3273 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3274 Assert(SwitchUnwindPad == FirstUnwindPad,
3275 "Unwind edges out of a catch must have the same unwind dest as "
3276 "the parent catchswitch",
3277 &FPI, FirstUser, CatchSwitch);
3281 visitInstruction(FPI);
3284 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3285 visitEHPadPredecessors(CatchSwitch);
3287 BasicBlock *BB = CatchSwitch.getParent();
3289 Function *F = BB->getParent();
3290 Assert(F->hasPersonalityFn(),
3291 "CatchSwitchInst needs to be in a function with a personality.",
3294 // The catchswitch instruction must be the first non-PHI instruction in the
3296 Assert(BB->getFirstNonPHI() == &CatchSwitch,
3297 "CatchSwitchInst not the first non-PHI instruction in the block.",
3300 auto *ParentPad = CatchSwitch.getParentPad();
3301 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3302 "CatchSwitchInst has an invalid parent.", ParentPad);
3304 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3305 Instruction *I = UnwindDest->getFirstNonPHI();
3306 Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3307 "CatchSwitchInst must unwind to an EH block which is not a "
3311 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3312 if (getParentPad(I) == ParentPad)
3313 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3316 Assert(CatchSwitch.getNumHandlers() != 0,
3317 "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
3319 for (BasicBlock *Handler : CatchSwitch.handlers()) {
3320 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
3321 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
3324 visitTerminatorInst(CatchSwitch);
3327 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3328 Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
3329 "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
3332 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3333 Instruction *I = UnwindDest->getFirstNonPHI();
3334 Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3335 "CleanupReturnInst must unwind to an EH block which is not a "
3340 visitTerminatorInst(CRI);
3343 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3344 Instruction *Op = cast<Instruction>(I.getOperand(i));
3345 // If the we have an invalid invoke, don't try to compute the dominance.
3346 // We already reject it in the invoke specific checks and the dominance
3347 // computation doesn't handle multiple edges.
3348 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3349 if (II->getNormalDest() == II->getUnwindDest())
3353 const Use &U = I.getOperandUse(i);
3354 Assert(InstsInThisBlock.count(Op) || DT.dominates(Op, U),
3355 "Instruction does not dominate all uses!", Op, &I);
3358 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
3359 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
3360 "apply only to pointer types", &I);
3361 Assert(isa<LoadInst>(I),
3362 "dereferenceable, dereferenceable_or_null apply only to load"
3363 " instructions, use attributes for calls or invokes", &I);
3364 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
3365 "take one operand!", &I);
3366 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
3367 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
3368 "dereferenceable_or_null metadata value must be an i64!", &I);
3371 /// verifyInstruction - Verify that an instruction is well formed.
3373 void Verifier::visitInstruction(Instruction &I) {
3374 BasicBlock *BB = I.getParent();
3375 Assert(BB, "Instruction not embedded in basic block!", &I);
3377 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
3378 for (User *U : I.users()) {
3379 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
3380 "Only PHI nodes may reference their own value!", &I);
3384 // Check that void typed values don't have names
3385 Assert(!I.getType()->isVoidTy() || !I.hasName(),
3386 "Instruction has a name, but provides a void value!", &I);
3388 // Check that the return value of the instruction is either void or a legal
3390 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
3391 "Instruction returns a non-scalar type!", &I);
3393 // Check that the instruction doesn't produce metadata. Calls are already
3394 // checked against the callee type.
3395 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
3396 "Invalid use of metadata!", &I);
3398 // Check that all uses of the instruction, if they are instructions
3399 // themselves, actually have parent basic blocks. If the use is not an
3400 // instruction, it is an error!
3401 for (Use &U : I.uses()) {
3402 if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
3403 Assert(Used->getParent() != nullptr,
3404 "Instruction referencing"
3405 " instruction not embedded in a basic block!",
3408 CheckFailed("Use of instruction is not an instruction!", U);
3413 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
3414 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
3416 // Check to make sure that only first-class-values are operands to
3418 if (!I.getOperand(i)->getType()->isFirstClassType()) {
3419 Assert(0, "Instruction operands must be first-class values!", &I);
3422 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
3423 // Check to make sure that the "address of" an intrinsic function is never
3426 !F->isIntrinsic() ||
3427 i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),
3428 "Cannot take the address of an intrinsic!", &I);
3430 !F->isIntrinsic() || isa<CallInst>(I) ||
3431 F->getIntrinsicID() == Intrinsic::donothing ||
3432 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
3433 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
3434 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,
3435 "Cannot invoke an intrinsinc other than"
3436 " donothing or patchpoint",
3438 Assert(F->getParent() == M, "Referencing function in another module!",
3439 &I, M, F, F->getParent());
3440 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
3441 Assert(OpBB->getParent() == BB->getParent(),
3442 "Referring to a basic block in another function!", &I);
3443 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
3444 Assert(OpArg->getParent() == BB->getParent(),
3445 "Referring to an argument in another function!", &I);
3446 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
3447 Assert(GV->getParent() == M, "Referencing global in another module!", &I, M, GV, GV->getParent());
3448 } else if (isa<Instruction>(I.getOperand(i))) {
3449 verifyDominatesUse(I, i);
3450 } else if (isa<InlineAsm>(I.getOperand(i))) {
3451 Assert((i + 1 == e && isa<CallInst>(I)) ||
3452 (i + 3 == e && isa<InvokeInst>(I)),
3453 "Cannot take the address of an inline asm!", &I);
3454 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
3455 if (CE->getType()->isPtrOrPtrVectorTy()) {
3456 // If we have a ConstantExpr pointer, we need to see if it came from an
3457 // illegal bitcast (inttoptr <constant int> )
3458 visitConstantExprsRecursively(CE);
3463 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
3464 Assert(I.getType()->isFPOrFPVectorTy(),
3465 "fpmath requires a floating point result!", &I);
3466 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
3467 if (ConstantFP *CFP0 =
3468 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
3469 APFloat Accuracy = CFP0->getValueAPF();
3470 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
3471 "fpmath accuracy not a positive number!", &I);
3473 Assert(false, "invalid fpmath accuracy!", &I);
3477 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
3478 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
3479 "Ranges are only for loads, calls and invokes!", &I);
3480 visitRangeMetadata(I, Range, I.getType());
3483 if (I.getMetadata(LLVMContext::MD_nonnull)) {
3484 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
3486 Assert(isa<LoadInst>(I),
3487 "nonnull applies only to load instructions, use attributes"
3488 " for calls or invokes",
3492 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
3493 visitDereferenceableMetadata(I, MD);
3495 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
3496 visitDereferenceableMetadata(I, MD);
3498 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
3499 Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
3501 Assert(isa<LoadInst>(I), "align applies only to load instructions, "
3502 "use attributes for calls or invokes", &I);
3503 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
3504 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
3505 Assert(CI && CI->getType()->isIntegerTy(64),
3506 "align metadata value must be an i64!", &I);
3507 uint64_t Align = CI->getZExtValue();
3508 Assert(isPowerOf2_64(Align),
3509 "align metadata value must be a power of 2!", &I);
3510 Assert(Align <= Value::MaximumAlignment,
3511 "alignment is larger that implementation defined limit", &I);
3514 if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
3515 Assert(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
3519 InstsInThisBlock.insert(&I);
3522 /// VerifyIntrinsicType - Verify that the specified type (which comes from an
3523 /// intrinsic argument or return value) matches the type constraints specified
3524 /// by the .td file (e.g. an "any integer" argument really is an integer).
3526 /// This return true on error but does not print a message.
3527 bool Verifier::VerifyIntrinsicType(Type *Ty,
3528 ArrayRef<Intrinsic::IITDescriptor> &Infos,
3529 SmallVectorImpl<Type*> &ArgTys) {
3530 using namespace Intrinsic;
3532 // If we ran out of descriptors, there are too many arguments.
3533 if (Infos.empty()) return true;
3534 IITDescriptor D = Infos.front();
3535 Infos = Infos.slice(1);
3538 case IITDescriptor::Void: return !Ty->isVoidTy();
3539 case IITDescriptor::VarArg: return true;
3540 case IITDescriptor::MMX: return !Ty->isX86_MMXTy();
3541 case IITDescriptor::Token: return !Ty->isTokenTy();
3542 case IITDescriptor::Metadata: return !Ty->isMetadataTy();
3543 case IITDescriptor::Half: return !Ty->isHalfTy();
3544 case IITDescriptor::Float: return !Ty->isFloatTy();
3545 case IITDescriptor::Double: return !Ty->isDoubleTy();
3546 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
3547 case IITDescriptor::Vector: {
3548 VectorType *VT = dyn_cast<VectorType>(Ty);
3549 return !VT || VT->getNumElements() != D.Vector_Width ||
3550 VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys);
3552 case IITDescriptor::Pointer: {
3553 PointerType *PT = dyn_cast<PointerType>(Ty);
3554 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
3555 VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys);
3558 case IITDescriptor::Struct: {
3559 StructType *ST = dyn_cast<StructType>(Ty);
3560 if (!ST || ST->getNumElements() != D.Struct_NumElements)
3563 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
3564 if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys))
3569 case IITDescriptor::Argument:
3570 // Two cases here - If this is the second occurrence of an argument, verify
3571 // that the later instance matches the previous instance.
3572 if (D.getArgumentNumber() < ArgTys.size())
3573 return Ty != ArgTys[D.getArgumentNumber()];
3575 // Otherwise, if this is the first instance of an argument, record it and
3576 // verify the "Any" kind.
3577 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
3578 ArgTys.push_back(Ty);
3580 switch (D.getArgumentKind()) {
3581 case IITDescriptor::AK_Any: return false; // Success
3582 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
3583 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy();
3584 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty);
3585 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
3587 llvm_unreachable("all argument kinds not covered");
3589 case IITDescriptor::ExtendArgument: {
3590 // This may only be used when referring to a previous vector argument.
3591 if (D.getArgumentNumber() >= ArgTys.size())
3594 Type *NewTy = ArgTys[D.getArgumentNumber()];
3595 if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
3596 NewTy = VectorType::getExtendedElementVectorType(VTy);
3597 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
3598 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());