[CallSite] Make construction from Value* (or Instruction*) explicit.
[oota-llvm.git] / lib / IR / Value.cpp
1 //===-- Value.cpp - Implement the Value class -----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Value, ValueHandle, and User classes.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Value.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/IR/CallSite.h"
19 #include "llvm/IR/Constant.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/InstrTypes.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/IR/Statepoint.h"
30 #include "llvm/IR/ValueHandle.h"
31 #include "llvm/IR/ValueSymbolTable.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/ManagedStatic.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <algorithm>
37 using namespace llvm;
38
39 //===----------------------------------------------------------------------===//
40 //                                Value Class
41 //===----------------------------------------------------------------------===//
42
43 static inline Type *checkType(Type *Ty) {
44   assert(Ty && "Value defined with a null type: Error!");
45   return Ty;
46 }
47
48 Value::Value(Type *ty, unsigned scid)
49     : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid), HasValueHandle(0),
50       SubclassOptionalData(0), SubclassData(0), NumOperands(0) {
51   // FIXME: Why isn't this in the subclass gunk??
52   // Note, we cannot call isa<CallInst> before the CallInst has been
53   // constructed.
54   if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke)
55     assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
56            "invalid CallInst type!");
57   else if (SubclassID != BasicBlockVal &&
58            (SubclassID < ConstantFirstVal || SubclassID > ConstantLastVal))
59     assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
60            "Cannot create non-first-class values except for constants!");
61 }
62
63 Value::~Value() {
64   // Notify all ValueHandles (if present) that this value is going away.
65   if (HasValueHandle)
66     ValueHandleBase::ValueIsDeleted(this);
67   if (isUsedByMetadata())
68     ValueAsMetadata::handleDeletion(this);
69
70 #ifndef NDEBUG      // Only in -g mode...
71   // Check to make sure that there are no uses of this value that are still
72   // around when the value is destroyed.  If there are, then we have a dangling
73   // reference and something is wrong.  This code is here to print out where
74   // the value is still being referenced.
75   //
76   if (!use_empty()) {
77     dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
78     for (auto *U : users())
79       dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n";
80   }
81 #endif
82   assert(use_empty() && "Uses remain when a value is destroyed!");
83
84   // If this value is named, destroy the name.  This should not be in a symtab
85   // at this point.
86   destroyValueName();
87 }
88
89 void Value::destroyValueName() {
90   ValueName *Name = getValueName();
91   if (Name)
92     Name->Destroy();
93   setValueName(nullptr);
94 }
95
96 bool Value::hasNUses(unsigned N) const {
97   const_use_iterator UI = use_begin(), E = use_end();
98
99   for (; N; --N, ++UI)
100     if (UI == E) return false;  // Too few.
101   return UI == E;
102 }
103
104 bool Value::hasNUsesOrMore(unsigned N) const {
105   const_use_iterator UI = use_begin(), E = use_end();
106
107   for (; N; --N, ++UI)
108     if (UI == E) return false;  // Too few.
109
110   return true;
111 }
112
113 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
114   // This can be computed either by scanning the instructions in BB, or by
115   // scanning the use list of this Value. Both lists can be very long, but
116   // usually one is quite short.
117   //
118   // Scan both lists simultaneously until one is exhausted. This limits the
119   // search to the shorter list.
120   BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
121   const_user_iterator UI = user_begin(), UE = user_end();
122   for (; BI != BE && UI != UE; ++BI, ++UI) {
123     // Scan basic block: Check if this Value is used by the instruction at BI.
124     if (std::find(BI->op_begin(), BI->op_end(), this) != BI->op_end())
125       return true;
126     // Scan use list: Check if the use at UI is in BB.
127     const Instruction *User = dyn_cast<Instruction>(*UI);
128     if (User && User->getParent() == BB)
129       return true;
130   }
131   return false;
132 }
133
134 unsigned Value::getNumUses() const {
135   return (unsigned)std::distance(use_begin(), use_end());
136 }
137
138 static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
139   ST = nullptr;
140   if (Instruction *I = dyn_cast<Instruction>(V)) {
141     if (BasicBlock *P = I->getParent())
142       if (Function *PP = P->getParent())
143         ST = &PP->getValueSymbolTable();
144   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
145     if (Function *P = BB->getParent())
146       ST = &P->getValueSymbolTable();
147   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
148     if (Module *P = GV->getParent())
149       ST = &P->getValueSymbolTable();
150   } else if (Argument *A = dyn_cast<Argument>(V)) {
151     if (Function *P = A->getParent())
152       ST = &P->getValueSymbolTable();
153   } else {
154     assert(isa<Constant>(V) && "Unknown value type!");
155     return true;  // no name is setable for this.
156   }
157   return false;
158 }
159
160 StringRef Value::getName() const {
161   // Make sure the empty string is still a C string. For historical reasons,
162   // some clients want to call .data() on the result and expect it to be null
163   // terminated.
164   if (!getValueName())
165     return StringRef("", 0);
166   return getValueName()->getKey();
167 }
168
169 void Value::setName(const Twine &NewName) {
170   // Fast path for common IRBuilder case of setName("") when there is no name.
171   if (NewName.isTriviallyEmpty() && !hasName())
172     return;
173
174   SmallString<256> NameData;
175   StringRef NameRef = NewName.toStringRef(NameData);
176   assert(NameRef.find_first_of(0) == StringRef::npos &&
177          "Null bytes are not allowed in names");
178
179   // Name isn't changing?
180   if (getName() == NameRef)
181     return;
182
183   assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
184
185   // Get the symbol table to update for this object.
186   ValueSymbolTable *ST;
187   if (getSymTab(this, ST))
188     return;  // Cannot set a name on this value (e.g. constant).
189
190   if (Function *F = dyn_cast<Function>(this))
191     getContext().pImpl->IntrinsicIDCache.erase(F);
192
193   if (!ST) { // No symbol table to update?  Just do the change.
194     if (NameRef.empty()) {
195       // Free the name for this value.
196       destroyValueName();
197       return;
198     }
199
200     // NOTE: Could optimize for the case the name is shrinking to not deallocate
201     // then reallocated.
202     destroyValueName();
203
204     // Create the new name.
205     setValueName(ValueName::Create(NameRef));
206     getValueName()->setValue(this);
207     return;
208   }
209
210   // NOTE: Could optimize for the case the name is shrinking to not deallocate
211   // then reallocated.
212   if (hasName()) {
213     // Remove old name.
214     ST->removeValueName(getValueName());
215     destroyValueName();
216
217     if (NameRef.empty())
218       return;
219   }
220
221   // Name is changing to something new.
222   setValueName(ST->createValueName(NameRef, this));
223 }
224
225 void Value::takeName(Value *V) {
226   ValueSymbolTable *ST = nullptr;
227   // If this value has a name, drop it.
228   if (hasName()) {
229     // Get the symtab this is in.
230     if (getSymTab(this, ST)) {
231       // We can't set a name on this value, but we need to clear V's name if
232       // it has one.
233       if (V->hasName()) V->setName("");
234       return;  // Cannot set a name on this value (e.g. constant).
235     }
236
237     // Remove old name.
238     if (ST)
239       ST->removeValueName(getValueName());
240     destroyValueName();
241   }
242
243   // Now we know that this has no name.
244
245   // If V has no name either, we're done.
246   if (!V->hasName()) return;
247
248   // Get this's symtab if we didn't before.
249   if (!ST) {
250     if (getSymTab(this, ST)) {
251       // Clear V's name.
252       V->setName("");
253       return;  // Cannot set a name on this value (e.g. constant).
254     }
255   }
256
257   // Get V's ST, this should always succed, because V has a name.
258   ValueSymbolTable *VST;
259   bool Failure = getSymTab(V, VST);
260   assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
261
262   // If these values are both in the same symtab, we can do this very fast.
263   // This works even if both values have no symtab yet.
264   if (ST == VST) {
265     // Take the name!
266     setValueName(V->getValueName());
267     V->setValueName(nullptr);
268     getValueName()->setValue(this);
269     return;
270   }
271
272   // Otherwise, things are slightly more complex.  Remove V's name from VST and
273   // then reinsert it into ST.
274
275   if (VST)
276     VST->removeValueName(V->getValueName());
277   setValueName(V->getValueName());
278   V->setValueName(nullptr);
279   getValueName()->setValue(this);
280
281   if (ST)
282     ST->reinsertValue(this);
283 }
284
285 #ifndef NDEBUG
286 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr,
287                      Constant *C) {
288   if (!Cache.insert(Expr).second)
289     return false;
290
291   for (auto &O : Expr->operands()) {
292     if (O == C)
293       return true;
294     auto *CE = dyn_cast<ConstantExpr>(O);
295     if (!CE)
296       continue;
297     if (contains(Cache, CE, C))
298       return true;
299   }
300   return false;
301 }
302
303 static bool contains(Value *Expr, Value *V) {
304   if (Expr == V)
305     return true;
306
307   auto *C = dyn_cast<Constant>(V);
308   if (!C)
309     return false;
310
311   auto *CE = dyn_cast<ConstantExpr>(Expr);
312   if (!CE)
313     return false;
314
315   SmallPtrSet<ConstantExpr *, 4> Cache;
316   return contains(Cache, CE, C);
317 }
318 #endif
319
320 void Value::replaceAllUsesWith(Value *New) {
321   assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
322   assert(!contains(New, this) &&
323          "this->replaceAllUsesWith(expr(this)) is NOT valid!");
324   assert(New->getType() == getType() &&
325          "replaceAllUses of value with new value of different type!");
326
327   // Notify all ValueHandles (if present) that this value is going away.
328   if (HasValueHandle)
329     ValueHandleBase::ValueIsRAUWd(this, New);
330   if (isUsedByMetadata())
331     ValueAsMetadata::handleRAUW(this, New);
332
333   while (!use_empty()) {
334     Use &U = *UseList;
335     // Must handle Constants specially, we cannot call replaceUsesOfWith on a
336     // constant because they are uniqued.
337     if (auto *C = dyn_cast<Constant>(U.getUser())) {
338       if (!isa<GlobalValue>(C)) {
339         C->replaceUsesOfWithOnConstant(this, New, &U);
340         continue;
341       }
342     }
343
344     U.set(New);
345   }
346
347   if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
348     BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
349 }
350
351 // Like replaceAllUsesWith except it does not handle constants or basic blocks.
352 // This routine leaves uses within BB.
353 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) {
354   assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!");
355   assert(!contains(New, this) &&
356          "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!");
357   assert(New->getType() == getType() &&
358          "replaceUses of value with new value of different type!");
359   assert(BB && "Basic block that may contain a use of 'New' must be defined\n");
360
361   use_iterator UI = use_begin(), E = use_end();
362   for (; UI != E;) {
363     Use &U = *UI;
364     ++UI;
365     auto *Usr = dyn_cast<Instruction>(U.getUser());
366     if (Usr && Usr->getParent() == BB)
367       continue;
368     U.set(New);
369   }
370   return;
371 }
372
373 namespace {
374 // Various metrics for how much to strip off of pointers.
375 enum PointerStripKind {
376   PSK_ZeroIndices,
377   PSK_ZeroIndicesAndAliases,
378   PSK_InBoundsConstantIndices,
379   PSK_InBounds
380 };
381
382 template <PointerStripKind StripKind>
383 static Value *stripPointerCastsAndOffsets(Value *V) {
384   if (!V->getType()->isPointerTy())
385     return V;
386
387   // Even though we don't look through PHI nodes, we could be called on an
388   // instruction in an unreachable block, which may be on a cycle.
389   SmallPtrSet<Value *, 4> Visited;
390
391   Visited.insert(V);
392   do {
393     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
394       switch (StripKind) {
395       case PSK_ZeroIndicesAndAliases:
396       case PSK_ZeroIndices:
397         if (!GEP->hasAllZeroIndices())
398           return V;
399         break;
400       case PSK_InBoundsConstantIndices:
401         if (!GEP->hasAllConstantIndices())
402           return V;
403         // fallthrough
404       case PSK_InBounds:
405         if (!GEP->isInBounds())
406           return V;
407         break;
408       }
409       V = GEP->getPointerOperand();
410     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
411                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
412       V = cast<Operator>(V)->getOperand(0);
413     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
414       if (StripKind == PSK_ZeroIndices || GA->mayBeOverridden())
415         return V;
416       V = GA->getAliasee();
417     } else {
418       return V;
419     }
420     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
421   } while (Visited.insert(V).second);
422
423   return V;
424 }
425 } // namespace
426
427 Value *Value::stripPointerCasts() {
428   return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this);
429 }
430
431 Value *Value::stripPointerCastsNoFollowAliases() {
432   return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
433 }
434
435 Value *Value::stripInBoundsConstantOffsets() {
436   return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
437 }
438
439 Value *Value::stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
440                                                         APInt &Offset) {
441   if (!getType()->isPointerTy())
442     return this;
443
444   assert(Offset.getBitWidth() == DL.getPointerSizeInBits(cast<PointerType>(
445                                      getType())->getAddressSpace()) &&
446          "The offset must have exactly as many bits as our pointer.");
447
448   // Even though we don't look through PHI nodes, we could be called on an
449   // instruction in an unreachable block, which may be on a cycle.
450   SmallPtrSet<Value *, 4> Visited;
451   Visited.insert(this);
452   Value *V = this;
453   do {
454     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
455       if (!GEP->isInBounds())
456         return V;
457       APInt GEPOffset(Offset);
458       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
459         return V;
460       Offset = GEPOffset;
461       V = GEP->getPointerOperand();
462     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
463                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
464       V = cast<Operator>(V)->getOperand(0);
465     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
466       V = GA->getAliasee();
467     } else {
468       return V;
469     }
470     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
471   } while (Visited.insert(V).second);
472
473   return V;
474 }
475
476 Value *Value::stripInBoundsOffsets() {
477   return stripPointerCastsAndOffsets<PSK_InBounds>(this);
478 }
479
480 /// \brief Check if Value is always a dereferenceable pointer.
481 ///
482 /// Test if V is always a pointer to allocated and suitably aligned memory for
483 /// a simple load or store.
484 static bool isDereferenceablePointer(const Value *V, const DataLayout &DL,
485                                      SmallPtrSetImpl<const Value *> &Visited) {
486   // Note that it is not safe to speculate into a malloc'd region because
487   // malloc may return null.
488
489   // These are obviously ok.
490   if (isa<AllocaInst>(V)) return true;
491
492   // It's not always safe to follow a bitcast, for example:
493   //   bitcast i8* (alloca i8) to i32*
494   // would result in a 4-byte load from a 1-byte alloca. However,
495   // if we're casting from a pointer from a type of larger size
496   // to a type of smaller size (or the same size), and the alignment
497   // is at least as large as for the resulting pointer type, then
498   // we can look through the bitcast.
499   if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) {
500     Type *STy = BC->getSrcTy()->getPointerElementType(),
501          *DTy = BC->getDestTy()->getPointerElementType();
502     if (STy->isSized() && DTy->isSized() &&
503         (DL.getTypeStoreSize(STy) >= DL.getTypeStoreSize(DTy)) &&
504         (DL.getABITypeAlignment(STy) >= DL.getABITypeAlignment(DTy)))
505       return isDereferenceablePointer(BC->getOperand(0), DL, Visited);
506   }
507
508   // Global variables which can't collapse to null are ok.
509   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
510     return !GV->hasExternalWeakLinkage();
511
512   // byval arguments are okay. Arguments specifically marked as
513   // dereferenceable are okay too.
514   if (const Argument *A = dyn_cast<Argument>(V)) {
515     if (A->hasByValAttr())
516       return true;
517     else if (uint64_t Bytes = A->getDereferenceableBytes()) {
518       Type *Ty = V->getType()->getPointerElementType();
519       if (Ty->isSized() && DL.getTypeStoreSize(Ty) <= Bytes)
520         return true;
521     }
522
523     return false;
524   }
525
526   // Return values from call sites specifically marked as dereferenceable are
527   // also okay.
528   if (auto CS = ImmutableCallSite(V)) {
529     if (uint64_t Bytes = CS.getDereferenceableBytes(0)) {
530       Type *Ty = V->getType()->getPointerElementType();
531       if (Ty->isSized() && DL.getTypeStoreSize(Ty) <= Bytes)
532         return true;
533     }
534   }
535
536   // For GEPs, determine if the indexing lands within the allocated object.
537   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
538     // Conservatively require that the base pointer be fully dereferenceable.
539     if (!Visited.insert(GEP->getOperand(0)).second)
540       return false;
541     if (!isDereferenceablePointer(GEP->getOperand(0), DL, Visited))
542       return false;
543     // Check the indices.
544     gep_type_iterator GTI = gep_type_begin(GEP);
545     for (User::const_op_iterator I = GEP->op_begin()+1,
546          E = GEP->op_end(); I != E; ++I) {
547       Value *Index = *I;
548       Type *Ty = *GTI++;
549       // Struct indices can't be out of bounds.
550       if (isa<StructType>(Ty))
551         continue;
552       ConstantInt *CI = dyn_cast<ConstantInt>(Index);
553       if (!CI)
554         return false;
555       // Zero is always ok.
556       if (CI->isZero())
557         continue;
558       // Check to see that it's within the bounds of an array.
559       ArrayType *ATy = dyn_cast<ArrayType>(Ty);
560       if (!ATy)
561         return false;
562       if (CI->getValue().getActiveBits() > 64)
563         return false;
564       if (CI->getZExtValue() >= ATy->getNumElements())
565         return false;
566     }
567     // Indices check out; this is dereferenceable.
568     return true;
569   }
570
571   // For gc.relocate, look through relocations
572   if (const IntrinsicInst *I = dyn_cast<IntrinsicInst>(V))
573     if (I->getIntrinsicID() == Intrinsic::experimental_gc_relocate) {
574       GCRelocateOperands RelocateInst(I);
575       return isDereferenceablePointer(RelocateInst.derivedPtr(), DL, Visited);
576     }
577
578   if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
579     return isDereferenceablePointer(ASC->getOperand(0), DL, Visited);
580
581   // If we don't know, assume the worst.
582   return false;
583 }
584
585 bool Value::isDereferenceablePointer(const DataLayout &DL) const {
586   // When dereferenceability information is provided by a dereferenceable
587   // attribute, we know exactly how many bytes are dereferenceable. If we can
588   // determine the exact offset to the attributed variable, we can use that
589   // information here.
590   Type *Ty = getType()->getPointerElementType();
591   if (Ty->isSized()) {
592     APInt Offset(DL.getTypeStoreSizeInBits(getType()), 0);
593     const Value *BV = stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
594
595     APInt DerefBytes(Offset.getBitWidth(), 0);
596     if (const Argument *A = dyn_cast<Argument>(BV))
597       DerefBytes = A->getDereferenceableBytes();
598     else if (auto CS = ImmutableCallSite(BV))
599       DerefBytes = CS.getDereferenceableBytes(0);
600
601     if (DerefBytes.getBoolValue() && Offset.isNonNegative()) {
602       if (DerefBytes.uge(Offset + DL.getTypeStoreSize(Ty)))
603         return true;
604     }
605   }
606
607   SmallPtrSet<const Value *, 32> Visited;
608   return ::isDereferenceablePointer(this, DL, Visited);
609 }
610
611 Value *Value::DoPHITranslation(const BasicBlock *CurBB,
612                                const BasicBlock *PredBB) {
613   PHINode *PN = dyn_cast<PHINode>(this);
614   if (PN && PN->getParent() == CurBB)
615     return PN->getIncomingValueForBlock(PredBB);
616   return this;
617 }
618
619 LLVMContext &Value::getContext() const { return VTy->getContext(); }
620
621 void Value::reverseUseList() {
622   if (!UseList || !UseList->Next)
623     // No need to reverse 0 or 1 uses.
624     return;
625
626   Use *Head = UseList;
627   Use *Current = UseList->Next;
628   Head->Next = nullptr;
629   while (Current) {
630     Use *Next = Current->Next;
631     Current->Next = Head;
632     Head->setPrev(&Current->Next);
633     Head = Current;
634     Current = Next;
635   }
636   UseList = Head;
637   Head->setPrev(&UseList);
638 }
639
640 //===----------------------------------------------------------------------===//
641 //                             ValueHandleBase Class
642 //===----------------------------------------------------------------------===//
643
644 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
645   assert(List && "Handle list is null?");
646
647   // Splice ourselves into the list.
648   Next = *List;
649   *List = this;
650   setPrevPtr(List);
651   if (Next) {
652     Next->setPrevPtr(&Next);
653     assert(V == Next->V && "Added to wrong list?");
654   }
655 }
656
657 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
658   assert(List && "Must insert after existing node");
659
660   Next = List->Next;
661   setPrevPtr(&List->Next);
662   List->Next = this;
663   if (Next)
664     Next->setPrevPtr(&Next);
665 }
666
667 void ValueHandleBase::AddToUseList() {
668   assert(V && "Null pointer doesn't have a use list!");
669
670   LLVMContextImpl *pImpl = V->getContext().pImpl;
671
672   if (V->HasValueHandle) {
673     // If this value already has a ValueHandle, then it must be in the
674     // ValueHandles map already.
675     ValueHandleBase *&Entry = pImpl->ValueHandles[V];
676     assert(Entry && "Value doesn't have any handles?");
677     AddToExistingUseList(&Entry);
678     return;
679   }
680
681   // Ok, it doesn't have any handles yet, so we must insert it into the
682   // DenseMap.  However, doing this insertion could cause the DenseMap to
683   // reallocate itself, which would invalidate all of the PrevP pointers that
684   // point into the old table.  Handle this by checking for reallocation and
685   // updating the stale pointers only if needed.
686   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
687   const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
688
689   ValueHandleBase *&Entry = Handles[V];
690   assert(!Entry && "Value really did already have handles?");
691   AddToExistingUseList(&Entry);
692   V->HasValueHandle = true;
693
694   // If reallocation didn't happen or if this was the first insertion, don't
695   // walk the table.
696   if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
697       Handles.size() == 1) {
698     return;
699   }
700
701   // Okay, reallocation did happen.  Fix the Prev Pointers.
702   for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
703        E = Handles.end(); I != E; ++I) {
704     assert(I->second && I->first == I->second->V &&
705            "List invariant broken!");
706     I->second->setPrevPtr(&I->second);
707   }
708 }
709
710 void ValueHandleBase::RemoveFromUseList() {
711   assert(V && V->HasValueHandle &&
712          "Pointer doesn't have a use list!");
713
714   // Unlink this from its use list.
715   ValueHandleBase **PrevPtr = getPrevPtr();
716   assert(*PrevPtr == this && "List invariant broken");
717
718   *PrevPtr = Next;
719   if (Next) {
720     assert(Next->getPrevPtr() == &Next && "List invariant broken");
721     Next->setPrevPtr(PrevPtr);
722     return;
723   }
724
725   // If the Next pointer was null, then it is possible that this was the last
726   // ValueHandle watching VP.  If so, delete its entry from the ValueHandles
727   // map.
728   LLVMContextImpl *pImpl = V->getContext().pImpl;
729   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
730   if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
731     Handles.erase(V);
732     V->HasValueHandle = false;
733   }
734 }
735
736
737 void ValueHandleBase::ValueIsDeleted(Value *V) {
738   assert(V->HasValueHandle && "Should only be called if ValueHandles present");
739
740   // Get the linked list base, which is guaranteed to exist since the
741   // HasValueHandle flag is set.
742   LLVMContextImpl *pImpl = V->getContext().pImpl;
743   ValueHandleBase *Entry = pImpl->ValueHandles[V];
744   assert(Entry && "Value bit set but no entries exist");
745
746   // We use a local ValueHandleBase as an iterator so that ValueHandles can add
747   // and remove themselves from the list without breaking our iteration.  This
748   // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
749   // Note that we deliberately do not the support the case when dropping a value
750   // handle results in a new value handle being permanently added to the list
751   // (as might occur in theory for CallbackVH's): the new value handle will not
752   // be processed and the checking code will mete out righteous punishment if
753   // the handle is still present once we have finished processing all the other
754   // value handles (it is fine to momentarily add then remove a value handle).
755   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
756     Iterator.RemoveFromUseList();
757     Iterator.AddToExistingUseListAfter(Entry);
758     assert(Entry->Next == &Iterator && "Loop invariant broken.");
759
760     switch (Entry->getKind()) {
761     case Assert:
762       break;
763     case Tracking:
764       // Mark that this value has been deleted by setting it to an invalid Value
765       // pointer.
766       Entry->operator=(DenseMapInfo<Value *>::getTombstoneKey());
767       break;
768     case Weak:
769       // Weak just goes to null, which will unlink it from the list.
770       Entry->operator=(nullptr);
771       break;
772     case Callback:
773       // Forward to the subclass's implementation.
774       static_cast<CallbackVH*>(Entry)->deleted();
775       break;
776     }
777   }
778
779   // All callbacks, weak references, and assertingVHs should be dropped by now.
780   if (V->HasValueHandle) {
781 #ifndef NDEBUG      // Only in +Asserts mode...
782     dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
783            << "\n";
784     if (pImpl->ValueHandles[V]->getKind() == Assert)
785       llvm_unreachable("An asserting value handle still pointed to this"
786                        " value!");
787
788 #endif
789     llvm_unreachable("All references to V were not removed?");
790   }
791 }
792
793
794 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
795   assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
796   assert(Old != New && "Changing value into itself!");
797   assert(Old->getType() == New->getType() &&
798          "replaceAllUses of value with new value of different type!");
799
800   // Get the linked list base, which is guaranteed to exist since the
801   // HasValueHandle flag is set.
802   LLVMContextImpl *pImpl = Old->getContext().pImpl;
803   ValueHandleBase *Entry = pImpl->ValueHandles[Old];
804
805   assert(Entry && "Value bit set but no entries exist");
806
807   // We use a local ValueHandleBase as an iterator so that
808   // ValueHandles can add and remove themselves from the list without
809   // breaking our iteration.  This is not really an AssertingVH; we
810   // just have to give ValueHandleBase some kind.
811   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
812     Iterator.RemoveFromUseList();
813     Iterator.AddToExistingUseListAfter(Entry);
814     assert(Entry->Next == &Iterator && "Loop invariant broken.");
815
816     switch (Entry->getKind()) {
817     case Assert:
818       // Asserting handle does not follow RAUW implicitly.
819       break;
820     case Tracking:
821       // Tracking goes to new value like a WeakVH. Note that this may make it
822       // something incompatible with its templated type. We don't want to have a
823       // virtual (or inline) interface to handle this though, so instead we make
824       // the TrackingVH accessors guarantee that a client never sees this value.
825
826       // FALLTHROUGH
827     case Weak:
828       // Weak goes to the new value, which will unlink it from Old's list.
829       Entry->operator=(New);
830       break;
831     case Callback:
832       // Forward to the subclass's implementation.
833       static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
834       break;
835     }
836   }
837
838 #ifndef NDEBUG
839   // If any new tracking or weak value handles were added while processing the
840   // list, then complain about it now.
841   if (Old->HasValueHandle)
842     for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
843       switch (Entry->getKind()) {
844       case Tracking:
845       case Weak:
846         dbgs() << "After RAUW from " << *Old->getType() << " %"
847                << Old->getName() << " to " << *New->getType() << " %"
848                << New->getName() << "\n";
849         llvm_unreachable("A tracking or weak value handle still pointed to the"
850                          " old value!\n");
851       default:
852         break;
853       }
854 #endif
855 }
856
857 // Pin the vtable to this file.
858 void CallbackVH::anchor() {}