[ThinLTO] Metadata linking for imported functions
[oota-llvm.git] / lib / IR / Metadata.cpp
1 //===- Metadata.cpp - Implement Metadata classes --------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Metadata classes.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Metadata.h"
15 #include "LLVMContextImpl.h"
16 #include "MetadataImpl.h"
17 #include "SymbolTableListTraitsImpl.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/IR/ConstantRange.h"
24 #include "llvm/IR/DebugInfoMetadata.h"
25 #include "llvm/IR/Instruction.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/ValueHandle.h"
29
30 using namespace llvm;
31
32 MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD)
33     : Value(Ty, MetadataAsValueVal), MD(MD) {
34   track();
35 }
36
37 MetadataAsValue::~MetadataAsValue() {
38   getType()->getContext().pImpl->MetadataAsValues.erase(MD);
39   untrack();
40 }
41
42 /// \brief Canonicalize metadata arguments to intrinsics.
43 ///
44 /// To support bitcode upgrades (and assembly semantic sugar) for \a
45 /// MetadataAsValue, we need to canonicalize certain metadata.
46 ///
47 ///   - nullptr is replaced by an empty MDNode.
48 ///   - An MDNode with a single null operand is replaced by an empty MDNode.
49 ///   - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped.
50 ///
51 /// This maintains readability of bitcode from when metadata was a type of
52 /// value, and these bridges were unnecessary.
53 static Metadata *canonicalizeMetadataForValue(LLVMContext &Context,
54                                               Metadata *MD) {
55   if (!MD)
56     // !{}
57     return MDNode::get(Context, None);
58
59   // Return early if this isn't a single-operand MDNode.
60   auto *N = dyn_cast<MDNode>(MD);
61   if (!N || N->getNumOperands() != 1)
62     return MD;
63
64   if (!N->getOperand(0))
65     // !{}
66     return MDNode::get(Context, None);
67
68   if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0)))
69     // Look through the MDNode.
70     return C;
71
72   return MD;
73 }
74
75 MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) {
76   MD = canonicalizeMetadataForValue(Context, MD);
77   auto *&Entry = Context.pImpl->MetadataAsValues[MD];
78   if (!Entry)
79     Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD);
80   return Entry;
81 }
82
83 MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context,
84                                               Metadata *MD) {
85   MD = canonicalizeMetadataForValue(Context, MD);
86   auto &Store = Context.pImpl->MetadataAsValues;
87   return Store.lookup(MD);
88 }
89
90 void MetadataAsValue::handleChangedMetadata(Metadata *MD) {
91   LLVMContext &Context = getContext();
92   MD = canonicalizeMetadataForValue(Context, MD);
93   auto &Store = Context.pImpl->MetadataAsValues;
94
95   // Stop tracking the old metadata.
96   Store.erase(this->MD);
97   untrack();
98   this->MD = nullptr;
99
100   // Start tracking MD, or RAUW if necessary.
101   auto *&Entry = Store[MD];
102   if (Entry) {
103     replaceAllUsesWith(Entry);
104     delete this;
105     return;
106   }
107
108   this->MD = MD;
109   track();
110   Entry = this;
111 }
112
113 void MetadataAsValue::track() {
114   if (MD)
115     MetadataTracking::track(&MD, *MD, *this);
116 }
117
118 void MetadataAsValue::untrack() {
119   if (MD)
120     MetadataTracking::untrack(MD);
121 }
122
123 void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) {
124   bool WasInserted =
125       UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex)))
126           .second;
127   (void)WasInserted;
128   assert(WasInserted && "Expected to add a reference");
129
130   ++NextIndex;
131   assert(NextIndex != 0 && "Unexpected overflow");
132 }
133
134 void ReplaceableMetadataImpl::dropRef(void *Ref) {
135   bool WasErased = UseMap.erase(Ref);
136   (void)WasErased;
137   assert(WasErased && "Expected to drop a reference");
138 }
139
140 void ReplaceableMetadataImpl::moveRef(void *Ref, void *New,
141                                       const Metadata &MD) {
142   auto I = UseMap.find(Ref);
143   assert(I != UseMap.end() && "Expected to move a reference");
144   auto OwnerAndIndex = I->second;
145   UseMap.erase(I);
146   bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second;
147   (void)WasInserted;
148   assert(WasInserted && "Expected to add a reference");
149
150   // Check that the references are direct if there's no owner.
151   (void)MD;
152   assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) &&
153          "Reference without owner must be direct");
154   assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) &&
155          "Reference without owner must be direct");
156 }
157
158 void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) {
159   assert(!(MD && isa<MDNode>(MD) && cast<MDNode>(MD)->isTemporary()) &&
160          "Expected non-temp node");
161
162   if (UseMap.empty())
163     return;
164
165   // Copy out uses since UseMap will get touched below.
166   typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy;
167   SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
168   std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) {
169     return L.second.second < R.second.second;
170   });
171   for (const auto &Pair : Uses) {
172     // Check that this Ref hasn't disappeared after RAUW (when updating a
173     // previous Ref).
174     if (!UseMap.count(Pair.first))
175       continue;
176
177     OwnerTy Owner = Pair.second.first;
178     if (!Owner) {
179       // Update unowned tracking references directly.
180       Metadata *&Ref = *static_cast<Metadata **>(Pair.first);
181       Ref = MD;
182       if (MD)
183         MetadataTracking::track(Ref);
184       UseMap.erase(Pair.first);
185       continue;
186     }
187
188     // Check for MetadataAsValue.
189     if (Owner.is<MetadataAsValue *>()) {
190       Owner.get<MetadataAsValue *>()->handleChangedMetadata(MD);
191       continue;
192     }
193
194     // There's a Metadata owner -- dispatch.
195     Metadata *OwnerMD = Owner.get<Metadata *>();
196     switch (OwnerMD->getMetadataID()) {
197 #define HANDLE_METADATA_LEAF(CLASS)                                            \
198   case Metadata::CLASS##Kind:                                                  \
199     cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD);                \
200     continue;
201 #include "llvm/IR/Metadata.def"
202     default:
203       llvm_unreachable("Invalid metadata subclass");
204     }
205   }
206   assert(UseMap.empty() && "Expected all uses to be replaced");
207 }
208
209 void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) {
210   if (UseMap.empty())
211     return;
212
213   if (!ResolveUsers) {
214     UseMap.clear();
215     return;
216   }
217
218   // Copy out uses since UseMap could get touched below.
219   typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy;
220   SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
221   std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) {
222     return L.second.second < R.second.second;
223   });
224   UseMap.clear();
225   for (const auto &Pair : Uses) {
226     auto Owner = Pair.second.first;
227     if (!Owner)
228       continue;
229     if (Owner.is<MetadataAsValue *>())
230       continue;
231
232     // Resolve MDNodes that point at this.
233     auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>());
234     if (!OwnerMD)
235       continue;
236     if (OwnerMD->isResolved())
237       continue;
238     OwnerMD->decrementUnresolvedOperandCount();
239   }
240 }
241
242 static Function *getLocalFunction(Value *V) {
243   assert(V && "Expected value");
244   if (auto *A = dyn_cast<Argument>(V))
245     return A->getParent();
246   if (BasicBlock *BB = cast<Instruction>(V)->getParent())
247     return BB->getParent();
248   return nullptr;
249 }
250
251 ValueAsMetadata *ValueAsMetadata::get(Value *V) {
252   assert(V && "Unexpected null Value");
253
254   auto &Context = V->getContext();
255   auto *&Entry = Context.pImpl->ValuesAsMetadata[V];
256   if (!Entry) {
257     assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) &&
258            "Expected constant or function-local value");
259     assert(!V->IsUsedByMD &&
260            "Expected this to be the only metadata use");
261     V->IsUsedByMD = true;
262     if (auto *C = dyn_cast<Constant>(V))
263       Entry = new ConstantAsMetadata(C);
264     else
265       Entry = new LocalAsMetadata(V);
266   }
267
268   return Entry;
269 }
270
271 ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) {
272   assert(V && "Unexpected null Value");
273   return V->getContext().pImpl->ValuesAsMetadata.lookup(V);
274 }
275
276 void ValueAsMetadata::handleDeletion(Value *V) {
277   assert(V && "Expected valid value");
278
279   auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata;
280   auto I = Store.find(V);
281   if (I == Store.end())
282     return;
283
284   // Remove old entry from the map.
285   ValueAsMetadata *MD = I->second;
286   assert(MD && "Expected valid metadata");
287   assert(MD->getValue() == V && "Expected valid mapping");
288   Store.erase(I);
289
290   // Delete the metadata.
291   MD->replaceAllUsesWith(nullptr);
292   delete MD;
293 }
294
295 void ValueAsMetadata::handleRAUW(Value *From, Value *To) {
296   assert(From && "Expected valid value");
297   assert(To && "Expected valid value");
298   assert(From != To && "Expected changed value");
299   assert(From->getType() == To->getType() && "Unexpected type change");
300
301   LLVMContext &Context = From->getType()->getContext();
302   auto &Store = Context.pImpl->ValuesAsMetadata;
303   auto I = Store.find(From);
304   if (I == Store.end()) {
305     assert(!From->IsUsedByMD &&
306            "Expected From not to be used by metadata");
307     return;
308   }
309
310   // Remove old entry from the map.
311   assert(From->IsUsedByMD &&
312          "Expected From to be used by metadata");
313   From->IsUsedByMD = false;
314   ValueAsMetadata *MD = I->second;
315   assert(MD && "Expected valid metadata");
316   assert(MD->getValue() == From && "Expected valid mapping");
317   Store.erase(I);
318
319   if (isa<LocalAsMetadata>(MD)) {
320     if (auto *C = dyn_cast<Constant>(To)) {
321       // Local became a constant.
322       MD->replaceAllUsesWith(ConstantAsMetadata::get(C));
323       delete MD;
324       return;
325     }
326     if (getLocalFunction(From) && getLocalFunction(To) &&
327         getLocalFunction(From) != getLocalFunction(To)) {
328       // Function changed.
329       MD->replaceAllUsesWith(nullptr);
330       delete MD;
331       return;
332     }
333   } else if (!isa<Constant>(To)) {
334     // Changed to function-local value.
335     MD->replaceAllUsesWith(nullptr);
336     delete MD;
337     return;
338   }
339
340   auto *&Entry = Store[To];
341   if (Entry) {
342     // The target already exists.
343     MD->replaceAllUsesWith(Entry);
344     delete MD;
345     return;
346   }
347
348   // Update MD in place (and update the map entry).
349   assert(!To->IsUsedByMD &&
350          "Expected this to be the only metadata use");
351   To->IsUsedByMD = true;
352   MD->V = To;
353   Entry = MD;
354 }
355
356 //===----------------------------------------------------------------------===//
357 // MDString implementation.
358 //
359
360 MDString *MDString::get(LLVMContext &Context, StringRef Str) {
361   auto &Store = Context.pImpl->MDStringCache;
362   auto I = Store.find(Str);
363   if (I != Store.end())
364     return &I->second;
365
366   auto *Entry =
367       StringMapEntry<MDString>::Create(Str, Store.getAllocator(), MDString());
368   bool WasInserted = Store.insert(Entry);
369   (void)WasInserted;
370   assert(WasInserted && "Expected entry to be inserted");
371   Entry->second.Entry = Entry;
372   return &Entry->second;
373 }
374
375 StringRef MDString::getString() const {
376   assert(Entry && "Expected to find string map entry");
377   return Entry->first();
378 }
379
380 //===----------------------------------------------------------------------===//
381 // MDNode implementation.
382 //
383
384 // Assert that the MDNode types will not be unaligned by the objects
385 // prepended to them.
386 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
387   static_assert(                                                               \
388       llvm::AlignOf<uint64_t>::Alignment >= llvm::AlignOf<CLASS>::Alignment,   \
389       "Alignment is insufficient after objects prepended to " #CLASS);
390 #include "llvm/IR/Metadata.def"
391
392 void *MDNode::operator new(size_t Size, unsigned NumOps) {
393   size_t OpSize = NumOps * sizeof(MDOperand);
394   // uint64_t is the most aligned type we need support (ensured by static_assert
395   // above)
396   OpSize = RoundUpToAlignment(OpSize, llvm::alignOf<uint64_t>());
397   void *Ptr = reinterpret_cast<char *>(::operator new(OpSize + Size)) + OpSize;
398   MDOperand *O = static_cast<MDOperand *>(Ptr);
399   for (MDOperand *E = O - NumOps; O != E; --O)
400     (void)new (O - 1) MDOperand;
401   return Ptr;
402 }
403
404 void MDNode::operator delete(void *Mem) {
405   MDNode *N = static_cast<MDNode *>(Mem);
406   size_t OpSize = N->NumOperands * sizeof(MDOperand);
407   OpSize = RoundUpToAlignment(OpSize, llvm::alignOf<uint64_t>());
408
409   MDOperand *O = static_cast<MDOperand *>(Mem);
410   for (MDOperand *E = O - N->NumOperands; O != E; --O)
411     (O - 1)->~MDOperand();
412   ::operator delete(reinterpret_cast<char *>(Mem) - OpSize);
413 }
414
415 MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
416                ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2)
417     : Metadata(ID, Storage), NumOperands(Ops1.size() + Ops2.size()),
418       NumUnresolved(0), Context(Context) {
419   unsigned Op = 0;
420   for (Metadata *MD : Ops1)
421     setOperand(Op++, MD);
422   for (Metadata *MD : Ops2)
423     setOperand(Op++, MD);
424
425   if (isDistinct())
426     return;
427
428   if (isUniqued())
429     // Check whether any operands are unresolved, requiring re-uniquing.  If
430     // not, don't support RAUW.
431     if (!countUnresolvedOperands())
432       return;
433
434   this->Context.makeReplaceable(make_unique<ReplaceableMetadataImpl>(Context));
435 }
436
437 TempMDNode MDNode::clone() const {
438   switch (getMetadataID()) {
439   default:
440     llvm_unreachable("Invalid MDNode subclass");
441 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
442   case CLASS##Kind:                                                            \
443     return cast<CLASS>(this)->cloneImpl();
444 #include "llvm/IR/Metadata.def"
445   }
446 }
447
448 static bool isOperandUnresolved(Metadata *Op) {
449   if (auto *N = dyn_cast_or_null<MDNode>(Op))
450     return !N->isResolved();
451   return false;
452 }
453
454 unsigned MDNode::countUnresolvedOperands() {
455   assert(NumUnresolved == 0 && "Expected unresolved ops to be uncounted");
456   NumUnresolved = std::count_if(op_begin(), op_end(), isOperandUnresolved);
457   return NumUnresolved;
458 }
459
460 void MDNode::makeUniqued() {
461   assert(isTemporary() && "Expected this to be temporary");
462   assert(!isResolved() && "Expected this to be unresolved");
463
464   // Enable uniquing callbacks.
465   for (auto &Op : mutable_operands())
466     Op.reset(Op.get(), this);
467
468   // Make this 'uniqued'.
469   Storage = Uniqued;
470   if (!countUnresolvedOperands())
471     resolve();
472
473   assert(isUniqued() && "Expected this to be uniqued");
474 }
475
476 void MDNode::makeDistinct() {
477   assert(isTemporary() && "Expected this to be temporary");
478   assert(!isResolved() && "Expected this to be unresolved");
479
480   // Pretend to be uniqued, resolve the node, and then store in distinct table.
481   Storage = Uniqued;
482   resolve();
483   storeDistinctInContext();
484
485   assert(isDistinct() && "Expected this to be distinct");
486   assert(isResolved() && "Expected this to be resolved");
487 }
488
489 void MDNode::resolve() {
490   assert(isUniqued() && "Expected this to be uniqued");
491   assert(!isResolved() && "Expected this to be unresolved");
492
493   // Move the map, so that this immediately looks resolved.
494   auto Uses = Context.takeReplaceableUses();
495   NumUnresolved = 0;
496   assert(isResolved() && "Expected this to be resolved");
497
498   // Drop RAUW support.
499   Uses->resolveAllUses();
500 }
501
502 void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) {
503   assert(NumUnresolved != 0 && "Expected unresolved operands");
504
505   // Check if an operand was resolved.
506   if (!isOperandUnresolved(Old)) {
507     if (isOperandUnresolved(New))
508       // An operand was un-resolved!
509       ++NumUnresolved;
510   } else if (!isOperandUnresolved(New))
511     decrementUnresolvedOperandCount();
512 }
513
514 void MDNode::decrementUnresolvedOperandCount() {
515   if (!--NumUnresolved)
516     // Last unresolved operand has just been resolved.
517     resolve();
518 }
519
520 void MDNode::resolveCycles(bool MDMaterialized) {
521   if (isResolved())
522     return;
523
524   // Resolve this node immediately.
525   resolve();
526
527   // Resolve all operands.
528   for (const auto &Op : operands()) {
529     auto *N = dyn_cast_or_null<MDNode>(Op);
530     if (!N)
531       continue;
532
533     if (N->isTemporary() && !MDMaterialized)
534       continue;
535     assert(!N->isTemporary() &&
536            "Expected all forward declarations to be resolved");
537     if (!N->isResolved())
538       N->resolveCycles();
539   }
540 }
541
542 static bool hasSelfReference(MDNode *N) {
543   for (Metadata *MD : N->operands())
544     if (MD == N)
545       return true;
546   return false;
547 }
548
549 MDNode *MDNode::replaceWithPermanentImpl() {
550   switch (getMetadataID()) {
551   default:
552     // If this type isn't uniquable, replace with a distinct node.
553     return replaceWithDistinctImpl();
554
555 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS)                                    \
556   case CLASS##Kind:                                                            \
557     break;
558 #include "llvm/IR/Metadata.def"
559   }
560
561   // Even if this type is uniquable, self-references have to be distinct.
562   if (hasSelfReference(this))
563     return replaceWithDistinctImpl();
564   return replaceWithUniquedImpl();
565 }
566
567 MDNode *MDNode::replaceWithUniquedImpl() {
568   // Try to uniquify in place.
569   MDNode *UniquedNode = uniquify();
570
571   if (UniquedNode == this) {
572     makeUniqued();
573     return this;
574   }
575
576   // Collision, so RAUW instead.
577   replaceAllUsesWith(UniquedNode);
578   deleteAsSubclass();
579   return UniquedNode;
580 }
581
582 MDNode *MDNode::replaceWithDistinctImpl() {
583   makeDistinct();
584   return this;
585 }
586
587 void MDTuple::recalculateHash() {
588   setHash(MDTupleInfo::KeyTy::calculateHash(this));
589 }
590
591 void MDNode::dropAllReferences() {
592   for (unsigned I = 0, E = NumOperands; I != E; ++I)
593     setOperand(I, nullptr);
594   if (!isResolved()) {
595     Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false);
596     (void)Context.takeReplaceableUses();
597   }
598 }
599
600 void MDNode::handleChangedOperand(void *Ref, Metadata *New) {
601   unsigned Op = static_cast<MDOperand *>(Ref) - op_begin();
602   assert(Op < getNumOperands() && "Expected valid operand");
603
604   if (!isUniqued()) {
605     // This node is not uniqued.  Just set the operand and be done with it.
606     setOperand(Op, New);
607     return;
608   }
609
610   // This node is uniqued.
611   eraseFromStore();
612
613   Metadata *Old = getOperand(Op);
614   setOperand(Op, New);
615
616   // Drop uniquing for self-reference cycles.
617   if (New == this) {
618     if (!isResolved())
619       resolve();
620     storeDistinctInContext();
621     return;
622   }
623
624   // Re-unique the node.
625   auto *Uniqued = uniquify();
626   if (Uniqued == this) {
627     if (!isResolved())
628       resolveAfterOperandChange(Old, New);
629     return;
630   }
631
632   // Collision.
633   if (!isResolved()) {
634     // Still unresolved, so RAUW.
635     //
636     // First, clear out all operands to prevent any recursion (similar to
637     // dropAllReferences(), but we still need the use-list).
638     for (unsigned O = 0, E = getNumOperands(); O != E; ++O)
639       setOperand(O, nullptr);
640     Context.getReplaceableUses()->replaceAllUsesWith(Uniqued);
641     deleteAsSubclass();
642     return;
643   }
644
645   // Store in non-uniqued form if RAUW isn't possible.
646   storeDistinctInContext();
647 }
648
649 void MDNode::deleteAsSubclass() {
650   switch (getMetadataID()) {
651   default:
652     llvm_unreachable("Invalid subclass of MDNode");
653 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
654   case CLASS##Kind:                                                            \
655     delete cast<CLASS>(this);                                                  \
656     break;
657 #include "llvm/IR/Metadata.def"
658   }
659 }
660
661 template <class T, class InfoT>
662 static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) {
663   if (T *U = getUniqued(Store, N))
664     return U;
665
666   Store.insert(N);
667   return N;
668 }
669
670 template <class NodeTy> struct MDNode::HasCachedHash {
671   typedef char Yes[1];
672   typedef char No[2];
673   template <class U, U Val> struct SFINAE {};
674
675   template <class U>
676   static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *);
677   template <class U> static No &check(...);
678
679   static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes);
680 };
681
682 MDNode *MDNode::uniquify() {
683   assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node");
684
685   // Try to insert into uniquing store.
686   switch (getMetadataID()) {
687   default:
688     llvm_unreachable("Invalid or non-uniquable subclass of MDNode");
689 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS)                                    \
690   case CLASS##Kind: {                                                          \
691     CLASS *SubclassThis = cast<CLASS>(this);                                   \
692     std::integral_constant<bool, HasCachedHash<CLASS>::value>                  \
693         ShouldRecalculateHash;                                                 \
694     dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash);              \
695     return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s);           \
696   }
697 #include "llvm/IR/Metadata.def"
698   }
699 }
700
701 void MDNode::eraseFromStore() {
702   switch (getMetadataID()) {
703   default:
704     llvm_unreachable("Invalid or non-uniquable subclass of MDNode");
705 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS)                                    \
706   case CLASS##Kind:                                                            \
707     getContext().pImpl->CLASS##s.erase(cast<CLASS>(this));                     \
708     break;
709 #include "llvm/IR/Metadata.def"
710   }
711 }
712
713 MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
714                           StorageType Storage, bool ShouldCreate) {
715   unsigned Hash = 0;
716   if (Storage == Uniqued) {
717     MDTupleInfo::KeyTy Key(MDs);
718     if (auto *N = getUniqued(Context.pImpl->MDTuples, Key))
719       return N;
720     if (!ShouldCreate)
721       return nullptr;
722     Hash = Key.getHash();
723   } else {
724     assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
725   }
726
727   return storeImpl(new (MDs.size()) MDTuple(Context, Storage, Hash, MDs),
728                    Storage, Context.pImpl->MDTuples);
729 }
730
731 void MDNode::deleteTemporary(MDNode *N) {
732   assert(N->isTemporary() && "Expected temporary node");
733   N->replaceAllUsesWith(nullptr);
734   N->deleteAsSubclass();
735 }
736
737 void MDNode::storeDistinctInContext() {
738   assert(isResolved() && "Expected resolved nodes");
739   Storage = Distinct;
740
741   // Reset the hash.
742   switch (getMetadataID()) {
743   default:
744     llvm_unreachable("Invalid subclass of MDNode");
745 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
746   case CLASS##Kind: {                                                          \
747     std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \
748     dispatchResetHash(cast<CLASS>(this), ShouldResetHash);                     \
749     break;                                                                     \
750   }
751 #include "llvm/IR/Metadata.def"
752   }
753
754   getContext().pImpl->DistinctMDNodes.insert(this);
755 }
756
757 void MDNode::replaceOperandWith(unsigned I, Metadata *New) {
758   if (getOperand(I) == New)
759     return;
760
761   if (!isUniqued()) {
762     setOperand(I, New);
763     return;
764   }
765
766   handleChangedOperand(mutable_begin() + I, New);
767 }
768
769 void MDNode::setOperand(unsigned I, Metadata *New) {
770   assert(I < NumOperands);
771   mutable_begin()[I].reset(New, isUniqued() ? this : nullptr);
772 }
773
774 /// \brief Get a node, or a self-reference that looks like it.
775 ///
776 /// Special handling for finding self-references, for use by \a
777 /// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from
778 /// when self-referencing nodes were still uniqued.  If the first operand has
779 /// the same operands as \c Ops, return the first operand instead.
780 static MDNode *getOrSelfReference(LLVMContext &Context,
781                                   ArrayRef<Metadata *> Ops) {
782   if (!Ops.empty())
783     if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0]))
784       if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) {
785         for (unsigned I = 1, E = Ops.size(); I != E; ++I)
786           if (Ops[I] != N->getOperand(I))
787             return MDNode::get(Context, Ops);
788         return N;
789       }
790
791   return MDNode::get(Context, Ops);
792 }
793
794 MDNode *MDNode::concatenate(MDNode *A, MDNode *B) {
795   if (!A)
796     return B;
797   if (!B)
798     return A;
799
800   SmallVector<Metadata *, 4> MDs;
801   MDs.reserve(A->getNumOperands() + B->getNumOperands());
802   MDs.append(A->op_begin(), A->op_end());
803   MDs.append(B->op_begin(), B->op_end());
804
805   // FIXME: This preserves long-standing behaviour, but is it really the right
806   // behaviour?  Or was that an unintended side-effect of node uniquing?
807   return getOrSelfReference(A->getContext(), MDs);
808 }
809
810 MDNode *MDNode::intersect(MDNode *A, MDNode *B) {
811   if (!A || !B)
812     return nullptr;
813
814   SmallVector<Metadata *, 4> MDs;
815   for (Metadata *MD : A->operands())
816     if (std::find(B->op_begin(), B->op_end(), MD) != B->op_end())
817       MDs.push_back(MD);
818
819   // FIXME: This preserves long-standing behaviour, but is it really the right
820   // behaviour?  Or was that an unintended side-effect of node uniquing?
821   return getOrSelfReference(A->getContext(), MDs);
822 }
823
824 MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) {
825   if (!A || !B)
826     return nullptr;
827
828   SmallVector<Metadata *, 4> MDs(B->op_begin(), B->op_end());
829   for (Metadata *MD : A->operands())
830     if (std::find(B->op_begin(), B->op_end(), MD) == B->op_end())
831       MDs.push_back(MD);
832
833   // FIXME: This preserves long-standing behaviour, but is it really the right
834   // behaviour?  Or was that an unintended side-effect of node uniquing?
835   return getOrSelfReference(A->getContext(), MDs);
836 }
837
838 MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) {
839   if (!A || !B)
840     return nullptr;
841
842   APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF();
843   APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF();
844   if (AVal.compare(BVal) == APFloat::cmpLessThan)
845     return A;
846   return B;
847 }
848
849 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
850   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
851 }
852
853 static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) {
854   return !A.intersectWith(B).isEmptySet() || isContiguous(A, B);
855 }
856
857 static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints,
858                           ConstantInt *Low, ConstantInt *High) {
859   ConstantRange NewRange(Low->getValue(), High->getValue());
860   unsigned Size = EndPoints.size();
861   APInt LB = EndPoints[Size - 2]->getValue();
862   APInt LE = EndPoints[Size - 1]->getValue();
863   ConstantRange LastRange(LB, LE);
864   if (canBeMerged(NewRange, LastRange)) {
865     ConstantRange Union = LastRange.unionWith(NewRange);
866     Type *Ty = High->getType();
867     EndPoints[Size - 2] =
868         cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower()));
869     EndPoints[Size - 1] =
870         cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper()));
871     return true;
872   }
873   return false;
874 }
875
876 static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints,
877                      ConstantInt *Low, ConstantInt *High) {
878   if (!EndPoints.empty())
879     if (tryMergeRange(EndPoints, Low, High))
880       return;
881
882   EndPoints.push_back(Low);
883   EndPoints.push_back(High);
884 }
885
886 MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) {
887   // Given two ranges, we want to compute the union of the ranges. This
888   // is slightly complitade by having to combine the intervals and merge
889   // the ones that overlap.
890
891   if (!A || !B)
892     return nullptr;
893
894   if (A == B)
895     return A;
896
897   // First, walk both lists in older of the lower boundary of each interval.
898   // At each step, try to merge the new interval to the last one we adedd.
899   SmallVector<ConstantInt *, 4> EndPoints;
900   int AI = 0;
901   int BI = 0;
902   int AN = A->getNumOperands() / 2;
903   int BN = B->getNumOperands() / 2;
904   while (AI < AN && BI < BN) {
905     ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI));
906     ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI));
907
908     if (ALow->getValue().slt(BLow->getValue())) {
909       addRange(EndPoints, ALow,
910                mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
911       ++AI;
912     } else {
913       addRange(EndPoints, BLow,
914                mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
915       ++BI;
916     }
917   }
918   while (AI < AN) {
919     addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)),
920              mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
921     ++AI;
922   }
923   while (BI < BN) {
924     addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)),
925              mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
926     ++BI;
927   }
928
929   // If we have more than 2 ranges (4 endpoints) we have to try to merge
930   // the last and first ones.
931   unsigned Size = EndPoints.size();
932   if (Size > 4) {
933     ConstantInt *FB = EndPoints[0];
934     ConstantInt *FE = EndPoints[1];
935     if (tryMergeRange(EndPoints, FB, FE)) {
936       for (unsigned i = 0; i < Size - 2; ++i) {
937         EndPoints[i] = EndPoints[i + 2];
938       }
939       EndPoints.resize(Size - 2);
940     }
941   }
942
943   // If in the end we have a single range, it is possible that it is now the
944   // full range. Just drop the metadata in that case.
945   if (EndPoints.size() == 2) {
946     ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue());
947     if (Range.isFullSet())
948       return nullptr;
949   }
950
951   SmallVector<Metadata *, 4> MDs;
952   MDs.reserve(EndPoints.size());
953   for (auto *I : EndPoints)
954     MDs.push_back(ConstantAsMetadata::get(I));
955   return MDNode::get(A->getContext(), MDs);
956 }
957
958 MDNode *MDNode::getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B) {
959   if (!A || !B)
960     return nullptr;
961
962   ConstantInt *AVal = mdconst::extract<ConstantInt>(A->getOperand(0));
963   ConstantInt *BVal = mdconst::extract<ConstantInt>(B->getOperand(0));
964   if (AVal->getZExtValue() < BVal->getZExtValue())
965     return A;
966   return B;
967 }
968
969 //===----------------------------------------------------------------------===//
970 // NamedMDNode implementation.
971 //
972
973 static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) {
974   return *(SmallVector<TrackingMDRef, 4> *)Operands;
975 }
976
977 NamedMDNode::NamedMDNode(const Twine &N)
978     : Name(N.str()), Parent(nullptr),
979       Operands(new SmallVector<TrackingMDRef, 4>()) {}
980
981 NamedMDNode::~NamedMDNode() {
982   dropAllReferences();
983   delete &getNMDOps(Operands);
984 }
985
986 unsigned NamedMDNode::getNumOperands() const {
987   return (unsigned)getNMDOps(Operands).size();
988 }
989
990 MDNode *NamedMDNode::getOperand(unsigned i) const {
991   assert(i < getNumOperands() && "Invalid Operand number!");
992   auto *N = getNMDOps(Operands)[i].get();
993   return cast_or_null<MDNode>(N);
994 }
995
996 void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); }
997
998 void NamedMDNode::setOperand(unsigned I, MDNode *New) {
999   assert(I < getNumOperands() && "Invalid operand number");
1000   getNMDOps(Operands)[I].reset(New);
1001 }
1002
1003 void NamedMDNode::eraseFromParent() {
1004   getParent()->eraseNamedMetadata(this);
1005 }
1006
1007 void NamedMDNode::dropAllReferences() {
1008   getNMDOps(Operands).clear();
1009 }
1010
1011 StringRef NamedMDNode::getName() const {
1012   return StringRef(Name);
1013 }
1014
1015 //===----------------------------------------------------------------------===//
1016 // Instruction Metadata method implementations.
1017 //
1018 void MDAttachmentMap::set(unsigned ID, MDNode &MD) {
1019   for (auto &I : Attachments)
1020     if (I.first == ID) {
1021       I.second.reset(&MD);
1022       return;
1023     }
1024   Attachments.emplace_back(std::piecewise_construct, std::make_tuple(ID),
1025                            std::make_tuple(&MD));
1026 }
1027
1028 void MDAttachmentMap::erase(unsigned ID) {
1029   if (empty())
1030     return;
1031
1032   // Common case is one/last value.
1033   if (Attachments.back().first == ID) {
1034     Attachments.pop_back();
1035     return;
1036   }
1037
1038   for (auto I = Attachments.begin(), E = std::prev(Attachments.end()); I != E;
1039        ++I)
1040     if (I->first == ID) {
1041       *I = std::move(Attachments.back());
1042       Attachments.pop_back();
1043       return;
1044     }
1045 }
1046
1047 MDNode *MDAttachmentMap::lookup(unsigned ID) const {
1048   for (const auto &I : Attachments)
1049     if (I.first == ID)
1050       return I.second;
1051   return nullptr;
1052 }
1053
1054 void MDAttachmentMap::getAll(
1055     SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
1056   Result.append(Attachments.begin(), Attachments.end());
1057
1058   // Sort the resulting array so it is stable.
1059   if (Result.size() > 1)
1060     array_pod_sort(Result.begin(), Result.end());
1061 }
1062
1063 void Instruction::setMetadata(StringRef Kind, MDNode *Node) {
1064   if (!Node && !hasMetadata())
1065     return;
1066   setMetadata(getContext().getMDKindID(Kind), Node);
1067 }
1068
1069 MDNode *Instruction::getMetadataImpl(StringRef Kind) const {
1070   return getMetadataImpl(getContext().getMDKindID(Kind));
1071 }
1072
1073 void Instruction::dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs) {
1074   SmallSet<unsigned, 5> KnownSet;
1075   KnownSet.insert(KnownIDs.begin(), KnownIDs.end());
1076
1077   if (!hasMetadataHashEntry())
1078     return; // Nothing to remove!
1079
1080   auto &InstructionMetadata = getContext().pImpl->InstructionMetadata;
1081
1082   if (KnownSet.empty()) {
1083     // Just drop our entry at the store.
1084     InstructionMetadata.erase(this);
1085     setHasMetadataHashEntry(false);
1086     return;
1087   }
1088
1089   auto &Info = InstructionMetadata[this];
1090   Info.remove_if([&KnownSet](const std::pair<unsigned, TrackingMDNodeRef> &I) {
1091     return !KnownSet.count(I.first);
1092   });
1093
1094   if (Info.empty()) {
1095     // Drop our entry at the store.
1096     InstructionMetadata.erase(this);
1097     setHasMetadataHashEntry(false);
1098   }
1099 }
1100
1101 /// setMetadata - Set the metadata of the specified kind to the specified
1102 /// node.  This updates/replaces metadata if already present, or removes it if
1103 /// Node is null.
1104 void Instruction::setMetadata(unsigned KindID, MDNode *Node) {
1105   if (!Node && !hasMetadata())
1106     return;
1107
1108   // Handle 'dbg' as a special case since it is not stored in the hash table.
1109   if (KindID == LLVMContext::MD_dbg) {
1110     DbgLoc = DebugLoc(Node);
1111     return;
1112   }
1113   
1114   // Handle the case when we're adding/updating metadata on an instruction.
1115   if (Node) {
1116     auto &Info = getContext().pImpl->InstructionMetadata[this];
1117     assert(!Info.empty() == hasMetadataHashEntry() &&
1118            "HasMetadata bit is wonked");
1119     if (Info.empty())
1120       setHasMetadataHashEntry(true);
1121     Info.set(KindID, *Node);
1122     return;
1123   }
1124
1125   // Otherwise, we're removing metadata from an instruction.
1126   assert((hasMetadataHashEntry() ==
1127           (getContext().pImpl->InstructionMetadata.count(this) > 0)) &&
1128          "HasMetadata bit out of date!");
1129   if (!hasMetadataHashEntry())
1130     return;  // Nothing to remove!
1131   auto &Info = getContext().pImpl->InstructionMetadata[this];
1132
1133   // Handle removal of an existing value.
1134   Info.erase(KindID);
1135
1136   if (!Info.empty())
1137     return;
1138
1139   getContext().pImpl->InstructionMetadata.erase(this);
1140   setHasMetadataHashEntry(false);
1141 }
1142
1143 void Instruction::setAAMetadata(const AAMDNodes &N) {
1144   setMetadata(LLVMContext::MD_tbaa, N.TBAA);
1145   setMetadata(LLVMContext::MD_alias_scope, N.Scope);
1146   setMetadata(LLVMContext::MD_noalias, N.NoAlias);
1147 }
1148
1149 MDNode *Instruction::getMetadataImpl(unsigned KindID) const {
1150   // Handle 'dbg' as a special case since it is not stored in the hash table.
1151   if (KindID == LLVMContext::MD_dbg)
1152     return DbgLoc.getAsMDNode();
1153
1154   if (!hasMetadataHashEntry())
1155     return nullptr;
1156   auto &Info = getContext().pImpl->InstructionMetadata[this];
1157   assert(!Info.empty() && "bit out of sync with hash table");
1158
1159   return Info.lookup(KindID);
1160 }
1161
1162 void Instruction::getAllMetadataImpl(
1163     SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
1164   Result.clear();
1165   
1166   // Handle 'dbg' as a special case since it is not stored in the hash table.
1167   if (DbgLoc) {
1168     Result.push_back(
1169         std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode()));
1170     if (!hasMetadataHashEntry()) return;
1171   }
1172
1173   assert(hasMetadataHashEntry() &&
1174          getContext().pImpl->InstructionMetadata.count(this) &&
1175          "Shouldn't have called this");
1176   const auto &Info = getContext().pImpl->InstructionMetadata.find(this)->second;
1177   assert(!Info.empty() && "Shouldn't have called this");
1178   Info.getAll(Result);
1179 }
1180
1181 void Instruction::getAllMetadataOtherThanDebugLocImpl(
1182     SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
1183   Result.clear();
1184   assert(hasMetadataHashEntry() &&
1185          getContext().pImpl->InstructionMetadata.count(this) &&
1186          "Shouldn't have called this");
1187   const auto &Info = getContext().pImpl->InstructionMetadata.find(this)->second;
1188   assert(!Info.empty() && "Shouldn't have called this");
1189   Info.getAll(Result);
1190 }
1191
1192 /// clearMetadataHashEntries - Clear all hashtable-based metadata from
1193 /// this instruction.
1194 void Instruction::clearMetadataHashEntries() {
1195   assert(hasMetadataHashEntry() && "Caller should check");
1196   getContext().pImpl->InstructionMetadata.erase(this);
1197   setHasMetadataHashEntry(false);
1198 }
1199
1200 MDNode *Function::getMetadata(unsigned KindID) const {
1201   if (!hasMetadata())
1202     return nullptr;
1203   return getContext().pImpl->FunctionMetadata[this].lookup(KindID);
1204 }
1205
1206 MDNode *Function::getMetadata(StringRef Kind) const {
1207   if (!hasMetadata())
1208     return nullptr;
1209   return getMetadata(getContext().getMDKindID(Kind));
1210 }
1211
1212 void Function::setMetadata(unsigned KindID, MDNode *MD) {
1213   if (MD) {
1214     if (!hasMetadata())
1215       setHasMetadataHashEntry(true);
1216
1217     getContext().pImpl->FunctionMetadata[this].set(KindID, *MD);
1218     return;
1219   }
1220
1221   // Nothing to unset.
1222   if (!hasMetadata())
1223     return;
1224
1225   auto &Store = getContext().pImpl->FunctionMetadata[this];
1226   Store.erase(KindID);
1227   if (Store.empty())
1228     clearMetadata();
1229 }
1230
1231 void Function::setMetadata(StringRef Kind, MDNode *MD) {
1232   if (!MD && !hasMetadata())
1233     return;
1234   setMetadata(getContext().getMDKindID(Kind), MD);
1235 }
1236
1237 void Function::getAllMetadata(
1238     SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
1239   MDs.clear();
1240
1241   if (!hasMetadata())
1242     return;
1243
1244   getContext().pImpl->FunctionMetadata[this].getAll(MDs);
1245 }
1246
1247 void Function::dropUnknownMetadata(ArrayRef<unsigned> KnownIDs) {
1248   if (!hasMetadata())
1249     return;
1250   if (KnownIDs.empty()) {
1251     clearMetadata();
1252     return;
1253   }
1254
1255   SmallSet<unsigned, 5> KnownSet;
1256   KnownSet.insert(KnownIDs.begin(), KnownIDs.end());
1257
1258   auto &Store = getContext().pImpl->FunctionMetadata[this];
1259   assert(!Store.empty());
1260
1261   Store.remove_if([&KnownSet](const std::pair<unsigned, TrackingMDNodeRef> &I) {
1262     return !KnownSet.count(I.first);
1263   });
1264
1265   if (Store.empty())
1266     clearMetadata();
1267 }
1268
1269 void Function::clearMetadata() {
1270   if (!hasMetadata())
1271     return;
1272   getContext().pImpl->FunctionMetadata.erase(this);
1273   setHasMetadataHashEntry(false);
1274 }
1275
1276 void Function::setSubprogram(DISubprogram *SP) {
1277   setMetadata(LLVMContext::MD_dbg, SP);
1278 }
1279
1280 DISubprogram *Function::getSubprogram() const {
1281   return cast_or_null<DISubprogram>(getMetadata(LLVMContext::MD_dbg));
1282 }