Revert "Remove isCastable since nothing uses it now"
[oota-llvm.git] / lib / IR / Instructions.cpp
1 //===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements all of the non-inline methods for the LLVM instruction
11 // classes.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/IR/Instructions.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/IR/Operator.h"
23 #include "llvm/Support/CallSite.h"
24 #include "llvm/Support/ConstantRange.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MathExtras.h"
27 using namespace llvm;
28
29 //===----------------------------------------------------------------------===//
30 //                            CallSite Class
31 //===----------------------------------------------------------------------===//
32
33 User::op_iterator CallSite::getCallee() const {
34   Instruction *II(getInstruction());
35   return isCall()
36     ? cast<CallInst>(II)->op_end() - 1 // Skip Callee
37     : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee
38 }
39
40 //===----------------------------------------------------------------------===//
41 //                            TerminatorInst Class
42 //===----------------------------------------------------------------------===//
43
44 // Out of line virtual method, so the vtable, etc has a home.
45 TerminatorInst::~TerminatorInst() {
46 }
47
48 //===----------------------------------------------------------------------===//
49 //                           UnaryInstruction Class
50 //===----------------------------------------------------------------------===//
51
52 // Out of line virtual method, so the vtable, etc has a home.
53 UnaryInstruction::~UnaryInstruction() {
54 }
55
56 //===----------------------------------------------------------------------===//
57 //                              SelectInst Class
58 //===----------------------------------------------------------------------===//
59
60 /// areInvalidOperands - Return a string if the specified operands are invalid
61 /// for a select operation, otherwise return null.
62 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
63   if (Op1->getType() != Op2->getType())
64     return "both values to select must have same type";
65   
66   if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
67     // Vector select.
68     if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
69       return "vector select condition element type must be i1";
70     VectorType *ET = dyn_cast<VectorType>(Op1->getType());
71     if (ET == 0)
72       return "selected values for vector select must be vectors";
73     if (ET->getNumElements() != VT->getNumElements())
74       return "vector select requires selected vectors to have "
75                    "the same vector length as select condition";
76   } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
77     return "select condition must be i1 or <n x i1>";
78   }
79   return 0;
80 }
81
82
83 //===----------------------------------------------------------------------===//
84 //                               PHINode Class
85 //===----------------------------------------------------------------------===//
86
87 PHINode::PHINode(const PHINode &PN)
88   : Instruction(PN.getType(), Instruction::PHI,
89                 allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()),
90     ReservedSpace(PN.getNumOperands()) {
91   std::copy(PN.op_begin(), PN.op_end(), op_begin());
92   std::copy(PN.block_begin(), PN.block_end(), block_begin());
93   SubclassOptionalData = PN.SubclassOptionalData;
94 }
95
96 PHINode::~PHINode() {
97   dropHungoffUses();
98 }
99
100 Use *PHINode::allocHungoffUses(unsigned N) const {
101   // Allocate the array of Uses of the incoming values, followed by a pointer
102   // (with bottom bit set) to the User, followed by the array of pointers to
103   // the incoming basic blocks.
104   size_t size = N * sizeof(Use) + sizeof(Use::UserRef)
105     + N * sizeof(BasicBlock*);
106   Use *Begin = static_cast<Use*>(::operator new(size));
107   Use *End = Begin + N;
108   (void) new(End) Use::UserRef(const_cast<PHINode*>(this), 1);
109   return Use::initTags(Begin, End);
110 }
111
112 // removeIncomingValue - Remove an incoming value.  This is useful if a
113 // predecessor basic block is deleted.
114 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
115   Value *Removed = getIncomingValue(Idx);
116
117   // Move everything after this operand down.
118   //
119   // FIXME: we could just swap with the end of the list, then erase.  However,
120   // clients might not expect this to happen.  The code as it is thrashes the
121   // use/def lists, which is kinda lame.
122   std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
123   std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
124
125   // Nuke the last value.
126   Op<-1>().set(0);
127   --NumOperands;
128
129   // If the PHI node is dead, because it has zero entries, nuke it now.
130   if (getNumOperands() == 0 && DeletePHIIfEmpty) {
131     // If anyone is using this PHI, make them use a dummy value instead...
132     replaceAllUsesWith(UndefValue::get(getType()));
133     eraseFromParent();
134   }
135   return Removed;
136 }
137
138 /// growOperands - grow operands - This grows the operand list in response
139 /// to a push_back style of operation.  This grows the number of ops by 1.5
140 /// times.
141 ///
142 void PHINode::growOperands() {
143   unsigned e = getNumOperands();
144   unsigned NumOps = e + e / 2;
145   if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
146
147   Use *OldOps = op_begin();
148   BasicBlock **OldBlocks = block_begin();
149
150   ReservedSpace = NumOps;
151   OperandList = allocHungoffUses(ReservedSpace);
152
153   std::copy(OldOps, OldOps + e, op_begin());
154   std::copy(OldBlocks, OldBlocks + e, block_begin());
155
156   Use::zap(OldOps, OldOps + e, true);
157 }
158
159 /// hasConstantValue - If the specified PHI node always merges together the same
160 /// value, return the value, otherwise return null.
161 Value *PHINode::hasConstantValue() const {
162   // Exploit the fact that phi nodes always have at least one entry.
163   Value *ConstantValue = getIncomingValue(0);
164   for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
165     if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
166       if (ConstantValue != this)
167         return 0; // Incoming values not all the same.
168        // The case where the first value is this PHI.
169       ConstantValue = getIncomingValue(i);
170     }
171   if (ConstantValue == this)
172     return UndefValue::get(getType());
173   return ConstantValue;
174 }
175
176 //===----------------------------------------------------------------------===//
177 //                       LandingPadInst Implementation
178 //===----------------------------------------------------------------------===//
179
180 LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
181                                unsigned NumReservedValues, const Twine &NameStr,
182                                Instruction *InsertBefore)
183   : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertBefore) {
184   init(PersonalityFn, 1 + NumReservedValues, NameStr);
185 }
186
187 LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
188                                unsigned NumReservedValues, const Twine &NameStr,
189                                BasicBlock *InsertAtEnd)
190   : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertAtEnd) {
191   init(PersonalityFn, 1 + NumReservedValues, NameStr);
192 }
193
194 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
195   : Instruction(LP.getType(), Instruction::LandingPad,
196                 allocHungoffUses(LP.getNumOperands()), LP.getNumOperands()),
197     ReservedSpace(LP.getNumOperands()) {
198   Use *OL = OperandList, *InOL = LP.OperandList;
199   for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
200     OL[I] = InOL[I];
201
202   setCleanup(LP.isCleanup());
203 }
204
205 LandingPadInst::~LandingPadInst() {
206   dropHungoffUses();
207 }
208
209 LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
210                                        unsigned NumReservedClauses,
211                                        const Twine &NameStr,
212                                        Instruction *InsertBefore) {
213   return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
214                             InsertBefore);
215 }
216
217 LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
218                                        unsigned NumReservedClauses,
219                                        const Twine &NameStr,
220                                        BasicBlock *InsertAtEnd) {
221   return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
222                             InsertAtEnd);
223 }
224
225 void LandingPadInst::init(Value *PersFn, unsigned NumReservedValues,
226                           const Twine &NameStr) {
227   ReservedSpace = NumReservedValues;
228   NumOperands = 1;
229   OperandList = allocHungoffUses(ReservedSpace);
230   OperandList[0] = PersFn;
231   setName(NameStr);
232   setCleanup(false);
233 }
234
235 /// growOperands - grow operands - This grows the operand list in response to a
236 /// push_back style of operation. This grows the number of ops by 2 times.
237 void LandingPadInst::growOperands(unsigned Size) {
238   unsigned e = getNumOperands();
239   if (ReservedSpace >= e + Size) return;
240   ReservedSpace = (e + Size / 2) * 2;
241
242   Use *NewOps = allocHungoffUses(ReservedSpace);
243   Use *OldOps = OperandList;
244   for (unsigned i = 0; i != e; ++i)
245       NewOps[i] = OldOps[i];
246
247   OperandList = NewOps;
248   Use::zap(OldOps, OldOps + e, true);
249 }
250
251 void LandingPadInst::addClause(Value *Val) {
252   unsigned OpNo = getNumOperands();
253   growOperands(1);
254   assert(OpNo < ReservedSpace && "Growing didn't work!");
255   ++NumOperands;
256   OperandList[OpNo] = Val;
257 }
258
259 //===----------------------------------------------------------------------===//
260 //                        CallInst Implementation
261 //===----------------------------------------------------------------------===//
262
263 CallInst::~CallInst() {
264 }
265
266 void CallInst::init(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr) {
267   assert(NumOperands == Args.size() + 1 && "NumOperands not set up?");
268   Op<-1>() = Func;
269
270 #ifndef NDEBUG
271   FunctionType *FTy =
272     cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
273
274   assert((Args.size() == FTy->getNumParams() ||
275           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
276          "Calling a function with bad signature!");
277
278   for (unsigned i = 0; i != Args.size(); ++i)
279     assert((i >= FTy->getNumParams() || 
280             FTy->getParamType(i) == Args[i]->getType()) &&
281            "Calling a function with a bad signature!");
282 #endif
283
284   std::copy(Args.begin(), Args.end(), op_begin());
285   setName(NameStr);
286 }
287
288 void CallInst::init(Value *Func, const Twine &NameStr) {
289   assert(NumOperands == 1 && "NumOperands not set up?");
290   Op<-1>() = Func;
291
292 #ifndef NDEBUG
293   FunctionType *FTy =
294     cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
295
296   assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
297 #endif
298
299   setName(NameStr);
300 }
301
302 CallInst::CallInst(Value *Func, const Twine &Name,
303                    Instruction *InsertBefore)
304   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
305                                    ->getElementType())->getReturnType(),
306                 Instruction::Call,
307                 OperandTraits<CallInst>::op_end(this) - 1,
308                 1, InsertBefore) {
309   init(Func, Name);
310 }
311
312 CallInst::CallInst(Value *Func, const Twine &Name,
313                    BasicBlock *InsertAtEnd)
314   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
315                                    ->getElementType())->getReturnType(),
316                 Instruction::Call,
317                 OperandTraits<CallInst>::op_end(this) - 1,
318                 1, InsertAtEnd) {
319   init(Func, Name);
320 }
321
322 CallInst::CallInst(const CallInst &CI)
323   : Instruction(CI.getType(), Instruction::Call,
324                 OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(),
325                 CI.getNumOperands()) {
326   setAttributes(CI.getAttributes());
327   setTailCall(CI.isTailCall());
328   setCallingConv(CI.getCallingConv());
329     
330   std::copy(CI.op_begin(), CI.op_end(), op_begin());
331   SubclassOptionalData = CI.SubclassOptionalData;
332 }
333
334 void CallInst::addAttribute(unsigned i, Attribute::AttrKind attr) {
335   AttributeSet PAL = getAttributes();
336   PAL = PAL.addAttribute(getContext(), i, attr);
337   setAttributes(PAL);
338 }
339
340 void CallInst::removeAttribute(unsigned i, Attribute attr) {
341   AttributeSet PAL = getAttributes();
342   AttrBuilder B(attr);
343   LLVMContext &Context = getContext();
344   PAL = PAL.removeAttributes(Context, i,
345                              AttributeSet::get(Context, i, B));
346   setAttributes(PAL);
347 }
348
349 bool CallInst::hasFnAttrImpl(Attribute::AttrKind A) const {
350   if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A))
351     return true;
352   if (const Function *F = getCalledFunction())
353     return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A);
354   return false;
355 }
356
357 bool CallInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const {
358   if (AttributeList.hasAttribute(i, A))
359     return true;
360   if (const Function *F = getCalledFunction())
361     return F->getAttributes().hasAttribute(i, A);
362   return false;
363 }
364
365 /// IsConstantOne - Return true only if val is constant int 1
366 static bool IsConstantOne(Value *val) {
367   assert(val && "IsConstantOne does not work with NULL val");
368   return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne();
369 }
370
371 static Instruction *createMalloc(Instruction *InsertBefore,
372                                  BasicBlock *InsertAtEnd, Type *IntPtrTy,
373                                  Type *AllocTy, Value *AllocSize, 
374                                  Value *ArraySize, Function *MallocF,
375                                  const Twine &Name) {
376   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
377          "createMalloc needs either InsertBefore or InsertAtEnd");
378
379   // malloc(type) becomes: 
380   //       bitcast (i8* malloc(typeSize)) to type*
381   // malloc(type, arraySize) becomes:
382   //       bitcast (i8 *malloc(typeSize*arraySize)) to type*
383   if (!ArraySize)
384     ArraySize = ConstantInt::get(IntPtrTy, 1);
385   else if (ArraySize->getType() != IntPtrTy) {
386     if (InsertBefore)
387       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
388                                               "", InsertBefore);
389     else
390       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
391                                               "", InsertAtEnd);
392   }
393
394   if (!IsConstantOne(ArraySize)) {
395     if (IsConstantOne(AllocSize)) {
396       AllocSize = ArraySize;         // Operand * 1 = Operand
397     } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
398       Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
399                                                      false /*ZExt*/);
400       // Malloc arg is constant product of type size and array size
401       AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
402     } else {
403       // Multiply type size by the array size...
404       if (InsertBefore)
405         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
406                                               "mallocsize", InsertBefore);
407       else
408         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
409                                               "mallocsize", InsertAtEnd);
410     }
411   }
412
413   assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
414   // Create the call to Malloc.
415   BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
416   Module* M = BB->getParent()->getParent();
417   Type *BPTy = Type::getInt8PtrTy(BB->getContext());
418   Value *MallocFunc = MallocF;
419   if (!MallocFunc)
420     // prototype malloc as "void *malloc(size_t)"
421     MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, NULL);
422   PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
423   CallInst *MCall = NULL;
424   Instruction *Result = NULL;
425   if (InsertBefore) {
426     MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore);
427     Result = MCall;
428     if (Result->getType() != AllocPtrType)
429       // Create a cast instruction to convert to the right type...
430       Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
431   } else {
432     MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall");
433     Result = MCall;
434     if (Result->getType() != AllocPtrType) {
435       InsertAtEnd->getInstList().push_back(MCall);
436       // Create a cast instruction to convert to the right type...
437       Result = new BitCastInst(MCall, AllocPtrType, Name);
438     }
439   }
440   MCall->setTailCall();
441   if (Function *F = dyn_cast<Function>(MallocFunc)) {
442     MCall->setCallingConv(F->getCallingConv());
443     if (!F->doesNotAlias(0)) F->setDoesNotAlias(0);
444   }
445   assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
446
447   return Result;
448 }
449
450 /// CreateMalloc - Generate the IR for a call to malloc:
451 /// 1. Compute the malloc call's argument as the specified type's size,
452 ///    possibly multiplied by the array size if the array size is not
453 ///    constant 1.
454 /// 2. Call malloc with that argument.
455 /// 3. Bitcast the result of the malloc call to the specified type.
456 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
457                                     Type *IntPtrTy, Type *AllocTy,
458                                     Value *AllocSize, Value *ArraySize,
459                                     Function * MallocF,
460                                     const Twine &Name) {
461   return createMalloc(InsertBefore, NULL, IntPtrTy, AllocTy, AllocSize,
462                       ArraySize, MallocF, Name);
463 }
464
465 /// CreateMalloc - Generate the IR for a call to malloc:
466 /// 1. Compute the malloc call's argument as the specified type's size,
467 ///    possibly multiplied by the array size if the array size is not
468 ///    constant 1.
469 /// 2. Call malloc with that argument.
470 /// 3. Bitcast the result of the malloc call to the specified type.
471 /// Note: This function does not add the bitcast to the basic block, that is the
472 /// responsibility of the caller.
473 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
474                                     Type *IntPtrTy, Type *AllocTy,
475                                     Value *AllocSize, Value *ArraySize, 
476                                     Function *MallocF, const Twine &Name) {
477   return createMalloc(NULL, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
478                       ArraySize, MallocF, Name);
479 }
480
481 static Instruction* createFree(Value* Source, Instruction *InsertBefore,
482                                BasicBlock *InsertAtEnd) {
483   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
484          "createFree needs either InsertBefore or InsertAtEnd");
485   assert(Source->getType()->isPointerTy() &&
486          "Can not free something of nonpointer type!");
487
488   BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
489   Module* M = BB->getParent()->getParent();
490
491   Type *VoidTy = Type::getVoidTy(M->getContext());
492   Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
493   // prototype free as "void free(void*)"
494   Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, NULL);
495   CallInst* Result = NULL;
496   Value *PtrCast = Source;
497   if (InsertBefore) {
498     if (Source->getType() != IntPtrTy)
499       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
500     Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore);
501   } else {
502     if (Source->getType() != IntPtrTy)
503       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
504     Result = CallInst::Create(FreeFunc, PtrCast, "");
505   }
506   Result->setTailCall();
507   if (Function *F = dyn_cast<Function>(FreeFunc))
508     Result->setCallingConv(F->getCallingConv());
509
510   return Result;
511 }
512
513 /// CreateFree - Generate the IR for a call to the builtin free function.
514 Instruction * CallInst::CreateFree(Value* Source, Instruction *InsertBefore) {
515   return createFree(Source, InsertBefore, NULL);
516 }
517
518 /// CreateFree - Generate the IR for a call to the builtin free function.
519 /// Note: This function does not add the call to the basic block, that is the
520 /// responsibility of the caller.
521 Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) {
522   Instruction* FreeCall = createFree(Source, NULL, InsertAtEnd);
523   assert(FreeCall && "CreateFree did not create a CallInst");
524   return FreeCall;
525 }
526
527 //===----------------------------------------------------------------------===//
528 //                        InvokeInst Implementation
529 //===----------------------------------------------------------------------===//
530
531 void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
532                       ArrayRef<Value *> Args, const Twine &NameStr) {
533   assert(NumOperands == 3 + Args.size() && "NumOperands not set up?");
534   Op<-3>() = Fn;
535   Op<-2>() = IfNormal;
536   Op<-1>() = IfException;
537
538 #ifndef NDEBUG
539   FunctionType *FTy =
540     cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
541
542   assert(((Args.size() == FTy->getNumParams()) ||
543           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
544          "Invoking a function with bad signature");
545
546   for (unsigned i = 0, e = Args.size(); i != e; i++)
547     assert((i >= FTy->getNumParams() || 
548             FTy->getParamType(i) == Args[i]->getType()) &&
549            "Invoking a function with a bad signature!");
550 #endif
551
552   std::copy(Args.begin(), Args.end(), op_begin());
553   setName(NameStr);
554 }
555
556 InvokeInst::InvokeInst(const InvokeInst &II)
557   : TerminatorInst(II.getType(), Instruction::Invoke,
558                    OperandTraits<InvokeInst>::op_end(this)
559                    - II.getNumOperands(),
560                    II.getNumOperands()) {
561   setAttributes(II.getAttributes());
562   setCallingConv(II.getCallingConv());
563   std::copy(II.op_begin(), II.op_end(), op_begin());
564   SubclassOptionalData = II.SubclassOptionalData;
565 }
566
567 BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
568   return getSuccessor(idx);
569 }
570 unsigned InvokeInst::getNumSuccessorsV() const {
571   return getNumSuccessors();
572 }
573 void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
574   return setSuccessor(idx, B);
575 }
576
577 bool InvokeInst::hasFnAttrImpl(Attribute::AttrKind A) const {
578   if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A))
579     return true;
580   if (const Function *F = getCalledFunction())
581     return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A);
582   return false;
583 }
584
585 bool InvokeInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const {
586   if (AttributeList.hasAttribute(i, A))
587     return true;
588   if (const Function *F = getCalledFunction())
589     return F->getAttributes().hasAttribute(i, A);
590   return false;
591 }
592
593 void InvokeInst::addAttribute(unsigned i, Attribute::AttrKind attr) {
594   AttributeSet PAL = getAttributes();
595   PAL = PAL.addAttribute(getContext(), i, attr);
596   setAttributes(PAL);
597 }
598
599 void InvokeInst::removeAttribute(unsigned i, Attribute attr) {
600   AttributeSet PAL = getAttributes();
601   AttrBuilder B(attr);
602   PAL = PAL.removeAttributes(getContext(), i,
603                              AttributeSet::get(getContext(), i, B));
604   setAttributes(PAL);
605 }
606
607 LandingPadInst *InvokeInst::getLandingPadInst() const {
608   return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
609 }
610
611 //===----------------------------------------------------------------------===//
612 //                        ReturnInst Implementation
613 //===----------------------------------------------------------------------===//
614
615 ReturnInst::ReturnInst(const ReturnInst &RI)
616   : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret,
617                    OperandTraits<ReturnInst>::op_end(this) -
618                      RI.getNumOperands(),
619                    RI.getNumOperands()) {
620   if (RI.getNumOperands())
621     Op<0>() = RI.Op<0>();
622   SubclassOptionalData = RI.SubclassOptionalData;
623 }
624
625 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
626   : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
627                    OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
628                    InsertBefore) {
629   if (retVal)
630     Op<0>() = retVal;
631 }
632 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
633   : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
634                    OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
635                    InsertAtEnd) {
636   if (retVal)
637     Op<0>() = retVal;
638 }
639 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
640   : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret,
641                    OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
642 }
643
644 unsigned ReturnInst::getNumSuccessorsV() const {
645   return getNumSuccessors();
646 }
647
648 /// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
649 /// emit the vtable for the class in this translation unit.
650 void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
651   llvm_unreachable("ReturnInst has no successors!");
652 }
653
654 BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
655   llvm_unreachable("ReturnInst has no successors!");
656 }
657
658 ReturnInst::~ReturnInst() {
659 }
660
661 //===----------------------------------------------------------------------===//
662 //                        ResumeInst Implementation
663 //===----------------------------------------------------------------------===//
664
665 ResumeInst::ResumeInst(const ResumeInst &RI)
666   : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume,
667                    OperandTraits<ResumeInst>::op_begin(this), 1) {
668   Op<0>() = RI.Op<0>();
669 }
670
671 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
672   : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
673                    OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
674   Op<0>() = Exn;
675 }
676
677 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
678   : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
679                    OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
680   Op<0>() = Exn;
681 }
682
683 unsigned ResumeInst::getNumSuccessorsV() const {
684   return getNumSuccessors();
685 }
686
687 void ResumeInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
688   llvm_unreachable("ResumeInst has no successors!");
689 }
690
691 BasicBlock *ResumeInst::getSuccessorV(unsigned idx) const {
692   llvm_unreachable("ResumeInst has no successors!");
693 }
694
695 //===----------------------------------------------------------------------===//
696 //                      UnreachableInst Implementation
697 //===----------------------------------------------------------------------===//
698
699 UnreachableInst::UnreachableInst(LLVMContext &Context, 
700                                  Instruction *InsertBefore)
701   : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
702                    0, 0, InsertBefore) {
703 }
704 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
705   : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
706                    0, 0, InsertAtEnd) {
707 }
708
709 unsigned UnreachableInst::getNumSuccessorsV() const {
710   return getNumSuccessors();
711 }
712
713 void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
714   llvm_unreachable("UnreachableInst has no successors!");
715 }
716
717 BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
718   llvm_unreachable("UnreachableInst has no successors!");
719 }
720
721 //===----------------------------------------------------------------------===//
722 //                        BranchInst Implementation
723 //===----------------------------------------------------------------------===//
724
725 void BranchInst::AssertOK() {
726   if (isConditional())
727     assert(getCondition()->getType()->isIntegerTy(1) &&
728            "May only branch on boolean predicates!");
729 }
730
731 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
732   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
733                    OperandTraits<BranchInst>::op_end(this) - 1,
734                    1, InsertBefore) {
735   assert(IfTrue != 0 && "Branch destination may not be null!");
736   Op<-1>() = IfTrue;
737 }
738 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
739                        Instruction *InsertBefore)
740   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
741                    OperandTraits<BranchInst>::op_end(this) - 3,
742                    3, InsertBefore) {
743   Op<-1>() = IfTrue;
744   Op<-2>() = IfFalse;
745   Op<-3>() = Cond;
746 #ifndef NDEBUG
747   AssertOK();
748 #endif
749 }
750
751 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
752   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
753                    OperandTraits<BranchInst>::op_end(this) - 1,
754                    1, InsertAtEnd) {
755   assert(IfTrue != 0 && "Branch destination may not be null!");
756   Op<-1>() = IfTrue;
757 }
758
759 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
760            BasicBlock *InsertAtEnd)
761   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
762                    OperandTraits<BranchInst>::op_end(this) - 3,
763                    3, InsertAtEnd) {
764   Op<-1>() = IfTrue;
765   Op<-2>() = IfFalse;
766   Op<-3>() = Cond;
767 #ifndef NDEBUG
768   AssertOK();
769 #endif
770 }
771
772
773 BranchInst::BranchInst(const BranchInst &BI) :
774   TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
775                  OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
776                  BI.getNumOperands()) {
777   Op<-1>() = BI.Op<-1>();
778   if (BI.getNumOperands() != 1) {
779     assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
780     Op<-3>() = BI.Op<-3>();
781     Op<-2>() = BI.Op<-2>();
782   }
783   SubclassOptionalData = BI.SubclassOptionalData;
784 }
785
786 void BranchInst::swapSuccessors() {
787   assert(isConditional() &&
788          "Cannot swap successors of an unconditional branch");
789   Op<-1>().swap(Op<-2>());
790
791   // Update profile metadata if present and it matches our structural
792   // expectations.
793   MDNode *ProfileData = getMetadata(LLVMContext::MD_prof);
794   if (!ProfileData || ProfileData->getNumOperands() != 3)
795     return;
796
797   // The first operand is the name. Fetch them backwards and build a new one.
798   Value *Ops[] = {
799     ProfileData->getOperand(0),
800     ProfileData->getOperand(2),
801     ProfileData->getOperand(1)
802   };
803   setMetadata(LLVMContext::MD_prof,
804               MDNode::get(ProfileData->getContext(), Ops));
805 }
806
807 BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
808   return getSuccessor(idx);
809 }
810 unsigned BranchInst::getNumSuccessorsV() const {
811   return getNumSuccessors();
812 }
813 void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
814   setSuccessor(idx, B);
815 }
816
817
818 //===----------------------------------------------------------------------===//
819 //                        AllocaInst Implementation
820 //===----------------------------------------------------------------------===//
821
822 static Value *getAISize(LLVMContext &Context, Value *Amt) {
823   if (!Amt)
824     Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
825   else {
826     assert(!isa<BasicBlock>(Amt) &&
827            "Passed basic block into allocation size parameter! Use other ctor");
828     assert(Amt->getType()->isIntegerTy() &&
829            "Allocation array size is not an integer!");
830   }
831   return Amt;
832 }
833
834 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize,
835                        const Twine &Name, Instruction *InsertBefore)
836   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
837                      getAISize(Ty->getContext(), ArraySize), InsertBefore) {
838   setAlignment(0);
839   assert(!Ty->isVoidTy() && "Cannot allocate void!");
840   setName(Name);
841 }
842
843 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize,
844                        const Twine &Name, BasicBlock *InsertAtEnd)
845   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
846                      getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
847   setAlignment(0);
848   assert(!Ty->isVoidTy() && "Cannot allocate void!");
849   setName(Name);
850 }
851
852 AllocaInst::AllocaInst(Type *Ty, const Twine &Name,
853                        Instruction *InsertBefore)
854   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
855                      getAISize(Ty->getContext(), 0), InsertBefore) {
856   setAlignment(0);
857   assert(!Ty->isVoidTy() && "Cannot allocate void!");
858   setName(Name);
859 }
860
861 AllocaInst::AllocaInst(Type *Ty, const Twine &Name,
862                        BasicBlock *InsertAtEnd)
863   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
864                      getAISize(Ty->getContext(), 0), InsertAtEnd) {
865   setAlignment(0);
866   assert(!Ty->isVoidTy() && "Cannot allocate void!");
867   setName(Name);
868 }
869
870 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
871                        const Twine &Name, Instruction *InsertBefore)
872   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
873                      getAISize(Ty->getContext(), ArraySize), InsertBefore) {
874   setAlignment(Align);
875   assert(!Ty->isVoidTy() && "Cannot allocate void!");
876   setName(Name);
877 }
878
879 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
880                        const Twine &Name, BasicBlock *InsertAtEnd)
881   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
882                      getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
883   setAlignment(Align);
884   assert(!Ty->isVoidTy() && "Cannot allocate void!");
885   setName(Name);
886 }
887
888 // Out of line virtual method, so the vtable, etc has a home.
889 AllocaInst::~AllocaInst() {
890 }
891
892 void AllocaInst::setAlignment(unsigned Align) {
893   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
894   assert(Align <= MaximumAlignment &&
895          "Alignment is greater than MaximumAlignment!");
896   setInstructionSubclassData(Log2_32(Align) + 1);
897   assert(getAlignment() == Align && "Alignment representation error!");
898 }
899
900 bool AllocaInst::isArrayAllocation() const {
901   if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
902     return !CI->isOne();
903   return true;
904 }
905
906 Type *AllocaInst::getAllocatedType() const {
907   return getType()->getElementType();
908 }
909
910 /// isStaticAlloca - Return true if this alloca is in the entry block of the
911 /// function and is a constant size.  If so, the code generator will fold it
912 /// into the prolog/epilog code, so it is basically free.
913 bool AllocaInst::isStaticAlloca() const {
914   // Must be constant size.
915   if (!isa<ConstantInt>(getArraySize())) return false;
916   
917   // Must be in the entry block.
918   const BasicBlock *Parent = getParent();
919   return Parent == &Parent->getParent()->front();
920 }
921
922 //===----------------------------------------------------------------------===//
923 //                           LoadInst Implementation
924 //===----------------------------------------------------------------------===//
925
926 void LoadInst::AssertOK() {
927   assert(getOperand(0)->getType()->isPointerTy() &&
928          "Ptr must have pointer type.");
929   assert(!(isAtomic() && getAlignment() == 0) &&
930          "Alignment required for atomic load");
931 }
932
933 LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
934   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
935                      Load, Ptr, InsertBef) {
936   setVolatile(false);
937   setAlignment(0);
938   setAtomic(NotAtomic);
939   AssertOK();
940   setName(Name);
941 }
942
943 LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
944   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
945                      Load, Ptr, InsertAE) {
946   setVolatile(false);
947   setAlignment(0);
948   setAtomic(NotAtomic);
949   AssertOK();
950   setName(Name);
951 }
952
953 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
954                    Instruction *InsertBef)
955   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
956                      Load, Ptr, InsertBef) {
957   setVolatile(isVolatile);
958   setAlignment(0);
959   setAtomic(NotAtomic);
960   AssertOK();
961   setName(Name);
962 }
963
964 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
965                    BasicBlock *InsertAE)
966   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
967                      Load, Ptr, InsertAE) {
968   setVolatile(isVolatile);
969   setAlignment(0);
970   setAtomic(NotAtomic);
971   AssertOK();
972   setName(Name);
973 }
974
975 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 
976                    unsigned Align, Instruction *InsertBef)
977   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
978                      Load, Ptr, InsertBef) {
979   setVolatile(isVolatile);
980   setAlignment(Align);
981   setAtomic(NotAtomic);
982   AssertOK();
983   setName(Name);
984 }
985
986 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 
987                    unsigned Align, BasicBlock *InsertAE)
988   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
989                      Load, Ptr, InsertAE) {
990   setVolatile(isVolatile);
991   setAlignment(Align);
992   setAtomic(NotAtomic);
993   AssertOK();
994   setName(Name);
995 }
996
997 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 
998                    unsigned Align, AtomicOrdering Order,
999                    SynchronizationScope SynchScope,
1000                    Instruction *InsertBef)
1001   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1002                      Load, Ptr, InsertBef) {
1003   setVolatile(isVolatile);
1004   setAlignment(Align);
1005   setAtomic(Order, SynchScope);
1006   AssertOK();
1007   setName(Name);
1008 }
1009
1010 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 
1011                    unsigned Align, AtomicOrdering Order,
1012                    SynchronizationScope SynchScope,
1013                    BasicBlock *InsertAE)
1014   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1015                      Load, Ptr, InsertAE) {
1016   setVolatile(isVolatile);
1017   setAlignment(Align);
1018   setAtomic(Order, SynchScope);
1019   AssertOK();
1020   setName(Name);
1021 }
1022
1023 LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
1024   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1025                      Load, Ptr, InsertBef) {
1026   setVolatile(false);
1027   setAlignment(0);
1028   setAtomic(NotAtomic);
1029   AssertOK();
1030   if (Name && Name[0]) setName(Name);
1031 }
1032
1033 LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
1034   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1035                      Load, Ptr, InsertAE) {
1036   setVolatile(false);
1037   setAlignment(0);
1038   setAtomic(NotAtomic);
1039   AssertOK();
1040   if (Name && Name[0]) setName(Name);
1041 }
1042
1043 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1044                    Instruction *InsertBef)
1045 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1046                    Load, Ptr, InsertBef) {
1047   setVolatile(isVolatile);
1048   setAlignment(0);
1049   setAtomic(NotAtomic);
1050   AssertOK();
1051   if (Name && Name[0]) setName(Name);
1052 }
1053
1054 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1055                    BasicBlock *InsertAE)
1056   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1057                      Load, Ptr, InsertAE) {
1058   setVolatile(isVolatile);
1059   setAlignment(0);
1060   setAtomic(NotAtomic);
1061   AssertOK();
1062   if (Name && Name[0]) setName(Name);
1063 }
1064
1065 void LoadInst::setAlignment(unsigned Align) {
1066   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1067   assert(Align <= MaximumAlignment &&
1068          "Alignment is greater than MaximumAlignment!");
1069   setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1070                              ((Log2_32(Align)+1)<<1));
1071   assert(getAlignment() == Align && "Alignment representation error!");
1072 }
1073
1074 //===----------------------------------------------------------------------===//
1075 //                           StoreInst Implementation
1076 //===----------------------------------------------------------------------===//
1077
1078 void StoreInst::AssertOK() {
1079   assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1080   assert(getOperand(1)->getType()->isPointerTy() &&
1081          "Ptr must have pointer type!");
1082   assert(getOperand(0)->getType() ==
1083                  cast<PointerType>(getOperand(1)->getType())->getElementType()
1084          && "Ptr must be a pointer to Val type!");
1085   assert(!(isAtomic() && getAlignment() == 0) &&
1086          "Alignment required for atomic load");
1087 }
1088
1089
1090 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1091   : Instruction(Type::getVoidTy(val->getContext()), Store,
1092                 OperandTraits<StoreInst>::op_begin(this),
1093                 OperandTraits<StoreInst>::operands(this),
1094                 InsertBefore) {
1095   Op<0>() = val;
1096   Op<1>() = addr;
1097   setVolatile(false);
1098   setAlignment(0);
1099   setAtomic(NotAtomic);
1100   AssertOK();
1101 }
1102
1103 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1104   : Instruction(Type::getVoidTy(val->getContext()), Store,
1105                 OperandTraits<StoreInst>::op_begin(this),
1106                 OperandTraits<StoreInst>::operands(this),
1107                 InsertAtEnd) {
1108   Op<0>() = val;
1109   Op<1>() = addr;
1110   setVolatile(false);
1111   setAlignment(0);
1112   setAtomic(NotAtomic);
1113   AssertOK();
1114 }
1115
1116 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1117                      Instruction *InsertBefore)
1118   : Instruction(Type::getVoidTy(val->getContext()), Store,
1119                 OperandTraits<StoreInst>::op_begin(this),
1120                 OperandTraits<StoreInst>::operands(this),
1121                 InsertBefore) {
1122   Op<0>() = val;
1123   Op<1>() = addr;
1124   setVolatile(isVolatile);
1125   setAlignment(0);
1126   setAtomic(NotAtomic);
1127   AssertOK();
1128 }
1129
1130 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1131                      unsigned Align, Instruction *InsertBefore)
1132   : Instruction(Type::getVoidTy(val->getContext()), Store,
1133                 OperandTraits<StoreInst>::op_begin(this),
1134                 OperandTraits<StoreInst>::operands(this),
1135                 InsertBefore) {
1136   Op<0>() = val;
1137   Op<1>() = addr;
1138   setVolatile(isVolatile);
1139   setAlignment(Align);
1140   setAtomic(NotAtomic);
1141   AssertOK();
1142 }
1143
1144 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1145                      unsigned Align, AtomicOrdering Order,
1146                      SynchronizationScope SynchScope,
1147                      Instruction *InsertBefore)
1148   : Instruction(Type::getVoidTy(val->getContext()), Store,
1149                 OperandTraits<StoreInst>::op_begin(this),
1150                 OperandTraits<StoreInst>::operands(this),
1151                 InsertBefore) {
1152   Op<0>() = val;
1153   Op<1>() = addr;
1154   setVolatile(isVolatile);
1155   setAlignment(Align);
1156   setAtomic(Order, SynchScope);
1157   AssertOK();
1158 }
1159
1160 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1161                      BasicBlock *InsertAtEnd)
1162   : Instruction(Type::getVoidTy(val->getContext()), Store,
1163                 OperandTraits<StoreInst>::op_begin(this),
1164                 OperandTraits<StoreInst>::operands(this),
1165                 InsertAtEnd) {
1166   Op<0>() = val;
1167   Op<1>() = addr;
1168   setVolatile(isVolatile);
1169   setAlignment(0);
1170   setAtomic(NotAtomic);
1171   AssertOK();
1172 }
1173
1174 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1175                      unsigned Align, BasicBlock *InsertAtEnd)
1176   : Instruction(Type::getVoidTy(val->getContext()), Store,
1177                 OperandTraits<StoreInst>::op_begin(this),
1178                 OperandTraits<StoreInst>::operands(this),
1179                 InsertAtEnd) {
1180   Op<0>() = val;
1181   Op<1>() = addr;
1182   setVolatile(isVolatile);
1183   setAlignment(Align);
1184   setAtomic(NotAtomic);
1185   AssertOK();
1186 }
1187
1188 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1189                      unsigned Align, AtomicOrdering Order,
1190                      SynchronizationScope SynchScope,
1191                      BasicBlock *InsertAtEnd)
1192   : Instruction(Type::getVoidTy(val->getContext()), Store,
1193                 OperandTraits<StoreInst>::op_begin(this),
1194                 OperandTraits<StoreInst>::operands(this),
1195                 InsertAtEnd) {
1196   Op<0>() = val;
1197   Op<1>() = addr;
1198   setVolatile(isVolatile);
1199   setAlignment(Align);
1200   setAtomic(Order, SynchScope);
1201   AssertOK();
1202 }
1203
1204 void StoreInst::setAlignment(unsigned Align) {
1205   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1206   assert(Align <= MaximumAlignment &&
1207          "Alignment is greater than MaximumAlignment!");
1208   setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1209                              ((Log2_32(Align)+1) << 1));
1210   assert(getAlignment() == Align && "Alignment representation error!");
1211 }
1212
1213 //===----------------------------------------------------------------------===//
1214 //                       AtomicCmpXchgInst Implementation
1215 //===----------------------------------------------------------------------===//
1216
1217 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1218                              AtomicOrdering Ordering,
1219                              SynchronizationScope SynchScope) {
1220   Op<0>() = Ptr;
1221   Op<1>() = Cmp;
1222   Op<2>() = NewVal;
1223   setOrdering(Ordering);
1224   setSynchScope(SynchScope);
1225
1226   assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1227          "All operands must be non-null!");
1228   assert(getOperand(0)->getType()->isPointerTy() &&
1229          "Ptr must have pointer type!");
1230   assert(getOperand(1)->getType() ==
1231                  cast<PointerType>(getOperand(0)->getType())->getElementType()
1232          && "Ptr must be a pointer to Cmp type!");
1233   assert(getOperand(2)->getType() ==
1234                  cast<PointerType>(getOperand(0)->getType())->getElementType()
1235          && "Ptr must be a pointer to NewVal type!");
1236   assert(Ordering != NotAtomic &&
1237          "AtomicCmpXchg instructions must be atomic!");
1238 }
1239
1240 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1241                                      AtomicOrdering Ordering,
1242                                      SynchronizationScope SynchScope,
1243                                      Instruction *InsertBefore)
1244   : Instruction(Cmp->getType(), AtomicCmpXchg,
1245                 OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1246                 OperandTraits<AtomicCmpXchgInst>::operands(this),
1247                 InsertBefore) {
1248   Init(Ptr, Cmp, NewVal, Ordering, SynchScope);
1249 }
1250
1251 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1252                                      AtomicOrdering Ordering,
1253                                      SynchronizationScope SynchScope,
1254                                      BasicBlock *InsertAtEnd)
1255   : Instruction(Cmp->getType(), AtomicCmpXchg,
1256                 OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1257                 OperandTraits<AtomicCmpXchgInst>::operands(this),
1258                 InsertAtEnd) {
1259   Init(Ptr, Cmp, NewVal, Ordering, SynchScope);
1260 }
1261  
1262 //===----------------------------------------------------------------------===//
1263 //                       AtomicRMWInst Implementation
1264 //===----------------------------------------------------------------------===//
1265
1266 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1267                          AtomicOrdering Ordering,
1268                          SynchronizationScope SynchScope) {
1269   Op<0>() = Ptr;
1270   Op<1>() = Val;
1271   setOperation(Operation);
1272   setOrdering(Ordering);
1273   setSynchScope(SynchScope);
1274
1275   assert(getOperand(0) && getOperand(1) &&
1276          "All operands must be non-null!");
1277   assert(getOperand(0)->getType()->isPointerTy() &&
1278          "Ptr must have pointer type!");
1279   assert(getOperand(1)->getType() ==
1280          cast<PointerType>(getOperand(0)->getType())->getElementType()
1281          && "Ptr must be a pointer to Val type!");
1282   assert(Ordering != NotAtomic &&
1283          "AtomicRMW instructions must be atomic!");
1284 }
1285
1286 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1287                              AtomicOrdering Ordering,
1288                              SynchronizationScope SynchScope,
1289                              Instruction *InsertBefore)
1290   : Instruction(Val->getType(), AtomicRMW,
1291                 OperandTraits<AtomicRMWInst>::op_begin(this),
1292                 OperandTraits<AtomicRMWInst>::operands(this),
1293                 InsertBefore) {
1294   Init(Operation, Ptr, Val, Ordering, SynchScope);
1295 }
1296
1297 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1298                              AtomicOrdering Ordering,
1299                              SynchronizationScope SynchScope,
1300                              BasicBlock *InsertAtEnd)
1301   : Instruction(Val->getType(), AtomicRMW,
1302                 OperandTraits<AtomicRMWInst>::op_begin(this),
1303                 OperandTraits<AtomicRMWInst>::operands(this),
1304                 InsertAtEnd) {
1305   Init(Operation, Ptr, Val, Ordering, SynchScope);
1306 }
1307
1308 //===----------------------------------------------------------------------===//
1309 //                       FenceInst Implementation
1310 //===----------------------------------------------------------------------===//
1311
1312 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 
1313                      SynchronizationScope SynchScope,
1314                      Instruction *InsertBefore)
1315   : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertBefore) {
1316   setOrdering(Ordering);
1317   setSynchScope(SynchScope);
1318 }
1319
1320 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 
1321                      SynchronizationScope SynchScope,
1322                      BasicBlock *InsertAtEnd)
1323   : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertAtEnd) {
1324   setOrdering(Ordering);
1325   setSynchScope(SynchScope);
1326 }
1327
1328 //===----------------------------------------------------------------------===//
1329 //                       GetElementPtrInst Implementation
1330 //===----------------------------------------------------------------------===//
1331
1332 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1333                              const Twine &Name) {
1334   assert(NumOperands == 1 + IdxList.size() && "NumOperands not initialized?");
1335   OperandList[0] = Ptr;
1336   std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1);
1337   setName(Name);
1338 }
1339
1340 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1341   : Instruction(GEPI.getType(), GetElementPtr,
1342                 OperandTraits<GetElementPtrInst>::op_end(this)
1343                 - GEPI.getNumOperands(),
1344                 GEPI.getNumOperands()) {
1345   std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1346   SubclassOptionalData = GEPI.SubclassOptionalData;
1347 }
1348
1349 /// getIndexedType - Returns the type of the element that would be accessed with
1350 /// a gep instruction with the specified parameters.
1351 ///
1352 /// The Idxs pointer should point to a continuous piece of memory containing the
1353 /// indices, either as Value* or uint64_t.
1354 ///
1355 /// A null type is returned if the indices are invalid for the specified
1356 /// pointer type.
1357 ///
1358 template <typename IndexTy>
1359 static Type *getIndexedTypeInternal(Type *Ptr, ArrayRef<IndexTy> IdxList) {
1360   PointerType *PTy = dyn_cast<PointerType>(Ptr->getScalarType());
1361   if (!PTy) return 0;   // Type isn't a pointer type!
1362   Type *Agg = PTy->getElementType();
1363
1364   // Handle the special case of the empty set index set, which is always valid.
1365   if (IdxList.empty())
1366     return Agg;
1367
1368   // If there is at least one index, the top level type must be sized, otherwise
1369   // it cannot be 'stepped over'.
1370   if (!Agg->isSized())
1371     return 0;
1372
1373   unsigned CurIdx = 1;
1374   for (; CurIdx != IdxList.size(); ++CurIdx) {
1375     CompositeType *CT = dyn_cast<CompositeType>(Agg);
1376     if (!CT || CT->isPointerTy()) return 0;
1377     IndexTy Index = IdxList[CurIdx];
1378     if (!CT->indexValid(Index)) return 0;
1379     Agg = CT->getTypeAtIndex(Index);
1380   }
1381   return CurIdx == IdxList.size() ? Agg : 0;
1382 }
1383
1384 Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<Value *> IdxList) {
1385   return getIndexedTypeInternal(Ptr, IdxList);
1386 }
1387
1388 Type *GetElementPtrInst::getIndexedType(Type *Ptr,
1389                                         ArrayRef<Constant *> IdxList) {
1390   return getIndexedTypeInternal(Ptr, IdxList);
1391 }
1392
1393 Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<uint64_t> IdxList) {
1394   return getIndexedTypeInternal(Ptr, IdxList);
1395 }
1396
1397 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1398 /// zeros.  If so, the result pointer and the first operand have the same
1399 /// value, just potentially different types.
1400 bool GetElementPtrInst::hasAllZeroIndices() const {
1401   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1402     if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1403       if (!CI->isZero()) return false;
1404     } else {
1405       return false;
1406     }
1407   }
1408   return true;
1409 }
1410
1411 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1412 /// constant integers.  If so, the result pointer and the first operand have
1413 /// a constant offset between them.
1414 bool GetElementPtrInst::hasAllConstantIndices() const {
1415   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1416     if (!isa<ConstantInt>(getOperand(i)))
1417       return false;
1418   }
1419   return true;
1420 }
1421
1422 void GetElementPtrInst::setIsInBounds(bool B) {
1423   cast<GEPOperator>(this)->setIsInBounds(B);
1424 }
1425
1426 bool GetElementPtrInst::isInBounds() const {
1427   return cast<GEPOperator>(this)->isInBounds();
1428 }
1429
1430 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1431                                                  APInt &Offset) const {
1432   // Delegate to the generic GEPOperator implementation.
1433   return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1434 }
1435
1436 //===----------------------------------------------------------------------===//
1437 //                           ExtractElementInst Implementation
1438 //===----------------------------------------------------------------------===//
1439
1440 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1441                                        const Twine &Name,
1442                                        Instruction *InsertBef)
1443   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1444                 ExtractElement,
1445                 OperandTraits<ExtractElementInst>::op_begin(this),
1446                 2, InsertBef) {
1447   assert(isValidOperands(Val, Index) &&
1448          "Invalid extractelement instruction operands!");
1449   Op<0>() = Val;
1450   Op<1>() = Index;
1451   setName(Name);
1452 }
1453
1454 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1455                                        const Twine &Name,
1456                                        BasicBlock *InsertAE)
1457   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1458                 ExtractElement,
1459                 OperandTraits<ExtractElementInst>::op_begin(this),
1460                 2, InsertAE) {
1461   assert(isValidOperands(Val, Index) &&
1462          "Invalid extractelement instruction operands!");
1463
1464   Op<0>() = Val;
1465   Op<1>() = Index;
1466   setName(Name);
1467 }
1468
1469
1470 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1471   if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy(32))
1472     return false;
1473   return true;
1474 }
1475
1476
1477 //===----------------------------------------------------------------------===//
1478 //                           InsertElementInst Implementation
1479 //===----------------------------------------------------------------------===//
1480
1481 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1482                                      const Twine &Name,
1483                                      Instruction *InsertBef)
1484   : Instruction(Vec->getType(), InsertElement,
1485                 OperandTraits<InsertElementInst>::op_begin(this),
1486                 3, InsertBef) {
1487   assert(isValidOperands(Vec, Elt, Index) &&
1488          "Invalid insertelement instruction operands!");
1489   Op<0>() = Vec;
1490   Op<1>() = Elt;
1491   Op<2>() = Index;
1492   setName(Name);
1493 }
1494
1495 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1496                                      const Twine &Name,
1497                                      BasicBlock *InsertAE)
1498   : Instruction(Vec->getType(), InsertElement,
1499                 OperandTraits<InsertElementInst>::op_begin(this),
1500                 3, InsertAE) {
1501   assert(isValidOperands(Vec, Elt, Index) &&
1502          "Invalid insertelement instruction operands!");
1503
1504   Op<0>() = Vec;
1505   Op<1>() = Elt;
1506   Op<2>() = Index;
1507   setName(Name);
1508 }
1509
1510 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt, 
1511                                         const Value *Index) {
1512   if (!Vec->getType()->isVectorTy())
1513     return false;   // First operand of insertelement must be vector type.
1514   
1515   if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1516     return false;// Second operand of insertelement must be vector element type.
1517     
1518   if (!Index->getType()->isIntegerTy(32))
1519     return false;  // Third operand of insertelement must be i32.
1520   return true;
1521 }
1522
1523
1524 //===----------------------------------------------------------------------===//
1525 //                      ShuffleVectorInst Implementation
1526 //===----------------------------------------------------------------------===//
1527
1528 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1529                                      const Twine &Name,
1530                                      Instruction *InsertBefore)
1531 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1532                 cast<VectorType>(Mask->getType())->getNumElements()),
1533               ShuffleVector,
1534               OperandTraits<ShuffleVectorInst>::op_begin(this),
1535               OperandTraits<ShuffleVectorInst>::operands(this),
1536               InsertBefore) {
1537   assert(isValidOperands(V1, V2, Mask) &&
1538          "Invalid shuffle vector instruction operands!");
1539   Op<0>() = V1;
1540   Op<1>() = V2;
1541   Op<2>() = Mask;
1542   setName(Name);
1543 }
1544
1545 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1546                                      const Twine &Name,
1547                                      BasicBlock *InsertAtEnd)
1548 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1549                 cast<VectorType>(Mask->getType())->getNumElements()),
1550               ShuffleVector,
1551               OperandTraits<ShuffleVectorInst>::op_begin(this),
1552               OperandTraits<ShuffleVectorInst>::operands(this),
1553               InsertAtEnd) {
1554   assert(isValidOperands(V1, V2, Mask) &&
1555          "Invalid shuffle vector instruction operands!");
1556
1557   Op<0>() = V1;
1558   Op<1>() = V2;
1559   Op<2>() = Mask;
1560   setName(Name);
1561 }
1562
1563 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1564                                         const Value *Mask) {
1565   // V1 and V2 must be vectors of the same type.
1566   if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1567     return false;
1568   
1569   // Mask must be vector of i32.
1570   VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
1571   if (MaskTy == 0 || !MaskTy->getElementType()->isIntegerTy(32))
1572     return false;
1573
1574   // Check to see if Mask is valid.
1575   if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1576     return true;
1577
1578   if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) {
1579     unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1580     for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) {
1581       if (ConstantInt *CI = dyn_cast<ConstantInt>(MV->getOperand(i))) {
1582         if (CI->uge(V1Size*2))
1583           return false;
1584       } else if (!isa<UndefValue>(MV->getOperand(i))) {
1585         return false;
1586       }
1587     }
1588     return true;
1589   }
1590   
1591   if (const ConstantDataSequential *CDS =
1592         dyn_cast<ConstantDataSequential>(Mask)) {
1593     unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1594     for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
1595       if (CDS->getElementAsInteger(i) >= V1Size*2)
1596         return false;
1597     return true;
1598   }
1599   
1600   // The bitcode reader can create a place holder for a forward reference
1601   // used as the shuffle mask. When this occurs, the shuffle mask will
1602   // fall into this case and fail. To avoid this error, do this bit of
1603   // ugliness to allow such a mask pass.
1604   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Mask))
1605     if (CE->getOpcode() == Instruction::UserOp1)
1606       return true;
1607
1608   return false;
1609 }
1610
1611 /// getMaskValue - Return the index from the shuffle mask for the specified
1612 /// output result.  This is either -1 if the element is undef or a number less
1613 /// than 2*numelements.
1614 int ShuffleVectorInst::getMaskValue(Constant *Mask, unsigned i) {
1615   assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
1616   if (ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(Mask))
1617     return CDS->getElementAsInteger(i);
1618   Constant *C = Mask->getAggregateElement(i);
1619   if (isa<UndefValue>(C))
1620     return -1;
1621   return cast<ConstantInt>(C)->getZExtValue();
1622 }
1623
1624 /// getShuffleMask - Return the full mask for this instruction, where each
1625 /// element is the element number and undef's are returned as -1.
1626 void ShuffleVectorInst::getShuffleMask(Constant *Mask,
1627                                        SmallVectorImpl<int> &Result) {
1628   unsigned NumElts = Mask->getType()->getVectorNumElements();
1629   
1630   if (ConstantDataSequential *CDS=dyn_cast<ConstantDataSequential>(Mask)) {
1631     for (unsigned i = 0; i != NumElts; ++i)
1632       Result.push_back(CDS->getElementAsInteger(i));
1633     return;
1634   }    
1635   for (unsigned i = 0; i != NumElts; ++i) {
1636     Constant *C = Mask->getAggregateElement(i);
1637     Result.push_back(isa<UndefValue>(C) ? -1 :
1638                      cast<ConstantInt>(C)->getZExtValue());
1639   }
1640 }
1641
1642
1643 //===----------------------------------------------------------------------===//
1644 //                             InsertValueInst Class
1645 //===----------------------------------------------------------------------===//
1646
1647 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, 
1648                            const Twine &Name) {
1649   assert(NumOperands == 2 && "NumOperands not initialized?");
1650
1651   // There's no fundamental reason why we require at least one index
1652   // (other than weirdness with &*IdxBegin being invalid; see
1653   // getelementptr's init routine for example). But there's no
1654   // present need to support it.
1655   assert(Idxs.size() > 0 && "InsertValueInst must have at least one index");
1656
1657   assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
1658          Val->getType() && "Inserted value must match indexed type!");
1659   Op<0>() = Agg;
1660   Op<1>() = Val;
1661
1662   Indices.append(Idxs.begin(), Idxs.end());
1663   setName(Name);
1664 }
1665
1666 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
1667   : Instruction(IVI.getType(), InsertValue,
1668                 OperandTraits<InsertValueInst>::op_begin(this), 2),
1669     Indices(IVI.Indices) {
1670   Op<0>() = IVI.getOperand(0);
1671   Op<1>() = IVI.getOperand(1);
1672   SubclassOptionalData = IVI.SubclassOptionalData;
1673 }
1674
1675 //===----------------------------------------------------------------------===//
1676 //                             ExtractValueInst Class
1677 //===----------------------------------------------------------------------===//
1678
1679 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
1680   assert(NumOperands == 1 && "NumOperands not initialized?");
1681
1682   // There's no fundamental reason why we require at least one index.
1683   // But there's no present need to support it.
1684   assert(Idxs.size() > 0 && "ExtractValueInst must have at least one index");
1685
1686   Indices.append(Idxs.begin(), Idxs.end());
1687   setName(Name);
1688 }
1689
1690 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
1691   : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
1692     Indices(EVI.Indices) {
1693   SubclassOptionalData = EVI.SubclassOptionalData;
1694 }
1695
1696 // getIndexedType - Returns the type of the element that would be extracted
1697 // with an extractvalue instruction with the specified parameters.
1698 //
1699 // A null type is returned if the indices are invalid for the specified
1700 // pointer type.
1701 //
1702 Type *ExtractValueInst::getIndexedType(Type *Agg,
1703                                        ArrayRef<unsigned> Idxs) {
1704   for (unsigned CurIdx = 0; CurIdx != Idxs.size(); ++CurIdx) {
1705     unsigned Index = Idxs[CurIdx];
1706     // We can't use CompositeType::indexValid(Index) here.
1707     // indexValid() always returns true for arrays because getelementptr allows
1708     // out-of-bounds indices. Since we don't allow those for extractvalue and
1709     // insertvalue we need to check array indexing manually.
1710     // Since the only other types we can index into are struct types it's just
1711     // as easy to check those manually as well.
1712     if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
1713       if (Index >= AT->getNumElements())
1714         return 0;
1715     } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
1716       if (Index >= ST->getNumElements())
1717         return 0;
1718     } else {
1719       // Not a valid type to index into.
1720       return 0;
1721     }
1722
1723     Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
1724   }
1725   return const_cast<Type*>(Agg);
1726 }
1727
1728 //===----------------------------------------------------------------------===//
1729 //                             BinaryOperator Class
1730 //===----------------------------------------------------------------------===//
1731
1732 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1733                                Type *Ty, const Twine &Name,
1734                                Instruction *InsertBefore)
1735   : Instruction(Ty, iType,
1736                 OperandTraits<BinaryOperator>::op_begin(this),
1737                 OperandTraits<BinaryOperator>::operands(this),
1738                 InsertBefore) {
1739   Op<0>() = S1;
1740   Op<1>() = S2;
1741   init(iType);
1742   setName(Name);
1743 }
1744
1745 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, 
1746                                Type *Ty, const Twine &Name,
1747                                BasicBlock *InsertAtEnd)
1748   : Instruction(Ty, iType,
1749                 OperandTraits<BinaryOperator>::op_begin(this),
1750                 OperandTraits<BinaryOperator>::operands(this),
1751                 InsertAtEnd) {
1752   Op<0>() = S1;
1753   Op<1>() = S2;
1754   init(iType);
1755   setName(Name);
1756 }
1757
1758
1759 void BinaryOperator::init(BinaryOps iType) {
1760   Value *LHS = getOperand(0), *RHS = getOperand(1);
1761   (void)LHS; (void)RHS; // Silence warnings.
1762   assert(LHS->getType() == RHS->getType() &&
1763          "Binary operator operand types must match!");
1764 #ifndef NDEBUG
1765   switch (iType) {
1766   case Add: case Sub:
1767   case Mul:
1768     assert(getType() == LHS->getType() &&
1769            "Arithmetic operation should return same type as operands!");
1770     assert(getType()->isIntOrIntVectorTy() &&
1771            "Tried to create an integer operation on a non-integer type!");
1772     break;
1773   case FAdd: case FSub:
1774   case FMul:
1775     assert(getType() == LHS->getType() &&
1776            "Arithmetic operation should return same type as operands!");
1777     assert(getType()->isFPOrFPVectorTy() &&
1778            "Tried to create a floating-point operation on a "
1779            "non-floating-point type!");
1780     break;
1781   case UDiv: 
1782   case SDiv: 
1783     assert(getType() == LHS->getType() &&
1784            "Arithmetic operation should return same type as operands!");
1785     assert((getType()->isIntegerTy() || (getType()->isVectorTy() && 
1786             cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1787            "Incorrect operand type (not integer) for S/UDIV");
1788     break;
1789   case FDiv:
1790     assert(getType() == LHS->getType() &&
1791            "Arithmetic operation should return same type as operands!");
1792     assert(getType()->isFPOrFPVectorTy() &&
1793            "Incorrect operand type (not floating point) for FDIV");
1794     break;
1795   case URem: 
1796   case SRem: 
1797     assert(getType() == LHS->getType() &&
1798            "Arithmetic operation should return same type as operands!");
1799     assert((getType()->isIntegerTy() || (getType()->isVectorTy() && 
1800             cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1801            "Incorrect operand type (not integer) for S/UREM");
1802     break;
1803   case FRem:
1804     assert(getType() == LHS->getType() &&
1805            "Arithmetic operation should return same type as operands!");
1806     assert(getType()->isFPOrFPVectorTy() &&
1807            "Incorrect operand type (not floating point) for FREM");
1808     break;
1809   case Shl:
1810   case LShr:
1811   case AShr:
1812     assert(getType() == LHS->getType() &&
1813            "Shift operation should return same type as operands!");
1814     assert((getType()->isIntegerTy() ||
1815             (getType()->isVectorTy() && 
1816              cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1817            "Tried to create a shift operation on a non-integral type!");
1818     break;
1819   case And: case Or:
1820   case Xor:
1821     assert(getType() == LHS->getType() &&
1822            "Logical operation should return same type as operands!");
1823     assert((getType()->isIntegerTy() ||
1824             (getType()->isVectorTy() && 
1825              cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1826            "Tried to create a logical operation on a non-integral type!");
1827     break;
1828   default:
1829     break;
1830   }
1831 #endif
1832 }
1833
1834 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1835                                        const Twine &Name,
1836                                        Instruction *InsertBefore) {
1837   assert(S1->getType() == S2->getType() &&
1838          "Cannot create binary operator with two operands of differing type!");
1839   return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
1840 }
1841
1842 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1843                                        const Twine &Name,
1844                                        BasicBlock *InsertAtEnd) {
1845   BinaryOperator *Res = Create(Op, S1, S2, Name);
1846   InsertAtEnd->getInstList().push_back(Res);
1847   return Res;
1848 }
1849
1850 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1851                                           Instruction *InsertBefore) {
1852   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1853   return new BinaryOperator(Instruction::Sub,
1854                             zero, Op,
1855                             Op->getType(), Name, InsertBefore);
1856 }
1857
1858 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1859                                           BasicBlock *InsertAtEnd) {
1860   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1861   return new BinaryOperator(Instruction::Sub,
1862                             zero, Op,
1863                             Op->getType(), Name, InsertAtEnd);
1864 }
1865
1866 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1867                                              Instruction *InsertBefore) {
1868   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1869   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
1870 }
1871
1872 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1873                                              BasicBlock *InsertAtEnd) {
1874   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1875   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
1876 }
1877
1878 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1879                                              Instruction *InsertBefore) {
1880   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1881   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
1882 }
1883
1884 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1885                                              BasicBlock *InsertAtEnd) {
1886   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1887   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
1888 }
1889
1890 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1891                                            Instruction *InsertBefore) {
1892   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1893   return new BinaryOperator(Instruction::FSub, zero, Op,
1894                             Op->getType(), Name, InsertBefore);
1895 }
1896
1897 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1898                                            BasicBlock *InsertAtEnd) {
1899   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1900   return new BinaryOperator(Instruction::FSub, zero, Op,
1901                             Op->getType(), Name, InsertAtEnd);
1902 }
1903
1904 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1905                                           Instruction *InsertBefore) {
1906   Constant *C = Constant::getAllOnesValue(Op->getType());
1907   return new BinaryOperator(Instruction::Xor, Op, C,
1908                             Op->getType(), Name, InsertBefore);
1909 }
1910
1911 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1912                                           BasicBlock *InsertAtEnd) {
1913   Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
1914   return new BinaryOperator(Instruction::Xor, Op, AllOnes,
1915                             Op->getType(), Name, InsertAtEnd);
1916 }
1917
1918
1919 // isConstantAllOnes - Helper function for several functions below
1920 static inline bool isConstantAllOnes(const Value *V) {
1921   if (const Constant *C = dyn_cast<Constant>(V))
1922     return C->isAllOnesValue();
1923   return false;
1924 }
1925
1926 bool BinaryOperator::isNeg(const Value *V) {
1927   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1928     if (Bop->getOpcode() == Instruction::Sub)
1929       if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
1930         return C->isNegativeZeroValue();
1931   return false;
1932 }
1933
1934 bool BinaryOperator::isFNeg(const Value *V, bool IgnoreZeroSign) {
1935   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1936     if (Bop->getOpcode() == Instruction::FSub)
1937       if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0))) {
1938         if (!IgnoreZeroSign)
1939           IgnoreZeroSign = cast<Instruction>(V)->hasNoSignedZeros();
1940         return !IgnoreZeroSign ? C->isNegativeZeroValue() : C->isZeroValue();
1941       }
1942   return false;
1943 }
1944
1945 bool BinaryOperator::isNot(const Value *V) {
1946   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1947     return (Bop->getOpcode() == Instruction::Xor &&
1948             (isConstantAllOnes(Bop->getOperand(1)) ||
1949              isConstantAllOnes(Bop->getOperand(0))));
1950   return false;
1951 }
1952
1953 Value *BinaryOperator::getNegArgument(Value *BinOp) {
1954   return cast<BinaryOperator>(BinOp)->getOperand(1);
1955 }
1956
1957 const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
1958   return getNegArgument(const_cast<Value*>(BinOp));
1959 }
1960
1961 Value *BinaryOperator::getFNegArgument(Value *BinOp) {
1962   return cast<BinaryOperator>(BinOp)->getOperand(1);
1963 }
1964
1965 const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
1966   return getFNegArgument(const_cast<Value*>(BinOp));
1967 }
1968
1969 Value *BinaryOperator::getNotArgument(Value *BinOp) {
1970   assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
1971   BinaryOperator *BO = cast<BinaryOperator>(BinOp);
1972   Value *Op0 = BO->getOperand(0);
1973   Value *Op1 = BO->getOperand(1);
1974   if (isConstantAllOnes(Op0)) return Op1;
1975
1976   assert(isConstantAllOnes(Op1));
1977   return Op0;
1978 }
1979
1980 const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
1981   return getNotArgument(const_cast<Value*>(BinOp));
1982 }
1983
1984
1985 // swapOperands - Exchange the two operands to this instruction.  This
1986 // instruction is safe to use on any binary instruction and does not
1987 // modify the semantics of the instruction.  If the instruction is
1988 // order dependent (SetLT f.e.) the opcode is changed.
1989 //
1990 bool BinaryOperator::swapOperands() {
1991   if (!isCommutative())
1992     return true; // Can't commute operands
1993   Op<0>().swap(Op<1>());
1994   return false;
1995 }
1996
1997 void BinaryOperator::setHasNoUnsignedWrap(bool b) {
1998   cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
1999 }
2000
2001 void BinaryOperator::setHasNoSignedWrap(bool b) {
2002   cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
2003 }
2004
2005 void BinaryOperator::setIsExact(bool b) {
2006   cast<PossiblyExactOperator>(this)->setIsExact(b);
2007 }
2008
2009 bool BinaryOperator::hasNoUnsignedWrap() const {
2010   return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
2011 }
2012
2013 bool BinaryOperator::hasNoSignedWrap() const {
2014   return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
2015 }
2016
2017 bool BinaryOperator::isExact() const {
2018   return cast<PossiblyExactOperator>(this)->isExact();
2019 }
2020
2021 //===----------------------------------------------------------------------===//
2022 //                             FPMathOperator Class
2023 //===----------------------------------------------------------------------===//
2024
2025 /// getFPAccuracy - Get the maximum error permitted by this operation in ULPs.
2026 /// An accuracy of 0.0 means that the operation should be performed with the
2027 /// default precision.
2028 float FPMathOperator::getFPAccuracy() const {
2029   const MDNode *MD =
2030     cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2031   if (!MD)
2032     return 0.0;
2033   ConstantFP *Accuracy = cast<ConstantFP>(MD->getOperand(0));
2034   return Accuracy->getValueAPF().convertToFloat();
2035 }
2036
2037
2038 //===----------------------------------------------------------------------===//
2039 //                                CastInst Class
2040 //===----------------------------------------------------------------------===//
2041
2042 void CastInst::anchor() {}
2043
2044 // Just determine if this cast only deals with integral->integral conversion.
2045 bool CastInst::isIntegerCast() const {
2046   switch (getOpcode()) {
2047     default: return false;
2048     case Instruction::ZExt:
2049     case Instruction::SExt:
2050     case Instruction::Trunc:
2051       return true;
2052     case Instruction::BitCast:
2053       return getOperand(0)->getType()->isIntegerTy() &&
2054         getType()->isIntegerTy();
2055   }
2056 }
2057
2058 bool CastInst::isLosslessCast() const {
2059   // Only BitCast can be lossless, exit fast if we're not BitCast
2060   if (getOpcode() != Instruction::BitCast)
2061     return false;
2062
2063   // Identity cast is always lossless
2064   Type* SrcTy = getOperand(0)->getType();
2065   Type* DstTy = getType();
2066   if (SrcTy == DstTy)
2067     return true;
2068   
2069   // Pointer to pointer is always lossless.
2070   if (SrcTy->isPointerTy())
2071     return DstTy->isPointerTy();
2072   return false;  // Other types have no identity values
2073 }
2074
2075 /// This function determines if the CastInst does not require any bits to be
2076 /// changed in order to effect the cast. Essentially, it identifies cases where
2077 /// no code gen is necessary for the cast, hence the name no-op cast.  For 
2078 /// example, the following are all no-op casts:
2079 /// # bitcast i32* %x to i8*
2080 /// # bitcast <2 x i32> %x to <4 x i16> 
2081 /// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
2082 /// @brief Determine if the described cast is a no-op.
2083 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2084                           Type *SrcTy,
2085                           Type *DestTy,
2086                           Type *IntPtrTy) {
2087   switch (Opcode) {
2088     default: llvm_unreachable("Invalid CastOp");
2089     case Instruction::Trunc:
2090     case Instruction::ZExt:
2091     case Instruction::SExt: 
2092     case Instruction::FPTrunc:
2093     case Instruction::FPExt:
2094     case Instruction::UIToFP:
2095     case Instruction::SIToFP:
2096     case Instruction::FPToUI:
2097     case Instruction::FPToSI:
2098       return false; // These always modify bits
2099     case Instruction::BitCast:
2100       return true;  // BitCast never modifies bits.
2101     case Instruction::PtrToInt:
2102       return IntPtrTy->getScalarSizeInBits() ==
2103              DestTy->getScalarSizeInBits();
2104     case Instruction::IntToPtr:
2105       return IntPtrTy->getScalarSizeInBits() ==
2106              SrcTy->getScalarSizeInBits();
2107   }
2108 }
2109
2110 /// @brief Determine if a cast is a no-op.
2111 bool CastInst::isNoopCast(Type *IntPtrTy) const {
2112   return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
2113 }
2114
2115 /// This function determines if a pair of casts can be eliminated and what 
2116 /// opcode should be used in the elimination. This assumes that there are two 
2117 /// instructions like this:
2118 /// *  %F = firstOpcode SrcTy %x to MidTy
2119 /// *  %S = secondOpcode MidTy %F to DstTy
2120 /// The function returns a resultOpcode so these two casts can be replaced with:
2121 /// *  %Replacement = resultOpcode %SrcTy %x to DstTy
2122 /// If no such cast is permited, the function returns 0.
2123 unsigned CastInst::isEliminableCastPair(
2124   Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2125   Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2126   Type *DstIntPtrTy) {
2127   // Define the 144 possibilities for these two cast instructions. The values
2128   // in this matrix determine what to do in a given situation and select the
2129   // case in the switch below.  The rows correspond to firstOp, the columns 
2130   // correspond to secondOp.  In looking at the table below, keep in  mind
2131   // the following cast properties:
2132   //
2133   //          Size Compare       Source               Destination
2134   // Operator  Src ? Size   Type       Sign         Type       Sign
2135   // -------- ------------ -------------------   ---------------------
2136   // TRUNC         >       Integer      Any        Integral     Any
2137   // ZEXT          <       Integral   Unsigned     Integer      Any
2138   // SEXT          <       Integral    Signed      Integer      Any
2139   // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
2140   // FPTOSI       n/a      FloatPt      n/a        Integral    Signed 
2141   // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a   
2142   // SITOFP       n/a      Integral    Signed      FloatPt      n/a   
2143   // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a   
2144   // FPEXT         <       FloatPt      n/a        FloatPt      n/a   
2145   // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
2146   // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
2147   // BITCAST       =       FirstClass   n/a       FirstClass    n/a   
2148   //
2149   // NOTE: some transforms are safe, but we consider them to be non-profitable.
2150   // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2151   // into "fptoui double to i64", but this loses information about the range
2152   // of the produced value (we no longer know the top-part is all zeros). 
2153   // Further this conversion is often much more expensive for typical hardware,
2154   // and causes issues when building libgcc.  We disallow fptosi+sext for the 
2155   // same reason.
2156   const unsigned numCastOps = 
2157     Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2158   static const uint8_t CastResults[numCastOps][numCastOps] = {
2159     // T        F  F  U  S  F  F  P  I  B   -+
2160     // R  Z  S  P  P  I  I  T  P  2  N  T    |
2161     // U  E  E  2  2  2  2  R  E  I  T  C    +- secondOp
2162     // N  X  X  U  S  F  F  N  X  N  2  V    |
2163     // C  T  T  I  I  P  P  C  T  T  P  T   -+
2164     {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc      -+
2165     {  8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt        |
2166     {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt        |
2167     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI      |
2168     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI      |
2169     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP      +- firstOp
2170     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP      |
2171     { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc     |
2172     { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt       |
2173     {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt    |
2174     { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr    |
2175     {  5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast    -+
2176   };
2177   
2178   // If either of the casts are a bitcast from scalar to vector, disallow the
2179   // merging. However, bitcast of A->B->A are allowed.
2180   bool isFirstBitcast  = (firstOp == Instruction::BitCast);
2181   bool isSecondBitcast = (secondOp == Instruction::BitCast);
2182   bool chainedBitcast  = (SrcTy == DstTy && isFirstBitcast && isSecondBitcast);
2183
2184   // Check if any of the bitcasts convert scalars<->vectors.
2185   if ((isFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2186       (isSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2187     // Unless we are bitcasing to the original type, disallow optimizations.
2188     if (!chainedBitcast) return 0;
2189
2190   int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2191                             [secondOp-Instruction::CastOpsBegin];
2192   switch (ElimCase) {
2193     case 0: 
2194       // categorically disallowed
2195       return 0;
2196     case 1: 
2197       // allowed, use first cast's opcode
2198       return firstOp;
2199     case 2: 
2200       // allowed, use second cast's opcode
2201       return secondOp;
2202     case 3: 
2203       // no-op cast in second op implies firstOp as long as the DestTy 
2204       // is integer and we are not converting between a vector and a
2205       // non vector type.
2206       if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2207         return firstOp;
2208       return 0;
2209     case 4:
2210       // no-op cast in second op implies firstOp as long as the DestTy
2211       // is floating point.
2212       if (DstTy->isFloatingPointTy())
2213         return firstOp;
2214       return 0;
2215     case 5: 
2216       // no-op cast in first op implies secondOp as long as the SrcTy
2217       // is an integer.
2218       if (SrcTy->isIntegerTy())
2219         return secondOp;
2220       return 0;
2221     case 6:
2222       // no-op cast in first op implies secondOp as long as the SrcTy
2223       // is a floating point.
2224       if (SrcTy->isFloatingPointTy())
2225         return secondOp;
2226       return 0;
2227     case 7: { 
2228       // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size
2229       if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2230         return 0;
2231       unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2232       unsigned MidSize = MidTy->getScalarSizeInBits();
2233       if (MidSize >= PtrSize)
2234         return Instruction::BitCast;
2235       return 0;
2236     }
2237     case 8: {
2238       // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
2239       // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
2240       // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
2241       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2242       unsigned DstSize = DstTy->getScalarSizeInBits();
2243       if (SrcSize == DstSize)
2244         return Instruction::BitCast;
2245       else if (SrcSize < DstSize)
2246         return firstOp;
2247       return secondOp;
2248     }
2249     case 9: // zext, sext -> zext, because sext can't sign extend after zext
2250       return Instruction::ZExt;
2251     case 10:
2252       // fpext followed by ftrunc is allowed if the bit size returned to is
2253       // the same as the original, in which case its just a bitcast
2254       if (SrcTy == DstTy)
2255         return Instruction::BitCast;
2256       return 0; // If the types are not the same we can't eliminate it.
2257     case 11:
2258       // bitcast followed by ptrtoint is allowed as long as the bitcast
2259       // is a pointer to pointer cast.
2260       if (SrcTy->isPointerTy() && MidTy->isPointerTy())
2261         return secondOp;
2262       return 0;
2263     case 12:
2264       // inttoptr, bitcast -> intptr  if bitcast is a ptr to ptr cast
2265       if (MidTy->isPointerTy() && DstTy->isPointerTy())
2266         return firstOp;
2267       return 0;
2268     case 13: {
2269       // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2270       if (!MidIntPtrTy)
2271         return 0;
2272       unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2273       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2274       unsigned DstSize = DstTy->getScalarSizeInBits();
2275       if (SrcSize <= PtrSize && SrcSize == DstSize)
2276         return Instruction::BitCast;
2277       return 0;
2278     }
2279     case 99: 
2280       // cast combination can't happen (error in input). This is for all cases
2281       // where the MidTy is not the same for the two cast instructions.
2282       llvm_unreachable("Invalid Cast Combination");
2283     default:
2284       llvm_unreachable("Error in CastResults table!!!");
2285   }
2286 }
2287
2288 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, 
2289   const Twine &Name, Instruction *InsertBefore) {
2290   assert(castIsValid(op, S, Ty) && "Invalid cast!");
2291   // Construct and return the appropriate CastInst subclass
2292   switch (op) {
2293     case Trunc:    return new TruncInst    (S, Ty, Name, InsertBefore);
2294     case ZExt:     return new ZExtInst     (S, Ty, Name, InsertBefore);
2295     case SExt:     return new SExtInst     (S, Ty, Name, InsertBefore);
2296     case FPTrunc:  return new FPTruncInst  (S, Ty, Name, InsertBefore);
2297     case FPExt:    return new FPExtInst    (S, Ty, Name, InsertBefore);
2298     case UIToFP:   return new UIToFPInst   (S, Ty, Name, InsertBefore);
2299     case SIToFP:   return new SIToFPInst   (S, Ty, Name, InsertBefore);
2300     case FPToUI:   return new FPToUIInst   (S, Ty, Name, InsertBefore);
2301     case FPToSI:   return new FPToSIInst   (S, Ty, Name, InsertBefore);
2302     case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
2303     case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
2304     case BitCast:  return new BitCastInst  (S, Ty, Name, InsertBefore);
2305     default: llvm_unreachable("Invalid opcode provided");
2306   }
2307 }
2308
2309 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2310   const Twine &Name, BasicBlock *InsertAtEnd) {
2311   assert(castIsValid(op, S, Ty) && "Invalid cast!");
2312   // Construct and return the appropriate CastInst subclass
2313   switch (op) {
2314     case Trunc:    return new TruncInst    (S, Ty, Name, InsertAtEnd);
2315     case ZExt:     return new ZExtInst     (S, Ty, Name, InsertAtEnd);
2316     case SExt:     return new SExtInst     (S, Ty, Name, InsertAtEnd);
2317     case FPTrunc:  return new FPTruncInst  (S, Ty, Name, InsertAtEnd);
2318     case FPExt:    return new FPExtInst    (S, Ty, Name, InsertAtEnd);
2319     case UIToFP:   return new UIToFPInst   (S, Ty, Name, InsertAtEnd);
2320     case SIToFP:   return new SIToFPInst   (S, Ty, Name, InsertAtEnd);
2321     case FPToUI:   return new FPToUIInst   (S, Ty, Name, InsertAtEnd);
2322     case FPToSI:   return new FPToSIInst   (S, Ty, Name, InsertAtEnd);
2323     case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
2324     case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
2325     case BitCast:  return new BitCastInst  (S, Ty, Name, InsertAtEnd);
2326     default: llvm_unreachable("Invalid opcode provided");
2327   }
2328 }
2329
2330 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 
2331                                         const Twine &Name,
2332                                         Instruction *InsertBefore) {
2333   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2334     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2335   return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2336 }
2337
2338 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 
2339                                         const Twine &Name,
2340                                         BasicBlock *InsertAtEnd) {
2341   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2342     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2343   return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2344 }
2345
2346 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 
2347                                         const Twine &Name,
2348                                         Instruction *InsertBefore) {
2349   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2350     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2351   return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2352 }
2353
2354 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 
2355                                         const Twine &Name,
2356                                         BasicBlock *InsertAtEnd) {
2357   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2358     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2359   return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2360 }
2361
2362 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2363                                          const Twine &Name,
2364                                          Instruction *InsertBefore) {
2365   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2366     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2367   return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2368 }
2369
2370 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2371                                          const Twine &Name, 
2372                                          BasicBlock *InsertAtEnd) {
2373   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2374     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2375   return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2376 }
2377
2378 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2379                                       const Twine &Name,
2380                                       BasicBlock *InsertAtEnd) {
2381   assert(S->getType()->isPointerTy() && "Invalid cast");
2382   assert((Ty->isIntegerTy() || Ty->isPointerTy()) &&
2383          "Invalid cast");
2384
2385   if (Ty->isIntegerTy())
2386     return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2387   return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2388 }
2389
2390 /// @brief Create a BitCast or a PtrToInt cast instruction
2391 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, 
2392                                       const Twine &Name, 
2393                                       Instruction *InsertBefore) {
2394   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2395   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2396          "Invalid cast");
2397
2398   if (Ty->isIntOrIntVectorTy())
2399     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2400   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2401 }
2402
2403 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 
2404                                       bool isSigned, const Twine &Name,
2405                                       Instruction *InsertBefore) {
2406   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2407          "Invalid integer cast");
2408   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2409   unsigned DstBits = Ty->getScalarSizeInBits();
2410   Instruction::CastOps opcode =
2411     (SrcBits == DstBits ? Instruction::BitCast :
2412      (SrcBits > DstBits ? Instruction::Trunc :
2413       (isSigned ? Instruction::SExt : Instruction::ZExt)));
2414   return Create(opcode, C, Ty, Name, InsertBefore);
2415 }
2416
2417 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 
2418                                       bool isSigned, const Twine &Name,
2419                                       BasicBlock *InsertAtEnd) {
2420   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2421          "Invalid cast");
2422   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2423   unsigned DstBits = Ty->getScalarSizeInBits();
2424   Instruction::CastOps opcode =
2425     (SrcBits == DstBits ? Instruction::BitCast :
2426      (SrcBits > DstBits ? Instruction::Trunc :
2427       (isSigned ? Instruction::SExt : Instruction::ZExt)));
2428   return Create(opcode, C, Ty, Name, InsertAtEnd);
2429 }
2430
2431 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 
2432                                  const Twine &Name, 
2433                                  Instruction *InsertBefore) {
2434   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2435          "Invalid cast");
2436   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2437   unsigned DstBits = Ty->getScalarSizeInBits();
2438   Instruction::CastOps opcode =
2439     (SrcBits == DstBits ? Instruction::BitCast :
2440      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2441   return Create(opcode, C, Ty, Name, InsertBefore);
2442 }
2443
2444 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 
2445                                  const Twine &Name, 
2446                                  BasicBlock *InsertAtEnd) {
2447   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2448          "Invalid cast");
2449   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2450   unsigned DstBits = Ty->getScalarSizeInBits();
2451   Instruction::CastOps opcode =
2452     (SrcBits == DstBits ? Instruction::BitCast :
2453      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2454   return Create(opcode, C, Ty, Name, InsertAtEnd);
2455 }
2456
2457 // Check whether it is valid to call getCastOpcode for these types.
2458 // This routine must be kept in sync with getCastOpcode.
2459 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
2460   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2461     return false;
2462
2463   if (SrcTy == DestTy)
2464     return true;
2465
2466   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2467     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2468       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2469         // An element by element cast.  Valid if casting the elements is valid.
2470         SrcTy = SrcVecTy->getElementType();
2471         DestTy = DestVecTy->getElementType();
2472       }
2473
2474   // Get the bit sizes, we'll need these
2475   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2476   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2477
2478   // Run through the possibilities ...
2479   if (DestTy->isIntegerTy()) {               // Casting to integral
2480     if (SrcTy->isIntegerTy()) {                // Casting from integral
2481         return true;
2482     } else if (SrcTy->isFloatingPointTy()) {   // Casting from floating pt
2483       return true;
2484     } else if (SrcTy->isVectorTy()) {          // Casting from vector
2485       return DestBits == SrcBits;
2486     } else {                                   // Casting from something else
2487       return SrcTy->isPointerTy();
2488     }
2489   } else if (DestTy->isFloatingPointTy()) {  // Casting to floating pt
2490     if (SrcTy->isIntegerTy()) {                // Casting from integral
2491       return true;
2492     } else if (SrcTy->isFloatingPointTy()) {   // Casting from floating pt
2493       return true;
2494     } else if (SrcTy->isVectorTy()) {          // Casting from vector
2495       return DestBits == SrcBits;
2496     } else {                                   // Casting from something else
2497       return false;
2498     }
2499   } else if (DestTy->isVectorTy()) {         // Casting to vector
2500     return DestBits == SrcBits;
2501   } else if (DestTy->isPointerTy()) {        // Casting to pointer
2502     if (SrcTy->isPointerTy()) {                // Casting from pointer
2503       return true;
2504     } else if (SrcTy->isIntegerTy()) {         // Casting from integral
2505       return true;
2506     } else {                                   // Casting from something else
2507       return false;
2508     }
2509   } else if (DestTy->isX86_MMXTy()) {
2510     if (SrcTy->isVectorTy()) {
2511       return DestBits == SrcBits;       // 64-bit vector to MMX
2512     } else {
2513       return false;
2514     }
2515   } else {                                   // Casting to something else
2516     return false;
2517   }
2518 }
2519
2520 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
2521   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2522     return false;
2523
2524   if (SrcTy == DestTy)
2525     return true;
2526
2527   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
2528     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
2529       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2530         // An element by element cast. Valid if casting the elements is valid.
2531         SrcTy = SrcVecTy->getElementType();
2532         DestTy = DestVecTy->getElementType();
2533       }
2534     }
2535   }
2536
2537   if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
2538     if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
2539       return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
2540     }
2541   }
2542
2543   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2544   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2545
2546   // Could still have vectors of pointers if the number of elements doesn't
2547   // match
2548   if (SrcBits == 0 || DestBits == 0)
2549     return false;
2550
2551   if (SrcBits != DestBits)
2552     return false;
2553
2554   if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
2555     return false;
2556
2557   return true;
2558 }
2559
2560 // Provide a way to get a "cast" where the cast opcode is inferred from the
2561 // types and size of the operand. This, basically, is a parallel of the
2562 // logic in the castIsValid function below.  This axiom should hold:
2563 //   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
2564 // should not assert in castIsValid. In other words, this produces a "correct"
2565 // casting opcode for the arguments passed to it.
2566 // This routine must be kept in sync with isCastable.
2567 Instruction::CastOps
2568 CastInst::getCastOpcode(
2569   const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
2570   Type *SrcTy = Src->getType();
2571
2572   assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
2573          "Only first class types are castable!");
2574
2575   if (SrcTy == DestTy)
2576     return BitCast;
2577
2578   // FIXME: Check address space sizes here
2579   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2580     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2581       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2582         // An element by element cast.  Find the appropriate opcode based on the
2583         // element types.
2584         SrcTy = SrcVecTy->getElementType();
2585         DestTy = DestVecTy->getElementType();
2586       }
2587
2588   // Get the bit sizes, we'll need these
2589   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2590   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2591
2592   // Run through the possibilities ...
2593   if (DestTy->isIntegerTy()) {                      // Casting to integral
2594     if (SrcTy->isIntegerTy()) {                     // Casting from integral
2595       if (DestBits < SrcBits)
2596         return Trunc;                               // int -> smaller int
2597       else if (DestBits > SrcBits) {                // its an extension
2598         if (SrcIsSigned)
2599           return SExt;                              // signed -> SEXT
2600         else
2601           return ZExt;                              // unsigned -> ZEXT
2602       } else {
2603         return BitCast;                             // Same size, No-op cast
2604       }
2605     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
2606       if (DestIsSigned) 
2607         return FPToSI;                              // FP -> sint
2608       else
2609         return FPToUI;                              // FP -> uint 
2610     } else if (SrcTy->isVectorTy()) {
2611       assert(DestBits == SrcBits &&
2612              "Casting vector to integer of different width");
2613       return BitCast;                             // Same size, no-op cast
2614     } else {
2615       assert(SrcTy->isPointerTy() &&
2616              "Casting from a value that is not first-class type");
2617       return PtrToInt;                              // ptr -> int
2618     }
2619   } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
2620     if (SrcTy->isIntegerTy()) {                     // Casting from integral
2621       if (SrcIsSigned)
2622         return SIToFP;                              // sint -> FP
2623       else
2624         return UIToFP;                              // uint -> FP
2625     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
2626       if (DestBits < SrcBits) {
2627         return FPTrunc;                             // FP -> smaller FP
2628       } else if (DestBits > SrcBits) {
2629         return FPExt;                               // FP -> larger FP
2630       } else  {
2631         return BitCast;                             // same size, no-op cast
2632       }
2633     } else if (SrcTy->isVectorTy()) {
2634       assert(DestBits == SrcBits &&
2635              "Casting vector to floating point of different width");
2636       return BitCast;                             // same size, no-op cast
2637     }
2638     llvm_unreachable("Casting pointer or non-first class to float");
2639   } else if (DestTy->isVectorTy()) {
2640     assert(DestBits == SrcBits &&
2641            "Illegal cast to vector (wrong type or size)");
2642     return BitCast;
2643   } else if (DestTy->isPointerTy()) {
2644     if (SrcTy->isPointerTy()) {
2645       // TODO: Address space pointer sizes may not match
2646       return BitCast;                               // ptr -> ptr
2647     } else if (SrcTy->isIntegerTy()) {
2648       return IntToPtr;                              // int -> ptr
2649     }
2650     llvm_unreachable("Casting pointer to other than pointer or int");
2651   } else if (DestTy->isX86_MMXTy()) {
2652     if (SrcTy->isVectorTy()) {
2653       assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
2654       return BitCast;                               // 64-bit vector to MMX
2655     }
2656     llvm_unreachable("Illegal cast to X86_MMX");
2657   }
2658   llvm_unreachable("Casting to type that is not first-class");
2659 }
2660
2661 //===----------------------------------------------------------------------===//
2662 //                    CastInst SubClass Constructors
2663 //===----------------------------------------------------------------------===//
2664
2665 /// Check that the construction parameters for a CastInst are correct. This
2666 /// could be broken out into the separate constructors but it is useful to have
2667 /// it in one place and to eliminate the redundant code for getting the sizes
2668 /// of the types involved.
2669 bool 
2670 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
2671
2672   // Check for type sanity on the arguments
2673   Type *SrcTy = S->getType();
2674
2675   // If this is a cast to the same type then it's trivially true.
2676   if (SrcTy == DstTy)
2677     return true;
2678
2679   if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
2680       SrcTy->isAggregateType() || DstTy->isAggregateType())
2681     return false;
2682
2683   // Get the size of the types in bits, we'll need this later
2684   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2685   unsigned DstBitSize = DstTy->getScalarSizeInBits();
2686
2687   // If these are vector types, get the lengths of the vectors (using zero for
2688   // scalar types means that checking that vector lengths match also checks that
2689   // scalars are not being converted to vectors or vectors to scalars).
2690   unsigned SrcLength = SrcTy->isVectorTy() ?
2691     cast<VectorType>(SrcTy)->getNumElements() : 0;
2692   unsigned DstLength = DstTy->isVectorTy() ?
2693     cast<VectorType>(DstTy)->getNumElements() : 0;
2694
2695   // Switch on the opcode provided
2696   switch (op) {
2697   default: return false; // This is an input error
2698   case Instruction::Trunc:
2699     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2700       SrcLength == DstLength && SrcBitSize > DstBitSize;
2701   case Instruction::ZExt:
2702     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2703       SrcLength == DstLength && SrcBitSize < DstBitSize;
2704   case Instruction::SExt: 
2705     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2706       SrcLength == DstLength && SrcBitSize < DstBitSize;
2707   case Instruction::FPTrunc:
2708     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
2709       SrcLength == DstLength && SrcBitSize > DstBitSize;
2710   case Instruction::FPExt:
2711     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
2712       SrcLength == DstLength && SrcBitSize < DstBitSize;
2713   case Instruction::UIToFP:
2714   case Instruction::SIToFP:
2715     return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
2716       SrcLength == DstLength;
2717   case Instruction::FPToUI:
2718   case Instruction::FPToSI:
2719     return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
2720       SrcLength == DstLength;
2721   case Instruction::PtrToInt:
2722     if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
2723       return false;
2724     if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
2725       if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
2726         return false;
2727     return SrcTy->getScalarType()->isPointerTy() &&
2728            DstTy->getScalarType()->isIntegerTy();
2729   case Instruction::IntToPtr:
2730     if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
2731       return false;
2732     if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
2733       if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
2734         return false;
2735     return SrcTy->getScalarType()->isIntegerTy() &&
2736            DstTy->getScalarType()->isPointerTy();
2737   case Instruction::BitCast:
2738     // BitCast implies a no-op cast of type only. No bits change.
2739     // However, you can't cast pointers to anything but pointers.
2740     if (SrcTy->isPointerTy() != DstTy->isPointerTy())
2741       return false;
2742
2743     // Now we know we're not dealing with a pointer/non-pointer mismatch. In all
2744     // these cases, the cast is okay if the source and destination bit widths
2745     // are identical.
2746     return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
2747   }
2748 }
2749
2750 TruncInst::TruncInst(
2751   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2752 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
2753   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2754 }
2755
2756 TruncInst::TruncInst(
2757   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2758 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) { 
2759   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2760 }
2761
2762 ZExtInst::ZExtInst(
2763   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2764 )  : CastInst(Ty, ZExt, S, Name, InsertBefore) { 
2765   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2766 }
2767
2768 ZExtInst::ZExtInst(
2769   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2770 )  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) { 
2771   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2772 }
2773 SExtInst::SExtInst(
2774   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2775 ) : CastInst(Ty, SExt, S, Name, InsertBefore) { 
2776   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2777 }
2778
2779 SExtInst::SExtInst(
2780   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2781 )  : CastInst(Ty, SExt, S, Name, InsertAtEnd) { 
2782   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2783 }
2784
2785 FPTruncInst::FPTruncInst(
2786   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2787 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) { 
2788   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2789 }
2790
2791 FPTruncInst::FPTruncInst(
2792   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2793 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) { 
2794   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2795 }
2796
2797 FPExtInst::FPExtInst(
2798   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2799 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) { 
2800   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2801 }
2802
2803 FPExtInst::FPExtInst(
2804   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2805 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) { 
2806   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2807 }
2808
2809 UIToFPInst::UIToFPInst(
2810   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2811 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) { 
2812   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2813 }
2814
2815 UIToFPInst::UIToFPInst(
2816   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2817 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) { 
2818   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2819 }
2820
2821 SIToFPInst::SIToFPInst(
2822   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2823 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) { 
2824   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2825 }
2826
2827 SIToFPInst::SIToFPInst(
2828   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2829 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) { 
2830   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2831 }
2832
2833 FPToUIInst::FPToUIInst(
2834   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2835 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) { 
2836   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2837 }
2838
2839 FPToUIInst::FPToUIInst(
2840   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2841 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) { 
2842   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2843 }
2844
2845 FPToSIInst::FPToSIInst(
2846   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2847 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) { 
2848   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2849 }
2850
2851 FPToSIInst::FPToSIInst(
2852   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2853 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) { 
2854   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2855 }
2856
2857 PtrToIntInst::PtrToIntInst(
2858   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2859 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) { 
2860   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2861 }
2862
2863 PtrToIntInst::PtrToIntInst(
2864   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2865 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) { 
2866   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2867 }
2868
2869 IntToPtrInst::IntToPtrInst(
2870   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2871 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) { 
2872   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2873 }
2874
2875 IntToPtrInst::IntToPtrInst(
2876   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2877 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) { 
2878   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2879 }
2880
2881 BitCastInst::BitCastInst(
2882   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2883 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) { 
2884   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2885 }
2886
2887 BitCastInst::BitCastInst(
2888   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2889 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) { 
2890   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2891 }
2892
2893 //===----------------------------------------------------------------------===//
2894 //                               CmpInst Classes
2895 //===----------------------------------------------------------------------===//
2896
2897 void CmpInst::anchor() {}
2898
2899 CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
2900                  Value *LHS, Value *RHS, const Twine &Name,
2901                  Instruction *InsertBefore)
2902   : Instruction(ty, op,
2903                 OperandTraits<CmpInst>::op_begin(this),
2904                 OperandTraits<CmpInst>::operands(this),
2905                 InsertBefore) {
2906     Op<0>() = LHS;
2907     Op<1>() = RHS;
2908   setPredicate((Predicate)predicate);
2909   setName(Name);
2910 }
2911
2912 CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
2913                  Value *LHS, Value *RHS, const Twine &Name,
2914                  BasicBlock *InsertAtEnd)
2915   : Instruction(ty, op,
2916                 OperandTraits<CmpInst>::op_begin(this),
2917                 OperandTraits<CmpInst>::operands(this),
2918                 InsertAtEnd) {
2919   Op<0>() = LHS;
2920   Op<1>() = RHS;
2921   setPredicate((Predicate)predicate);
2922   setName(Name);
2923 }
2924
2925 CmpInst *
2926 CmpInst::Create(OtherOps Op, unsigned short predicate,
2927                 Value *S1, Value *S2, 
2928                 const Twine &Name, Instruction *InsertBefore) {
2929   if (Op == Instruction::ICmp) {
2930     if (InsertBefore)
2931       return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
2932                           S1, S2, Name);
2933     else
2934       return new ICmpInst(CmpInst::Predicate(predicate),
2935                           S1, S2, Name);
2936   }
2937   
2938   if (InsertBefore)
2939     return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
2940                         S1, S2, Name);
2941   else
2942     return new FCmpInst(CmpInst::Predicate(predicate),
2943                         S1, S2, Name);
2944 }
2945
2946 CmpInst *
2947 CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2, 
2948                 const Twine &Name, BasicBlock *InsertAtEnd) {
2949   if (Op == Instruction::ICmp) {
2950     return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
2951                         S1, S2, Name);
2952   }
2953   return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
2954                       S1, S2, Name);
2955 }
2956
2957 void CmpInst::swapOperands() {
2958   if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
2959     IC->swapOperands();
2960   else
2961     cast<FCmpInst>(this)->swapOperands();
2962 }
2963
2964 bool CmpInst::isCommutative() const {
2965   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
2966     return IC->isCommutative();
2967   return cast<FCmpInst>(this)->isCommutative();
2968 }
2969
2970 bool CmpInst::isEquality() const {
2971   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
2972     return IC->isEquality();
2973   return cast<FCmpInst>(this)->isEquality();
2974 }
2975
2976
2977 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
2978   switch (pred) {
2979     default: llvm_unreachable("Unknown cmp predicate!");
2980     case ICMP_EQ: return ICMP_NE;
2981     case ICMP_NE: return ICMP_EQ;
2982     case ICMP_UGT: return ICMP_ULE;
2983     case ICMP_ULT: return ICMP_UGE;
2984     case ICMP_UGE: return ICMP_ULT;
2985     case ICMP_ULE: return ICMP_UGT;
2986     case ICMP_SGT: return ICMP_SLE;
2987     case ICMP_SLT: return ICMP_SGE;
2988     case ICMP_SGE: return ICMP_SLT;
2989     case ICMP_SLE: return ICMP_SGT;
2990
2991     case FCMP_OEQ: return FCMP_UNE;
2992     case FCMP_ONE: return FCMP_UEQ;
2993     case FCMP_OGT: return FCMP_ULE;
2994     case FCMP_OLT: return FCMP_UGE;
2995     case FCMP_OGE: return FCMP_ULT;
2996     case FCMP_OLE: return FCMP_UGT;
2997     case FCMP_UEQ: return FCMP_ONE;
2998     case FCMP_UNE: return FCMP_OEQ;
2999     case FCMP_UGT: return FCMP_OLE;
3000     case FCMP_ULT: return FCMP_OGE;
3001     case FCMP_UGE: return FCMP_OLT;
3002     case FCMP_ULE: return FCMP_OGT;
3003     case FCMP_ORD: return FCMP_UNO;
3004     case FCMP_UNO: return FCMP_ORD;
3005     case FCMP_TRUE: return FCMP_FALSE;
3006     case FCMP_FALSE: return FCMP_TRUE;
3007   }
3008 }
3009
3010 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3011   switch (pred) {
3012     default: llvm_unreachable("Unknown icmp predicate!");
3013     case ICMP_EQ: case ICMP_NE: 
3014     case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE: 
3015        return pred;
3016     case ICMP_UGT: return ICMP_SGT;
3017     case ICMP_ULT: return ICMP_SLT;
3018     case ICMP_UGE: return ICMP_SGE;
3019     case ICMP_ULE: return ICMP_SLE;
3020   }
3021 }
3022
3023 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3024   switch (pred) {
3025     default: llvm_unreachable("Unknown icmp predicate!");
3026     case ICMP_EQ: case ICMP_NE: 
3027     case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE: 
3028        return pred;
3029     case ICMP_SGT: return ICMP_UGT;
3030     case ICMP_SLT: return ICMP_ULT;
3031     case ICMP_SGE: return ICMP_UGE;
3032     case ICMP_SLE: return ICMP_ULE;
3033   }
3034 }
3035
3036 /// Initialize a set of values that all satisfy the condition with C.
3037 ///
3038 ConstantRange 
3039 ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
3040   APInt Lower(C);
3041   APInt Upper(C);
3042   uint32_t BitWidth = C.getBitWidth();
3043   switch (pred) {
3044   default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!");
3045   case ICmpInst::ICMP_EQ: ++Upper; break;
3046   case ICmpInst::ICMP_NE: ++Lower; break;
3047   case ICmpInst::ICMP_ULT:
3048     Lower = APInt::getMinValue(BitWidth);
3049     // Check for an empty-set condition.
3050     if (Lower == Upper)
3051       return ConstantRange(BitWidth, /*isFullSet=*/false);
3052     break;
3053   case ICmpInst::ICMP_SLT:
3054     Lower = APInt::getSignedMinValue(BitWidth);
3055     // Check for an empty-set condition.
3056     if (Lower == Upper)
3057       return ConstantRange(BitWidth, /*isFullSet=*/false);
3058     break;
3059   case ICmpInst::ICMP_UGT: 
3060     ++Lower; Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
3061     // Check for an empty-set condition.
3062     if (Lower == Upper)
3063       return ConstantRange(BitWidth, /*isFullSet=*/false);
3064     break;
3065   case ICmpInst::ICMP_SGT:
3066     ++Lower; Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
3067     // Check for an empty-set condition.
3068     if (Lower == Upper)
3069       return ConstantRange(BitWidth, /*isFullSet=*/false);
3070     break;
3071   case ICmpInst::ICMP_ULE: 
3072     Lower = APInt::getMinValue(BitWidth); ++Upper; 
3073     // Check for a full-set condition.
3074     if (Lower == Upper)
3075       return ConstantRange(BitWidth, /*isFullSet=*/true);
3076     break;
3077   case ICmpInst::ICMP_SLE: 
3078     Lower = APInt::getSignedMinValue(BitWidth); ++Upper; 
3079     // Check for a full-set condition.
3080     if (Lower == Upper)
3081       return ConstantRange(BitWidth, /*isFullSet=*/true);
3082     break;
3083   case ICmpInst::ICMP_UGE:
3084     Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
3085     // Check for a full-set condition.
3086     if (Lower == Upper)
3087       return ConstantRange(BitWidth, /*isFullSet=*/true);
3088     break;
3089   case ICmpInst::ICMP_SGE:
3090     Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
3091     // Check for a full-set condition.
3092     if (Lower == Upper)
3093       return ConstantRange(BitWidth, /*isFullSet=*/true);
3094     break;
3095   }
3096   return ConstantRange(Lower, Upper);
3097 }
3098
3099 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3100   switch (pred) {
3101     default: llvm_unreachable("Unknown cmp predicate!");
3102     case ICMP_EQ: case ICMP_NE:
3103       return pred;
3104     case ICMP_SGT: return ICMP_SLT;
3105     case ICMP_SLT: return ICMP_SGT;
3106     case ICMP_SGE: return ICMP_SLE;
3107     case ICMP_SLE: return ICMP_SGE;
3108     case ICMP_UGT: return ICMP_ULT;
3109     case ICMP_ULT: return ICMP_UGT;
3110     case ICMP_UGE: return ICMP_ULE;
3111     case ICMP_ULE: return ICMP_UGE;
3112   
3113     case FCMP_FALSE: case FCMP_TRUE:
3114     case FCMP_OEQ: case FCMP_ONE:
3115     case FCMP_UEQ: case FCMP_UNE:
3116     case FCMP_ORD: case FCMP_UNO:
3117       return pred;
3118     case FCMP_OGT: return FCMP_OLT;
3119     case FCMP_OLT: return FCMP_OGT;
3120     case FCMP_OGE: return FCMP_OLE;
3121     case FCMP_OLE: return FCMP_OGE;
3122     case FCMP_UGT: return FCMP_ULT;
3123     case FCMP_ULT: return FCMP_UGT;
3124     case FCMP_UGE: return FCMP_ULE;
3125     case FCMP_ULE: return FCMP_UGE;
3126   }
3127 }
3128
3129 bool CmpInst::isUnsigned(unsigned short predicate) {
3130   switch (predicate) {
3131     default: return false;
3132     case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT: 
3133     case ICmpInst::ICMP_UGE: return true;
3134   }
3135 }
3136
3137 bool CmpInst::isSigned(unsigned short predicate) {
3138   switch (predicate) {
3139     default: return false;
3140     case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT: 
3141     case ICmpInst::ICMP_SGE: return true;
3142   }
3143 }
3144
3145 bool CmpInst::isOrdered(unsigned short predicate) {
3146   switch (predicate) {
3147     default: return false;
3148     case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT: 
3149     case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE: 
3150     case FCmpInst::FCMP_ORD: return true;
3151   }
3152 }
3153       
3154 bool CmpInst::isUnordered(unsigned short predicate) {
3155   switch (predicate) {
3156     default: return false;
3157     case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT: 
3158     case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE: 
3159     case FCmpInst::FCMP_UNO: return true;
3160   }
3161 }
3162
3163 bool CmpInst::isTrueWhenEqual(unsigned short predicate) {
3164   switch(predicate) {
3165     default: return false;
3166     case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3167     case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3168   }
3169 }
3170
3171 bool CmpInst::isFalseWhenEqual(unsigned short predicate) {
3172   switch(predicate) {
3173   case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3174   case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3175   default: return false;
3176   }
3177 }
3178
3179
3180 //===----------------------------------------------------------------------===//
3181 //                        SwitchInst Implementation
3182 //===----------------------------------------------------------------------===//
3183
3184 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3185   assert(Value && Default && NumReserved);
3186   ReservedSpace = NumReserved;
3187   NumOperands = 2;
3188   OperandList = allocHungoffUses(ReservedSpace);
3189
3190   OperandList[0] = Value;
3191   OperandList[1] = Default;
3192 }
3193
3194 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3195 /// switch on and a default destination.  The number of additional cases can
3196 /// be specified here to make memory allocation more efficient.  This
3197 /// constructor can also autoinsert before another instruction.
3198 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3199                        Instruction *InsertBefore)
3200   : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3201                    0, 0, InsertBefore) {
3202   init(Value, Default, 2+NumCases*2);
3203 }
3204
3205 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3206 /// switch on and a default destination.  The number of additional cases can
3207 /// be specified here to make memory allocation more efficient.  This
3208 /// constructor also autoinserts at the end of the specified BasicBlock.
3209 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3210                        BasicBlock *InsertAtEnd)
3211   : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3212                    0, 0, InsertAtEnd) {
3213   init(Value, Default, 2+NumCases*2);
3214 }
3215
3216 SwitchInst::SwitchInst(const SwitchInst &SI)
3217   : TerminatorInst(SI.getType(), Instruction::Switch, 0, 0) {
3218   init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3219   NumOperands = SI.getNumOperands();
3220   Use *OL = OperandList, *InOL = SI.OperandList;
3221   for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3222     OL[i] = InOL[i];
3223     OL[i+1] = InOL[i+1];
3224   }
3225   TheSubsets = SI.TheSubsets;
3226   SubclassOptionalData = SI.SubclassOptionalData;
3227 }
3228
3229 SwitchInst::~SwitchInst() {
3230   dropHungoffUses();
3231 }
3232
3233
3234 /// addCase - Add an entry to the switch instruction...
3235 ///
3236 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3237   IntegersSubsetToBB Mapping;
3238   
3239   // FIXME: Currently we work with ConstantInt based cases.
3240   // So inititalize IntItem container directly from ConstantInt.
3241   Mapping.add(IntItem::fromConstantInt(OnVal));
3242   IntegersSubset CaseRanges = Mapping.getCase();
3243   addCase(CaseRanges, Dest);
3244 }
3245
3246 void SwitchInst::addCase(IntegersSubset& OnVal, BasicBlock *Dest) {
3247   unsigned NewCaseIdx = getNumCases(); 
3248   unsigned OpNo = NumOperands;
3249   if (OpNo+2 > ReservedSpace)
3250     growOperands();  // Get more space!
3251   // Initialize some new operands.
3252   assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3253   NumOperands = OpNo+2;
3254
3255   SubsetsIt TheSubsetsIt = TheSubsets.insert(TheSubsets.end(), OnVal);
3256   
3257   CaseIt Case(this, NewCaseIdx, TheSubsetsIt);
3258   Case.updateCaseValueOperand(OnVal);
3259   Case.setSuccessor(Dest);
3260 }
3261
3262 /// removeCase - This method removes the specified case and its successor
3263 /// from the switch instruction.
3264 void SwitchInst::removeCase(CaseIt& i) {
3265   unsigned idx = i.getCaseIndex();
3266   
3267   assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
3268
3269   unsigned NumOps = getNumOperands();
3270   Use *OL = OperandList;
3271
3272   // Overwrite this case with the end of the list.
3273   if (2 + (idx + 1) * 2 != NumOps) {
3274     OL[2 + idx * 2] = OL[NumOps - 2];
3275     OL[2 + idx * 2 + 1] = OL[NumOps - 1];
3276   }
3277
3278   // Nuke the last value.
3279   OL[NumOps-2].set(0);
3280   OL[NumOps-2+1].set(0);
3281
3282   // Do the same with TheCases collection:
3283   if (i.SubsetIt != --TheSubsets.end()) {
3284     *i.SubsetIt = TheSubsets.back();
3285     TheSubsets.pop_back();
3286   } else {
3287     TheSubsets.pop_back();
3288     i.SubsetIt = TheSubsets.end();
3289   }
3290   
3291   NumOperands = NumOps-2;
3292 }
3293
3294 /// growOperands - grow operands - This grows the operand list in response
3295 /// to a push_back style of operation.  This grows the number of ops by 3 times.
3296 ///
3297 void SwitchInst::growOperands() {
3298   unsigned e = getNumOperands();
3299   unsigned NumOps = e*3;
3300
3301   ReservedSpace = NumOps;
3302   Use *NewOps = allocHungoffUses(NumOps);
3303   Use *OldOps = OperandList;
3304   for (unsigned i = 0; i != e; ++i) {
3305       NewOps[i] = OldOps[i];
3306   }
3307   OperandList = NewOps;
3308   Use::zap(OldOps, OldOps + e, true);
3309 }
3310
3311
3312 BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
3313   return getSuccessor(idx);
3314 }
3315 unsigned SwitchInst::getNumSuccessorsV() const {
3316   return getNumSuccessors();
3317 }
3318 void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3319   setSuccessor(idx, B);
3320 }
3321
3322 //===----------------------------------------------------------------------===//
3323 //                        IndirectBrInst Implementation
3324 //===----------------------------------------------------------------------===//
3325
3326 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
3327   assert(Address && Address->getType()->isPointerTy() &&
3328          "Address of indirectbr must be a pointer");
3329   ReservedSpace = 1+NumDests;
3330   NumOperands = 1;
3331   OperandList = allocHungoffUses(ReservedSpace);
3332   
3333   OperandList[0] = Address;
3334 }
3335
3336
3337 /// growOperands - grow operands - This grows the operand list in response
3338 /// to a push_back style of operation.  This grows the number of ops by 2 times.
3339 ///
3340 void IndirectBrInst::growOperands() {
3341   unsigned e = getNumOperands();
3342   unsigned NumOps = e*2;
3343   
3344   ReservedSpace = NumOps;
3345   Use *NewOps = allocHungoffUses(NumOps);
3346   Use *OldOps = OperandList;
3347   for (unsigned i = 0; i != e; ++i)
3348     NewOps[i] = OldOps[i];
3349   OperandList = NewOps;
3350   Use::zap(OldOps, OldOps + e, true);
3351 }
3352
3353 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3354                                Instruction *InsertBefore)
3355 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3356                  0, 0, InsertBefore) {
3357   init(Address, NumCases);
3358 }
3359
3360 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3361                                BasicBlock *InsertAtEnd)
3362 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3363                  0, 0, InsertAtEnd) {
3364   init(Address, NumCases);
3365 }
3366
3367 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
3368   : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
3369                    allocHungoffUses(IBI.getNumOperands()),
3370                    IBI.getNumOperands()) {
3371   Use *OL = OperandList, *InOL = IBI.OperandList;
3372   for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
3373     OL[i] = InOL[i];
3374   SubclassOptionalData = IBI.SubclassOptionalData;
3375 }
3376
3377 IndirectBrInst::~IndirectBrInst() {
3378   dropHungoffUses();
3379 }
3380
3381 /// addDestination - Add a destination.
3382 ///
3383 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
3384   unsigned OpNo = NumOperands;
3385   if (OpNo+1 > ReservedSpace)
3386     growOperands();  // Get more space!
3387   // Initialize some new operands.
3388   assert(OpNo < ReservedSpace && "Growing didn't work!");
3389   NumOperands = OpNo+1;
3390   OperandList[OpNo] = DestBB;
3391 }
3392
3393 /// removeDestination - This method removes the specified successor from the
3394 /// indirectbr instruction.
3395 void IndirectBrInst::removeDestination(unsigned idx) {
3396   assert(idx < getNumOperands()-1 && "Successor index out of range!");
3397   
3398   unsigned NumOps = getNumOperands();
3399   Use *OL = OperandList;
3400
3401   // Replace this value with the last one.
3402   OL[idx+1] = OL[NumOps-1];
3403   
3404   // Nuke the last value.
3405   OL[NumOps-1].set(0);
3406   NumOperands = NumOps-1;
3407 }
3408
3409 BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const {
3410   return getSuccessor(idx);
3411 }
3412 unsigned IndirectBrInst::getNumSuccessorsV() const {
3413   return getNumSuccessors();
3414 }
3415 void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3416   setSuccessor(idx, B);
3417 }
3418
3419 //===----------------------------------------------------------------------===//
3420 //                           clone_impl() implementations
3421 //===----------------------------------------------------------------------===//
3422
3423 // Define these methods here so vtables don't get emitted into every translation
3424 // unit that uses these classes.
3425
3426 GetElementPtrInst *GetElementPtrInst::clone_impl() const {
3427   return new (getNumOperands()) GetElementPtrInst(*this);
3428 }
3429
3430 BinaryOperator *BinaryOperator::clone_impl() const {
3431   return Create(getOpcode(), Op<0>(), Op<1>());
3432 }
3433
3434 FCmpInst* FCmpInst::clone_impl() const {
3435   return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
3436 }
3437
3438 ICmpInst* ICmpInst::clone_impl() const {
3439   return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
3440 }
3441
3442 ExtractValueInst *ExtractValueInst::clone_impl() const {
3443   return new ExtractValueInst(*this);
3444 }
3445
3446 InsertValueInst *InsertValueInst::clone_impl() const {
3447   return new InsertValueInst(*this);
3448 }
3449
3450 AllocaInst *AllocaInst::clone_impl() const {
3451   return new AllocaInst(getAllocatedType(),
3452                         (Value*)getOperand(0),
3453                         getAlignment());
3454 }
3455
3456 LoadInst *LoadInst::clone_impl() const {
3457   return new LoadInst(getOperand(0), Twine(), isVolatile(),
3458                       getAlignment(), getOrdering(), getSynchScope());
3459 }
3460
3461 StoreInst *StoreInst::clone_impl() const {
3462   return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
3463                        getAlignment(), getOrdering(), getSynchScope());
3464   
3465 }
3466
3467 AtomicCmpXchgInst *AtomicCmpXchgInst::clone_impl() const {
3468   AtomicCmpXchgInst *Result =
3469     new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
3470                           getOrdering(), getSynchScope());
3471   Result->setVolatile(isVolatile());
3472   return Result;
3473 }
3474
3475 AtomicRMWInst *AtomicRMWInst::clone_impl() const {
3476   AtomicRMWInst *Result =
3477     new AtomicRMWInst(getOperation(),getOperand(0), getOperand(1),
3478                       getOrdering(), getSynchScope());
3479   Result->setVolatile(isVolatile());
3480   return Result;
3481 }
3482
3483 FenceInst *FenceInst::clone_impl() const {
3484   return new FenceInst(getContext(), getOrdering(), getSynchScope());
3485 }
3486
3487 TruncInst *TruncInst::clone_impl() const {
3488   return new TruncInst(getOperand(0), getType());
3489 }
3490
3491 ZExtInst *ZExtInst::clone_impl() const {
3492   return new ZExtInst(getOperand(0), getType());
3493 }
3494
3495 SExtInst *SExtInst::clone_impl() const {
3496   return new SExtInst(getOperand(0), getType());
3497 }
3498
3499 FPTruncInst *FPTruncInst::clone_impl() const {
3500   return new FPTruncInst(getOperand(0), getType());
3501 }
3502
3503 FPExtInst *FPExtInst::clone_impl() const {
3504   return new FPExtInst(getOperand(0), getType());
3505 }
3506
3507 UIToFPInst *UIToFPInst::clone_impl() const {
3508   return new UIToFPInst(getOperand(0), getType());
3509 }
3510
3511 SIToFPInst *SIToFPInst::clone_impl() const {
3512   return new SIToFPInst(getOperand(0), getType());
3513 }
3514
3515 FPToUIInst *FPToUIInst::clone_impl() const {
3516   return new FPToUIInst(getOperand(0), getType());
3517 }
3518
3519 FPToSIInst *FPToSIInst::clone_impl() const {
3520   return new FPToSIInst(getOperand(0), getType());
3521 }
3522
3523 PtrToIntInst *PtrToIntInst::clone_impl() const {
3524   return new PtrToIntInst(getOperand(0), getType());
3525 }
3526
3527 IntToPtrInst *IntToPtrInst::clone_impl() const {
3528   return new IntToPtrInst(getOperand(0), getType());
3529 }
3530
3531 BitCastInst *BitCastInst::clone_impl() const {
3532   return new BitCastInst(getOperand(0), getType());
3533 }
3534
3535 CallInst *CallInst::clone_impl() const {
3536   return  new(getNumOperands()) CallInst(*this);
3537 }
3538
3539 SelectInst *SelectInst::clone_impl() const {
3540   return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
3541 }
3542
3543 VAArgInst *VAArgInst::clone_impl() const {
3544   return new VAArgInst(getOperand(0), getType());
3545 }
3546
3547 ExtractElementInst *ExtractElementInst::clone_impl() const {
3548   return ExtractElementInst::Create(getOperand(0), getOperand(1));
3549 }
3550
3551 InsertElementInst *InsertElementInst::clone_impl() const {
3552   return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
3553 }
3554
3555 ShuffleVectorInst *ShuffleVectorInst::clone_impl() const {
3556   return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
3557 }
3558
3559 PHINode *PHINode::clone_impl() const {
3560   return new PHINode(*this);
3561 }
3562
3563 LandingPadInst *LandingPadInst::clone_impl() const {
3564   return new LandingPadInst(*this);
3565 }
3566
3567 ReturnInst *ReturnInst::clone_impl() const {
3568   return new(getNumOperands()) ReturnInst(*this);
3569 }
3570
3571 BranchInst *BranchInst::clone_impl() const {
3572   return new(getNumOperands()) BranchInst(*this);
3573 }
3574
3575 SwitchInst *SwitchInst::clone_impl() const {
3576   return new SwitchInst(*this);
3577 }
3578
3579 IndirectBrInst *IndirectBrInst::clone_impl() const {
3580   return new IndirectBrInst(*this);
3581 }
3582
3583
3584 InvokeInst *InvokeInst::clone_impl() const {
3585   return new(getNumOperands()) InvokeInst(*this);
3586 }
3587
3588 ResumeInst *ResumeInst::clone_impl() const {
3589   return new(1) ResumeInst(*this);
3590 }
3591
3592 UnreachableInst *UnreachableInst::clone_impl() const {
3593   LLVMContext &Context = getContext();
3594   return new UnreachableInst(Context);
3595 }