Silencing an "enumeral and non-enumeral type in conditional expression" warning;...
[oota-llvm.git] / lib / IR / Dominators.cpp
1 //===- Dominators.cpp - Dominator Calculation -----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements simple dominator construction algorithms for finding
11 // forward dominators.  Postdominators are available in libanalysis, but are not
12 // included in libvmcore, because it's not needed.  Forward dominators are
13 // needed to support the Verifier pass.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/IR/Dominators.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/IR/CFG.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/Compiler.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/GenericDomTreeConstruction.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <algorithm>
29 using namespace llvm;
30
31 // Always verify dominfo if expensive checking is enabled.
32 #ifdef XDEBUG
33 static bool VerifyDomInfo = true;
34 #else
35 static bool VerifyDomInfo = false;
36 #endif
37 static cl::opt<bool,true>
38 VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
39                cl::desc("Verify dominator info (time consuming)"));
40
41 bool BasicBlockEdge::isSingleEdge() const {
42   const TerminatorInst *TI = Start->getTerminator();
43   unsigned NumEdgesToEnd = 0;
44   for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) {
45     if (TI->getSuccessor(i) == End)
46       ++NumEdgesToEnd;
47     if (NumEdgesToEnd >= 2)
48       return false;
49   }
50   assert(NumEdgesToEnd == 1);
51   return true;
52 }
53
54 //===----------------------------------------------------------------------===//
55 //  DominatorTree Implementation
56 //===----------------------------------------------------------------------===//
57 //
58 // Provide public access to DominatorTree information.  Implementation details
59 // can be found in Dominators.h, GenericDomTree.h, and
60 // GenericDomTreeConstruction.h.
61 //
62 //===----------------------------------------------------------------------===//
63
64 TEMPLATE_INSTANTIATION(class llvm::DomTreeNodeBase<BasicBlock>);
65 TEMPLATE_INSTANTIATION(class llvm::DominatorTreeBase<BasicBlock>);
66
67 #define LLVM_COMMA ,
68 TEMPLATE_INSTANTIATION(void llvm::Calculate<Function LLVM_COMMA BasicBlock *>(
69     DominatorTreeBase<GraphTraits<BasicBlock *>::NodeType> &DT LLVM_COMMA
70         Function &F));
71 TEMPLATE_INSTANTIATION(
72     void llvm::Calculate<Function LLVM_COMMA Inverse<BasicBlock *> >(
73         DominatorTreeBase<GraphTraits<Inverse<BasicBlock *> >::NodeType> &DT
74             LLVM_COMMA Function &F));
75 #undef LLVM_COMMA
76
77 // dominates - Return true if Def dominates a use in User. This performs
78 // the special checks necessary if Def and User are in the same basic block.
79 // Note that Def doesn't dominate a use in Def itself!
80 bool DominatorTree::dominates(const Instruction *Def,
81                               const Instruction *User) const {
82   const BasicBlock *UseBB = User->getParent();
83   const BasicBlock *DefBB = Def->getParent();
84
85   // Any unreachable use is dominated, even if Def == User.
86   if (!isReachableFromEntry(UseBB))
87     return true;
88
89   // Unreachable definitions don't dominate anything.
90   if (!isReachableFromEntry(DefBB))
91     return false;
92
93   // An instruction doesn't dominate a use in itself.
94   if (Def == User)
95     return false;
96
97   // The value defined by an invoke dominates an instruction only if
98   // it dominates every instruction in UseBB.
99   // A PHI is dominated only if the instruction dominates every possible use
100   // in the UseBB.
101   if (isa<InvokeInst>(Def) || isa<PHINode>(User))
102     return dominates(Def, UseBB);
103
104   if (DefBB != UseBB)
105     return dominates(DefBB, UseBB);
106
107   // Loop through the basic block until we find Def or User.
108   BasicBlock::const_iterator I = DefBB->begin();
109   for (; &*I != Def && &*I != User; ++I)
110     /*empty*/;
111
112   return &*I == Def;
113 }
114
115 // true if Def would dominate a use in any instruction in UseBB.
116 // note that dominates(Def, Def->getParent()) is false.
117 bool DominatorTree::dominates(const Instruction *Def,
118                               const BasicBlock *UseBB) const {
119   const BasicBlock *DefBB = Def->getParent();
120
121   // Any unreachable use is dominated, even if DefBB == UseBB.
122   if (!isReachableFromEntry(UseBB))
123     return true;
124
125   // Unreachable definitions don't dominate anything.
126   if (!isReachableFromEntry(DefBB))
127     return false;
128
129   if (DefBB == UseBB)
130     return false;
131
132   const InvokeInst *II = dyn_cast<InvokeInst>(Def);
133   if (!II)
134     return dominates(DefBB, UseBB);
135
136   // Invoke results are only usable in the normal destination, not in the
137   // exceptional destination.
138   BasicBlock *NormalDest = II->getNormalDest();
139   BasicBlockEdge E(DefBB, NormalDest);
140   return dominates(E, UseBB);
141 }
142
143 bool DominatorTree::dominates(const BasicBlockEdge &BBE,
144                               const BasicBlock *UseBB) const {
145   // Assert that we have a single edge. We could handle them by simply
146   // returning false, but since isSingleEdge is linear on the number of
147   // edges, the callers can normally handle them more efficiently.
148   assert(BBE.isSingleEdge());
149
150   // If the BB the edge ends in doesn't dominate the use BB, then the
151   // edge also doesn't.
152   const BasicBlock *Start = BBE.getStart();
153   const BasicBlock *End = BBE.getEnd();
154   if (!dominates(End, UseBB))
155     return false;
156
157   // Simple case: if the end BB has a single predecessor, the fact that it
158   // dominates the use block implies that the edge also does.
159   if (End->getSinglePredecessor())
160     return true;
161
162   // The normal edge from the invoke is critical. Conceptually, what we would
163   // like to do is split it and check if the new block dominates the use.
164   // With X being the new block, the graph would look like:
165   //
166   //        DefBB
167   //          /\      .  .
168   //         /  \     .  .
169   //        /    \    .  .
170   //       /      \   |  |
171   //      A        X  B  C
172   //      |         \ | /
173   //      .          \|/
174   //      .      NormalDest
175   //      .
176   //
177   // Given the definition of dominance, NormalDest is dominated by X iff X
178   // dominates all of NormalDest's predecessors (X, B, C in the example). X
179   // trivially dominates itself, so we only have to find if it dominates the
180   // other predecessors. Since the only way out of X is via NormalDest, X can
181   // only properly dominate a node if NormalDest dominates that node too.
182   for (const_pred_iterator PI = pred_begin(End), E = pred_end(End);
183        PI != E; ++PI) {
184     const BasicBlock *BB = *PI;
185     if (BB == Start)
186       continue;
187
188     if (!dominates(End, BB))
189       return false;
190   }
191   return true;
192 }
193
194 bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const {
195   // Assert that we have a single edge. We could handle them by simply
196   // returning false, but since isSingleEdge is linear on the number of
197   // edges, the callers can normally handle them more efficiently.
198   assert(BBE.isSingleEdge());
199
200   Instruction *UserInst = cast<Instruction>(U.getUser());
201   // A PHI in the end of the edge is dominated by it.
202   PHINode *PN = dyn_cast<PHINode>(UserInst);
203   if (PN && PN->getParent() == BBE.getEnd() &&
204       PN->getIncomingBlock(U) == BBE.getStart())
205     return true;
206
207   // Otherwise use the edge-dominates-block query, which
208   // handles the crazy critical edge cases properly.
209   const BasicBlock *UseBB;
210   if (PN)
211     UseBB = PN->getIncomingBlock(U);
212   else
213     UseBB = UserInst->getParent();
214   return dominates(BBE, UseBB);
215 }
216
217 bool DominatorTree::dominates(const Instruction *Def, const Use &U) const {
218   Instruction *UserInst = cast<Instruction>(U.getUser());
219   const BasicBlock *DefBB = Def->getParent();
220
221   // Determine the block in which the use happens. PHI nodes use
222   // their operands on edges; simulate this by thinking of the use
223   // happening at the end of the predecessor block.
224   const BasicBlock *UseBB;
225   if (PHINode *PN = dyn_cast<PHINode>(UserInst))
226     UseBB = PN->getIncomingBlock(U);
227   else
228     UseBB = UserInst->getParent();
229
230   // Any unreachable use is dominated, even if Def == User.
231   if (!isReachableFromEntry(UseBB))
232     return true;
233
234   // Unreachable definitions don't dominate anything.
235   if (!isReachableFromEntry(DefBB))
236     return false;
237
238   // Invoke instructions define their return values on the edges
239   // to their normal successors, so we have to handle them specially.
240   // Among other things, this means they don't dominate anything in
241   // their own block, except possibly a phi, so we don't need to
242   // walk the block in any case.
243   if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
244     BasicBlock *NormalDest = II->getNormalDest();
245     BasicBlockEdge E(DefBB, NormalDest);
246     return dominates(E, U);
247   }
248
249   // If the def and use are in different blocks, do a simple CFG dominator
250   // tree query.
251   if (DefBB != UseBB)
252     return dominates(DefBB, UseBB);
253
254   // Ok, def and use are in the same block. If the def is an invoke, it
255   // doesn't dominate anything in the block. If it's a PHI, it dominates
256   // everything in the block.
257   if (isa<PHINode>(UserInst))
258     return true;
259
260   // Otherwise, just loop through the basic block until we find Def or User.
261   BasicBlock::const_iterator I = DefBB->begin();
262   for (; &*I != Def && &*I != UserInst; ++I)
263     /*empty*/;
264
265   return &*I != UserInst;
266 }
267
268 bool DominatorTree::isReachableFromEntry(const Use &U) const {
269   Instruction *I = dyn_cast<Instruction>(U.getUser());
270
271   // ConstantExprs aren't really reachable from the entry block, but they
272   // don't need to be treated like unreachable code either.
273   if (!I) return true;
274
275   // PHI nodes use their operands on their incoming edges.
276   if (PHINode *PN = dyn_cast<PHINode>(I))
277     return isReachableFromEntry(PN->getIncomingBlock(U));
278
279   // Everything else uses their operands in their own block.
280   return isReachableFromEntry(I->getParent());
281 }
282
283 void DominatorTree::verifyDomTree() const {
284   if (!VerifyDomInfo)
285     return;
286
287   Function &F = *getRoot()->getParent();
288
289   DominatorTree OtherDT;
290   OtherDT.recalculate(F);
291   if (compare(OtherDT)) {
292     errs() << "DominatorTree is not up to date!\nComputed:\n";
293     print(errs());
294     errs() << "\nActual:\n";
295     OtherDT.print(errs());
296     abort();
297   }
298 }
299
300 //===----------------------------------------------------------------------===//
301 //  DominatorTreeWrapperPass Implementation
302 //===----------------------------------------------------------------------===//
303 //
304 // The implementation details of the wrapper pass that holds a DominatorTree.
305 //
306 //===----------------------------------------------------------------------===//
307
308 char DominatorTreeWrapperPass::ID = 0;
309 INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree",
310                 "Dominator Tree Construction", true, true)
311
312 bool DominatorTreeWrapperPass::runOnFunction(Function &F) {
313   DT.recalculate(F);
314   return false;
315 }
316
317 void DominatorTreeWrapperPass::verifyAnalysis() const { DT.verifyDomTree(); }
318
319 void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const {
320   DT.print(OS);
321 }
322