The optimization a + (-0.0f) -> a was being misapplied to a + (+0.0f) in the vector...
[oota-llvm.git] / lib / IR / Constants.cpp
1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Constant* classes.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Constants.h"
15 #include "ConstantFold.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/FoldingSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/GlobalValue.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/IR/Operator.h"
28 #include "llvm/Support/Compiler.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/GetElementPtrTypeIterator.h"
32 #include "llvm/Support/ManagedStatic.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm>
36 #include <cstdarg>
37 using namespace llvm;
38
39 //===----------------------------------------------------------------------===//
40 //                              Constant Class
41 //===----------------------------------------------------------------------===//
42
43 void Constant::anchor() { }
44
45 bool Constant::isNegativeZeroValue() const {
46   // Floating point values have an explicit -0.0 value.
47   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
48     return CFP->isZero() && CFP->isNegative();
49
50   // Equivalent for a vector of -0.0's.
51   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
52     if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
53       if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
54         return true;
55
56   // However, vectors of zeroes which are floating point represent +0.0's.
57   if (const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(this))
58     if (const VectorType *VT = dyn_cast<VectorType>(CAZ->getType()))
59       if (VT->getElementType()->isFloatingPointTy())
60         // As it's a CAZ, we know it's the zero bit-pattern (ie, +0.0) in each element.
61         return false;
62
63   // Otherwise, just use +0.0.
64   return isNullValue();
65 }
66
67 // Return true iff this constant is positive zero (floating point), negative
68 // zero (floating point), or a null value.
69 bool Constant::isZeroValue() const {
70   // Floating point values have an explicit -0.0 value.
71   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
72     return CFP->isZero();
73
74   // Otherwise, just use +0.0.
75   return isNullValue();
76 }
77
78 bool Constant::isNullValue() const {
79   // 0 is null.
80   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
81     return CI->isZero();
82
83   // +0.0 is null.
84   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
85     return CFP->isZero() && !CFP->isNegative();
86
87   // constant zero is zero for aggregates and cpnull is null for pointers.
88   return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this);
89 }
90
91 bool Constant::isAllOnesValue() const {
92   // Check for -1 integers
93   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
94     return CI->isMinusOne();
95
96   // Check for FP which are bitcasted from -1 integers
97   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
98     return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
99
100   // Check for constant vectors which are splats of -1 values.
101   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
102     if (Constant *Splat = CV->getSplatValue())
103       return Splat->isAllOnesValue();
104
105   // Check for constant vectors which are splats of -1 values.
106   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
107     if (Constant *Splat = CV->getSplatValue())
108       return Splat->isAllOnesValue();
109
110   return false;
111 }
112
113 // Constructor to create a '0' constant of arbitrary type...
114 Constant *Constant::getNullValue(Type *Ty) {
115   switch (Ty->getTypeID()) {
116   case Type::IntegerTyID:
117     return ConstantInt::get(Ty, 0);
118   case Type::HalfTyID:
119     return ConstantFP::get(Ty->getContext(),
120                            APFloat::getZero(APFloat::IEEEhalf));
121   case Type::FloatTyID:
122     return ConstantFP::get(Ty->getContext(),
123                            APFloat::getZero(APFloat::IEEEsingle));
124   case Type::DoubleTyID:
125     return ConstantFP::get(Ty->getContext(),
126                            APFloat::getZero(APFloat::IEEEdouble));
127   case Type::X86_FP80TyID:
128     return ConstantFP::get(Ty->getContext(),
129                            APFloat::getZero(APFloat::x87DoubleExtended));
130   case Type::FP128TyID:
131     return ConstantFP::get(Ty->getContext(),
132                            APFloat::getZero(APFloat::IEEEquad));
133   case Type::PPC_FP128TyID:
134     return ConstantFP::get(Ty->getContext(),
135                            APFloat(APFloat::PPCDoubleDouble,
136                                    APInt::getNullValue(128)));
137   case Type::PointerTyID:
138     return ConstantPointerNull::get(cast<PointerType>(Ty));
139   case Type::StructTyID:
140   case Type::ArrayTyID:
141   case Type::VectorTyID:
142     return ConstantAggregateZero::get(Ty);
143   default:
144     // Function, Label, or Opaque type?
145     llvm_unreachable("Cannot create a null constant of that type!");
146   }
147 }
148
149 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
150   Type *ScalarTy = Ty->getScalarType();
151
152   // Create the base integer constant.
153   Constant *C = ConstantInt::get(Ty->getContext(), V);
154
155   // Convert an integer to a pointer, if necessary.
156   if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
157     C = ConstantExpr::getIntToPtr(C, PTy);
158
159   // Broadcast a scalar to a vector, if necessary.
160   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
161     C = ConstantVector::getSplat(VTy->getNumElements(), C);
162
163   return C;
164 }
165
166 Constant *Constant::getAllOnesValue(Type *Ty) {
167   if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
168     return ConstantInt::get(Ty->getContext(),
169                             APInt::getAllOnesValue(ITy->getBitWidth()));
170
171   if (Ty->isFloatingPointTy()) {
172     APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
173                                           !Ty->isPPC_FP128Ty());
174     return ConstantFP::get(Ty->getContext(), FL);
175   }
176
177   VectorType *VTy = cast<VectorType>(Ty);
178   return ConstantVector::getSplat(VTy->getNumElements(),
179                                   getAllOnesValue(VTy->getElementType()));
180 }
181
182 /// getAggregateElement - For aggregates (struct/array/vector) return the
183 /// constant that corresponds to the specified element if possible, or null if
184 /// not.  This can return null if the element index is a ConstantExpr, or if
185 /// 'this' is a constant expr.
186 Constant *Constant::getAggregateElement(unsigned Elt) const {
187   if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this))
188     return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : 0;
189
190   if (const ConstantArray *CA = dyn_cast<ConstantArray>(this))
191     return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : 0;
192
193   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
194     return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : 0;
195
196   if (const ConstantAggregateZero *CAZ =dyn_cast<ConstantAggregateZero>(this))
197     return CAZ->getElementValue(Elt);
198
199   if (const UndefValue *UV = dyn_cast<UndefValue>(this))
200     return UV->getElementValue(Elt);
201
202   if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
203     return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) : 0;
204   return 0;
205 }
206
207 Constant *Constant::getAggregateElement(Constant *Elt) const {
208   assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
209   if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
210     return getAggregateElement(CI->getZExtValue());
211   return 0;
212 }
213
214
215 void Constant::destroyConstantImpl() {
216   // When a Constant is destroyed, there may be lingering
217   // references to the constant by other constants in the constant pool.  These
218   // constants are implicitly dependent on the module that is being deleted,
219   // but they don't know that.  Because we only find out when the CPV is
220   // deleted, we must now notify all of our users (that should only be
221   // Constants) that they are, in fact, invalid now and should be deleted.
222   //
223   while (!use_empty()) {
224     Value *V = use_back();
225 #ifndef NDEBUG      // Only in -g mode...
226     if (!isa<Constant>(V)) {
227       dbgs() << "While deleting: " << *this
228              << "\n\nUse still stuck around after Def is destroyed: "
229              << *V << "\n\n";
230     }
231 #endif
232     assert(isa<Constant>(V) && "References remain to Constant being destroyed");
233     cast<Constant>(V)->destroyConstant();
234
235     // The constant should remove itself from our use list...
236     assert((use_empty() || use_back() != V) && "Constant not removed!");
237   }
238
239   // Value has no outstanding references it is safe to delete it now...
240   delete this;
241 }
242
243 /// canTrap - Return true if evaluation of this constant could trap.  This is
244 /// true for things like constant expressions that could divide by zero.
245 bool Constant::canTrap() const {
246   assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
247   // The only thing that could possibly trap are constant exprs.
248   const ConstantExpr *CE = dyn_cast<ConstantExpr>(this);
249   if (!CE) return false;
250
251   // ConstantExpr traps if any operands can trap.
252   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
253     if (CE->getOperand(i)->canTrap())
254       return true;
255
256   // Otherwise, only specific operations can trap.
257   switch (CE->getOpcode()) {
258   default:
259     return false;
260   case Instruction::UDiv:
261   case Instruction::SDiv:
262   case Instruction::FDiv:
263   case Instruction::URem:
264   case Instruction::SRem:
265   case Instruction::FRem:
266     // Div and rem can trap if the RHS is not known to be non-zero.
267     if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
268       return true;
269     return false;
270   }
271 }
272
273 /// isThreadDependent - Return true if the value can vary between threads.
274 bool Constant::isThreadDependent() const {
275   SmallPtrSet<const Constant*, 64> Visited;
276   SmallVector<const Constant*, 64> WorkList;
277   WorkList.push_back(this);
278   Visited.insert(this);
279
280   while (!WorkList.empty()) {
281     const Constant *C = WorkList.pop_back_val();
282
283     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
284       if (GV->isThreadLocal())
285         return true;
286     }
287
288     for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) {
289       const Constant *D = dyn_cast<Constant>(C->getOperand(I));
290       if (!D)
291         continue;
292       if (Visited.insert(D))
293         WorkList.push_back(D);
294     }
295   }
296
297   return false;
298 }
299
300 /// isConstantUsed - Return true if the constant has users other than constant
301 /// exprs and other dangling things.
302 bool Constant::isConstantUsed() const {
303   for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
304     const Constant *UC = dyn_cast<Constant>(*UI);
305     if (UC == 0 || isa<GlobalValue>(UC))
306       return true;
307
308     if (UC->isConstantUsed())
309       return true;
310   }
311   return false;
312 }
313
314
315
316 /// getRelocationInfo - This method classifies the entry according to
317 /// whether or not it may generate a relocation entry.  This must be
318 /// conservative, so if it might codegen to a relocatable entry, it should say
319 /// so.  The return values are:
320 /// 
321 ///  NoRelocation: This constant pool entry is guaranteed to never have a
322 ///     relocation applied to it (because it holds a simple constant like
323 ///     '4').
324 ///  LocalRelocation: This entry has relocations, but the entries are
325 ///     guaranteed to be resolvable by the static linker, so the dynamic
326 ///     linker will never see them.
327 ///  GlobalRelocations: This entry may have arbitrary relocations.
328 ///
329 /// FIXME: This really should not be in IR.
330 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
331   if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
332     if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
333       return LocalRelocation;  // Local to this file/library.
334     return GlobalRelocations;    // Global reference.
335   }
336   
337   if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
338     return BA->getFunction()->getRelocationInfo();
339   
340   // While raw uses of blockaddress need to be relocated, differences between
341   // two of them don't when they are for labels in the same function.  This is a
342   // common idiom when creating a table for the indirect goto extension, so we
343   // handle it efficiently here.
344   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
345     if (CE->getOpcode() == Instruction::Sub) {
346       ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
347       ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
348       if (LHS && RHS &&
349           LHS->getOpcode() == Instruction::PtrToInt &&
350           RHS->getOpcode() == Instruction::PtrToInt &&
351           isa<BlockAddress>(LHS->getOperand(0)) &&
352           isa<BlockAddress>(RHS->getOperand(0)) &&
353           cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
354             cast<BlockAddress>(RHS->getOperand(0))->getFunction())
355         return NoRelocation;
356     }
357
358   PossibleRelocationsTy Result = NoRelocation;
359   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
360     Result = std::max(Result,
361                       cast<Constant>(getOperand(i))->getRelocationInfo());
362
363   return Result;
364 }
365
366 /// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
367 /// it.  This involves recursively eliminating any dead users of the
368 /// constantexpr.
369 static bool removeDeadUsersOfConstant(const Constant *C) {
370   if (isa<GlobalValue>(C)) return false; // Cannot remove this
371
372   while (!C->use_empty()) {
373     const Constant *User = dyn_cast<Constant>(C->use_back());
374     if (!User) return false; // Non-constant usage;
375     if (!removeDeadUsersOfConstant(User))
376       return false; // Constant wasn't dead
377   }
378
379   const_cast<Constant*>(C)->destroyConstant();
380   return true;
381 }
382
383
384 /// removeDeadConstantUsers - If there are any dead constant users dangling
385 /// off of this constant, remove them.  This method is useful for clients
386 /// that want to check to see if a global is unused, but don't want to deal
387 /// with potentially dead constants hanging off of the globals.
388 void Constant::removeDeadConstantUsers() const {
389   Value::const_use_iterator I = use_begin(), E = use_end();
390   Value::const_use_iterator LastNonDeadUser = E;
391   while (I != E) {
392     const Constant *User = dyn_cast<Constant>(*I);
393     if (User == 0) {
394       LastNonDeadUser = I;
395       ++I;
396       continue;
397     }
398
399     if (!removeDeadUsersOfConstant(User)) {
400       // If the constant wasn't dead, remember that this was the last live use
401       // and move on to the next constant.
402       LastNonDeadUser = I;
403       ++I;
404       continue;
405     }
406
407     // If the constant was dead, then the iterator is invalidated.
408     if (LastNonDeadUser == E) {
409       I = use_begin();
410       if (I == E) break;
411     } else {
412       I = LastNonDeadUser;
413       ++I;
414     }
415   }
416 }
417
418
419
420 //===----------------------------------------------------------------------===//
421 //                                ConstantInt
422 //===----------------------------------------------------------------------===//
423
424 void ConstantInt::anchor() { }
425
426 ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
427   : Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
428   assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
429 }
430
431 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
432   LLVMContextImpl *pImpl = Context.pImpl;
433   if (!pImpl->TheTrueVal)
434     pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
435   return pImpl->TheTrueVal;
436 }
437
438 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
439   LLVMContextImpl *pImpl = Context.pImpl;
440   if (!pImpl->TheFalseVal)
441     pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
442   return pImpl->TheFalseVal;
443 }
444
445 Constant *ConstantInt::getTrue(Type *Ty) {
446   VectorType *VTy = dyn_cast<VectorType>(Ty);
447   if (!VTy) {
448     assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
449     return ConstantInt::getTrue(Ty->getContext());
450   }
451   assert(VTy->getElementType()->isIntegerTy(1) &&
452          "True must be vector of i1 or i1.");
453   return ConstantVector::getSplat(VTy->getNumElements(),
454                                   ConstantInt::getTrue(Ty->getContext()));
455 }
456
457 Constant *ConstantInt::getFalse(Type *Ty) {
458   VectorType *VTy = dyn_cast<VectorType>(Ty);
459   if (!VTy) {
460     assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
461     return ConstantInt::getFalse(Ty->getContext());
462   }
463   assert(VTy->getElementType()->isIntegerTy(1) &&
464          "False must be vector of i1 or i1.");
465   return ConstantVector::getSplat(VTy->getNumElements(),
466                                   ConstantInt::getFalse(Ty->getContext()));
467 }
468
469
470 // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap 
471 // as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
472 // operator== and operator!= to ensure that the DenseMap doesn't attempt to
473 // compare APInt's of different widths, which would violate an APInt class
474 // invariant which generates an assertion.
475 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
476   // Get the corresponding integer type for the bit width of the value.
477   IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
478   // get an existing value or the insertion position
479   DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
480   ConstantInt *&Slot = Context.pImpl->IntConstants[Key]; 
481   if (!Slot) Slot = new ConstantInt(ITy, V);
482   return Slot;
483 }
484
485 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
486   Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
487
488   // For vectors, broadcast the value.
489   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
490     return ConstantVector::getSplat(VTy->getNumElements(), C);
491
492   return C;
493 }
494
495 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, 
496                               bool isSigned) {
497   return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
498 }
499
500 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
501   return get(Ty, V, true);
502 }
503
504 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
505   return get(Ty, V, true);
506 }
507
508 Constant *ConstantInt::get(Type *Ty, const APInt& V) {
509   ConstantInt *C = get(Ty->getContext(), V);
510   assert(C->getType() == Ty->getScalarType() &&
511          "ConstantInt type doesn't match the type implied by its value!");
512
513   // For vectors, broadcast the value.
514   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
515     return ConstantVector::getSplat(VTy->getNumElements(), C);
516
517   return C;
518 }
519
520 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str,
521                               uint8_t radix) {
522   return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
523 }
524
525 //===----------------------------------------------------------------------===//
526 //                                ConstantFP
527 //===----------------------------------------------------------------------===//
528
529 static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
530   if (Ty->isHalfTy())
531     return &APFloat::IEEEhalf;
532   if (Ty->isFloatTy())
533     return &APFloat::IEEEsingle;
534   if (Ty->isDoubleTy())
535     return &APFloat::IEEEdouble;
536   if (Ty->isX86_FP80Ty())
537     return &APFloat::x87DoubleExtended;
538   else if (Ty->isFP128Ty())
539     return &APFloat::IEEEquad;
540
541   assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
542   return &APFloat::PPCDoubleDouble;
543 }
544
545 void ConstantFP::anchor() { }
546
547 /// get() - This returns a constant fp for the specified value in the
548 /// specified type.  This should only be used for simple constant values like
549 /// 2.0/1.0 etc, that are known-valid both as double and as the target format.
550 Constant *ConstantFP::get(Type *Ty, double V) {
551   LLVMContext &Context = Ty->getContext();
552
553   APFloat FV(V);
554   bool ignored;
555   FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
556              APFloat::rmNearestTiesToEven, &ignored);
557   Constant *C = get(Context, FV);
558
559   // For vectors, broadcast the value.
560   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
561     return ConstantVector::getSplat(VTy->getNumElements(), C);
562
563   return C;
564 }
565
566
567 Constant *ConstantFP::get(Type *Ty, StringRef Str) {
568   LLVMContext &Context = Ty->getContext();
569
570   APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
571   Constant *C = get(Context, FV);
572
573   // For vectors, broadcast the value.
574   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
575     return ConstantVector::getSplat(VTy->getNumElements(), C);
576
577   return C; 
578 }
579
580
581 ConstantFP *ConstantFP::getNegativeZero(Type *Ty) {
582   LLVMContext &Context = Ty->getContext();
583   APFloat apf = cast<ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
584   apf.changeSign();
585   return get(Context, apf);
586 }
587
588
589 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
590   Type *ScalarTy = Ty->getScalarType();
591   if (ScalarTy->isFloatingPointTy()) {
592     Constant *C = getNegativeZero(ScalarTy);
593     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
594       return ConstantVector::getSplat(VTy->getNumElements(), C);
595     return C;
596   }
597
598   return Constant::getNullValue(Ty);
599 }
600
601
602 // ConstantFP accessors.
603 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
604   DenseMapAPFloatKeyInfo::KeyTy Key(V);
605
606   LLVMContextImpl* pImpl = Context.pImpl;
607
608   ConstantFP *&Slot = pImpl->FPConstants[Key];
609
610   if (!Slot) {
611     Type *Ty;
612     if (&V.getSemantics() == &APFloat::IEEEhalf)
613       Ty = Type::getHalfTy(Context);
614     else if (&V.getSemantics() == &APFloat::IEEEsingle)
615       Ty = Type::getFloatTy(Context);
616     else if (&V.getSemantics() == &APFloat::IEEEdouble)
617       Ty = Type::getDoubleTy(Context);
618     else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
619       Ty = Type::getX86_FP80Ty(Context);
620     else if (&V.getSemantics() == &APFloat::IEEEquad)
621       Ty = Type::getFP128Ty(Context);
622     else {
623       assert(&V.getSemantics() == &APFloat::PPCDoubleDouble && 
624              "Unknown FP format");
625       Ty = Type::getPPC_FP128Ty(Context);
626     }
627     Slot = new ConstantFP(Ty, V);
628   }
629
630   return Slot;
631 }
632
633 ConstantFP *ConstantFP::getInfinity(Type *Ty, bool Negative) {
634   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty);
635   return ConstantFP::get(Ty->getContext(),
636                          APFloat::getInf(Semantics, Negative));
637 }
638
639 ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
640   : Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
641   assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
642          "FP type Mismatch");
643 }
644
645 bool ConstantFP::isExactlyValue(const APFloat &V) const {
646   return Val.bitwiseIsEqual(V);
647 }
648
649 //===----------------------------------------------------------------------===//
650 //                   ConstantAggregateZero Implementation
651 //===----------------------------------------------------------------------===//
652
653 /// getSequentialElement - If this CAZ has array or vector type, return a zero
654 /// with the right element type.
655 Constant *ConstantAggregateZero::getSequentialElement() const {
656   return Constant::getNullValue(getType()->getSequentialElementType());
657 }
658
659 /// getStructElement - If this CAZ has struct type, return a zero with the
660 /// right element type for the specified element.
661 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
662   return Constant::getNullValue(getType()->getStructElementType(Elt));
663 }
664
665 /// getElementValue - Return a zero of the right value for the specified GEP
666 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
667 Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
668   if (isa<SequentialType>(getType()))
669     return getSequentialElement();
670   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
671 }
672
673 /// getElementValue - Return a zero of the right value for the specified GEP
674 /// index.
675 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
676   if (isa<SequentialType>(getType()))
677     return getSequentialElement();
678   return getStructElement(Idx);
679 }
680
681
682 //===----------------------------------------------------------------------===//
683 //                         UndefValue Implementation
684 //===----------------------------------------------------------------------===//
685
686 /// getSequentialElement - If this undef has array or vector type, return an
687 /// undef with the right element type.
688 UndefValue *UndefValue::getSequentialElement() const {
689   return UndefValue::get(getType()->getSequentialElementType());
690 }
691
692 /// getStructElement - If this undef has struct type, return a zero with the
693 /// right element type for the specified element.
694 UndefValue *UndefValue::getStructElement(unsigned Elt) const {
695   return UndefValue::get(getType()->getStructElementType(Elt));
696 }
697
698 /// getElementValue - Return an undef of the right value for the specified GEP
699 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
700 UndefValue *UndefValue::getElementValue(Constant *C) const {
701   if (isa<SequentialType>(getType()))
702     return getSequentialElement();
703   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
704 }
705
706 /// getElementValue - Return an undef of the right value for the specified GEP
707 /// index.
708 UndefValue *UndefValue::getElementValue(unsigned Idx) const {
709   if (isa<SequentialType>(getType()))
710     return getSequentialElement();
711   return getStructElement(Idx);
712 }
713
714
715
716 //===----------------------------------------------------------------------===//
717 //                            ConstantXXX Classes
718 //===----------------------------------------------------------------------===//
719
720 template <typename ItTy, typename EltTy>
721 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
722   for (; Start != End; ++Start)
723     if (*Start != Elt)
724       return false;
725   return true;
726 }
727
728 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
729   : Constant(T, ConstantArrayVal,
730              OperandTraits<ConstantArray>::op_end(this) - V.size(),
731              V.size()) {
732   assert(V.size() == T->getNumElements() &&
733          "Invalid initializer vector for constant array");
734   for (unsigned i = 0, e = V.size(); i != e; ++i)
735     assert(V[i]->getType() == T->getElementType() &&
736            "Initializer for array element doesn't match array element type!");
737   std::copy(V.begin(), V.end(), op_begin());
738 }
739
740 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
741   // Empty arrays are canonicalized to ConstantAggregateZero.
742   if (V.empty())
743     return ConstantAggregateZero::get(Ty);
744
745   for (unsigned i = 0, e = V.size(); i != e; ++i) {
746     assert(V[i]->getType() == Ty->getElementType() &&
747            "Wrong type in array element initializer");
748   }
749   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
750
751   // If this is an all-zero array, return a ConstantAggregateZero object.  If
752   // all undef, return an UndefValue, if "all simple", then return a
753   // ConstantDataArray.
754   Constant *C = V[0];
755   if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
756     return UndefValue::get(Ty);
757
758   if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
759     return ConstantAggregateZero::get(Ty);
760
761   // Check to see if all of the elements are ConstantFP or ConstantInt and if
762   // the element type is compatible with ConstantDataVector.  If so, use it.
763   if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
764     // We speculatively build the elements here even if it turns out that there
765     // is a constantexpr or something else weird in the array, since it is so
766     // uncommon for that to happen.
767     if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
768       if (CI->getType()->isIntegerTy(8)) {
769         SmallVector<uint8_t, 16> Elts;
770         for (unsigned i = 0, e = V.size(); i != e; ++i)
771           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
772             Elts.push_back(CI->getZExtValue());
773           else
774             break;
775         if (Elts.size() == V.size())
776           return ConstantDataArray::get(C->getContext(), Elts);
777       } else if (CI->getType()->isIntegerTy(16)) {
778         SmallVector<uint16_t, 16> Elts;
779         for (unsigned i = 0, e = V.size(); i != e; ++i)
780           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
781             Elts.push_back(CI->getZExtValue());
782           else
783             break;
784         if (Elts.size() == V.size())
785           return ConstantDataArray::get(C->getContext(), Elts);
786       } else if (CI->getType()->isIntegerTy(32)) {
787         SmallVector<uint32_t, 16> Elts;
788         for (unsigned i = 0, e = V.size(); i != e; ++i)
789           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
790             Elts.push_back(CI->getZExtValue());
791           else
792             break;
793         if (Elts.size() == V.size())
794           return ConstantDataArray::get(C->getContext(), Elts);
795       } else if (CI->getType()->isIntegerTy(64)) {
796         SmallVector<uint64_t, 16> Elts;
797         for (unsigned i = 0, e = V.size(); i != e; ++i)
798           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
799             Elts.push_back(CI->getZExtValue());
800           else
801             break;
802         if (Elts.size() == V.size())
803           return ConstantDataArray::get(C->getContext(), Elts);
804       }
805     }
806
807     if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
808       if (CFP->getType()->isFloatTy()) {
809         SmallVector<float, 16> Elts;
810         for (unsigned i = 0, e = V.size(); i != e; ++i)
811           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
812             Elts.push_back(CFP->getValueAPF().convertToFloat());
813           else
814             break;
815         if (Elts.size() == V.size())
816           return ConstantDataArray::get(C->getContext(), Elts);
817       } else if (CFP->getType()->isDoubleTy()) {
818         SmallVector<double, 16> Elts;
819         for (unsigned i = 0, e = V.size(); i != e; ++i)
820           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
821             Elts.push_back(CFP->getValueAPF().convertToDouble());
822           else
823             break;
824         if (Elts.size() == V.size())
825           return ConstantDataArray::get(C->getContext(), Elts);
826       }
827     }
828   }
829
830   // Otherwise, we really do want to create a ConstantArray.
831   return pImpl->ArrayConstants.getOrCreate(Ty, V);
832 }
833
834 /// getTypeForElements - Return an anonymous struct type to use for a constant
835 /// with the specified set of elements.  The list must not be empty.
836 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
837                                                ArrayRef<Constant*> V,
838                                                bool Packed) {
839   unsigned VecSize = V.size();
840   SmallVector<Type*, 16> EltTypes(VecSize);
841   for (unsigned i = 0; i != VecSize; ++i)
842     EltTypes[i] = V[i]->getType();
843
844   return StructType::get(Context, EltTypes, Packed);
845 }
846
847
848 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
849                                                bool Packed) {
850   assert(!V.empty() &&
851          "ConstantStruct::getTypeForElements cannot be called on empty list");
852   return getTypeForElements(V[0]->getContext(), V, Packed);
853 }
854
855
856 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
857   : Constant(T, ConstantStructVal,
858              OperandTraits<ConstantStruct>::op_end(this) - V.size(),
859              V.size()) {
860   assert(V.size() == T->getNumElements() &&
861          "Invalid initializer vector for constant structure");
862   for (unsigned i = 0, e = V.size(); i != e; ++i)
863     assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) &&
864            "Initializer for struct element doesn't match struct element type!");
865   std::copy(V.begin(), V.end(), op_begin());
866 }
867
868 // ConstantStruct accessors.
869 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
870   assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
871          "Incorrect # elements specified to ConstantStruct::get");
872
873   // Create a ConstantAggregateZero value if all elements are zeros.
874   bool isZero = true;
875   bool isUndef = false;
876   
877   if (!V.empty()) {
878     isUndef = isa<UndefValue>(V[0]);
879     isZero = V[0]->isNullValue();
880     if (isUndef || isZero) {
881       for (unsigned i = 0, e = V.size(); i != e; ++i) {
882         if (!V[i]->isNullValue())
883           isZero = false;
884         if (!isa<UndefValue>(V[i]))
885           isUndef = false;
886       }
887     }
888   }
889   if (isZero)
890     return ConstantAggregateZero::get(ST);
891   if (isUndef)
892     return UndefValue::get(ST);
893
894   return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
895 }
896
897 Constant *ConstantStruct::get(StructType *T, ...) {
898   va_list ap;
899   SmallVector<Constant*, 8> Values;
900   va_start(ap, T);
901   while (Constant *Val = va_arg(ap, llvm::Constant*))
902     Values.push_back(Val);
903   va_end(ap);
904   return get(T, Values);
905 }
906
907 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
908   : Constant(T, ConstantVectorVal,
909              OperandTraits<ConstantVector>::op_end(this) - V.size(),
910              V.size()) {
911   for (size_t i = 0, e = V.size(); i != e; i++)
912     assert(V[i]->getType() == T->getElementType() &&
913            "Initializer for vector element doesn't match vector element type!");
914   std::copy(V.begin(), V.end(), op_begin());
915 }
916
917 // ConstantVector accessors.
918 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
919   assert(!V.empty() && "Vectors can't be empty");
920   VectorType *T = VectorType::get(V.front()->getType(), V.size());
921   LLVMContextImpl *pImpl = T->getContext().pImpl;
922
923   // If this is an all-undef or all-zero vector, return a
924   // ConstantAggregateZero or UndefValue.
925   Constant *C = V[0];
926   bool isZero = C->isNullValue();
927   bool isUndef = isa<UndefValue>(C);
928
929   if (isZero || isUndef) {
930     for (unsigned i = 1, e = V.size(); i != e; ++i)
931       if (V[i] != C) {
932         isZero = isUndef = false;
933         break;
934       }
935   }
936
937   if (isZero)
938     return ConstantAggregateZero::get(T);
939   if (isUndef)
940     return UndefValue::get(T);
941
942   // Check to see if all of the elements are ConstantFP or ConstantInt and if
943   // the element type is compatible with ConstantDataVector.  If so, use it.
944   if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
945     // We speculatively build the elements here even if it turns out that there
946     // is a constantexpr or something else weird in the array, since it is so
947     // uncommon for that to happen.
948     if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
949       if (CI->getType()->isIntegerTy(8)) {
950         SmallVector<uint8_t, 16> Elts;
951         for (unsigned i = 0, e = V.size(); i != e; ++i)
952           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
953             Elts.push_back(CI->getZExtValue());
954           else
955             break;
956         if (Elts.size() == V.size())
957           return ConstantDataVector::get(C->getContext(), Elts);
958       } else if (CI->getType()->isIntegerTy(16)) {
959         SmallVector<uint16_t, 16> Elts;
960         for (unsigned i = 0, e = V.size(); i != e; ++i)
961           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
962             Elts.push_back(CI->getZExtValue());
963           else
964             break;
965         if (Elts.size() == V.size())
966           return ConstantDataVector::get(C->getContext(), Elts);
967       } else if (CI->getType()->isIntegerTy(32)) {
968         SmallVector<uint32_t, 16> Elts;
969         for (unsigned i = 0, e = V.size(); i != e; ++i)
970           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
971             Elts.push_back(CI->getZExtValue());
972           else
973             break;
974         if (Elts.size() == V.size())
975           return ConstantDataVector::get(C->getContext(), Elts);
976       } else if (CI->getType()->isIntegerTy(64)) {
977         SmallVector<uint64_t, 16> Elts;
978         for (unsigned i = 0, e = V.size(); i != e; ++i)
979           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
980             Elts.push_back(CI->getZExtValue());
981           else
982             break;
983         if (Elts.size() == V.size())
984           return ConstantDataVector::get(C->getContext(), Elts);
985       }
986     }
987
988     if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
989       if (CFP->getType()->isFloatTy()) {
990         SmallVector<float, 16> Elts;
991         for (unsigned i = 0, e = V.size(); i != e; ++i)
992           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
993             Elts.push_back(CFP->getValueAPF().convertToFloat());
994           else
995             break;
996         if (Elts.size() == V.size())
997           return ConstantDataVector::get(C->getContext(), Elts);
998       } else if (CFP->getType()->isDoubleTy()) {
999         SmallVector<double, 16> Elts;
1000         for (unsigned i = 0, e = V.size(); i != e; ++i)
1001           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
1002             Elts.push_back(CFP->getValueAPF().convertToDouble());
1003           else
1004             break;
1005         if (Elts.size() == V.size())
1006           return ConstantDataVector::get(C->getContext(), Elts);
1007       }
1008     }
1009   }
1010
1011   // Otherwise, the element type isn't compatible with ConstantDataVector, or
1012   // the operand list constants a ConstantExpr or something else strange.
1013   return pImpl->VectorConstants.getOrCreate(T, V);
1014 }
1015
1016 Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
1017   // If this splat is compatible with ConstantDataVector, use it instead of
1018   // ConstantVector.
1019   if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1020       ConstantDataSequential::isElementTypeCompatible(V->getType()))
1021     return ConstantDataVector::getSplat(NumElts, V);
1022
1023   SmallVector<Constant*, 32> Elts(NumElts, V);
1024   return get(Elts);
1025 }
1026
1027
1028 // Utility function for determining if a ConstantExpr is a CastOp or not. This
1029 // can't be inline because we don't want to #include Instruction.h into
1030 // Constant.h
1031 bool ConstantExpr::isCast() const {
1032   return Instruction::isCast(getOpcode());
1033 }
1034
1035 bool ConstantExpr::isCompare() const {
1036   return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1037 }
1038
1039 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
1040   if (getOpcode() != Instruction::GetElementPtr) return false;
1041
1042   gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
1043   User::const_op_iterator OI = llvm::next(this->op_begin());
1044
1045   // Skip the first index, as it has no static limit.
1046   ++GEPI;
1047   ++OI;
1048
1049   // The remaining indices must be compile-time known integers within the
1050   // bounds of the corresponding notional static array types.
1051   for (; GEPI != E; ++GEPI, ++OI) {
1052     ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
1053     if (!CI) return false;
1054     if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
1055       if (CI->getValue().getActiveBits() > 64 ||
1056           CI->getZExtValue() >= ATy->getNumElements())
1057         return false;
1058   }
1059
1060   // All the indices checked out.
1061   return true;
1062 }
1063
1064 bool ConstantExpr::hasIndices() const {
1065   return getOpcode() == Instruction::ExtractValue ||
1066          getOpcode() == Instruction::InsertValue;
1067 }
1068
1069 ArrayRef<unsigned> ConstantExpr::getIndices() const {
1070   if (const ExtractValueConstantExpr *EVCE =
1071         dyn_cast<ExtractValueConstantExpr>(this))
1072     return EVCE->Indices;
1073
1074   return cast<InsertValueConstantExpr>(this)->Indices;
1075 }
1076
1077 unsigned ConstantExpr::getPredicate() const {
1078   assert(isCompare());
1079   return ((const CompareConstantExpr*)this)->predicate;
1080 }
1081
1082 /// getWithOperandReplaced - Return a constant expression identical to this
1083 /// one, but with the specified operand set to the specified value.
1084 Constant *
1085 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
1086   assert(Op->getType() == getOperand(OpNo)->getType() &&
1087          "Replacing operand with value of different type!");
1088   if (getOperand(OpNo) == Op)
1089     return const_cast<ConstantExpr*>(this);
1090
1091   SmallVector<Constant*, 8> NewOps;
1092   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1093     NewOps.push_back(i == OpNo ? Op : getOperand(i));
1094
1095   return getWithOperands(NewOps);
1096 }
1097
1098 /// getWithOperands - This returns the current constant expression with the
1099 /// operands replaced with the specified values.  The specified array must
1100 /// have the same number of operands as our current one.
1101 Constant *ConstantExpr::
1102 getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const {
1103   assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1104   bool AnyChange = Ty != getType();
1105   for (unsigned i = 0; i != Ops.size(); ++i)
1106     AnyChange |= Ops[i] != getOperand(i);
1107
1108   if (!AnyChange)  // No operands changed, return self.
1109     return const_cast<ConstantExpr*>(this);
1110
1111   switch (getOpcode()) {
1112   case Instruction::Trunc:
1113   case Instruction::ZExt:
1114   case Instruction::SExt:
1115   case Instruction::FPTrunc:
1116   case Instruction::FPExt:
1117   case Instruction::UIToFP:
1118   case Instruction::SIToFP:
1119   case Instruction::FPToUI:
1120   case Instruction::FPToSI:
1121   case Instruction::PtrToInt:
1122   case Instruction::IntToPtr:
1123   case Instruction::BitCast:
1124     return ConstantExpr::getCast(getOpcode(), Ops[0], Ty);
1125   case Instruction::Select:
1126     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1127   case Instruction::InsertElement:
1128     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1129   case Instruction::ExtractElement:
1130     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1131   case Instruction::InsertValue:
1132     return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices());
1133   case Instruction::ExtractValue:
1134     return ConstantExpr::getExtractValue(Ops[0], getIndices());
1135   case Instruction::ShuffleVector:
1136     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
1137   case Instruction::GetElementPtr:
1138     return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1),
1139                                       cast<GEPOperator>(this)->isInBounds());
1140   case Instruction::ICmp:
1141   case Instruction::FCmp:
1142     return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
1143   default:
1144     assert(getNumOperands() == 2 && "Must be binary operator?");
1145     return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData);
1146   }
1147 }
1148
1149
1150 //===----------------------------------------------------------------------===//
1151 //                      isValueValidForType implementations
1152
1153 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1154   unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1155   if (Ty->isIntegerTy(1))
1156     return Val == 0 || Val == 1;
1157   if (NumBits >= 64)
1158     return true; // always true, has to fit in largest type
1159   uint64_t Max = (1ll << NumBits) - 1;
1160   return Val <= Max;
1161 }
1162
1163 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1164   unsigned NumBits = Ty->getIntegerBitWidth();
1165   if (Ty->isIntegerTy(1))
1166     return Val == 0 || Val == 1 || Val == -1;
1167   if (NumBits >= 64)
1168     return true; // always true, has to fit in largest type
1169   int64_t Min = -(1ll << (NumBits-1));
1170   int64_t Max = (1ll << (NumBits-1)) - 1;
1171   return (Val >= Min && Val <= Max);
1172 }
1173
1174 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1175   // convert modifies in place, so make a copy.
1176   APFloat Val2 = APFloat(Val);
1177   bool losesInfo;
1178   switch (Ty->getTypeID()) {
1179   default:
1180     return false;         // These can't be represented as floating point!
1181
1182   // FIXME rounding mode needs to be more flexible
1183   case Type::HalfTyID: {
1184     if (&Val2.getSemantics() == &APFloat::IEEEhalf)
1185       return true;
1186     Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo);
1187     return !losesInfo;
1188   }
1189   case Type::FloatTyID: {
1190     if (&Val2.getSemantics() == &APFloat::IEEEsingle)
1191       return true;
1192     Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
1193     return !losesInfo;
1194   }
1195   case Type::DoubleTyID: {
1196     if (&Val2.getSemantics() == &APFloat::IEEEhalf ||
1197         &Val2.getSemantics() == &APFloat::IEEEsingle ||
1198         &Val2.getSemantics() == &APFloat::IEEEdouble)
1199       return true;
1200     Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
1201     return !losesInfo;
1202   }
1203   case Type::X86_FP80TyID:
1204     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1205            &Val2.getSemantics() == &APFloat::IEEEsingle || 
1206            &Val2.getSemantics() == &APFloat::IEEEdouble ||
1207            &Val2.getSemantics() == &APFloat::x87DoubleExtended;
1208   case Type::FP128TyID:
1209     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1210            &Val2.getSemantics() == &APFloat::IEEEsingle || 
1211            &Val2.getSemantics() == &APFloat::IEEEdouble ||
1212            &Val2.getSemantics() == &APFloat::IEEEquad;
1213   case Type::PPC_FP128TyID:
1214     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1215            &Val2.getSemantics() == &APFloat::IEEEsingle || 
1216            &Val2.getSemantics() == &APFloat::IEEEdouble ||
1217            &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
1218   }
1219 }
1220
1221
1222 //===----------------------------------------------------------------------===//
1223 //                      Factory Function Implementation
1224
1225 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1226   assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1227          "Cannot create an aggregate zero of non-aggregate type!");
1228   
1229   ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty];
1230   if (Entry == 0)
1231     Entry = new ConstantAggregateZero(Ty);
1232
1233   return Entry;
1234 }
1235
1236 /// destroyConstant - Remove the constant from the constant table.
1237 ///
1238 void ConstantAggregateZero::destroyConstant() {
1239   getContext().pImpl->CAZConstants.erase(getType());
1240   destroyConstantImpl();
1241 }
1242
1243 /// destroyConstant - Remove the constant from the constant table...
1244 ///
1245 void ConstantArray::destroyConstant() {
1246   getType()->getContext().pImpl->ArrayConstants.remove(this);
1247   destroyConstantImpl();
1248 }
1249
1250
1251 //---- ConstantStruct::get() implementation...
1252 //
1253
1254 // destroyConstant - Remove the constant from the constant table...
1255 //
1256 void ConstantStruct::destroyConstant() {
1257   getType()->getContext().pImpl->StructConstants.remove(this);
1258   destroyConstantImpl();
1259 }
1260
1261 // destroyConstant - Remove the constant from the constant table...
1262 //
1263 void ConstantVector::destroyConstant() {
1264   getType()->getContext().pImpl->VectorConstants.remove(this);
1265   destroyConstantImpl();
1266 }
1267
1268 /// getSplatValue - If this is a splat vector constant, meaning that all of
1269 /// the elements have the same value, return that value. Otherwise return 0.
1270 Constant *Constant::getSplatValue() const {
1271   assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1272   if (isa<ConstantAggregateZero>(this))
1273     return getNullValue(this->getType()->getVectorElementType());
1274   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1275     return CV->getSplatValue();
1276   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1277     return CV->getSplatValue();
1278   return 0;
1279 }
1280
1281 /// getSplatValue - If this is a splat constant, where all of the
1282 /// elements have the same value, return that value. Otherwise return null.
1283 Constant *ConstantVector::getSplatValue() const {
1284   // Check out first element.
1285   Constant *Elt = getOperand(0);
1286   // Then make sure all remaining elements point to the same value.
1287   for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1288     if (getOperand(I) != Elt)
1289       return 0;
1290   return Elt;
1291 }
1292
1293 /// If C is a constant integer then return its value, otherwise C must be a
1294 /// vector of constant integers, all equal, and the common value is returned.
1295 const APInt &Constant::getUniqueInteger() const {
1296   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1297     return CI->getValue();
1298   assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1299   const Constant *C = this->getAggregateElement(0U);
1300   assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1301   return cast<ConstantInt>(C)->getValue();
1302 }
1303
1304
1305 //---- ConstantPointerNull::get() implementation.
1306 //
1307
1308 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1309   ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty];
1310   if (Entry == 0)
1311     Entry = new ConstantPointerNull(Ty);
1312
1313   return Entry;
1314 }
1315
1316 // destroyConstant - Remove the constant from the constant table...
1317 //
1318 void ConstantPointerNull::destroyConstant() {
1319   getContext().pImpl->CPNConstants.erase(getType());
1320   // Free the constant and any dangling references to it.
1321   destroyConstantImpl();
1322 }
1323
1324
1325 //---- UndefValue::get() implementation.
1326 //
1327
1328 UndefValue *UndefValue::get(Type *Ty) {
1329   UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty];
1330   if (Entry == 0)
1331     Entry = new UndefValue(Ty);
1332
1333   return Entry;
1334 }
1335
1336 // destroyConstant - Remove the constant from the constant table.
1337 //
1338 void UndefValue::destroyConstant() {
1339   // Free the constant and any dangling references to it.
1340   getContext().pImpl->UVConstants.erase(getType());
1341   destroyConstantImpl();
1342 }
1343
1344 //---- BlockAddress::get() implementation.
1345 //
1346
1347 BlockAddress *BlockAddress::get(BasicBlock *BB) {
1348   assert(BB->getParent() != 0 && "Block must have a parent");
1349   return get(BB->getParent(), BB);
1350 }
1351
1352 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1353   BlockAddress *&BA =
1354     F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1355   if (BA == 0)
1356     BA = new BlockAddress(F, BB);
1357
1358   assert(BA->getFunction() == F && "Basic block moved between functions");
1359   return BA;
1360 }
1361
1362 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1363 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1364            &Op<0>(), 2) {
1365   setOperand(0, F);
1366   setOperand(1, BB);
1367   BB->AdjustBlockAddressRefCount(1);
1368 }
1369
1370
1371 // destroyConstant - Remove the constant from the constant table.
1372 //
1373 void BlockAddress::destroyConstant() {
1374   getFunction()->getType()->getContext().pImpl
1375     ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1376   getBasicBlock()->AdjustBlockAddressRefCount(-1);
1377   destroyConstantImpl();
1378 }
1379
1380 void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
1381   // This could be replacing either the Basic Block or the Function.  In either
1382   // case, we have to remove the map entry.
1383   Function *NewF = getFunction();
1384   BasicBlock *NewBB = getBasicBlock();
1385
1386   if (U == &Op<0>())
1387     NewF = cast<Function>(To);
1388   else
1389     NewBB = cast<BasicBlock>(To);
1390
1391   // See if the 'new' entry already exists, if not, just update this in place
1392   // and return early.
1393   BlockAddress *&NewBA =
1394     getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1395   if (NewBA == 0) {
1396     getBasicBlock()->AdjustBlockAddressRefCount(-1);
1397
1398     // Remove the old entry, this can't cause the map to rehash (just a
1399     // tombstone will get added).
1400     getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1401                                                             getBasicBlock()));
1402     NewBA = this;
1403     setOperand(0, NewF);
1404     setOperand(1, NewBB);
1405     getBasicBlock()->AdjustBlockAddressRefCount(1);
1406     return;
1407   }
1408
1409   // Otherwise, I do need to replace this with an existing value.
1410   assert(NewBA != this && "I didn't contain From!");
1411
1412   // Everyone using this now uses the replacement.
1413   replaceAllUsesWith(NewBA);
1414
1415   destroyConstant();
1416 }
1417
1418 //---- ConstantExpr::get() implementations.
1419 //
1420
1421 /// This is a utility function to handle folding of casts and lookup of the
1422 /// cast in the ExprConstants map. It is used by the various get* methods below.
1423 static inline Constant *getFoldedCast(
1424   Instruction::CastOps opc, Constant *C, Type *Ty) {
1425   assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1426   // Fold a few common cases
1427   if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1428     return FC;
1429
1430   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1431
1432   // Look up the constant in the table first to ensure uniqueness.
1433   ExprMapKeyType Key(opc, C);
1434
1435   return pImpl->ExprConstants.getOrCreate(Ty, Key);
1436 }
1437
1438 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) {
1439   Instruction::CastOps opc = Instruction::CastOps(oc);
1440   assert(Instruction::isCast(opc) && "opcode out of range");
1441   assert(C && Ty && "Null arguments to getCast");
1442   assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1443
1444   switch (opc) {
1445   default:
1446     llvm_unreachable("Invalid cast opcode");
1447   case Instruction::Trunc:    return getTrunc(C, Ty);
1448   case Instruction::ZExt:     return getZExt(C, Ty);
1449   case Instruction::SExt:     return getSExt(C, Ty);
1450   case Instruction::FPTrunc:  return getFPTrunc(C, Ty);
1451   case Instruction::FPExt:    return getFPExtend(C, Ty);
1452   case Instruction::UIToFP:   return getUIToFP(C, Ty);
1453   case Instruction::SIToFP:   return getSIToFP(C, Ty);
1454   case Instruction::FPToUI:   return getFPToUI(C, Ty);
1455   case Instruction::FPToSI:   return getFPToSI(C, Ty);
1456   case Instruction::PtrToInt: return getPtrToInt(C, Ty);
1457   case Instruction::IntToPtr: return getIntToPtr(C, Ty);
1458   case Instruction::BitCast:  return getBitCast(C, Ty);
1459   }
1460 }
1461
1462 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1463   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1464     return getBitCast(C, Ty);
1465   return getZExt(C, Ty);
1466 }
1467
1468 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
1469   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1470     return getBitCast(C, Ty);
1471   return getSExt(C, Ty);
1472 }
1473
1474 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1475   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1476     return getBitCast(C, Ty);
1477   return getTrunc(C, Ty);
1478 }
1479
1480 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1481   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1482   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
1483           "Invalid cast");
1484
1485   if (Ty->isIntOrIntVectorTy())
1486     return getPtrToInt(S, Ty);
1487   return getBitCast(S, Ty);
1488 }
1489
1490 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, 
1491                                        bool isSigned) {
1492   assert(C->getType()->isIntOrIntVectorTy() &&
1493          Ty->isIntOrIntVectorTy() && "Invalid cast");
1494   unsigned SrcBits = C->getType()->getScalarSizeInBits();
1495   unsigned DstBits = Ty->getScalarSizeInBits();
1496   Instruction::CastOps opcode =
1497     (SrcBits == DstBits ? Instruction::BitCast :
1498      (SrcBits > DstBits ? Instruction::Trunc :
1499       (isSigned ? Instruction::SExt : Instruction::ZExt)));
1500   return getCast(opcode, C, Ty);
1501 }
1502
1503 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
1504   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1505          "Invalid cast");
1506   unsigned SrcBits = C->getType()->getScalarSizeInBits();
1507   unsigned DstBits = Ty->getScalarSizeInBits();
1508   if (SrcBits == DstBits)
1509     return C; // Avoid a useless cast
1510   Instruction::CastOps opcode =
1511     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1512   return getCast(opcode, C, Ty);
1513 }
1514
1515 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty) {
1516 #ifndef NDEBUG
1517   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1518   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1519 #endif
1520   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1521   assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1522   assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1523   assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1524          "SrcTy must be larger than DestTy for Trunc!");
1525
1526   return getFoldedCast(Instruction::Trunc, C, Ty);
1527 }
1528
1529 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty) {
1530 #ifndef NDEBUG
1531   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1532   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1533 #endif
1534   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1535   assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1536   assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1537   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1538          "SrcTy must be smaller than DestTy for SExt!");
1539
1540   return getFoldedCast(Instruction::SExt, C, Ty);
1541 }
1542
1543 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty) {
1544 #ifndef NDEBUG
1545   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1546   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1547 #endif
1548   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1549   assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1550   assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1551   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1552          "SrcTy must be smaller than DestTy for ZExt!");
1553
1554   return getFoldedCast(Instruction::ZExt, C, Ty);
1555 }
1556
1557 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty) {
1558 #ifndef NDEBUG
1559   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1560   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1561 #endif
1562   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1563   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1564          C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1565          "This is an illegal floating point truncation!");
1566   return getFoldedCast(Instruction::FPTrunc, C, Ty);
1567 }
1568
1569 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty) {
1570 #ifndef NDEBUG
1571   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1572   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1573 #endif
1574   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1575   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1576          C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1577          "This is an illegal floating point extension!");
1578   return getFoldedCast(Instruction::FPExt, C, Ty);
1579 }
1580
1581 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty) {
1582 #ifndef NDEBUG
1583   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1584   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1585 #endif
1586   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1587   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1588          "This is an illegal uint to floating point cast!");
1589   return getFoldedCast(Instruction::UIToFP, C, Ty);
1590 }
1591
1592 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty) {
1593 #ifndef NDEBUG
1594   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1595   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1596 #endif
1597   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1598   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1599          "This is an illegal sint to floating point cast!");
1600   return getFoldedCast(Instruction::SIToFP, C, Ty);
1601 }
1602
1603 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty) {
1604 #ifndef NDEBUG
1605   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1606   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1607 #endif
1608   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1609   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1610          "This is an illegal floating point to uint cast!");
1611   return getFoldedCast(Instruction::FPToUI, C, Ty);
1612 }
1613
1614 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty) {
1615 #ifndef NDEBUG
1616   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1617   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1618 #endif
1619   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1620   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1621          "This is an illegal floating point to sint cast!");
1622   return getFoldedCast(Instruction::FPToSI, C, Ty);
1623 }
1624
1625 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy) {
1626   assert(C->getType()->getScalarType()->isPointerTy() &&
1627          "PtrToInt source must be pointer or pointer vector");
1628   assert(DstTy->getScalarType()->isIntegerTy() && 
1629          "PtrToInt destination must be integer or integer vector");
1630   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1631   if (isa<VectorType>(C->getType()))
1632     assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1633            "Invalid cast between a different number of vector elements");
1634   return getFoldedCast(Instruction::PtrToInt, C, DstTy);
1635 }
1636
1637 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy) {
1638   assert(C->getType()->getScalarType()->isIntegerTy() &&
1639          "IntToPtr source must be integer or integer vector");
1640   assert(DstTy->getScalarType()->isPointerTy() &&
1641          "IntToPtr destination must be a pointer or pointer vector");
1642   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1643   if (isa<VectorType>(C->getType()))
1644     assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1645            "Invalid cast between a different number of vector elements");
1646   return getFoldedCast(Instruction::IntToPtr, C, DstTy);
1647 }
1648
1649 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy) {
1650   assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
1651          "Invalid constantexpr bitcast!");
1652
1653   // It is common to ask for a bitcast of a value to its own type, handle this
1654   // speedily.
1655   if (C->getType() == DstTy) return C;
1656
1657   return getFoldedCast(Instruction::BitCast, C, DstTy);
1658 }
1659
1660 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1661                             unsigned Flags) {
1662   // Check the operands for consistency first.
1663   assert(Opcode >= Instruction::BinaryOpsBegin &&
1664          Opcode <  Instruction::BinaryOpsEnd   &&
1665          "Invalid opcode in binary constant expression");
1666   assert(C1->getType() == C2->getType() &&
1667          "Operand types in binary constant expression should match");
1668
1669 #ifndef NDEBUG
1670   switch (Opcode) {
1671   case Instruction::Add:
1672   case Instruction::Sub:
1673   case Instruction::Mul:
1674     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1675     assert(C1->getType()->isIntOrIntVectorTy() &&
1676            "Tried to create an integer operation on a non-integer type!");
1677     break;
1678   case Instruction::FAdd:
1679   case Instruction::FSub:
1680   case Instruction::FMul:
1681     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1682     assert(C1->getType()->isFPOrFPVectorTy() &&
1683            "Tried to create a floating-point operation on a "
1684            "non-floating-point type!");
1685     break;
1686   case Instruction::UDiv: 
1687   case Instruction::SDiv: 
1688     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1689     assert(C1->getType()->isIntOrIntVectorTy() &&
1690            "Tried to create an arithmetic operation on a non-arithmetic type!");
1691     break;
1692   case Instruction::FDiv:
1693     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1694     assert(C1->getType()->isFPOrFPVectorTy() &&
1695            "Tried to create an arithmetic operation on a non-arithmetic type!");
1696     break;
1697   case Instruction::URem: 
1698   case Instruction::SRem: 
1699     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1700     assert(C1->getType()->isIntOrIntVectorTy() &&
1701            "Tried to create an arithmetic operation on a non-arithmetic type!");
1702     break;
1703   case Instruction::FRem:
1704     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1705     assert(C1->getType()->isFPOrFPVectorTy() &&
1706            "Tried to create an arithmetic operation on a non-arithmetic type!");
1707     break;
1708   case Instruction::And:
1709   case Instruction::Or:
1710   case Instruction::Xor:
1711     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1712     assert(C1->getType()->isIntOrIntVectorTy() &&
1713            "Tried to create a logical operation on a non-integral type!");
1714     break;
1715   case Instruction::Shl:
1716   case Instruction::LShr:
1717   case Instruction::AShr:
1718     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1719     assert(C1->getType()->isIntOrIntVectorTy() &&
1720            "Tried to create a shift operation on a non-integer type!");
1721     break;
1722   default:
1723     break;
1724   }
1725 #endif
1726
1727   if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1728     return FC;          // Fold a few common cases.
1729
1730   Constant *ArgVec[] = { C1, C2 };
1731   ExprMapKeyType Key(Opcode, ArgVec, 0, Flags);
1732
1733   LLVMContextImpl *pImpl = C1->getContext().pImpl;
1734   return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
1735 }
1736
1737 Constant *ConstantExpr::getSizeOf(Type* Ty) {
1738   // sizeof is implemented as: (i64) gep (Ty*)null, 1
1739   // Note that a non-inbounds gep is used, as null isn't within any object.
1740   Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1741   Constant *GEP = getGetElementPtr(
1742                  Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1743   return getPtrToInt(GEP, 
1744                      Type::getInt64Ty(Ty->getContext()));
1745 }
1746
1747 Constant *ConstantExpr::getAlignOf(Type* Ty) {
1748   // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1749   // Note that a non-inbounds gep is used, as null isn't within any object.
1750   Type *AligningTy = 
1751     StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL);
1752   Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo());
1753   Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
1754   Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1755   Constant *Indices[2] = { Zero, One };
1756   Constant *GEP = getGetElementPtr(NullPtr, Indices);
1757   return getPtrToInt(GEP,
1758                      Type::getInt64Ty(Ty->getContext()));
1759 }
1760
1761 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
1762   return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
1763                                            FieldNo));
1764 }
1765
1766 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
1767   // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1768   // Note that a non-inbounds gep is used, as null isn't within any object.
1769   Constant *GEPIdx[] = {
1770     ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
1771     FieldNo
1772   };
1773   Constant *GEP = getGetElementPtr(
1774                 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1775   return getPtrToInt(GEP,
1776                      Type::getInt64Ty(Ty->getContext()));
1777 }
1778
1779 Constant *ConstantExpr::getCompare(unsigned short Predicate, 
1780                                    Constant *C1, Constant *C2) {
1781   assert(C1->getType() == C2->getType() && "Op types should be identical!");
1782
1783   switch (Predicate) {
1784   default: llvm_unreachable("Invalid CmpInst predicate");
1785   case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1786   case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1787   case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1788   case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
1789   case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
1790   case CmpInst::FCMP_TRUE:
1791     return getFCmp(Predicate, C1, C2);
1792
1793   case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
1794   case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
1795   case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
1796   case CmpInst::ICMP_SLE:
1797     return getICmp(Predicate, C1, C2);
1798   }
1799 }
1800
1801 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) {
1802   assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
1803
1804   if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
1805     return SC;        // Fold common cases
1806
1807   Constant *ArgVec[] = { C, V1, V2 };
1808   ExprMapKeyType Key(Instruction::Select, ArgVec);
1809
1810   LLVMContextImpl *pImpl = C->getContext().pImpl;
1811   return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
1812 }
1813
1814 Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs,
1815                                          bool InBounds) {
1816   assert(C->getType()->isPtrOrPtrVectorTy() &&
1817          "Non-pointer type for constant GetElementPtr expression");
1818
1819   if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs))
1820     return FC;          // Fold a few common cases.
1821
1822   // Get the result type of the getelementptr!
1823   Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), Idxs);
1824   assert(Ty && "GEP indices invalid!");
1825   unsigned AS = C->getType()->getPointerAddressSpace();
1826   Type *ReqTy = Ty->getPointerTo(AS);
1827   if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
1828     ReqTy = VectorType::get(ReqTy, VecTy->getNumElements());
1829
1830   // Look up the constant in the table first to ensure uniqueness
1831   std::vector<Constant*> ArgVec;
1832   ArgVec.reserve(1 + Idxs.size());
1833   ArgVec.push_back(C);
1834   for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
1835     assert(Idxs[i]->getType()->isVectorTy() == ReqTy->isVectorTy() &&
1836            "getelementptr index type missmatch");
1837     assert((!Idxs[i]->getType()->isVectorTy() ||
1838             ReqTy->getVectorNumElements() ==
1839             Idxs[i]->getType()->getVectorNumElements()) &&
1840            "getelementptr index type missmatch");
1841     ArgVec.push_back(cast<Constant>(Idxs[i]));
1842   }
1843   const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
1844                            InBounds ? GEPOperator::IsInBounds : 0);
1845
1846   LLVMContextImpl *pImpl = C->getContext().pImpl;
1847   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1848 }
1849
1850 Constant *
1851 ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1852   assert(LHS->getType() == RHS->getType());
1853   assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE && 
1854          pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
1855
1856   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1857     return FC;          // Fold a few common cases...
1858
1859   // Look up the constant in the table first to ensure uniqueness
1860   Constant *ArgVec[] = { LHS, RHS };
1861   // Get the key type with both the opcode and predicate
1862   const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
1863
1864   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1865   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1866     ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1867
1868   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1869   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1870 }
1871
1872 Constant *
1873 ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1874   assert(LHS->getType() == RHS->getType());
1875   assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
1876
1877   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1878     return FC;          // Fold a few common cases...
1879
1880   // Look up the constant in the table first to ensure uniqueness
1881   Constant *ArgVec[] = { LHS, RHS };
1882   // Get the key type with both the opcode and predicate
1883   const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
1884
1885   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1886   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1887     ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1888
1889   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1890   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1891 }
1892
1893 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
1894   assert(Val->getType()->isVectorTy() &&
1895          "Tried to create extractelement operation on non-vector type!");
1896   assert(Idx->getType()->isIntegerTy(32) &&
1897          "Extractelement index must be i32 type!");
1898
1899   if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
1900     return FC;          // Fold a few common cases.
1901
1902   // Look up the constant in the table first to ensure uniqueness
1903   Constant *ArgVec[] = { Val, Idx };
1904   const ExprMapKeyType Key(Instruction::ExtractElement, ArgVec);
1905
1906   LLVMContextImpl *pImpl = Val->getContext().pImpl;
1907   Type *ReqTy = Val->getType()->getVectorElementType();
1908   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1909 }
1910
1911 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, 
1912                                          Constant *Idx) {
1913   assert(Val->getType()->isVectorTy() &&
1914          "Tried to create insertelement operation on non-vector type!");
1915   assert(Elt->getType() == Val->getType()->getVectorElementType() &&
1916          "Insertelement types must match!");
1917   assert(Idx->getType()->isIntegerTy(32) &&
1918          "Insertelement index must be i32 type!");
1919
1920   if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
1921     return FC;          // Fold a few common cases.
1922   // Look up the constant in the table first to ensure uniqueness
1923   Constant *ArgVec[] = { Val, Elt, Idx };
1924   const ExprMapKeyType Key(Instruction::InsertElement, ArgVec);
1925
1926   LLVMContextImpl *pImpl = Val->getContext().pImpl;
1927   return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
1928 }
1929
1930 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, 
1931                                          Constant *Mask) {
1932   assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
1933          "Invalid shuffle vector constant expr operands!");
1934
1935   if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
1936     return FC;          // Fold a few common cases.
1937
1938   unsigned NElts = Mask->getType()->getVectorNumElements();
1939   Type *EltTy = V1->getType()->getVectorElementType();
1940   Type *ShufTy = VectorType::get(EltTy, NElts);
1941
1942   // Look up the constant in the table first to ensure uniqueness
1943   Constant *ArgVec[] = { V1, V2, Mask };
1944   const ExprMapKeyType Key(Instruction::ShuffleVector, ArgVec);
1945
1946   LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
1947   return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
1948 }
1949
1950 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
1951                                        ArrayRef<unsigned> Idxs) {
1952   assert(ExtractValueInst::getIndexedType(Agg->getType(),
1953                                           Idxs) == Val->getType() &&
1954          "insertvalue indices invalid!");
1955   assert(Agg->getType()->isFirstClassType() &&
1956          "Non-first-class type for constant insertvalue expression");
1957   Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs);
1958   assert(FC && "insertvalue constant expr couldn't be folded!");
1959   return FC;
1960 }
1961
1962 Constant *ConstantExpr::getExtractValue(Constant *Agg,
1963                                         ArrayRef<unsigned> Idxs) {
1964   assert(Agg->getType()->isFirstClassType() &&
1965          "Tried to create extractelement operation on non-first-class type!");
1966
1967   Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
1968   (void)ReqTy;
1969   assert(ReqTy && "extractvalue indices invalid!");
1970
1971   assert(Agg->getType()->isFirstClassType() &&
1972          "Non-first-class type for constant extractvalue expression");
1973   Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs);
1974   assert(FC && "ExtractValue constant expr couldn't be folded!");
1975   return FC;
1976 }
1977
1978 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
1979   assert(C->getType()->isIntOrIntVectorTy() &&
1980          "Cannot NEG a nonintegral value!");
1981   return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
1982                 C, HasNUW, HasNSW);
1983 }
1984
1985 Constant *ConstantExpr::getFNeg(Constant *C) {
1986   assert(C->getType()->isFPOrFPVectorTy() &&
1987          "Cannot FNEG a non-floating-point value!");
1988   return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
1989 }
1990
1991 Constant *ConstantExpr::getNot(Constant *C) {
1992   assert(C->getType()->isIntOrIntVectorTy() &&
1993          "Cannot NOT a nonintegral value!");
1994   return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
1995 }
1996
1997 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
1998                                bool HasNUW, bool HasNSW) {
1999   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2000                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2001   return get(Instruction::Add, C1, C2, Flags);
2002 }
2003
2004 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
2005   return get(Instruction::FAdd, C1, C2);
2006 }
2007
2008 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2009                                bool HasNUW, bool HasNSW) {
2010   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2011                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2012   return get(Instruction::Sub, C1, C2, Flags);
2013 }
2014
2015 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
2016   return get(Instruction::FSub, C1, C2);
2017 }
2018
2019 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2020                                bool HasNUW, bool HasNSW) {
2021   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2022                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2023   return get(Instruction::Mul, C1, C2, Flags);
2024 }
2025
2026 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
2027   return get(Instruction::FMul, C1, C2);
2028 }
2029
2030 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
2031   return get(Instruction::UDiv, C1, C2,
2032              isExact ? PossiblyExactOperator::IsExact : 0);
2033 }
2034
2035 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
2036   return get(Instruction::SDiv, C1, C2,
2037              isExact ? PossiblyExactOperator::IsExact : 0);
2038 }
2039
2040 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
2041   return get(Instruction::FDiv, C1, C2);
2042 }
2043
2044 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
2045   return get(Instruction::URem, C1, C2);
2046 }
2047
2048 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
2049   return get(Instruction::SRem, C1, C2);
2050 }
2051
2052 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
2053   return get(Instruction::FRem, C1, C2);
2054 }
2055
2056 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
2057   return get(Instruction::And, C1, C2);
2058 }
2059
2060 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
2061   return get(Instruction::Or, C1, C2);
2062 }
2063
2064 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2065   return get(Instruction::Xor, C1, C2);
2066 }
2067
2068 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2069                                bool HasNUW, bool HasNSW) {
2070   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2071                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2072   return get(Instruction::Shl, C1, C2, Flags);
2073 }
2074
2075 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2076   return get(Instruction::LShr, C1, C2,
2077              isExact ? PossiblyExactOperator::IsExact : 0);
2078 }
2079
2080 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2081   return get(Instruction::AShr, C1, C2,
2082              isExact ? PossiblyExactOperator::IsExact : 0);
2083 }
2084
2085 /// getBinOpIdentity - Return the identity for the given binary operation,
2086 /// i.e. a constant C such that X op C = X and C op X = X for every X.  It
2087 /// returns null if the operator doesn't have an identity.
2088 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) {
2089   switch (Opcode) {
2090   default:
2091     // Doesn't have an identity.
2092     return 0;
2093
2094   case Instruction::Add:
2095   case Instruction::Or:
2096   case Instruction::Xor:
2097     return Constant::getNullValue(Ty);
2098
2099   case Instruction::Mul:
2100     return ConstantInt::get(Ty, 1);
2101
2102   case Instruction::And:
2103     return Constant::getAllOnesValue(Ty);
2104   }
2105 }
2106
2107 /// getBinOpAbsorber - Return the absorbing element for the given binary
2108 /// operation, i.e. a constant C such that X op C = C and C op X = C for
2109 /// every X.  For example, this returns zero for integer multiplication.
2110 /// It returns null if the operator doesn't have an absorbing element.
2111 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2112   switch (Opcode) {
2113   default:
2114     // Doesn't have an absorber.
2115     return 0;
2116
2117   case Instruction::Or:
2118     return Constant::getAllOnesValue(Ty);
2119
2120   case Instruction::And:
2121   case Instruction::Mul:
2122     return Constant::getNullValue(Ty);
2123   }
2124 }
2125
2126 // destroyConstant - Remove the constant from the constant table...
2127 //
2128 void ConstantExpr::destroyConstant() {
2129   getType()->getContext().pImpl->ExprConstants.remove(this);
2130   destroyConstantImpl();
2131 }
2132
2133 const char *ConstantExpr::getOpcodeName() const {
2134   return Instruction::getOpcodeName(getOpcode());
2135 }
2136
2137
2138
2139 GetElementPtrConstantExpr::
2140 GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList,
2141                           Type *DestTy)
2142   : ConstantExpr(DestTy, Instruction::GetElementPtr,
2143                  OperandTraits<GetElementPtrConstantExpr>::op_end(this)
2144                  - (IdxList.size()+1), IdxList.size()+1) {
2145   OperandList[0] = C;
2146   for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2147     OperandList[i+1] = IdxList[i];
2148 }
2149
2150 //===----------------------------------------------------------------------===//
2151 //                       ConstantData* implementations
2152
2153 void ConstantDataArray::anchor() {}
2154 void ConstantDataVector::anchor() {}
2155
2156 /// getElementType - Return the element type of the array/vector.
2157 Type *ConstantDataSequential::getElementType() const {
2158   return getType()->getElementType();
2159 }
2160
2161 StringRef ConstantDataSequential::getRawDataValues() const {
2162   return StringRef(DataElements, getNumElements()*getElementByteSize());
2163 }
2164
2165 /// isElementTypeCompatible - Return true if a ConstantDataSequential can be
2166 /// formed with a vector or array of the specified element type.
2167 /// ConstantDataArray only works with normal float and int types that are
2168 /// stored densely in memory, not with things like i42 or x86_f80.
2169 bool ConstantDataSequential::isElementTypeCompatible(const Type *Ty) {
2170   if (Ty->isFloatTy() || Ty->isDoubleTy()) return true;
2171   if (const IntegerType *IT = dyn_cast<IntegerType>(Ty)) {
2172     switch (IT->getBitWidth()) {
2173     case 8:
2174     case 16:
2175     case 32:
2176     case 64:
2177       return true;
2178     default: break;
2179     }
2180   }
2181   return false;
2182 }
2183
2184 /// getNumElements - Return the number of elements in the array or vector.
2185 unsigned ConstantDataSequential::getNumElements() const {
2186   if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2187     return AT->getNumElements();
2188   return getType()->getVectorNumElements();
2189 }
2190
2191
2192 /// getElementByteSize - Return the size in bytes of the elements in the data.
2193 uint64_t ConstantDataSequential::getElementByteSize() const {
2194   return getElementType()->getPrimitiveSizeInBits()/8;
2195 }
2196
2197 /// getElementPointer - Return the start of the specified element.
2198 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2199   assert(Elt < getNumElements() && "Invalid Elt");
2200   return DataElements+Elt*getElementByteSize();
2201 }
2202
2203
2204 /// isAllZeros - return true if the array is empty or all zeros.
2205 static bool isAllZeros(StringRef Arr) {
2206   for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I)
2207     if (*I != 0)
2208       return false;
2209   return true;
2210 }
2211
2212 /// getImpl - This is the underlying implementation of all of the
2213 /// ConstantDataSequential::get methods.  They all thunk down to here, providing
2214 /// the correct element type.  We take the bytes in as a StringRef because
2215 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
2216 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2217   assert(isElementTypeCompatible(Ty->getSequentialElementType()));
2218   // If the elements are all zero or there are no elements, return a CAZ, which
2219   // is more dense and canonical.
2220   if (isAllZeros(Elements))
2221     return ConstantAggregateZero::get(Ty);
2222
2223   // Do a lookup to see if we have already formed one of these.
2224   StringMap<ConstantDataSequential*>::MapEntryTy &Slot =
2225     Ty->getContext().pImpl->CDSConstants.GetOrCreateValue(Elements);
2226
2227   // The bucket can point to a linked list of different CDS's that have the same
2228   // body but different types.  For example, 0,0,0,1 could be a 4 element array
2229   // of i8, or a 1-element array of i32.  They'll both end up in the same
2230   /// StringMap bucket, linked up by their Next pointers.  Walk the list.
2231   ConstantDataSequential **Entry = &Slot.getValue();
2232   for (ConstantDataSequential *Node = *Entry; Node != 0;
2233        Entry = &Node->Next, Node = *Entry)
2234     if (Node->getType() == Ty)
2235       return Node;
2236
2237   // Okay, we didn't get a hit.  Create a node of the right class, link it in,
2238   // and return it.
2239   if (isa<ArrayType>(Ty))
2240     return *Entry = new ConstantDataArray(Ty, Slot.getKeyData());
2241
2242   assert(isa<VectorType>(Ty));
2243   return *Entry = new ConstantDataVector(Ty, Slot.getKeyData());
2244 }
2245
2246 void ConstantDataSequential::destroyConstant() {
2247   // Remove the constant from the StringMap.
2248   StringMap<ConstantDataSequential*> &CDSConstants = 
2249     getType()->getContext().pImpl->CDSConstants;
2250
2251   StringMap<ConstantDataSequential*>::iterator Slot =
2252     CDSConstants.find(getRawDataValues());
2253
2254   assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2255
2256   ConstantDataSequential **Entry = &Slot->getValue();
2257
2258   // Remove the entry from the hash table.
2259   if ((*Entry)->Next == 0) {
2260     // If there is only one value in the bucket (common case) it must be this
2261     // entry, and removing the entry should remove the bucket completely.
2262     assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
2263     getContext().pImpl->CDSConstants.erase(Slot);
2264   } else {
2265     // Otherwise, there are multiple entries linked off the bucket, unlink the 
2266     // node we care about but keep the bucket around.
2267     for (ConstantDataSequential *Node = *Entry; ;
2268          Entry = &Node->Next, Node = *Entry) {
2269       assert(Node && "Didn't find entry in its uniquing hash table!");
2270       // If we found our entry, unlink it from the list and we're done.
2271       if (Node == this) {
2272         *Entry = Node->Next;
2273         break;
2274       }
2275     }
2276   }
2277
2278   // If we were part of a list, make sure that we don't delete the list that is
2279   // still owned by the uniquing map.
2280   Next = 0;
2281
2282   // Finally, actually delete it.
2283   destroyConstantImpl();
2284 }
2285
2286 /// get() constructors - Return a constant with array type with an element
2287 /// count and element type matching the ArrayRef passed in.  Note that this
2288 /// can return a ConstantAggregateZero object.
2289 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) {
2290   Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size());
2291   const char *Data = reinterpret_cast<const char *>(Elts.data());
2292   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2293 }
2294 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2295   Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size());
2296   const char *Data = reinterpret_cast<const char *>(Elts.data());
2297   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2298 }
2299 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2300   Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size());
2301   const char *Data = reinterpret_cast<const char *>(Elts.data());
2302   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2303 }
2304 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2305   Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size());
2306   const char *Data = reinterpret_cast<const char *>(Elts.data());
2307   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2308 }
2309 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) {
2310   Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2311   const char *Data = reinterpret_cast<const char *>(Elts.data());
2312   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2313 }
2314 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) {
2315   Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2316   const char *Data = reinterpret_cast<const char *>(Elts.data());
2317   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2318 }
2319
2320 /// getString - This method constructs a CDS and initializes it with a text
2321 /// string. The default behavior (AddNull==true) causes a null terminator to
2322 /// be placed at the end of the array (increasing the length of the string by
2323 /// one more than the StringRef would normally indicate.  Pass AddNull=false
2324 /// to disable this behavior.
2325 Constant *ConstantDataArray::getString(LLVMContext &Context,
2326                                        StringRef Str, bool AddNull) {
2327   if (!AddNull) {
2328     const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
2329     return get(Context, ArrayRef<uint8_t>(const_cast<uint8_t *>(Data),
2330                Str.size()));
2331   }
2332
2333   SmallVector<uint8_t, 64> ElementVals;
2334   ElementVals.append(Str.begin(), Str.end());
2335   ElementVals.push_back(0);
2336   return get(Context, ElementVals);
2337 }
2338
2339 /// get() constructors - Return a constant with vector type with an element
2340 /// count and element type matching the ArrayRef passed in.  Note that this
2341 /// can return a ConstantAggregateZero object.
2342 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
2343   Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
2344   const char *Data = reinterpret_cast<const char *>(Elts.data());
2345   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2346 }
2347 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2348   Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
2349   const char *Data = reinterpret_cast<const char *>(Elts.data());
2350   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2351 }
2352 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2353   Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
2354   const char *Data = reinterpret_cast<const char *>(Elts.data());
2355   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2356 }
2357 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2358   Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
2359   const char *Data = reinterpret_cast<const char *>(Elts.data());
2360   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2361 }
2362 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
2363   Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2364   const char *Data = reinterpret_cast<const char *>(Elts.data());
2365   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2366 }
2367 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
2368   Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2369   const char *Data = reinterpret_cast<const char *>(Elts.data());
2370   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2371 }
2372
2373 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
2374   assert(isElementTypeCompatible(V->getType()) &&
2375          "Element type not compatible with ConstantData");
2376   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2377     if (CI->getType()->isIntegerTy(8)) {
2378       SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
2379       return get(V->getContext(), Elts);
2380     }
2381     if (CI->getType()->isIntegerTy(16)) {
2382       SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
2383       return get(V->getContext(), Elts);
2384     }
2385     if (CI->getType()->isIntegerTy(32)) {
2386       SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
2387       return get(V->getContext(), Elts);
2388     }
2389     assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2390     SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
2391     return get(V->getContext(), Elts);
2392   }
2393
2394   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2395     if (CFP->getType()->isFloatTy()) {
2396       SmallVector<float, 16> Elts(NumElts, CFP->getValueAPF().convertToFloat());
2397       return get(V->getContext(), Elts);
2398     }
2399     if (CFP->getType()->isDoubleTy()) {
2400       SmallVector<double, 16> Elts(NumElts,
2401                                    CFP->getValueAPF().convertToDouble());
2402       return get(V->getContext(), Elts);
2403     }
2404   }
2405   return ConstantVector::getSplat(NumElts, V);
2406 }
2407
2408
2409 /// getElementAsInteger - If this is a sequential container of integers (of
2410 /// any size), return the specified element in the low bits of a uint64_t.
2411 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
2412   assert(isa<IntegerType>(getElementType()) &&
2413          "Accessor can only be used when element is an integer");
2414   const char *EltPtr = getElementPointer(Elt);
2415
2416   // The data is stored in host byte order, make sure to cast back to the right
2417   // type to load with the right endianness.
2418   switch (getElementType()->getIntegerBitWidth()) {
2419   default: llvm_unreachable("Invalid bitwidth for CDS");
2420   case 8:
2421     return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr));
2422   case 16:
2423     return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr));
2424   case 32:
2425     return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr));
2426   case 64:
2427     return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr));
2428   }
2429 }
2430
2431 /// getElementAsAPFloat - If this is a sequential container of floating point
2432 /// type, return the specified element as an APFloat.
2433 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
2434   const char *EltPtr = getElementPointer(Elt);
2435
2436   switch (getElementType()->getTypeID()) {
2437   default:
2438     llvm_unreachable("Accessor can only be used when element is float/double!");
2439   case Type::FloatTyID: {
2440       const float *FloatPrt = reinterpret_cast<const float *>(EltPtr);
2441       return APFloat(*const_cast<float *>(FloatPrt));
2442     }
2443   case Type::DoubleTyID: {
2444       const double *DoublePtr = reinterpret_cast<const double *>(EltPtr);
2445       return APFloat(*const_cast<double *>(DoublePtr));
2446     }
2447   }
2448 }
2449
2450 /// getElementAsFloat - If this is an sequential container of floats, return
2451 /// the specified element as a float.
2452 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
2453   assert(getElementType()->isFloatTy() &&
2454          "Accessor can only be used when element is a 'float'");
2455   const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt));
2456   return *const_cast<float *>(EltPtr);
2457 }
2458
2459 /// getElementAsDouble - If this is an sequential container of doubles, return
2460 /// the specified element as a float.
2461 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
2462   assert(getElementType()->isDoubleTy() &&
2463          "Accessor can only be used when element is a 'float'");
2464   const double *EltPtr =
2465       reinterpret_cast<const double *>(getElementPointer(Elt));
2466   return *const_cast<double *>(EltPtr);
2467 }
2468
2469 /// getElementAsConstant - Return a Constant for a specified index's element.
2470 /// Note that this has to compute a new constant to return, so it isn't as
2471 /// efficient as getElementAsInteger/Float/Double.
2472 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
2473   if (getElementType()->isFloatTy() || getElementType()->isDoubleTy())
2474     return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
2475
2476   return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
2477 }
2478
2479 /// isString - This method returns true if this is an array of i8.
2480 bool ConstantDataSequential::isString() const {
2481   return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8);
2482 }
2483
2484 /// isCString - This method returns true if the array "isString", ends with a
2485 /// nul byte, and does not contains any other nul bytes.
2486 bool ConstantDataSequential::isCString() const {
2487   if (!isString())
2488     return false;
2489
2490   StringRef Str = getAsString();
2491
2492   // The last value must be nul.
2493   if (Str.back() != 0) return false;
2494
2495   // Other elements must be non-nul.
2496   return Str.drop_back().find(0) == StringRef::npos;
2497 }
2498
2499 /// getSplatValue - If this is a splat constant, meaning that all of the
2500 /// elements have the same value, return that value. Otherwise return NULL.
2501 Constant *ConstantDataVector::getSplatValue() const {
2502   const char *Base = getRawDataValues().data();
2503
2504   // Compare elements 1+ to the 0'th element.
2505   unsigned EltSize = getElementByteSize();
2506   for (unsigned i = 1, e = getNumElements(); i != e; ++i)
2507     if (memcmp(Base, Base+i*EltSize, EltSize))
2508       return 0;
2509
2510   // If they're all the same, return the 0th one as a representative.
2511   return getElementAsConstant(0);
2512 }
2513
2514 //===----------------------------------------------------------------------===//
2515 //                replaceUsesOfWithOnConstant implementations
2516
2517 /// replaceUsesOfWithOnConstant - Update this constant array to change uses of
2518 /// 'From' to be uses of 'To'.  This must update the uniquing data structures
2519 /// etc.
2520 ///
2521 /// Note that we intentionally replace all uses of From with To here.  Consider
2522 /// a large array that uses 'From' 1000 times.  By handling this case all here,
2523 /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
2524 /// single invocation handles all 1000 uses.  Handling them one at a time would
2525 /// work, but would be really slow because it would have to unique each updated
2526 /// array instance.
2527 ///
2528 void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
2529                                                 Use *U) {
2530   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2531   Constant *ToC = cast<Constant>(To);
2532
2533   LLVMContextImpl *pImpl = getType()->getContext().pImpl;
2534
2535   SmallVector<Constant*, 8> Values;
2536   LLVMContextImpl::ArrayConstantsTy::LookupKey Lookup;
2537   Lookup.first = cast<ArrayType>(getType());
2538   Values.reserve(getNumOperands());  // Build replacement array.
2539
2540   // Fill values with the modified operands of the constant array.  Also,
2541   // compute whether this turns into an all-zeros array.
2542   unsigned NumUpdated = 0;
2543
2544   // Keep track of whether all the values in the array are "ToC".
2545   bool AllSame = true;
2546   for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2547     Constant *Val = cast<Constant>(O->get());
2548     if (Val == From) {
2549       Val = ToC;
2550       ++NumUpdated;
2551     }
2552     Values.push_back(Val);
2553     AllSame &= Val == ToC;
2554   }
2555
2556   Constant *Replacement = 0;
2557   if (AllSame && ToC->isNullValue()) {
2558     Replacement = ConstantAggregateZero::get(getType());
2559   } else if (AllSame && isa<UndefValue>(ToC)) {
2560     Replacement = UndefValue::get(getType());
2561   } else {
2562     // Check to see if we have this array type already.
2563     Lookup.second = makeArrayRef(Values);
2564     LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
2565       pImpl->ArrayConstants.find(Lookup);
2566
2567     if (I != pImpl->ArrayConstants.map_end()) {
2568       Replacement = I->first;
2569     } else {
2570       // Okay, the new shape doesn't exist in the system yet.  Instead of
2571       // creating a new constant array, inserting it, replaceallusesof'ing the
2572       // old with the new, then deleting the old... just update the current one
2573       // in place!
2574       pImpl->ArrayConstants.remove(this);
2575
2576       // Update to the new value.  Optimize for the case when we have a single
2577       // operand that we're changing, but handle bulk updates efficiently.
2578       if (NumUpdated == 1) {
2579         unsigned OperandToUpdate = U - OperandList;
2580         assert(getOperand(OperandToUpdate) == From &&
2581                "ReplaceAllUsesWith broken!");
2582         setOperand(OperandToUpdate, ToC);
2583       } else {
2584         for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2585           if (getOperand(i) == From)
2586             setOperand(i, ToC);
2587       }
2588       pImpl->ArrayConstants.insert(this);
2589       return;
2590     }
2591   }
2592
2593   // Otherwise, I do need to replace this with an existing value.
2594   assert(Replacement != this && "I didn't contain From!");
2595
2596   // Everyone using this now uses the replacement.
2597   replaceAllUsesWith(Replacement);
2598
2599   // Delete the old constant!
2600   destroyConstant();
2601 }
2602
2603 void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
2604                                                  Use *U) {
2605   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2606   Constant *ToC = cast<Constant>(To);
2607
2608   unsigned OperandToUpdate = U-OperandList;
2609   assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
2610
2611   SmallVector<Constant*, 8> Values;
2612   LLVMContextImpl::StructConstantsTy::LookupKey Lookup;
2613   Lookup.first = cast<StructType>(getType());
2614   Values.reserve(getNumOperands());  // Build replacement struct.
2615
2616   // Fill values with the modified operands of the constant struct.  Also,
2617   // compute whether this turns into an all-zeros struct.
2618   bool isAllZeros = false;
2619   bool isAllUndef = false;
2620   if (ToC->isNullValue()) {
2621     isAllZeros = true;
2622     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2623       Constant *Val = cast<Constant>(O->get());
2624       Values.push_back(Val);
2625       if (isAllZeros) isAllZeros = Val->isNullValue();
2626     }
2627   } else if (isa<UndefValue>(ToC)) {
2628     isAllUndef = true;
2629     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2630       Constant *Val = cast<Constant>(O->get());
2631       Values.push_back(Val);
2632       if (isAllUndef) isAllUndef = isa<UndefValue>(Val);
2633     }
2634   } else {
2635     for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
2636       Values.push_back(cast<Constant>(O->get()));
2637   }
2638   Values[OperandToUpdate] = ToC;
2639
2640   LLVMContextImpl *pImpl = getContext().pImpl;
2641
2642   Constant *Replacement = 0;
2643   if (isAllZeros) {
2644     Replacement = ConstantAggregateZero::get(getType());
2645   } else if (isAllUndef) {
2646     Replacement = UndefValue::get(getType());
2647   } else {
2648     // Check to see if we have this struct type already.
2649     Lookup.second = makeArrayRef(Values);
2650     LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
2651       pImpl->StructConstants.find(Lookup);
2652
2653     if (I != pImpl->StructConstants.map_end()) {
2654       Replacement = I->first;
2655     } else {
2656       // Okay, the new shape doesn't exist in the system yet.  Instead of
2657       // creating a new constant struct, inserting it, replaceallusesof'ing the
2658       // old with the new, then deleting the old... just update the current one
2659       // in place!
2660       pImpl->StructConstants.remove(this);
2661
2662       // Update to the new value.
2663       setOperand(OperandToUpdate, ToC);
2664       pImpl->StructConstants.insert(this);
2665       return;
2666     }
2667   }
2668
2669   assert(Replacement != this && "I didn't contain From!");
2670
2671   // Everyone using this now uses the replacement.
2672   replaceAllUsesWith(Replacement);
2673
2674   // Delete the old constant!
2675   destroyConstant();
2676 }
2677
2678 void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
2679                                                  Use *U) {
2680   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2681
2682   SmallVector<Constant*, 8> Values;
2683   Values.reserve(getNumOperands());  // Build replacement array...
2684   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2685     Constant *Val = getOperand(i);
2686     if (Val == From) Val = cast<Constant>(To);
2687     Values.push_back(Val);
2688   }
2689
2690   Constant *Replacement = get(Values);
2691   assert(Replacement != this && "I didn't contain From!");
2692
2693   // Everyone using this now uses the replacement.
2694   replaceAllUsesWith(Replacement);
2695
2696   // Delete the old constant!
2697   destroyConstant();
2698 }
2699
2700 void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
2701                                                Use *U) {
2702   assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2703   Constant *To = cast<Constant>(ToV);
2704
2705   SmallVector<Constant*, 8> NewOps;
2706   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2707     Constant *Op = getOperand(i);
2708     NewOps.push_back(Op == From ? To : Op);
2709   }
2710
2711   Constant *Replacement = getWithOperands(NewOps);
2712   assert(Replacement != this && "I didn't contain From!");
2713
2714   // Everyone using this now uses the replacement.
2715   replaceAllUsesWith(Replacement);
2716
2717   // Delete the old constant!
2718   destroyConstant();
2719 }
2720
2721 Instruction *ConstantExpr::getAsInstruction() {
2722   SmallVector<Value*,4> ValueOperands;
2723   for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2724     ValueOperands.push_back(cast<Value>(I));
2725
2726   ArrayRef<Value*> Ops(ValueOperands);
2727
2728   switch (getOpcode()) {
2729   case Instruction::Trunc:
2730   case Instruction::ZExt:
2731   case Instruction::SExt:
2732   case Instruction::FPTrunc:
2733   case Instruction::FPExt:
2734   case Instruction::UIToFP:
2735   case Instruction::SIToFP:
2736   case Instruction::FPToUI:
2737   case Instruction::FPToSI:
2738   case Instruction::PtrToInt:
2739   case Instruction::IntToPtr:
2740   case Instruction::BitCast:
2741     return CastInst::Create((Instruction::CastOps)getOpcode(),
2742                             Ops[0], getType());
2743   case Instruction::Select:
2744     return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
2745   case Instruction::InsertElement:
2746     return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
2747   case Instruction::ExtractElement:
2748     return ExtractElementInst::Create(Ops[0], Ops[1]);
2749   case Instruction::InsertValue:
2750     return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
2751   case Instruction::ExtractValue:
2752     return ExtractValueInst::Create(Ops[0], getIndices());
2753   case Instruction::ShuffleVector:
2754     return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
2755
2756   case Instruction::GetElementPtr:
2757     if (cast<GEPOperator>(this)->isInBounds())
2758       return GetElementPtrInst::CreateInBounds(Ops[0], Ops.slice(1));
2759     else
2760       return GetElementPtrInst::Create(Ops[0], Ops.slice(1));
2761
2762   case Instruction::ICmp:
2763   case Instruction::FCmp:
2764     return CmpInst::Create((Instruction::OtherOps)getOpcode(),
2765                            getPredicate(), Ops[0], Ops[1]);
2766
2767   default:
2768     assert(getNumOperands() == 2 && "Must be binary operator?");
2769     BinaryOperator *BO =
2770       BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
2771                              Ops[0], Ops[1]);
2772     if (isa<OverflowingBinaryOperator>(BO)) {
2773       BO->setHasNoUnsignedWrap(SubclassOptionalData &
2774                                OverflowingBinaryOperator::NoUnsignedWrap);
2775       BO->setHasNoSignedWrap(SubclassOptionalData &
2776                              OverflowingBinaryOperator::NoSignedWrap);
2777     }
2778     if (isa<PossiblyExactOperator>(BO))
2779       BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
2780     return BO;
2781   }
2782 }