InstCombine: Don't turn -(x/INT_MIN) -> x/INT_MIN
[oota-llvm.git] / lib / IR / Constants.cpp
1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Constant* classes.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Constants.h"
15 #include "ConstantFold.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/FoldingSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/GetElementPtrTypeIterator.h"
25 #include "llvm/IR/GlobalValue.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/Support/Compiler.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/ManagedStatic.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm>
36 #include <cstdarg>
37 using namespace llvm;
38
39 //===----------------------------------------------------------------------===//
40 //                              Constant Class
41 //===----------------------------------------------------------------------===//
42
43 void Constant::anchor() { }
44
45 bool Constant::isNegativeZeroValue() const {
46   // Floating point values have an explicit -0.0 value.
47   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
48     return CFP->isZero() && CFP->isNegative();
49
50   // Equivalent for a vector of -0.0's.
51   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
52     if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
53       if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
54         return true;
55
56   // We've already handled true FP case; any other FP vectors can't represent -0.0.
57   if (getType()->isFPOrFPVectorTy())
58     return false;
59
60   // Otherwise, just use +0.0.
61   return isNullValue();
62 }
63
64 // Return true iff this constant is positive zero (floating point), negative
65 // zero (floating point), or a null value.
66 bool Constant::isZeroValue() const {
67   // Floating point values have an explicit -0.0 value.
68   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
69     return CFP->isZero();
70
71   // Otherwise, just use +0.0.
72   return isNullValue();
73 }
74
75 bool Constant::isNullValue() const {
76   // 0 is null.
77   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
78     return CI->isZero();
79
80   // +0.0 is null.
81   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
82     return CFP->isZero() && !CFP->isNegative();
83
84   // constant zero is zero for aggregates and cpnull is null for pointers.
85   return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this);
86 }
87
88 bool Constant::isAllOnesValue() const {
89   // Check for -1 integers
90   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
91     return CI->isMinusOne();
92
93   // Check for FP which are bitcasted from -1 integers
94   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
95     return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
96
97   // Check for constant vectors which are splats of -1 values.
98   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
99     if (Constant *Splat = CV->getSplatValue())
100       return Splat->isAllOnesValue();
101
102   // Check for constant vectors which are splats of -1 values.
103   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
104     if (Constant *Splat = CV->getSplatValue())
105       return Splat->isAllOnesValue();
106
107   return false;
108 }
109
110 bool Constant::isMinSignedValue() const {
111   // Check for INT_MIN integers
112   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
113     return CI->isMinValue(/*isSigned=*/true);
114
115   // Check for FP which are bitcasted from INT_MIN integers
116   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
117     return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
118
119   // Check for constant vectors which are splats of INT_MIN values.
120   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
121     if (Constant *Splat = CV->getSplatValue())
122       return Splat->isMinSignedValue();
123
124   // Check for constant vectors which are splats of INT_MIN values.
125   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
126     if (Constant *Splat = CV->getSplatValue())
127       return Splat->isMinSignedValue();
128
129   return false;
130 }
131
132 // Constructor to create a '0' constant of arbitrary type...
133 Constant *Constant::getNullValue(Type *Ty) {
134   switch (Ty->getTypeID()) {
135   case Type::IntegerTyID:
136     return ConstantInt::get(Ty, 0);
137   case Type::HalfTyID:
138     return ConstantFP::get(Ty->getContext(),
139                            APFloat::getZero(APFloat::IEEEhalf));
140   case Type::FloatTyID:
141     return ConstantFP::get(Ty->getContext(),
142                            APFloat::getZero(APFloat::IEEEsingle));
143   case Type::DoubleTyID:
144     return ConstantFP::get(Ty->getContext(),
145                            APFloat::getZero(APFloat::IEEEdouble));
146   case Type::X86_FP80TyID:
147     return ConstantFP::get(Ty->getContext(),
148                            APFloat::getZero(APFloat::x87DoubleExtended));
149   case Type::FP128TyID:
150     return ConstantFP::get(Ty->getContext(),
151                            APFloat::getZero(APFloat::IEEEquad));
152   case Type::PPC_FP128TyID:
153     return ConstantFP::get(Ty->getContext(),
154                            APFloat(APFloat::PPCDoubleDouble,
155                                    APInt::getNullValue(128)));
156   case Type::PointerTyID:
157     return ConstantPointerNull::get(cast<PointerType>(Ty));
158   case Type::StructTyID:
159   case Type::ArrayTyID:
160   case Type::VectorTyID:
161     return ConstantAggregateZero::get(Ty);
162   default:
163     // Function, Label, or Opaque type?
164     llvm_unreachable("Cannot create a null constant of that type!");
165   }
166 }
167
168 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
169   Type *ScalarTy = Ty->getScalarType();
170
171   // Create the base integer constant.
172   Constant *C = ConstantInt::get(Ty->getContext(), V);
173
174   // Convert an integer to a pointer, if necessary.
175   if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
176     C = ConstantExpr::getIntToPtr(C, PTy);
177
178   // Broadcast a scalar to a vector, if necessary.
179   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
180     C = ConstantVector::getSplat(VTy->getNumElements(), C);
181
182   return C;
183 }
184
185 Constant *Constant::getAllOnesValue(Type *Ty) {
186   if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
187     return ConstantInt::get(Ty->getContext(),
188                             APInt::getAllOnesValue(ITy->getBitWidth()));
189
190   if (Ty->isFloatingPointTy()) {
191     APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
192                                           !Ty->isPPC_FP128Ty());
193     return ConstantFP::get(Ty->getContext(), FL);
194   }
195
196   VectorType *VTy = cast<VectorType>(Ty);
197   return ConstantVector::getSplat(VTy->getNumElements(),
198                                   getAllOnesValue(VTy->getElementType()));
199 }
200
201 /// getAggregateElement - For aggregates (struct/array/vector) return the
202 /// constant that corresponds to the specified element if possible, or null if
203 /// not.  This can return null if the element index is a ConstantExpr, or if
204 /// 'this' is a constant expr.
205 Constant *Constant::getAggregateElement(unsigned Elt) const {
206   if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this))
207     return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : nullptr;
208
209   if (const ConstantArray *CA = dyn_cast<ConstantArray>(this))
210     return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : nullptr;
211
212   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
213     return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : nullptr;
214
215   if (const ConstantAggregateZero *CAZ =dyn_cast<ConstantAggregateZero>(this))
216     return CAZ->getElementValue(Elt);
217
218   if (const UndefValue *UV = dyn_cast<UndefValue>(this))
219     return UV->getElementValue(Elt);
220
221   if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
222     return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
223                                        : nullptr;
224   return nullptr;
225 }
226
227 Constant *Constant::getAggregateElement(Constant *Elt) const {
228   assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
229   if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
230     return getAggregateElement(CI->getZExtValue());
231   return nullptr;
232 }
233
234
235 void Constant::destroyConstantImpl() {
236   // When a Constant is destroyed, there may be lingering
237   // references to the constant by other constants in the constant pool.  These
238   // constants are implicitly dependent on the module that is being deleted,
239   // but they don't know that.  Because we only find out when the CPV is
240   // deleted, we must now notify all of our users (that should only be
241   // Constants) that they are, in fact, invalid now and should be deleted.
242   //
243   while (!use_empty()) {
244     Value *V = user_back();
245 #ifndef NDEBUG      // Only in -g mode...
246     if (!isa<Constant>(V)) {
247       dbgs() << "While deleting: " << *this
248              << "\n\nUse still stuck around after Def is destroyed: "
249              << *V << "\n\n";
250     }
251 #endif
252     assert(isa<Constant>(V) && "References remain to Constant being destroyed");
253     cast<Constant>(V)->destroyConstant();
254
255     // The constant should remove itself from our use list...
256     assert((use_empty() || user_back() != V) && "Constant not removed!");
257   }
258
259   // Value has no outstanding references it is safe to delete it now...
260   delete this;
261 }
262
263 static bool canTrapImpl(const Constant *C,
264                         SmallPtrSet<const ConstantExpr *, 4> &NonTrappingOps) {
265   assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
266   // The only thing that could possibly trap are constant exprs.
267   const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
268   if (!CE)
269     return false;
270
271   // ConstantExpr traps if any operands can trap.
272   for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
273     if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
274       if (NonTrappingOps.insert(Op) && canTrapImpl(Op, NonTrappingOps))
275         return true;
276     }
277   }
278
279   // Otherwise, only specific operations can trap.
280   switch (CE->getOpcode()) {
281   default:
282     return false;
283   case Instruction::UDiv:
284   case Instruction::SDiv:
285   case Instruction::FDiv:
286   case Instruction::URem:
287   case Instruction::SRem:
288   case Instruction::FRem:
289     // Div and rem can trap if the RHS is not known to be non-zero.
290     if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
291       return true;
292     return false;
293   }
294 }
295
296 /// canTrap - Return true if evaluation of this constant could trap.  This is
297 /// true for things like constant expressions that could divide by zero.
298 bool Constant::canTrap() const {
299   SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
300   return canTrapImpl(this, NonTrappingOps);
301 }
302
303 /// Check if C contains a GlobalValue for which Predicate is true.
304 static bool
305 ConstHasGlobalValuePredicate(const Constant *C,
306                              bool (*Predicate)(const GlobalValue *)) {
307   SmallPtrSet<const Constant *, 8> Visited;
308   SmallVector<const Constant *, 8> WorkList;
309   WorkList.push_back(C);
310   Visited.insert(C);
311
312   while (!WorkList.empty()) {
313     const Constant *WorkItem = WorkList.pop_back_val();
314     if (const auto *GV = dyn_cast<GlobalValue>(WorkItem))
315       if (Predicate(GV))
316         return true;
317     for (const Value *Op : WorkItem->operands()) {
318       const Constant *ConstOp = dyn_cast<Constant>(Op);
319       if (!ConstOp)
320         continue;
321       if (Visited.insert(ConstOp))
322         WorkList.push_back(ConstOp);
323     }
324   }
325   return false;
326 }
327
328 /// Return true if the value can vary between threads.
329 bool Constant::isThreadDependent() const {
330   auto DLLImportPredicate = [](const GlobalValue *GV) {
331     return GV->isThreadLocal();
332   };
333   return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
334 }
335
336 bool Constant::isDLLImportDependent() const {
337   auto DLLImportPredicate = [](const GlobalValue *GV) {
338     return GV->hasDLLImportStorageClass();
339   };
340   return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
341 }
342
343 /// Return true if the constant has users other than constant exprs and other
344 /// dangling things.
345 bool Constant::isConstantUsed() const {
346   for (const User *U : users()) {
347     const Constant *UC = dyn_cast<Constant>(U);
348     if (!UC || isa<GlobalValue>(UC))
349       return true;
350
351     if (UC->isConstantUsed())
352       return true;
353   }
354   return false;
355 }
356
357
358
359 /// getRelocationInfo - This method classifies the entry according to
360 /// whether or not it may generate a relocation entry.  This must be
361 /// conservative, so if it might codegen to a relocatable entry, it should say
362 /// so.  The return values are:
363 /// 
364 ///  NoRelocation: This constant pool entry is guaranteed to never have a
365 ///     relocation applied to it (because it holds a simple constant like
366 ///     '4').
367 ///  LocalRelocation: This entry has relocations, but the entries are
368 ///     guaranteed to be resolvable by the static linker, so the dynamic
369 ///     linker will never see them.
370 ///  GlobalRelocations: This entry may have arbitrary relocations.
371 ///
372 /// FIXME: This really should not be in IR.
373 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
374   if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
375     if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
376       return LocalRelocation;  // Local to this file/library.
377     return GlobalRelocations;    // Global reference.
378   }
379   
380   if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
381     return BA->getFunction()->getRelocationInfo();
382   
383   // While raw uses of blockaddress need to be relocated, differences between
384   // two of them don't when they are for labels in the same function.  This is a
385   // common idiom when creating a table for the indirect goto extension, so we
386   // handle it efficiently here.
387   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
388     if (CE->getOpcode() == Instruction::Sub) {
389       ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
390       ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
391       if (LHS && RHS &&
392           LHS->getOpcode() == Instruction::PtrToInt &&
393           RHS->getOpcode() == Instruction::PtrToInt &&
394           isa<BlockAddress>(LHS->getOperand(0)) &&
395           isa<BlockAddress>(RHS->getOperand(0)) &&
396           cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
397             cast<BlockAddress>(RHS->getOperand(0))->getFunction())
398         return NoRelocation;
399     }
400
401   PossibleRelocationsTy Result = NoRelocation;
402   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
403     Result = std::max(Result,
404                       cast<Constant>(getOperand(i))->getRelocationInfo());
405
406   return Result;
407 }
408
409 /// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
410 /// it.  This involves recursively eliminating any dead users of the
411 /// constantexpr.
412 static bool removeDeadUsersOfConstant(const Constant *C) {
413   if (isa<GlobalValue>(C)) return false; // Cannot remove this
414
415   while (!C->use_empty()) {
416     const Constant *User = dyn_cast<Constant>(C->user_back());
417     if (!User) return false; // Non-constant usage;
418     if (!removeDeadUsersOfConstant(User))
419       return false; // Constant wasn't dead
420   }
421
422   const_cast<Constant*>(C)->destroyConstant();
423   return true;
424 }
425
426
427 /// removeDeadConstantUsers - If there are any dead constant users dangling
428 /// off of this constant, remove them.  This method is useful for clients
429 /// that want to check to see if a global is unused, but don't want to deal
430 /// with potentially dead constants hanging off of the globals.
431 void Constant::removeDeadConstantUsers() const {
432   Value::const_user_iterator I = user_begin(), E = user_end();
433   Value::const_user_iterator LastNonDeadUser = E;
434   while (I != E) {
435     const Constant *User = dyn_cast<Constant>(*I);
436     if (!User) {
437       LastNonDeadUser = I;
438       ++I;
439       continue;
440     }
441
442     if (!removeDeadUsersOfConstant(User)) {
443       // If the constant wasn't dead, remember that this was the last live use
444       // and move on to the next constant.
445       LastNonDeadUser = I;
446       ++I;
447       continue;
448     }
449
450     // If the constant was dead, then the iterator is invalidated.
451     if (LastNonDeadUser == E) {
452       I = user_begin();
453       if (I == E) break;
454     } else {
455       I = LastNonDeadUser;
456       ++I;
457     }
458   }
459 }
460
461
462
463 //===----------------------------------------------------------------------===//
464 //                                ConstantInt
465 //===----------------------------------------------------------------------===//
466
467 void ConstantInt::anchor() { }
468
469 ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
470   : Constant(Ty, ConstantIntVal, nullptr, 0), Val(V) {
471   assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
472 }
473
474 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
475   LLVMContextImpl *pImpl = Context.pImpl;
476   if (!pImpl->TheTrueVal)
477     pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
478   return pImpl->TheTrueVal;
479 }
480
481 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
482   LLVMContextImpl *pImpl = Context.pImpl;
483   if (!pImpl->TheFalseVal)
484     pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
485   return pImpl->TheFalseVal;
486 }
487
488 Constant *ConstantInt::getTrue(Type *Ty) {
489   VectorType *VTy = dyn_cast<VectorType>(Ty);
490   if (!VTy) {
491     assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
492     return ConstantInt::getTrue(Ty->getContext());
493   }
494   assert(VTy->getElementType()->isIntegerTy(1) &&
495          "True must be vector of i1 or i1.");
496   return ConstantVector::getSplat(VTy->getNumElements(),
497                                   ConstantInt::getTrue(Ty->getContext()));
498 }
499
500 Constant *ConstantInt::getFalse(Type *Ty) {
501   VectorType *VTy = dyn_cast<VectorType>(Ty);
502   if (!VTy) {
503     assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
504     return ConstantInt::getFalse(Ty->getContext());
505   }
506   assert(VTy->getElementType()->isIntegerTy(1) &&
507          "False must be vector of i1 or i1.");
508   return ConstantVector::getSplat(VTy->getNumElements(),
509                                   ConstantInt::getFalse(Ty->getContext()));
510 }
511
512
513 // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap 
514 // as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
515 // operator== and operator!= to ensure that the DenseMap doesn't attempt to
516 // compare APInt's of different widths, which would violate an APInt class
517 // invariant which generates an assertion.
518 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
519   // Get the corresponding integer type for the bit width of the value.
520   IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
521   // get an existing value or the insertion position
522   LLVMContextImpl *pImpl = Context.pImpl;
523   ConstantInt *&Slot = pImpl->IntConstants[DenseMapAPIntKeyInfo::KeyTy(V, ITy)];
524   if (!Slot) Slot = new ConstantInt(ITy, V);
525   return Slot;
526 }
527
528 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
529   Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
530
531   // For vectors, broadcast the value.
532   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
533     return ConstantVector::getSplat(VTy->getNumElements(), C);
534
535   return C;
536 }
537
538 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, 
539                               bool isSigned) {
540   return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
541 }
542
543 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
544   return get(Ty, V, true);
545 }
546
547 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
548   return get(Ty, V, true);
549 }
550
551 Constant *ConstantInt::get(Type *Ty, const APInt& V) {
552   ConstantInt *C = get(Ty->getContext(), V);
553   assert(C->getType() == Ty->getScalarType() &&
554          "ConstantInt type doesn't match the type implied by its value!");
555
556   // For vectors, broadcast the value.
557   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
558     return ConstantVector::getSplat(VTy->getNumElements(), C);
559
560   return C;
561 }
562
563 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str,
564                               uint8_t radix) {
565   return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
566 }
567
568 //===----------------------------------------------------------------------===//
569 //                                ConstantFP
570 //===----------------------------------------------------------------------===//
571
572 static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
573   if (Ty->isHalfTy())
574     return &APFloat::IEEEhalf;
575   if (Ty->isFloatTy())
576     return &APFloat::IEEEsingle;
577   if (Ty->isDoubleTy())
578     return &APFloat::IEEEdouble;
579   if (Ty->isX86_FP80Ty())
580     return &APFloat::x87DoubleExtended;
581   else if (Ty->isFP128Ty())
582     return &APFloat::IEEEquad;
583
584   assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
585   return &APFloat::PPCDoubleDouble;
586 }
587
588 void ConstantFP::anchor() { }
589
590 /// get() - This returns a constant fp for the specified value in the
591 /// specified type.  This should only be used for simple constant values like
592 /// 2.0/1.0 etc, that are known-valid both as double and as the target format.
593 Constant *ConstantFP::get(Type *Ty, double V) {
594   LLVMContext &Context = Ty->getContext();
595
596   APFloat FV(V);
597   bool ignored;
598   FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
599              APFloat::rmNearestTiesToEven, &ignored);
600   Constant *C = get(Context, FV);
601
602   // For vectors, broadcast the value.
603   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
604     return ConstantVector::getSplat(VTy->getNumElements(), C);
605
606   return C;
607 }
608
609
610 Constant *ConstantFP::get(Type *Ty, StringRef Str) {
611   LLVMContext &Context = Ty->getContext();
612
613   APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
614   Constant *C = get(Context, FV);
615
616   // For vectors, broadcast the value.
617   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
618     return ConstantVector::getSplat(VTy->getNumElements(), C);
619
620   return C; 
621 }
622
623 Constant *ConstantFP::getNegativeZero(Type *Ty) {
624   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
625   APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true);
626   Constant *C = get(Ty->getContext(), NegZero);
627
628   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
629     return ConstantVector::getSplat(VTy->getNumElements(), C);
630
631   return C;
632 }
633
634
635 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
636   if (Ty->isFPOrFPVectorTy())
637     return getNegativeZero(Ty);
638
639   return Constant::getNullValue(Ty);
640 }
641
642
643 // ConstantFP accessors.
644 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
645   LLVMContextImpl* pImpl = Context.pImpl;
646
647   ConstantFP *&Slot = pImpl->FPConstants[DenseMapAPFloatKeyInfo::KeyTy(V)];
648
649   if (!Slot) {
650     Type *Ty;
651     if (&V.getSemantics() == &APFloat::IEEEhalf)
652       Ty = Type::getHalfTy(Context);
653     else if (&V.getSemantics() == &APFloat::IEEEsingle)
654       Ty = Type::getFloatTy(Context);
655     else if (&V.getSemantics() == &APFloat::IEEEdouble)
656       Ty = Type::getDoubleTy(Context);
657     else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
658       Ty = Type::getX86_FP80Ty(Context);
659     else if (&V.getSemantics() == &APFloat::IEEEquad)
660       Ty = Type::getFP128Ty(Context);
661     else {
662       assert(&V.getSemantics() == &APFloat::PPCDoubleDouble && 
663              "Unknown FP format");
664       Ty = Type::getPPC_FP128Ty(Context);
665     }
666     Slot = new ConstantFP(Ty, V);
667   }
668
669   return Slot;
670 }
671
672 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) {
673   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
674   Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative));
675
676   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
677     return ConstantVector::getSplat(VTy->getNumElements(), C);
678
679   return C;
680 }
681
682 ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
683   : Constant(Ty, ConstantFPVal, nullptr, 0), Val(V) {
684   assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
685          "FP type Mismatch");
686 }
687
688 bool ConstantFP::isExactlyValue(const APFloat &V) const {
689   return Val.bitwiseIsEqual(V);
690 }
691
692 //===----------------------------------------------------------------------===//
693 //                   ConstantAggregateZero Implementation
694 //===----------------------------------------------------------------------===//
695
696 /// getSequentialElement - If this CAZ has array or vector type, return a zero
697 /// with the right element type.
698 Constant *ConstantAggregateZero::getSequentialElement() const {
699   return Constant::getNullValue(getType()->getSequentialElementType());
700 }
701
702 /// getStructElement - If this CAZ has struct type, return a zero with the
703 /// right element type for the specified element.
704 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
705   return Constant::getNullValue(getType()->getStructElementType(Elt));
706 }
707
708 /// getElementValue - Return a zero of the right value for the specified GEP
709 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
710 Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
711   if (isa<SequentialType>(getType()))
712     return getSequentialElement();
713   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
714 }
715
716 /// getElementValue - Return a zero of the right value for the specified GEP
717 /// index.
718 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
719   if (isa<SequentialType>(getType()))
720     return getSequentialElement();
721   return getStructElement(Idx);
722 }
723
724
725 //===----------------------------------------------------------------------===//
726 //                         UndefValue Implementation
727 //===----------------------------------------------------------------------===//
728
729 /// getSequentialElement - If this undef has array or vector type, return an
730 /// undef with the right element type.
731 UndefValue *UndefValue::getSequentialElement() const {
732   return UndefValue::get(getType()->getSequentialElementType());
733 }
734
735 /// getStructElement - If this undef has struct type, return a zero with the
736 /// right element type for the specified element.
737 UndefValue *UndefValue::getStructElement(unsigned Elt) const {
738   return UndefValue::get(getType()->getStructElementType(Elt));
739 }
740
741 /// getElementValue - Return an undef of the right value for the specified GEP
742 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
743 UndefValue *UndefValue::getElementValue(Constant *C) const {
744   if (isa<SequentialType>(getType()))
745     return getSequentialElement();
746   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
747 }
748
749 /// getElementValue - Return an undef of the right value for the specified GEP
750 /// index.
751 UndefValue *UndefValue::getElementValue(unsigned Idx) const {
752   if (isa<SequentialType>(getType()))
753     return getSequentialElement();
754   return getStructElement(Idx);
755 }
756
757
758
759 //===----------------------------------------------------------------------===//
760 //                            ConstantXXX Classes
761 //===----------------------------------------------------------------------===//
762
763 template <typename ItTy, typename EltTy>
764 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
765   for (; Start != End; ++Start)
766     if (*Start != Elt)
767       return false;
768   return true;
769 }
770
771 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
772   : Constant(T, ConstantArrayVal,
773              OperandTraits<ConstantArray>::op_end(this) - V.size(),
774              V.size()) {
775   assert(V.size() == T->getNumElements() &&
776          "Invalid initializer vector for constant array");
777   for (unsigned i = 0, e = V.size(); i != e; ++i)
778     assert(V[i]->getType() == T->getElementType() &&
779            "Initializer for array element doesn't match array element type!");
780   std::copy(V.begin(), V.end(), op_begin());
781 }
782
783 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
784   // Empty arrays are canonicalized to ConstantAggregateZero.
785   if (V.empty())
786     return ConstantAggregateZero::get(Ty);
787
788   for (unsigned i = 0, e = V.size(); i != e; ++i) {
789     assert(V[i]->getType() == Ty->getElementType() &&
790            "Wrong type in array element initializer");
791   }
792   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
793
794   // If this is an all-zero array, return a ConstantAggregateZero object.  If
795   // all undef, return an UndefValue, if "all simple", then return a
796   // ConstantDataArray.
797   Constant *C = V[0];
798   if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
799     return UndefValue::get(Ty);
800
801   if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
802     return ConstantAggregateZero::get(Ty);
803
804   // Check to see if all of the elements are ConstantFP or ConstantInt and if
805   // the element type is compatible with ConstantDataVector.  If so, use it.
806   if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
807     // We speculatively build the elements here even if it turns out that there
808     // is a constantexpr or something else weird in the array, since it is so
809     // uncommon for that to happen.
810     if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
811       if (CI->getType()->isIntegerTy(8)) {
812         SmallVector<uint8_t, 16> Elts;
813         for (unsigned i = 0, e = V.size(); i != e; ++i)
814           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
815             Elts.push_back(CI->getZExtValue());
816           else
817             break;
818         if (Elts.size() == V.size())
819           return ConstantDataArray::get(C->getContext(), Elts);
820       } else if (CI->getType()->isIntegerTy(16)) {
821         SmallVector<uint16_t, 16> Elts;
822         for (unsigned i = 0, e = V.size(); i != e; ++i)
823           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
824             Elts.push_back(CI->getZExtValue());
825           else
826             break;
827         if (Elts.size() == V.size())
828           return ConstantDataArray::get(C->getContext(), Elts);
829       } else if (CI->getType()->isIntegerTy(32)) {
830         SmallVector<uint32_t, 16> Elts;
831         for (unsigned i = 0, e = V.size(); i != e; ++i)
832           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
833             Elts.push_back(CI->getZExtValue());
834           else
835             break;
836         if (Elts.size() == V.size())
837           return ConstantDataArray::get(C->getContext(), Elts);
838       } else if (CI->getType()->isIntegerTy(64)) {
839         SmallVector<uint64_t, 16> Elts;
840         for (unsigned i = 0, e = V.size(); i != e; ++i)
841           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
842             Elts.push_back(CI->getZExtValue());
843           else
844             break;
845         if (Elts.size() == V.size())
846           return ConstantDataArray::get(C->getContext(), Elts);
847       }
848     }
849
850     if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
851       if (CFP->getType()->isFloatTy()) {
852         SmallVector<float, 16> Elts;
853         for (unsigned i = 0, e = V.size(); i != e; ++i)
854           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
855             Elts.push_back(CFP->getValueAPF().convertToFloat());
856           else
857             break;
858         if (Elts.size() == V.size())
859           return ConstantDataArray::get(C->getContext(), Elts);
860       } else if (CFP->getType()->isDoubleTy()) {
861         SmallVector<double, 16> Elts;
862         for (unsigned i = 0, e = V.size(); i != e; ++i)
863           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
864             Elts.push_back(CFP->getValueAPF().convertToDouble());
865           else
866             break;
867         if (Elts.size() == V.size())
868           return ConstantDataArray::get(C->getContext(), Elts);
869       }
870     }
871   }
872
873   // Otherwise, we really do want to create a ConstantArray.
874   return pImpl->ArrayConstants.getOrCreate(Ty, V);
875 }
876
877 /// getTypeForElements - Return an anonymous struct type to use for a constant
878 /// with the specified set of elements.  The list must not be empty.
879 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
880                                                ArrayRef<Constant*> V,
881                                                bool Packed) {
882   unsigned VecSize = V.size();
883   SmallVector<Type*, 16> EltTypes(VecSize);
884   for (unsigned i = 0; i != VecSize; ++i)
885     EltTypes[i] = V[i]->getType();
886
887   return StructType::get(Context, EltTypes, Packed);
888 }
889
890
891 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
892                                                bool Packed) {
893   assert(!V.empty() &&
894          "ConstantStruct::getTypeForElements cannot be called on empty list");
895   return getTypeForElements(V[0]->getContext(), V, Packed);
896 }
897
898
899 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
900   : Constant(T, ConstantStructVal,
901              OperandTraits<ConstantStruct>::op_end(this) - V.size(),
902              V.size()) {
903   assert(V.size() == T->getNumElements() &&
904          "Invalid initializer vector for constant structure");
905   for (unsigned i = 0, e = V.size(); i != e; ++i)
906     assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) &&
907            "Initializer for struct element doesn't match struct element type!");
908   std::copy(V.begin(), V.end(), op_begin());
909 }
910
911 // ConstantStruct accessors.
912 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
913   assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
914          "Incorrect # elements specified to ConstantStruct::get");
915
916   // Create a ConstantAggregateZero value if all elements are zeros.
917   bool isZero = true;
918   bool isUndef = false;
919   
920   if (!V.empty()) {
921     isUndef = isa<UndefValue>(V[0]);
922     isZero = V[0]->isNullValue();
923     if (isUndef || isZero) {
924       for (unsigned i = 0, e = V.size(); i != e; ++i) {
925         if (!V[i]->isNullValue())
926           isZero = false;
927         if (!isa<UndefValue>(V[i]))
928           isUndef = false;
929       }
930     }
931   }
932   if (isZero)
933     return ConstantAggregateZero::get(ST);
934   if (isUndef)
935     return UndefValue::get(ST);
936
937   return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
938 }
939
940 Constant *ConstantStruct::get(StructType *T, ...) {
941   va_list ap;
942   SmallVector<Constant*, 8> Values;
943   va_start(ap, T);
944   while (Constant *Val = va_arg(ap, llvm::Constant*))
945     Values.push_back(Val);
946   va_end(ap);
947   return get(T, Values);
948 }
949
950 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
951   : Constant(T, ConstantVectorVal,
952              OperandTraits<ConstantVector>::op_end(this) - V.size(),
953              V.size()) {
954   for (size_t i = 0, e = V.size(); i != e; i++)
955     assert(V[i]->getType() == T->getElementType() &&
956            "Initializer for vector element doesn't match vector element type!");
957   std::copy(V.begin(), V.end(), op_begin());
958 }
959
960 // ConstantVector accessors.
961 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
962   assert(!V.empty() && "Vectors can't be empty");
963   VectorType *T = VectorType::get(V.front()->getType(), V.size());
964   LLVMContextImpl *pImpl = T->getContext().pImpl;
965
966   // If this is an all-undef or all-zero vector, return a
967   // ConstantAggregateZero or UndefValue.
968   Constant *C = V[0];
969   bool isZero = C->isNullValue();
970   bool isUndef = isa<UndefValue>(C);
971
972   if (isZero || isUndef) {
973     for (unsigned i = 1, e = V.size(); i != e; ++i)
974       if (V[i] != C) {
975         isZero = isUndef = false;
976         break;
977       }
978   }
979
980   if (isZero)
981     return ConstantAggregateZero::get(T);
982   if (isUndef)
983     return UndefValue::get(T);
984
985   // Check to see if all of the elements are ConstantFP or ConstantInt and if
986   // the element type is compatible with ConstantDataVector.  If so, use it.
987   if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
988     // We speculatively build the elements here even if it turns out that there
989     // is a constantexpr or something else weird in the array, since it is so
990     // uncommon for that to happen.
991     if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
992       if (CI->getType()->isIntegerTy(8)) {
993         SmallVector<uint8_t, 16> Elts;
994         for (unsigned i = 0, e = V.size(); i != e; ++i)
995           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
996             Elts.push_back(CI->getZExtValue());
997           else
998             break;
999         if (Elts.size() == V.size())
1000           return ConstantDataVector::get(C->getContext(), Elts);
1001       } else if (CI->getType()->isIntegerTy(16)) {
1002         SmallVector<uint16_t, 16> Elts;
1003         for (unsigned i = 0, e = V.size(); i != e; ++i)
1004           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
1005             Elts.push_back(CI->getZExtValue());
1006           else
1007             break;
1008         if (Elts.size() == V.size())
1009           return ConstantDataVector::get(C->getContext(), Elts);
1010       } else if (CI->getType()->isIntegerTy(32)) {
1011         SmallVector<uint32_t, 16> Elts;
1012         for (unsigned i = 0, e = V.size(); i != e; ++i)
1013           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
1014             Elts.push_back(CI->getZExtValue());
1015           else
1016             break;
1017         if (Elts.size() == V.size())
1018           return ConstantDataVector::get(C->getContext(), Elts);
1019       } else if (CI->getType()->isIntegerTy(64)) {
1020         SmallVector<uint64_t, 16> Elts;
1021         for (unsigned i = 0, e = V.size(); i != e; ++i)
1022           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
1023             Elts.push_back(CI->getZExtValue());
1024           else
1025             break;
1026         if (Elts.size() == V.size())
1027           return ConstantDataVector::get(C->getContext(), Elts);
1028       }
1029     }
1030
1031     if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1032       if (CFP->getType()->isFloatTy()) {
1033         SmallVector<float, 16> Elts;
1034         for (unsigned i = 0, e = V.size(); i != e; ++i)
1035           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
1036             Elts.push_back(CFP->getValueAPF().convertToFloat());
1037           else
1038             break;
1039         if (Elts.size() == V.size())
1040           return ConstantDataVector::get(C->getContext(), Elts);
1041       } else if (CFP->getType()->isDoubleTy()) {
1042         SmallVector<double, 16> Elts;
1043         for (unsigned i = 0, e = V.size(); i != e; ++i)
1044           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
1045             Elts.push_back(CFP->getValueAPF().convertToDouble());
1046           else
1047             break;
1048         if (Elts.size() == V.size())
1049           return ConstantDataVector::get(C->getContext(), Elts);
1050       }
1051     }
1052   }
1053
1054   // Otherwise, the element type isn't compatible with ConstantDataVector, or
1055   // the operand list constants a ConstantExpr or something else strange.
1056   return pImpl->VectorConstants.getOrCreate(T, V);
1057 }
1058
1059 Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
1060   // If this splat is compatible with ConstantDataVector, use it instead of
1061   // ConstantVector.
1062   if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1063       ConstantDataSequential::isElementTypeCompatible(V->getType()))
1064     return ConstantDataVector::getSplat(NumElts, V);
1065
1066   SmallVector<Constant*, 32> Elts(NumElts, V);
1067   return get(Elts);
1068 }
1069
1070
1071 // Utility function for determining if a ConstantExpr is a CastOp or not. This
1072 // can't be inline because we don't want to #include Instruction.h into
1073 // Constant.h
1074 bool ConstantExpr::isCast() const {
1075   return Instruction::isCast(getOpcode());
1076 }
1077
1078 bool ConstantExpr::isCompare() const {
1079   return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1080 }
1081
1082 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
1083   if (getOpcode() != Instruction::GetElementPtr) return false;
1084
1085   gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
1086   User::const_op_iterator OI = std::next(this->op_begin());
1087
1088   // Skip the first index, as it has no static limit.
1089   ++GEPI;
1090   ++OI;
1091
1092   // The remaining indices must be compile-time known integers within the
1093   // bounds of the corresponding notional static array types.
1094   for (; GEPI != E; ++GEPI, ++OI) {
1095     ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
1096     if (!CI) return false;
1097     if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
1098       if (CI->getValue().getActiveBits() > 64 ||
1099           CI->getZExtValue() >= ATy->getNumElements())
1100         return false;
1101   }
1102
1103   // All the indices checked out.
1104   return true;
1105 }
1106
1107 bool ConstantExpr::hasIndices() const {
1108   return getOpcode() == Instruction::ExtractValue ||
1109          getOpcode() == Instruction::InsertValue;
1110 }
1111
1112 ArrayRef<unsigned> ConstantExpr::getIndices() const {
1113   if (const ExtractValueConstantExpr *EVCE =
1114         dyn_cast<ExtractValueConstantExpr>(this))
1115     return EVCE->Indices;
1116
1117   return cast<InsertValueConstantExpr>(this)->Indices;
1118 }
1119
1120 unsigned ConstantExpr::getPredicate() const {
1121   assert(isCompare());
1122   return ((const CompareConstantExpr*)this)->predicate;
1123 }
1124
1125 /// getWithOperandReplaced - Return a constant expression identical to this
1126 /// one, but with the specified operand set to the specified value.
1127 Constant *
1128 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
1129   assert(Op->getType() == getOperand(OpNo)->getType() &&
1130          "Replacing operand with value of different type!");
1131   if (getOperand(OpNo) == Op)
1132     return const_cast<ConstantExpr*>(this);
1133
1134   SmallVector<Constant*, 8> NewOps;
1135   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1136     NewOps.push_back(i == OpNo ? Op : getOperand(i));
1137
1138   return getWithOperands(NewOps);
1139 }
1140
1141 /// getWithOperands - This returns the current constant expression with the
1142 /// operands replaced with the specified values.  The specified array must
1143 /// have the same number of operands as our current one.
1144 Constant *ConstantExpr::
1145 getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const {
1146   assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1147   bool AnyChange = Ty != getType();
1148   for (unsigned i = 0; i != Ops.size(); ++i)
1149     AnyChange |= Ops[i] != getOperand(i);
1150
1151   if (!AnyChange)  // No operands changed, return self.
1152     return const_cast<ConstantExpr*>(this);
1153
1154   switch (getOpcode()) {
1155   case Instruction::Trunc:
1156   case Instruction::ZExt:
1157   case Instruction::SExt:
1158   case Instruction::FPTrunc:
1159   case Instruction::FPExt:
1160   case Instruction::UIToFP:
1161   case Instruction::SIToFP:
1162   case Instruction::FPToUI:
1163   case Instruction::FPToSI:
1164   case Instruction::PtrToInt:
1165   case Instruction::IntToPtr:
1166   case Instruction::BitCast:
1167   case Instruction::AddrSpaceCast:
1168     return ConstantExpr::getCast(getOpcode(), Ops[0], Ty);
1169   case Instruction::Select:
1170     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1171   case Instruction::InsertElement:
1172     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1173   case Instruction::ExtractElement:
1174     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1175   case Instruction::InsertValue:
1176     return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices());
1177   case Instruction::ExtractValue:
1178     return ConstantExpr::getExtractValue(Ops[0], getIndices());
1179   case Instruction::ShuffleVector:
1180     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
1181   case Instruction::GetElementPtr:
1182     return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1),
1183                                       cast<GEPOperator>(this)->isInBounds());
1184   case Instruction::ICmp:
1185   case Instruction::FCmp:
1186     return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
1187   default:
1188     assert(getNumOperands() == 2 && "Must be binary operator?");
1189     return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData);
1190   }
1191 }
1192
1193
1194 //===----------------------------------------------------------------------===//
1195 //                      isValueValidForType implementations
1196
1197 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1198   unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1199   if (Ty->isIntegerTy(1))
1200     return Val == 0 || Val == 1;
1201   if (NumBits >= 64)
1202     return true; // always true, has to fit in largest type
1203   uint64_t Max = (1ll << NumBits) - 1;
1204   return Val <= Max;
1205 }
1206
1207 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1208   unsigned NumBits = Ty->getIntegerBitWidth();
1209   if (Ty->isIntegerTy(1))
1210     return Val == 0 || Val == 1 || Val == -1;
1211   if (NumBits >= 64)
1212     return true; // always true, has to fit in largest type
1213   int64_t Min = -(1ll << (NumBits-1));
1214   int64_t Max = (1ll << (NumBits-1)) - 1;
1215   return (Val >= Min && Val <= Max);
1216 }
1217
1218 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1219   // convert modifies in place, so make a copy.
1220   APFloat Val2 = APFloat(Val);
1221   bool losesInfo;
1222   switch (Ty->getTypeID()) {
1223   default:
1224     return false;         // These can't be represented as floating point!
1225
1226   // FIXME rounding mode needs to be more flexible
1227   case Type::HalfTyID: {
1228     if (&Val2.getSemantics() == &APFloat::IEEEhalf)
1229       return true;
1230     Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo);
1231     return !losesInfo;
1232   }
1233   case Type::FloatTyID: {
1234     if (&Val2.getSemantics() == &APFloat::IEEEsingle)
1235       return true;
1236     Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
1237     return !losesInfo;
1238   }
1239   case Type::DoubleTyID: {
1240     if (&Val2.getSemantics() == &APFloat::IEEEhalf ||
1241         &Val2.getSemantics() == &APFloat::IEEEsingle ||
1242         &Val2.getSemantics() == &APFloat::IEEEdouble)
1243       return true;
1244     Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
1245     return !losesInfo;
1246   }
1247   case Type::X86_FP80TyID:
1248     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1249            &Val2.getSemantics() == &APFloat::IEEEsingle || 
1250            &Val2.getSemantics() == &APFloat::IEEEdouble ||
1251            &Val2.getSemantics() == &APFloat::x87DoubleExtended;
1252   case Type::FP128TyID:
1253     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1254            &Val2.getSemantics() == &APFloat::IEEEsingle || 
1255            &Val2.getSemantics() == &APFloat::IEEEdouble ||
1256            &Val2.getSemantics() == &APFloat::IEEEquad;
1257   case Type::PPC_FP128TyID:
1258     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1259            &Val2.getSemantics() == &APFloat::IEEEsingle || 
1260            &Val2.getSemantics() == &APFloat::IEEEdouble ||
1261            &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
1262   }
1263 }
1264
1265
1266 //===----------------------------------------------------------------------===//
1267 //                      Factory Function Implementation
1268
1269 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1270   assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1271          "Cannot create an aggregate zero of non-aggregate type!");
1272   
1273   ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty];
1274   if (!Entry)
1275     Entry = new ConstantAggregateZero(Ty);
1276
1277   return Entry;
1278 }
1279
1280 /// destroyConstant - Remove the constant from the constant table.
1281 ///
1282 void ConstantAggregateZero::destroyConstant() {
1283   getContext().pImpl->CAZConstants.erase(getType());
1284   destroyConstantImpl();
1285 }
1286
1287 /// destroyConstant - Remove the constant from the constant table...
1288 ///
1289 void ConstantArray::destroyConstant() {
1290   getType()->getContext().pImpl->ArrayConstants.remove(this);
1291   destroyConstantImpl();
1292 }
1293
1294
1295 //---- ConstantStruct::get() implementation...
1296 //
1297
1298 // destroyConstant - Remove the constant from the constant table...
1299 //
1300 void ConstantStruct::destroyConstant() {
1301   getType()->getContext().pImpl->StructConstants.remove(this);
1302   destroyConstantImpl();
1303 }
1304
1305 // destroyConstant - Remove the constant from the constant table...
1306 //
1307 void ConstantVector::destroyConstant() {
1308   getType()->getContext().pImpl->VectorConstants.remove(this);
1309   destroyConstantImpl();
1310 }
1311
1312 /// getSplatValue - If this is a splat vector constant, meaning that all of
1313 /// the elements have the same value, return that value. Otherwise return 0.
1314 Constant *Constant::getSplatValue() const {
1315   assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1316   if (isa<ConstantAggregateZero>(this))
1317     return getNullValue(this->getType()->getVectorElementType());
1318   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1319     return CV->getSplatValue();
1320   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1321     return CV->getSplatValue();
1322   return nullptr;
1323 }
1324
1325 /// getSplatValue - If this is a splat constant, where all of the
1326 /// elements have the same value, return that value. Otherwise return null.
1327 Constant *ConstantVector::getSplatValue() const {
1328   // Check out first element.
1329   Constant *Elt = getOperand(0);
1330   // Then make sure all remaining elements point to the same value.
1331   for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1332     if (getOperand(I) != Elt)
1333       return nullptr;
1334   return Elt;
1335 }
1336
1337 /// If C is a constant integer then return its value, otherwise C must be a
1338 /// vector of constant integers, all equal, and the common value is returned.
1339 const APInt &Constant::getUniqueInteger() const {
1340   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1341     return CI->getValue();
1342   assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1343   const Constant *C = this->getAggregateElement(0U);
1344   assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1345   return cast<ConstantInt>(C)->getValue();
1346 }
1347
1348
1349 //---- ConstantPointerNull::get() implementation.
1350 //
1351
1352 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1353   ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty];
1354   if (!Entry)
1355     Entry = new ConstantPointerNull(Ty);
1356
1357   return Entry;
1358 }
1359
1360 // destroyConstant - Remove the constant from the constant table...
1361 //
1362 void ConstantPointerNull::destroyConstant() {
1363   getContext().pImpl->CPNConstants.erase(getType());
1364   // Free the constant and any dangling references to it.
1365   destroyConstantImpl();
1366 }
1367
1368
1369 //---- UndefValue::get() implementation.
1370 //
1371
1372 UndefValue *UndefValue::get(Type *Ty) {
1373   UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty];
1374   if (!Entry)
1375     Entry = new UndefValue(Ty);
1376
1377   return Entry;
1378 }
1379
1380 // destroyConstant - Remove the constant from the constant table.
1381 //
1382 void UndefValue::destroyConstant() {
1383   // Free the constant and any dangling references to it.
1384   getContext().pImpl->UVConstants.erase(getType());
1385   destroyConstantImpl();
1386 }
1387
1388 //---- BlockAddress::get() implementation.
1389 //
1390
1391 BlockAddress *BlockAddress::get(BasicBlock *BB) {
1392   assert(BB->getParent() && "Block must have a parent");
1393   return get(BB->getParent(), BB);
1394 }
1395
1396 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1397   BlockAddress *&BA =
1398     F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1399   if (!BA)
1400     BA = new BlockAddress(F, BB);
1401
1402   assert(BA->getFunction() == F && "Basic block moved between functions");
1403   return BA;
1404 }
1405
1406 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1407 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1408            &Op<0>(), 2) {
1409   setOperand(0, F);
1410   setOperand(1, BB);
1411   BB->AdjustBlockAddressRefCount(1);
1412 }
1413
1414 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) {
1415   if (!BB->hasAddressTaken())
1416     return nullptr;
1417
1418   const Function *F = BB->getParent();
1419   assert(F && "Block must have a parent");
1420   BlockAddress *BA =
1421       F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB));
1422   assert(BA && "Refcount and block address map disagree!");
1423   return BA;
1424 }
1425
1426 // destroyConstant - Remove the constant from the constant table.
1427 //
1428 void BlockAddress::destroyConstant() {
1429   getFunction()->getType()->getContext().pImpl
1430     ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1431   getBasicBlock()->AdjustBlockAddressRefCount(-1);
1432   destroyConstantImpl();
1433 }
1434
1435 void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
1436   // This could be replacing either the Basic Block or the Function.  In either
1437   // case, we have to remove the map entry.
1438   Function *NewF = getFunction();
1439   BasicBlock *NewBB = getBasicBlock();
1440
1441   if (U == &Op<0>())
1442     NewF = cast<Function>(To->stripPointerCasts());
1443   else
1444     NewBB = cast<BasicBlock>(To);
1445
1446   // See if the 'new' entry already exists, if not, just update this in place
1447   // and return early.
1448   BlockAddress *&NewBA =
1449     getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1450   if (!NewBA) {
1451     getBasicBlock()->AdjustBlockAddressRefCount(-1);
1452
1453     // Remove the old entry, this can't cause the map to rehash (just a
1454     // tombstone will get added).
1455     getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1456                                                             getBasicBlock()));
1457     NewBA = this;
1458     setOperand(0, NewF);
1459     setOperand(1, NewBB);
1460     getBasicBlock()->AdjustBlockAddressRefCount(1);
1461     return;
1462   }
1463
1464   // Otherwise, I do need to replace this with an existing value.
1465   assert(NewBA != this && "I didn't contain From!");
1466
1467   // Everyone using this now uses the replacement.
1468   replaceAllUsesWith(NewBA);
1469
1470   destroyConstant();
1471 }
1472
1473 //---- ConstantExpr::get() implementations.
1474 //
1475
1476 /// This is a utility function to handle folding of casts and lookup of the
1477 /// cast in the ExprConstants map. It is used by the various get* methods below.
1478 static inline Constant *getFoldedCast(
1479   Instruction::CastOps opc, Constant *C, Type *Ty) {
1480   assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1481   // Fold a few common cases
1482   if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1483     return FC;
1484
1485   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1486
1487   // Look up the constant in the table first to ensure uniqueness.
1488   ExprMapKeyType Key(opc, C);
1489
1490   return pImpl->ExprConstants.getOrCreate(Ty, Key);
1491 }
1492
1493 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) {
1494   Instruction::CastOps opc = Instruction::CastOps(oc);
1495   assert(Instruction::isCast(opc) && "opcode out of range");
1496   assert(C && Ty && "Null arguments to getCast");
1497   assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1498
1499   switch (opc) {
1500   default:
1501     llvm_unreachable("Invalid cast opcode");
1502   case Instruction::Trunc:    return getTrunc(C, Ty);
1503   case Instruction::ZExt:     return getZExt(C, Ty);
1504   case Instruction::SExt:     return getSExt(C, Ty);
1505   case Instruction::FPTrunc:  return getFPTrunc(C, Ty);
1506   case Instruction::FPExt:    return getFPExtend(C, Ty);
1507   case Instruction::UIToFP:   return getUIToFP(C, Ty);
1508   case Instruction::SIToFP:   return getSIToFP(C, Ty);
1509   case Instruction::FPToUI:   return getFPToUI(C, Ty);
1510   case Instruction::FPToSI:   return getFPToSI(C, Ty);
1511   case Instruction::PtrToInt: return getPtrToInt(C, Ty);
1512   case Instruction::IntToPtr: return getIntToPtr(C, Ty);
1513   case Instruction::BitCast:  return getBitCast(C, Ty);
1514   case Instruction::AddrSpaceCast:  return getAddrSpaceCast(C, Ty);
1515   }
1516 }
1517
1518 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1519   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1520     return getBitCast(C, Ty);
1521   return getZExt(C, Ty);
1522 }
1523
1524 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
1525   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1526     return getBitCast(C, Ty);
1527   return getSExt(C, Ty);
1528 }
1529
1530 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1531   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1532     return getBitCast(C, Ty);
1533   return getTrunc(C, Ty);
1534 }
1535
1536 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1537   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1538   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
1539           "Invalid cast");
1540
1541   if (Ty->isIntOrIntVectorTy())
1542     return getPtrToInt(S, Ty);
1543
1544   unsigned SrcAS = S->getType()->getPointerAddressSpace();
1545   if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
1546     return getAddrSpaceCast(S, Ty);
1547
1548   return getBitCast(S, Ty);
1549 }
1550
1551 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S,
1552                                                          Type *Ty) {
1553   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1554   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
1555
1556   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
1557     return getAddrSpaceCast(S, Ty);
1558
1559   return getBitCast(S, Ty);
1560 }
1561
1562 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty,
1563                                        bool isSigned) {
1564   assert(C->getType()->isIntOrIntVectorTy() &&
1565          Ty->isIntOrIntVectorTy() && "Invalid cast");
1566   unsigned SrcBits = C->getType()->getScalarSizeInBits();
1567   unsigned DstBits = Ty->getScalarSizeInBits();
1568   Instruction::CastOps opcode =
1569     (SrcBits == DstBits ? Instruction::BitCast :
1570      (SrcBits > DstBits ? Instruction::Trunc :
1571       (isSigned ? Instruction::SExt : Instruction::ZExt)));
1572   return getCast(opcode, C, Ty);
1573 }
1574
1575 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
1576   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1577          "Invalid cast");
1578   unsigned SrcBits = C->getType()->getScalarSizeInBits();
1579   unsigned DstBits = Ty->getScalarSizeInBits();
1580   if (SrcBits == DstBits)
1581     return C; // Avoid a useless cast
1582   Instruction::CastOps opcode =
1583     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1584   return getCast(opcode, C, Ty);
1585 }
1586
1587 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty) {
1588 #ifndef NDEBUG
1589   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1590   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1591 #endif
1592   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1593   assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1594   assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1595   assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1596          "SrcTy must be larger than DestTy for Trunc!");
1597
1598   return getFoldedCast(Instruction::Trunc, C, Ty);
1599 }
1600
1601 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty) {
1602 #ifndef NDEBUG
1603   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1604   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1605 #endif
1606   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1607   assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1608   assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1609   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1610          "SrcTy must be smaller than DestTy for SExt!");
1611
1612   return getFoldedCast(Instruction::SExt, C, Ty);
1613 }
1614
1615 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty) {
1616 #ifndef NDEBUG
1617   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1618   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1619 #endif
1620   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1621   assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1622   assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1623   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1624          "SrcTy must be smaller than DestTy for ZExt!");
1625
1626   return getFoldedCast(Instruction::ZExt, C, Ty);
1627 }
1628
1629 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty) {
1630 #ifndef NDEBUG
1631   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1632   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1633 #endif
1634   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1635   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1636          C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1637          "This is an illegal floating point truncation!");
1638   return getFoldedCast(Instruction::FPTrunc, C, Ty);
1639 }
1640
1641 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty) {
1642 #ifndef NDEBUG
1643   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1644   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1645 #endif
1646   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1647   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1648          C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1649          "This is an illegal floating point extension!");
1650   return getFoldedCast(Instruction::FPExt, C, Ty);
1651 }
1652
1653 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty) {
1654 #ifndef NDEBUG
1655   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1656   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1657 #endif
1658   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1659   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1660          "This is an illegal uint to floating point cast!");
1661   return getFoldedCast(Instruction::UIToFP, C, Ty);
1662 }
1663
1664 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty) {
1665 #ifndef NDEBUG
1666   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1667   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1668 #endif
1669   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1670   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1671          "This is an illegal sint to floating point cast!");
1672   return getFoldedCast(Instruction::SIToFP, C, Ty);
1673 }
1674
1675 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty) {
1676 #ifndef NDEBUG
1677   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1678   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1679 #endif
1680   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1681   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1682          "This is an illegal floating point to uint cast!");
1683   return getFoldedCast(Instruction::FPToUI, C, Ty);
1684 }
1685
1686 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty) {
1687 #ifndef NDEBUG
1688   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1689   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1690 #endif
1691   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1692   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1693          "This is an illegal floating point to sint cast!");
1694   return getFoldedCast(Instruction::FPToSI, C, Ty);
1695 }
1696
1697 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy) {
1698   assert(C->getType()->getScalarType()->isPointerTy() &&
1699          "PtrToInt source must be pointer or pointer vector");
1700   assert(DstTy->getScalarType()->isIntegerTy() && 
1701          "PtrToInt destination must be integer or integer vector");
1702   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1703   if (isa<VectorType>(C->getType()))
1704     assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1705            "Invalid cast between a different number of vector elements");
1706   return getFoldedCast(Instruction::PtrToInt, C, DstTy);
1707 }
1708
1709 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy) {
1710   assert(C->getType()->getScalarType()->isIntegerTy() &&
1711          "IntToPtr source must be integer or integer vector");
1712   assert(DstTy->getScalarType()->isPointerTy() &&
1713          "IntToPtr destination must be a pointer or pointer vector");
1714   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1715   if (isa<VectorType>(C->getType()))
1716     assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1717            "Invalid cast between a different number of vector elements");
1718   return getFoldedCast(Instruction::IntToPtr, C, DstTy);
1719 }
1720
1721 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy) {
1722   assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
1723          "Invalid constantexpr bitcast!");
1724
1725   // It is common to ask for a bitcast of a value to its own type, handle this
1726   // speedily.
1727   if (C->getType() == DstTy) return C;
1728
1729   return getFoldedCast(Instruction::BitCast, C, DstTy);
1730 }
1731
1732 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy) {
1733   assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
1734          "Invalid constantexpr addrspacecast!");
1735
1736   // Canonicalize addrspacecasts between different pointer types by first
1737   // bitcasting the pointer type and then converting the address space.
1738   PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType());
1739   PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType());
1740   Type *DstElemTy = DstScalarTy->getElementType();
1741   if (SrcScalarTy->getElementType() != DstElemTy) {
1742     Type *MidTy = PointerType::get(DstElemTy, SrcScalarTy->getAddressSpace());
1743     if (VectorType *VT = dyn_cast<VectorType>(DstTy)) {
1744       // Handle vectors of pointers.
1745       MidTy = VectorType::get(MidTy, VT->getNumElements());
1746     }
1747     C = getBitCast(C, MidTy);
1748   }
1749   return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy);
1750 }
1751
1752 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1753                             unsigned Flags) {
1754   // Check the operands for consistency first.
1755   assert(Opcode >= Instruction::BinaryOpsBegin &&
1756          Opcode <  Instruction::BinaryOpsEnd   &&
1757          "Invalid opcode in binary constant expression");
1758   assert(C1->getType() == C2->getType() &&
1759          "Operand types in binary constant expression should match");
1760
1761 #ifndef NDEBUG
1762   switch (Opcode) {
1763   case Instruction::Add:
1764   case Instruction::Sub:
1765   case Instruction::Mul:
1766     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1767     assert(C1->getType()->isIntOrIntVectorTy() &&
1768            "Tried to create an integer operation on a non-integer type!");
1769     break;
1770   case Instruction::FAdd:
1771   case Instruction::FSub:
1772   case Instruction::FMul:
1773     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1774     assert(C1->getType()->isFPOrFPVectorTy() &&
1775            "Tried to create a floating-point operation on a "
1776            "non-floating-point type!");
1777     break;
1778   case Instruction::UDiv: 
1779   case Instruction::SDiv: 
1780     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1781     assert(C1->getType()->isIntOrIntVectorTy() &&
1782            "Tried to create an arithmetic operation on a non-arithmetic type!");
1783     break;
1784   case Instruction::FDiv:
1785     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1786     assert(C1->getType()->isFPOrFPVectorTy() &&
1787            "Tried to create an arithmetic operation on a non-arithmetic type!");
1788     break;
1789   case Instruction::URem: 
1790   case Instruction::SRem: 
1791     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1792     assert(C1->getType()->isIntOrIntVectorTy() &&
1793            "Tried to create an arithmetic operation on a non-arithmetic type!");
1794     break;
1795   case Instruction::FRem:
1796     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1797     assert(C1->getType()->isFPOrFPVectorTy() &&
1798            "Tried to create an arithmetic operation on a non-arithmetic type!");
1799     break;
1800   case Instruction::And:
1801   case Instruction::Or:
1802   case Instruction::Xor:
1803     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1804     assert(C1->getType()->isIntOrIntVectorTy() &&
1805            "Tried to create a logical operation on a non-integral type!");
1806     break;
1807   case Instruction::Shl:
1808   case Instruction::LShr:
1809   case Instruction::AShr:
1810     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1811     assert(C1->getType()->isIntOrIntVectorTy() &&
1812            "Tried to create a shift operation on a non-integer type!");
1813     break;
1814   default:
1815     break;
1816   }
1817 #endif
1818
1819   if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1820     return FC;          // Fold a few common cases.
1821
1822   Constant *ArgVec[] = { C1, C2 };
1823   ExprMapKeyType Key(Opcode, ArgVec, 0, Flags);
1824
1825   LLVMContextImpl *pImpl = C1->getContext().pImpl;
1826   return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
1827 }
1828
1829 Constant *ConstantExpr::getSizeOf(Type* Ty) {
1830   // sizeof is implemented as: (i64) gep (Ty*)null, 1
1831   // Note that a non-inbounds gep is used, as null isn't within any object.
1832   Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1833   Constant *GEP = getGetElementPtr(
1834                  Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1835   return getPtrToInt(GEP, 
1836                      Type::getInt64Ty(Ty->getContext()));
1837 }
1838
1839 Constant *ConstantExpr::getAlignOf(Type* Ty) {
1840   // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1841   // Note that a non-inbounds gep is used, as null isn't within any object.
1842   Type *AligningTy = 
1843     StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL);
1844   Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0));
1845   Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
1846   Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1847   Constant *Indices[2] = { Zero, One };
1848   Constant *GEP = getGetElementPtr(NullPtr, Indices);
1849   return getPtrToInt(GEP,
1850                      Type::getInt64Ty(Ty->getContext()));
1851 }
1852
1853 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
1854   return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
1855                                            FieldNo));
1856 }
1857
1858 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
1859   // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1860   // Note that a non-inbounds gep is used, as null isn't within any object.
1861   Constant *GEPIdx[] = {
1862     ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
1863     FieldNo
1864   };
1865   Constant *GEP = getGetElementPtr(
1866                 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1867   return getPtrToInt(GEP,
1868                      Type::getInt64Ty(Ty->getContext()));
1869 }
1870
1871 Constant *ConstantExpr::getCompare(unsigned short Predicate, 
1872                                    Constant *C1, Constant *C2) {
1873   assert(C1->getType() == C2->getType() && "Op types should be identical!");
1874
1875   switch (Predicate) {
1876   default: llvm_unreachable("Invalid CmpInst predicate");
1877   case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1878   case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1879   case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1880   case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
1881   case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
1882   case CmpInst::FCMP_TRUE:
1883     return getFCmp(Predicate, C1, C2);
1884
1885   case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
1886   case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
1887   case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
1888   case CmpInst::ICMP_SLE:
1889     return getICmp(Predicate, C1, C2);
1890   }
1891 }
1892
1893 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) {
1894   assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
1895
1896   if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
1897     return SC;        // Fold common cases
1898
1899   Constant *ArgVec[] = { C, V1, V2 };
1900   ExprMapKeyType Key(Instruction::Select, ArgVec);
1901
1902   LLVMContextImpl *pImpl = C->getContext().pImpl;
1903   return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
1904 }
1905
1906 Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs,
1907                                          bool InBounds) {
1908   assert(C->getType()->isPtrOrPtrVectorTy() &&
1909          "Non-pointer type for constant GetElementPtr expression");
1910
1911   if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs))
1912     return FC;          // Fold a few common cases.
1913
1914   // Get the result type of the getelementptr!
1915   Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), Idxs);
1916   assert(Ty && "GEP indices invalid!");
1917   unsigned AS = C->getType()->getPointerAddressSpace();
1918   Type *ReqTy = Ty->getPointerTo(AS);
1919   if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
1920     ReqTy = VectorType::get(ReqTy, VecTy->getNumElements());
1921
1922   // Look up the constant in the table first to ensure uniqueness
1923   std::vector<Constant*> ArgVec;
1924   ArgVec.reserve(1 + Idxs.size());
1925   ArgVec.push_back(C);
1926   for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
1927     assert(Idxs[i]->getType()->isVectorTy() == ReqTy->isVectorTy() &&
1928            "getelementptr index type missmatch");
1929     assert((!Idxs[i]->getType()->isVectorTy() ||
1930             ReqTy->getVectorNumElements() ==
1931             Idxs[i]->getType()->getVectorNumElements()) &&
1932            "getelementptr index type missmatch");
1933     ArgVec.push_back(cast<Constant>(Idxs[i]));
1934   }
1935   const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
1936                            InBounds ? GEPOperator::IsInBounds : 0);
1937
1938   LLVMContextImpl *pImpl = C->getContext().pImpl;
1939   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1940 }
1941
1942 Constant *
1943 ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1944   assert(LHS->getType() == RHS->getType());
1945   assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE && 
1946          pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
1947
1948   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1949     return FC;          // Fold a few common cases...
1950
1951   // Look up the constant in the table first to ensure uniqueness
1952   Constant *ArgVec[] = { LHS, RHS };
1953   // Get the key type with both the opcode and predicate
1954   const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
1955
1956   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1957   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1958     ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1959
1960   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1961   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1962 }
1963
1964 Constant *
1965 ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1966   assert(LHS->getType() == RHS->getType());
1967   assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
1968
1969   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1970     return FC;          // Fold a few common cases...
1971
1972   // Look up the constant in the table first to ensure uniqueness
1973   Constant *ArgVec[] = { LHS, RHS };
1974   // Get the key type with both the opcode and predicate
1975   const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
1976
1977   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1978   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1979     ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1980
1981   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1982   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1983 }
1984
1985 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
1986   assert(Val->getType()->isVectorTy() &&
1987          "Tried to create extractelement operation on non-vector type!");
1988   assert(Idx->getType()->isIntegerTy() &&
1989          "Extractelement index must be an integer type!");
1990
1991   if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
1992     return FC;          // Fold a few common cases.
1993
1994   // Look up the constant in the table first to ensure uniqueness
1995   Constant *ArgVec[] = { Val, Idx };
1996   const ExprMapKeyType Key(Instruction::ExtractElement, ArgVec);
1997
1998   LLVMContextImpl *pImpl = Val->getContext().pImpl;
1999   Type *ReqTy = Val->getType()->getVectorElementType();
2000   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2001 }
2002
2003 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, 
2004                                          Constant *Idx) {
2005   assert(Val->getType()->isVectorTy() &&
2006          "Tried to create insertelement operation on non-vector type!");
2007   assert(Elt->getType() == Val->getType()->getVectorElementType() &&
2008          "Insertelement types must match!");
2009   assert(Idx->getType()->isIntegerTy() &&
2010          "Insertelement index must be i32 type!");
2011
2012   if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
2013     return FC;          // Fold a few common cases.
2014   // Look up the constant in the table first to ensure uniqueness
2015   Constant *ArgVec[] = { Val, Elt, Idx };
2016   const ExprMapKeyType Key(Instruction::InsertElement, ArgVec);
2017
2018   LLVMContextImpl *pImpl = Val->getContext().pImpl;
2019   return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
2020 }
2021
2022 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, 
2023                                          Constant *Mask) {
2024   assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
2025          "Invalid shuffle vector constant expr operands!");
2026
2027   if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
2028     return FC;          // Fold a few common cases.
2029
2030   unsigned NElts = Mask->getType()->getVectorNumElements();
2031   Type *EltTy = V1->getType()->getVectorElementType();
2032   Type *ShufTy = VectorType::get(EltTy, NElts);
2033
2034   // Look up the constant in the table first to ensure uniqueness
2035   Constant *ArgVec[] = { V1, V2, Mask };
2036   const ExprMapKeyType Key(Instruction::ShuffleVector, ArgVec);
2037
2038   LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
2039   return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
2040 }
2041
2042 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
2043                                        ArrayRef<unsigned> Idxs) {
2044   assert(Agg->getType()->isFirstClassType() &&
2045          "Non-first-class type for constant insertvalue expression");
2046
2047   assert(ExtractValueInst::getIndexedType(Agg->getType(),
2048                                           Idxs) == Val->getType() &&
2049          "insertvalue indices invalid!");
2050   Type *ReqTy = Val->getType();
2051
2052   if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
2053     return FC;
2054
2055   Constant *ArgVec[] = { Agg, Val };
2056   const ExprMapKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
2057
2058   LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2059   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2060 }
2061
2062 Constant *ConstantExpr::getExtractValue(Constant *Agg,
2063                                         ArrayRef<unsigned> Idxs) {
2064   assert(Agg->getType()->isFirstClassType() &&
2065          "Tried to create extractelement operation on non-first-class type!");
2066
2067   Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
2068   (void)ReqTy;
2069   assert(ReqTy && "extractvalue indices invalid!");
2070
2071   assert(Agg->getType()->isFirstClassType() &&
2072          "Non-first-class type for constant extractvalue expression");
2073   if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
2074     return FC;
2075
2076   Constant *ArgVec[] = { Agg };
2077   const ExprMapKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
2078
2079   LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2080   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2081 }
2082
2083 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
2084   assert(C->getType()->isIntOrIntVectorTy() &&
2085          "Cannot NEG a nonintegral value!");
2086   return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
2087                 C, HasNUW, HasNSW);
2088 }
2089
2090 Constant *ConstantExpr::getFNeg(Constant *C) {
2091   assert(C->getType()->isFPOrFPVectorTy() &&
2092          "Cannot FNEG a non-floating-point value!");
2093   return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
2094 }
2095
2096 Constant *ConstantExpr::getNot(Constant *C) {
2097   assert(C->getType()->isIntOrIntVectorTy() &&
2098          "Cannot NOT a nonintegral value!");
2099   return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
2100 }
2101
2102 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
2103                                bool HasNUW, bool HasNSW) {
2104   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2105                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2106   return get(Instruction::Add, C1, C2, Flags);
2107 }
2108
2109 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
2110   return get(Instruction::FAdd, C1, C2);
2111 }
2112
2113 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2114                                bool HasNUW, bool HasNSW) {
2115   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2116                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2117   return get(Instruction::Sub, C1, C2, Flags);
2118 }
2119
2120 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
2121   return get(Instruction::FSub, C1, C2);
2122 }
2123
2124 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2125                                bool HasNUW, bool HasNSW) {
2126   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2127                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2128   return get(Instruction::Mul, C1, C2, Flags);
2129 }
2130
2131 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
2132   return get(Instruction::FMul, C1, C2);
2133 }
2134
2135 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
2136   return get(Instruction::UDiv, C1, C2,
2137              isExact ? PossiblyExactOperator::IsExact : 0);
2138 }
2139
2140 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
2141   return get(Instruction::SDiv, C1, C2,
2142              isExact ? PossiblyExactOperator::IsExact : 0);
2143 }
2144
2145 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
2146   return get(Instruction::FDiv, C1, C2);
2147 }
2148
2149 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
2150   return get(Instruction::URem, C1, C2);
2151 }
2152
2153 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
2154   return get(Instruction::SRem, C1, C2);
2155 }
2156
2157 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
2158   return get(Instruction::FRem, C1, C2);
2159 }
2160
2161 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
2162   return get(Instruction::And, C1, C2);
2163 }
2164
2165 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
2166   return get(Instruction::Or, C1, C2);
2167 }
2168
2169 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2170   return get(Instruction::Xor, C1, C2);
2171 }
2172
2173 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2174                                bool HasNUW, bool HasNSW) {
2175   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2176                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2177   return get(Instruction::Shl, C1, C2, Flags);
2178 }
2179
2180 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2181   return get(Instruction::LShr, C1, C2,
2182              isExact ? PossiblyExactOperator::IsExact : 0);
2183 }
2184
2185 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2186   return get(Instruction::AShr, C1, C2,
2187              isExact ? PossiblyExactOperator::IsExact : 0);
2188 }
2189
2190 /// getBinOpIdentity - Return the identity for the given binary operation,
2191 /// i.e. a constant C such that X op C = X and C op X = X for every X.  It
2192 /// returns null if the operator doesn't have an identity.
2193 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) {
2194   switch (Opcode) {
2195   default:
2196     // Doesn't have an identity.
2197     return nullptr;
2198
2199   case Instruction::Add:
2200   case Instruction::Or:
2201   case Instruction::Xor:
2202     return Constant::getNullValue(Ty);
2203
2204   case Instruction::Mul:
2205     return ConstantInt::get(Ty, 1);
2206
2207   case Instruction::And:
2208     return Constant::getAllOnesValue(Ty);
2209   }
2210 }
2211
2212 /// getBinOpAbsorber - Return the absorbing element for the given binary
2213 /// operation, i.e. a constant C such that X op C = C and C op X = C for
2214 /// every X.  For example, this returns zero for integer multiplication.
2215 /// It returns null if the operator doesn't have an absorbing element.
2216 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2217   switch (Opcode) {
2218   default:
2219     // Doesn't have an absorber.
2220     return nullptr;
2221
2222   case Instruction::Or:
2223     return Constant::getAllOnesValue(Ty);
2224
2225   case Instruction::And:
2226   case Instruction::Mul:
2227     return Constant::getNullValue(Ty);
2228   }
2229 }
2230
2231 // destroyConstant - Remove the constant from the constant table...
2232 //
2233 void ConstantExpr::destroyConstant() {
2234   getType()->getContext().pImpl->ExprConstants.remove(this);
2235   destroyConstantImpl();
2236 }
2237
2238 const char *ConstantExpr::getOpcodeName() const {
2239   return Instruction::getOpcodeName(getOpcode());
2240 }
2241
2242
2243
2244 GetElementPtrConstantExpr::
2245 GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList,
2246                           Type *DestTy)
2247   : ConstantExpr(DestTy, Instruction::GetElementPtr,
2248                  OperandTraits<GetElementPtrConstantExpr>::op_end(this)
2249                  - (IdxList.size()+1), IdxList.size()+1) {
2250   OperandList[0] = C;
2251   for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2252     OperandList[i+1] = IdxList[i];
2253 }
2254
2255 //===----------------------------------------------------------------------===//
2256 //                       ConstantData* implementations
2257
2258 void ConstantDataArray::anchor() {}
2259 void ConstantDataVector::anchor() {}
2260
2261 /// getElementType - Return the element type of the array/vector.
2262 Type *ConstantDataSequential::getElementType() const {
2263   return getType()->getElementType();
2264 }
2265
2266 StringRef ConstantDataSequential::getRawDataValues() const {
2267   return StringRef(DataElements, getNumElements()*getElementByteSize());
2268 }
2269
2270 /// isElementTypeCompatible - Return true if a ConstantDataSequential can be
2271 /// formed with a vector or array of the specified element type.
2272 /// ConstantDataArray only works with normal float and int types that are
2273 /// stored densely in memory, not with things like i42 or x86_f80.
2274 bool ConstantDataSequential::isElementTypeCompatible(const Type *Ty) {
2275   if (Ty->isFloatTy() || Ty->isDoubleTy()) return true;
2276   if (const IntegerType *IT = dyn_cast<IntegerType>(Ty)) {
2277     switch (IT->getBitWidth()) {
2278     case 8:
2279     case 16:
2280     case 32:
2281     case 64:
2282       return true;
2283     default: break;
2284     }
2285   }
2286   return false;
2287 }
2288
2289 /// getNumElements - Return the number of elements in the array or vector.
2290 unsigned ConstantDataSequential::getNumElements() const {
2291   if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2292     return AT->getNumElements();
2293   return getType()->getVectorNumElements();
2294 }
2295
2296
2297 /// getElementByteSize - Return the size in bytes of the elements in the data.
2298 uint64_t ConstantDataSequential::getElementByteSize() const {
2299   return getElementType()->getPrimitiveSizeInBits()/8;
2300 }
2301
2302 /// getElementPointer - Return the start of the specified element.
2303 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2304   assert(Elt < getNumElements() && "Invalid Elt");
2305   return DataElements+Elt*getElementByteSize();
2306 }
2307
2308
2309 /// isAllZeros - return true if the array is empty or all zeros.
2310 static bool isAllZeros(StringRef Arr) {
2311   for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I)
2312     if (*I != 0)
2313       return false;
2314   return true;
2315 }
2316
2317 /// getImpl - This is the underlying implementation of all of the
2318 /// ConstantDataSequential::get methods.  They all thunk down to here, providing
2319 /// the correct element type.  We take the bytes in as a StringRef because
2320 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
2321 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2322   assert(isElementTypeCompatible(Ty->getSequentialElementType()));
2323   // If the elements are all zero or there are no elements, return a CAZ, which
2324   // is more dense and canonical.
2325   if (isAllZeros(Elements))
2326     return ConstantAggregateZero::get(Ty);
2327
2328   // Do a lookup to see if we have already formed one of these.
2329   StringMap<ConstantDataSequential*>::MapEntryTy &Slot =
2330     Ty->getContext().pImpl->CDSConstants.GetOrCreateValue(Elements);
2331
2332   // The bucket can point to a linked list of different CDS's that have the same
2333   // body but different types.  For example, 0,0,0,1 could be a 4 element array
2334   // of i8, or a 1-element array of i32.  They'll both end up in the same
2335   /// StringMap bucket, linked up by their Next pointers.  Walk the list.
2336   ConstantDataSequential **Entry = &Slot.getValue();
2337   for (ConstantDataSequential *Node = *Entry; Node;
2338        Entry = &Node->Next, Node = *Entry)
2339     if (Node->getType() == Ty)
2340       return Node;
2341
2342   // Okay, we didn't get a hit.  Create a node of the right class, link it in,
2343   // and return it.
2344   if (isa<ArrayType>(Ty))
2345     return *Entry = new ConstantDataArray(Ty, Slot.getKeyData());
2346
2347   assert(isa<VectorType>(Ty));
2348   return *Entry = new ConstantDataVector(Ty, Slot.getKeyData());
2349 }
2350
2351 void ConstantDataSequential::destroyConstant() {
2352   // Remove the constant from the StringMap.
2353   StringMap<ConstantDataSequential*> &CDSConstants = 
2354     getType()->getContext().pImpl->CDSConstants;
2355
2356   StringMap<ConstantDataSequential*>::iterator Slot =
2357     CDSConstants.find(getRawDataValues());
2358
2359   assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2360
2361   ConstantDataSequential **Entry = &Slot->getValue();
2362
2363   // Remove the entry from the hash table.
2364   if (!(*Entry)->Next) {
2365     // If there is only one value in the bucket (common case) it must be this
2366     // entry, and removing the entry should remove the bucket completely.
2367     assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
2368     getContext().pImpl->CDSConstants.erase(Slot);
2369   } else {
2370     // Otherwise, there are multiple entries linked off the bucket, unlink the 
2371     // node we care about but keep the bucket around.
2372     for (ConstantDataSequential *Node = *Entry; ;
2373          Entry = &Node->Next, Node = *Entry) {
2374       assert(Node && "Didn't find entry in its uniquing hash table!");
2375       // If we found our entry, unlink it from the list and we're done.
2376       if (Node == this) {
2377         *Entry = Node->Next;
2378         break;
2379       }
2380     }
2381   }
2382
2383   // If we were part of a list, make sure that we don't delete the list that is
2384   // still owned by the uniquing map.
2385   Next = nullptr;
2386
2387   // Finally, actually delete it.
2388   destroyConstantImpl();
2389 }
2390
2391 /// get() constructors - Return a constant with array type with an element
2392 /// count and element type matching the ArrayRef passed in.  Note that this
2393 /// can return a ConstantAggregateZero object.
2394 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) {
2395   Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size());
2396   const char *Data = reinterpret_cast<const char *>(Elts.data());
2397   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2398 }
2399 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2400   Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size());
2401   const char *Data = reinterpret_cast<const char *>(Elts.data());
2402   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2403 }
2404 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2405   Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size());
2406   const char *Data = reinterpret_cast<const char *>(Elts.data());
2407   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2408 }
2409 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2410   Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size());
2411   const char *Data = reinterpret_cast<const char *>(Elts.data());
2412   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2413 }
2414 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) {
2415   Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2416   const char *Data = reinterpret_cast<const char *>(Elts.data());
2417   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2418 }
2419 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) {
2420   Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2421   const char *Data = reinterpret_cast<const char *>(Elts.data());
2422   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2423 }
2424
2425 /// getString - This method constructs a CDS and initializes it with a text
2426 /// string. The default behavior (AddNull==true) causes a null terminator to
2427 /// be placed at the end of the array (increasing the length of the string by
2428 /// one more than the StringRef would normally indicate.  Pass AddNull=false
2429 /// to disable this behavior.
2430 Constant *ConstantDataArray::getString(LLVMContext &Context,
2431                                        StringRef Str, bool AddNull) {
2432   if (!AddNull) {
2433     const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
2434     return get(Context, ArrayRef<uint8_t>(const_cast<uint8_t *>(Data),
2435                Str.size()));
2436   }
2437
2438   SmallVector<uint8_t, 64> ElementVals;
2439   ElementVals.append(Str.begin(), Str.end());
2440   ElementVals.push_back(0);
2441   return get(Context, ElementVals);
2442 }
2443
2444 /// get() constructors - Return a constant with vector type with an element
2445 /// count and element type matching the ArrayRef passed in.  Note that this
2446 /// can return a ConstantAggregateZero object.
2447 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
2448   Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
2449   const char *Data = reinterpret_cast<const char *>(Elts.data());
2450   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2451 }
2452 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2453   Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
2454   const char *Data = reinterpret_cast<const char *>(Elts.data());
2455   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2456 }
2457 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2458   Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
2459   const char *Data = reinterpret_cast<const char *>(Elts.data());
2460   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2461 }
2462 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2463   Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
2464   const char *Data = reinterpret_cast<const char *>(Elts.data());
2465   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2466 }
2467 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
2468   Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2469   const char *Data = reinterpret_cast<const char *>(Elts.data());
2470   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2471 }
2472 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
2473   Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2474   const char *Data = reinterpret_cast<const char *>(Elts.data());
2475   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2476 }
2477
2478 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
2479   assert(isElementTypeCompatible(V->getType()) &&
2480          "Element type not compatible with ConstantData");
2481   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2482     if (CI->getType()->isIntegerTy(8)) {
2483       SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
2484       return get(V->getContext(), Elts);
2485     }
2486     if (CI->getType()->isIntegerTy(16)) {
2487       SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
2488       return get(V->getContext(), Elts);
2489     }
2490     if (CI->getType()->isIntegerTy(32)) {
2491       SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
2492       return get(V->getContext(), Elts);
2493     }
2494     assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2495     SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
2496     return get(V->getContext(), Elts);
2497   }
2498
2499   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2500     if (CFP->getType()->isFloatTy()) {
2501       SmallVector<float, 16> Elts(NumElts, CFP->getValueAPF().convertToFloat());
2502       return get(V->getContext(), Elts);
2503     }
2504     if (CFP->getType()->isDoubleTy()) {
2505       SmallVector<double, 16> Elts(NumElts,
2506                                    CFP->getValueAPF().convertToDouble());
2507       return get(V->getContext(), Elts);
2508     }
2509   }
2510   return ConstantVector::getSplat(NumElts, V);
2511 }
2512
2513
2514 /// getElementAsInteger - If this is a sequential container of integers (of
2515 /// any size), return the specified element in the low bits of a uint64_t.
2516 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
2517   assert(isa<IntegerType>(getElementType()) &&
2518          "Accessor can only be used when element is an integer");
2519   const char *EltPtr = getElementPointer(Elt);
2520
2521   // The data is stored in host byte order, make sure to cast back to the right
2522   // type to load with the right endianness.
2523   switch (getElementType()->getIntegerBitWidth()) {
2524   default: llvm_unreachable("Invalid bitwidth for CDS");
2525   case 8:
2526     return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr));
2527   case 16:
2528     return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr));
2529   case 32:
2530     return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr));
2531   case 64:
2532     return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr));
2533   }
2534 }
2535
2536 /// getElementAsAPFloat - If this is a sequential container of floating point
2537 /// type, return the specified element as an APFloat.
2538 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
2539   const char *EltPtr = getElementPointer(Elt);
2540
2541   switch (getElementType()->getTypeID()) {
2542   default:
2543     llvm_unreachable("Accessor can only be used when element is float/double!");
2544   case Type::FloatTyID: {
2545       const float *FloatPrt = reinterpret_cast<const float *>(EltPtr);
2546       return APFloat(*const_cast<float *>(FloatPrt));
2547     }
2548   case Type::DoubleTyID: {
2549       const double *DoublePtr = reinterpret_cast<const double *>(EltPtr);
2550       return APFloat(*const_cast<double *>(DoublePtr));
2551     }
2552   }
2553 }
2554
2555 /// getElementAsFloat - If this is an sequential container of floats, return
2556 /// the specified element as a float.
2557 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
2558   assert(getElementType()->isFloatTy() &&
2559          "Accessor can only be used when element is a 'float'");
2560   const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt));
2561   return *const_cast<float *>(EltPtr);
2562 }
2563
2564 /// getElementAsDouble - If this is an sequential container of doubles, return
2565 /// the specified element as a float.
2566 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
2567   assert(getElementType()->isDoubleTy() &&
2568          "Accessor can only be used when element is a 'float'");
2569   const double *EltPtr =
2570       reinterpret_cast<const double *>(getElementPointer(Elt));
2571   return *const_cast<double *>(EltPtr);
2572 }
2573
2574 /// getElementAsConstant - Return a Constant for a specified index's element.
2575 /// Note that this has to compute a new constant to return, so it isn't as
2576 /// efficient as getElementAsInteger/Float/Double.
2577 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
2578   if (getElementType()->isFloatTy() || getElementType()->isDoubleTy())
2579     return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
2580
2581   return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
2582 }
2583
2584 /// isString - This method returns true if this is an array of i8.
2585 bool ConstantDataSequential::isString() const {
2586   return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8);
2587 }
2588
2589 /// isCString - This method returns true if the array "isString", ends with a
2590 /// nul byte, and does not contains any other nul bytes.
2591 bool ConstantDataSequential::isCString() const {
2592   if (!isString())
2593     return false;
2594
2595   StringRef Str = getAsString();
2596
2597   // The last value must be nul.
2598   if (Str.back() != 0) return false;
2599
2600   // Other elements must be non-nul.
2601   return Str.drop_back().find(0) == StringRef::npos;
2602 }
2603
2604 /// getSplatValue - If this is a splat constant, meaning that all of the
2605 /// elements have the same value, return that value. Otherwise return NULL.
2606 Constant *ConstantDataVector::getSplatValue() const {
2607   const char *Base = getRawDataValues().data();
2608
2609   // Compare elements 1+ to the 0'th element.
2610   unsigned EltSize = getElementByteSize();
2611   for (unsigned i = 1, e = getNumElements(); i != e; ++i)
2612     if (memcmp(Base, Base+i*EltSize, EltSize))
2613       return nullptr;
2614
2615   // If they're all the same, return the 0th one as a representative.
2616   return getElementAsConstant(0);
2617 }
2618
2619 //===----------------------------------------------------------------------===//
2620 //                replaceUsesOfWithOnConstant implementations
2621
2622 /// replaceUsesOfWithOnConstant - Update this constant array to change uses of
2623 /// 'From' to be uses of 'To'.  This must update the uniquing data structures
2624 /// etc.
2625 ///
2626 /// Note that we intentionally replace all uses of From with To here.  Consider
2627 /// a large array that uses 'From' 1000 times.  By handling this case all here,
2628 /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
2629 /// single invocation handles all 1000 uses.  Handling them one at a time would
2630 /// work, but would be really slow because it would have to unique each updated
2631 /// array instance.
2632 ///
2633 void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
2634                                                 Use *U) {
2635   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2636   Constant *ToC = cast<Constant>(To);
2637
2638   LLVMContextImpl *pImpl = getType()->getContext().pImpl;
2639
2640   SmallVector<Constant*, 8> Values;
2641   LLVMContextImpl::ArrayConstantsTy::LookupKey Lookup;
2642   Lookup.first = cast<ArrayType>(getType());
2643   Values.reserve(getNumOperands());  // Build replacement array.
2644
2645   // Fill values with the modified operands of the constant array.  Also,
2646   // compute whether this turns into an all-zeros array.
2647   unsigned NumUpdated = 0;
2648
2649   // Keep track of whether all the values in the array are "ToC".
2650   bool AllSame = true;
2651   for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2652     Constant *Val = cast<Constant>(O->get());
2653     if (Val == From) {
2654       Val = ToC;
2655       ++NumUpdated;
2656     }
2657     Values.push_back(Val);
2658     AllSame &= Val == ToC;
2659   }
2660
2661   Constant *Replacement = nullptr;
2662   if (AllSame && ToC->isNullValue()) {
2663     Replacement = ConstantAggregateZero::get(getType());
2664   } else if (AllSame && isa<UndefValue>(ToC)) {
2665     Replacement = UndefValue::get(getType());
2666   } else {
2667     // Check to see if we have this array type already.
2668     Lookup.second = makeArrayRef(Values);
2669     LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
2670       pImpl->ArrayConstants.find(Lookup);
2671
2672     if (I != pImpl->ArrayConstants.map_end()) {
2673       Replacement = I->first;
2674     } else {
2675       // Okay, the new shape doesn't exist in the system yet.  Instead of
2676       // creating a new constant array, inserting it, replaceallusesof'ing the
2677       // old with the new, then deleting the old... just update the current one
2678       // in place!
2679       pImpl->ArrayConstants.remove(this);
2680
2681       // Update to the new value.  Optimize for the case when we have a single
2682       // operand that we're changing, but handle bulk updates efficiently.
2683       if (NumUpdated == 1) {
2684         unsigned OperandToUpdate = U - OperandList;
2685         assert(getOperand(OperandToUpdate) == From &&
2686                "ReplaceAllUsesWith broken!");
2687         setOperand(OperandToUpdate, ToC);
2688       } else {
2689         for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2690           if (getOperand(i) == From)
2691             setOperand(i, ToC);
2692       }
2693       pImpl->ArrayConstants.insert(this);
2694       return;
2695     }
2696   }
2697
2698   // Otherwise, I do need to replace this with an existing value.
2699   assert(Replacement != this && "I didn't contain From!");
2700
2701   // Everyone using this now uses the replacement.
2702   replaceAllUsesWith(Replacement);
2703
2704   // Delete the old constant!
2705   destroyConstant();
2706 }
2707
2708 void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
2709                                                  Use *U) {
2710   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2711   Constant *ToC = cast<Constant>(To);
2712
2713   unsigned OperandToUpdate = U-OperandList;
2714   assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
2715
2716   SmallVector<Constant*, 8> Values;
2717   LLVMContextImpl::StructConstantsTy::LookupKey Lookup;
2718   Lookup.first = cast<StructType>(getType());
2719   Values.reserve(getNumOperands());  // Build replacement struct.
2720
2721   // Fill values with the modified operands of the constant struct.  Also,
2722   // compute whether this turns into an all-zeros struct.
2723   bool isAllZeros = false;
2724   bool isAllUndef = false;
2725   if (ToC->isNullValue()) {
2726     isAllZeros = true;
2727     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2728       Constant *Val = cast<Constant>(O->get());
2729       Values.push_back(Val);
2730       if (isAllZeros) isAllZeros = Val->isNullValue();
2731     }
2732   } else if (isa<UndefValue>(ToC)) {
2733     isAllUndef = true;
2734     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2735       Constant *Val = cast<Constant>(O->get());
2736       Values.push_back(Val);
2737       if (isAllUndef) isAllUndef = isa<UndefValue>(Val);
2738     }
2739   } else {
2740     for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
2741       Values.push_back(cast<Constant>(O->get()));
2742   }
2743   Values[OperandToUpdate] = ToC;
2744
2745   LLVMContextImpl *pImpl = getContext().pImpl;
2746
2747   Constant *Replacement = nullptr;
2748   if (isAllZeros) {
2749     Replacement = ConstantAggregateZero::get(getType());
2750   } else if (isAllUndef) {
2751     Replacement = UndefValue::get(getType());
2752   } else {
2753     // Check to see if we have this struct type already.
2754     Lookup.second = makeArrayRef(Values);
2755     LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
2756       pImpl->StructConstants.find(Lookup);
2757
2758     if (I != pImpl->StructConstants.map_end()) {
2759       Replacement = I->first;
2760     } else {
2761       // Okay, the new shape doesn't exist in the system yet.  Instead of
2762       // creating a new constant struct, inserting it, replaceallusesof'ing the
2763       // old with the new, then deleting the old... just update the current one
2764       // in place!
2765       pImpl->StructConstants.remove(this);
2766
2767       // Update to the new value.
2768       setOperand(OperandToUpdate, ToC);
2769       pImpl->StructConstants.insert(this);
2770       return;
2771     }
2772   }
2773
2774   assert(Replacement != this && "I didn't contain From!");
2775
2776   // Everyone using this now uses the replacement.
2777   replaceAllUsesWith(Replacement);
2778
2779   // Delete the old constant!
2780   destroyConstant();
2781 }
2782
2783 void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
2784                                                  Use *U) {
2785   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2786
2787   SmallVector<Constant*, 8> Values;
2788   Values.reserve(getNumOperands());  // Build replacement array...
2789   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2790     Constant *Val = getOperand(i);
2791     if (Val == From) Val = cast<Constant>(To);
2792     Values.push_back(Val);
2793   }
2794
2795   Constant *Replacement = get(Values);
2796   assert(Replacement != this && "I didn't contain From!");
2797
2798   // Everyone using this now uses the replacement.
2799   replaceAllUsesWith(Replacement);
2800
2801   // Delete the old constant!
2802   destroyConstant();
2803 }
2804
2805 void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
2806                                                Use *U) {
2807   assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2808   Constant *To = cast<Constant>(ToV);
2809
2810   SmallVector<Constant*, 8> NewOps;
2811   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2812     Constant *Op = getOperand(i);
2813     NewOps.push_back(Op == From ? To : Op);
2814   }
2815
2816   Constant *Replacement = getWithOperands(NewOps);
2817   assert(Replacement != this && "I didn't contain From!");
2818
2819   // Everyone using this now uses the replacement.
2820   replaceAllUsesWith(Replacement);
2821
2822   // Delete the old constant!
2823   destroyConstant();
2824 }
2825
2826 Instruction *ConstantExpr::getAsInstruction() {
2827   SmallVector<Value*,4> ValueOperands;
2828   for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2829     ValueOperands.push_back(cast<Value>(I));
2830
2831   ArrayRef<Value*> Ops(ValueOperands);
2832
2833   switch (getOpcode()) {
2834   case Instruction::Trunc:
2835   case Instruction::ZExt:
2836   case Instruction::SExt:
2837   case Instruction::FPTrunc:
2838   case Instruction::FPExt:
2839   case Instruction::UIToFP:
2840   case Instruction::SIToFP:
2841   case Instruction::FPToUI:
2842   case Instruction::FPToSI:
2843   case Instruction::PtrToInt:
2844   case Instruction::IntToPtr:
2845   case Instruction::BitCast:
2846   case Instruction::AddrSpaceCast:
2847     return CastInst::Create((Instruction::CastOps)getOpcode(),
2848                             Ops[0], getType());
2849   case Instruction::Select:
2850     return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
2851   case Instruction::InsertElement:
2852     return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
2853   case Instruction::ExtractElement:
2854     return ExtractElementInst::Create(Ops[0], Ops[1]);
2855   case Instruction::InsertValue:
2856     return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
2857   case Instruction::ExtractValue:
2858     return ExtractValueInst::Create(Ops[0], getIndices());
2859   case Instruction::ShuffleVector:
2860     return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
2861
2862   case Instruction::GetElementPtr:
2863     if (cast<GEPOperator>(this)->isInBounds())
2864       return GetElementPtrInst::CreateInBounds(Ops[0], Ops.slice(1));
2865     else
2866       return GetElementPtrInst::Create(Ops[0], Ops.slice(1));
2867
2868   case Instruction::ICmp:
2869   case Instruction::FCmp:
2870     return CmpInst::Create((Instruction::OtherOps)getOpcode(),
2871                            getPredicate(), Ops[0], Ops[1]);
2872
2873   default:
2874     assert(getNumOperands() == 2 && "Must be binary operator?");
2875     BinaryOperator *BO =
2876       BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
2877                              Ops[0], Ops[1]);
2878     if (isa<OverflowingBinaryOperator>(BO)) {
2879       BO->setHasNoUnsignedWrap(SubclassOptionalData &
2880                                OverflowingBinaryOperator::NoUnsignedWrap);
2881       BO->setHasNoSignedWrap(SubclassOptionalData &
2882                              OverflowingBinaryOperator::NoSignedWrap);
2883     }
2884     if (isa<PossiblyExactOperator>(BO))
2885       BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
2886     return BO;
2887   }
2888 }