e51a396a0bf14bce979fcd2d4354c42bdbd0bc8c
[oota-llvm.git] / lib / IR / Constants.cpp
1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Constant* classes.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Constants.h"
15 #include "ConstantFold.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/FoldingSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/GetElementPtrTypeIterator.h"
25 #include "llvm/IR/GlobalValue.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/Support/Compiler.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/ManagedStatic.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm>
36 #include <cstdarg>
37 using namespace llvm;
38
39 //===----------------------------------------------------------------------===//
40 //                              Constant Class
41 //===----------------------------------------------------------------------===//
42
43 void Constant::anchor() { }
44
45 bool Constant::isNegativeZeroValue() const {
46   // Floating point values have an explicit -0.0 value.
47   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
48     return CFP->isZero() && CFP->isNegative();
49
50   // Equivalent for a vector of -0.0's.
51   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
52     if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
53       if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
54         return true;
55
56   // We've already handled true FP case; any other FP vectors can't represent -0.0.
57   if (getType()->isFPOrFPVectorTy())
58     return false;
59
60   // Otherwise, just use +0.0.
61   return isNullValue();
62 }
63
64 // Return true iff this constant is positive zero (floating point), negative
65 // zero (floating point), or a null value.
66 bool Constant::isZeroValue() const {
67   // Floating point values have an explicit -0.0 value.
68   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
69     return CFP->isZero();
70
71   // Otherwise, just use +0.0.
72   return isNullValue();
73 }
74
75 bool Constant::isNullValue() const {
76   // 0 is null.
77   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
78     return CI->isZero();
79
80   // +0.0 is null.
81   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
82     return CFP->isZero() && !CFP->isNegative();
83
84   // constant zero is zero for aggregates and cpnull is null for pointers.
85   return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this);
86 }
87
88 bool Constant::isAllOnesValue() const {
89   // Check for -1 integers
90   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
91     return CI->isMinusOne();
92
93   // Check for FP which are bitcasted from -1 integers
94   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
95     return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
96
97   // Check for constant vectors which are splats of -1 values.
98   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
99     if (Constant *Splat = CV->getSplatValue())
100       return Splat->isAllOnesValue();
101
102   // Check for constant vectors which are splats of -1 values.
103   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
104     if (Constant *Splat = CV->getSplatValue())
105       return Splat->isAllOnesValue();
106
107   return false;
108 }
109
110 bool Constant::isOneValue() const {
111   // Check for 1 integers
112   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
113     return CI->isOne();
114
115   // Check for FP which are bitcasted from 1 integers
116   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
117     return CFP->getValueAPF().bitcastToAPInt() == 1;
118
119   // Check for constant vectors which are splats of 1 values.
120   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
121     if (Constant *Splat = CV->getSplatValue())
122       return Splat->isOneValue();
123
124   // Check for constant vectors which are splats of 1 values.
125   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
126     if (Constant *Splat = CV->getSplatValue())
127       return Splat->isOneValue();
128
129   return false;
130 }
131
132 bool Constant::isMinSignedValue() const {
133   // Check for INT_MIN integers
134   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
135     return CI->isMinValue(/*isSigned=*/true);
136
137   // Check for FP which are bitcasted from INT_MIN integers
138   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
139     return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
140
141   // Check for constant vectors which are splats of INT_MIN values.
142   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
143     if (Constant *Splat = CV->getSplatValue())
144       return Splat->isMinSignedValue();
145
146   // Check for constant vectors which are splats of INT_MIN values.
147   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
148     if (Constant *Splat = CV->getSplatValue())
149       return Splat->isMinSignedValue();
150
151   return false;
152 }
153
154 bool Constant::isNotMinSignedValue() const {
155   // Check for INT_MIN integers
156   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
157     return !CI->isMinValue(/*isSigned=*/true);
158
159   // Check for FP which are bitcasted from INT_MIN integers
160   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
161     return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
162
163   // Check for constant vectors which are splats of INT_MIN values.
164   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
165     if (Constant *Splat = CV->getSplatValue())
166       return Splat->isNotMinSignedValue();
167
168   // Check for constant vectors which are splats of INT_MIN values.
169   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
170     if (Constant *Splat = CV->getSplatValue())
171       return Splat->isNotMinSignedValue();
172
173   // It *may* contain INT_MIN, we can't tell.
174   return false;
175 }
176
177 // Constructor to create a '0' constant of arbitrary type...
178 Constant *Constant::getNullValue(Type *Ty) {
179   switch (Ty->getTypeID()) {
180   case Type::IntegerTyID:
181     return ConstantInt::get(Ty, 0);
182   case Type::HalfTyID:
183     return ConstantFP::get(Ty->getContext(),
184                            APFloat::getZero(APFloat::IEEEhalf));
185   case Type::FloatTyID:
186     return ConstantFP::get(Ty->getContext(),
187                            APFloat::getZero(APFloat::IEEEsingle));
188   case Type::DoubleTyID:
189     return ConstantFP::get(Ty->getContext(),
190                            APFloat::getZero(APFloat::IEEEdouble));
191   case Type::X86_FP80TyID:
192     return ConstantFP::get(Ty->getContext(),
193                            APFloat::getZero(APFloat::x87DoubleExtended));
194   case Type::FP128TyID:
195     return ConstantFP::get(Ty->getContext(),
196                            APFloat::getZero(APFloat::IEEEquad));
197   case Type::PPC_FP128TyID:
198     return ConstantFP::get(Ty->getContext(),
199                            APFloat(APFloat::PPCDoubleDouble,
200                                    APInt::getNullValue(128)));
201   case Type::PointerTyID:
202     return ConstantPointerNull::get(cast<PointerType>(Ty));
203   case Type::StructTyID:
204   case Type::ArrayTyID:
205   case Type::VectorTyID:
206     return ConstantAggregateZero::get(Ty);
207   default:
208     // Function, Label, or Opaque type?
209     llvm_unreachable("Cannot create a null constant of that type!");
210   }
211 }
212
213 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
214   Type *ScalarTy = Ty->getScalarType();
215
216   // Create the base integer constant.
217   Constant *C = ConstantInt::get(Ty->getContext(), V);
218
219   // Convert an integer to a pointer, if necessary.
220   if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
221     C = ConstantExpr::getIntToPtr(C, PTy);
222
223   // Broadcast a scalar to a vector, if necessary.
224   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
225     C = ConstantVector::getSplat(VTy->getNumElements(), C);
226
227   return C;
228 }
229
230 Constant *Constant::getAllOnesValue(Type *Ty) {
231   if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
232     return ConstantInt::get(Ty->getContext(),
233                             APInt::getAllOnesValue(ITy->getBitWidth()));
234
235   if (Ty->isFloatingPointTy()) {
236     APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
237                                           !Ty->isPPC_FP128Ty());
238     return ConstantFP::get(Ty->getContext(), FL);
239   }
240
241   VectorType *VTy = cast<VectorType>(Ty);
242   return ConstantVector::getSplat(VTy->getNumElements(),
243                                   getAllOnesValue(VTy->getElementType()));
244 }
245
246 /// getAggregateElement - For aggregates (struct/array/vector) return the
247 /// constant that corresponds to the specified element if possible, or null if
248 /// not.  This can return null if the element index is a ConstantExpr, or if
249 /// 'this' is a constant expr.
250 Constant *Constant::getAggregateElement(unsigned Elt) const {
251   if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this))
252     return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : nullptr;
253
254   if (const ConstantArray *CA = dyn_cast<ConstantArray>(this))
255     return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : nullptr;
256
257   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
258     return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : nullptr;
259
260   if (const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(this))
261     return Elt < CAZ->getNumElements() ? CAZ->getElementValue(Elt) : nullptr;
262
263   if (const UndefValue *UV = dyn_cast<UndefValue>(this))
264     return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr;
265
266   if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
267     return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
268                                        : nullptr;
269   return nullptr;
270 }
271
272 Constant *Constant::getAggregateElement(Constant *Elt) const {
273   assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
274   if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
275     return getAggregateElement(CI->getZExtValue());
276   return nullptr;
277 }
278
279
280 void Constant::destroyConstantImpl() {
281   // When a Constant is destroyed, there may be lingering
282   // references to the constant by other constants in the constant pool.  These
283   // constants are implicitly dependent on the module that is being deleted,
284   // but they don't know that.  Because we only find out when the CPV is
285   // deleted, we must now notify all of our users (that should only be
286   // Constants) that they are, in fact, invalid now and should be deleted.
287   //
288   while (!use_empty()) {
289     Value *V = user_back();
290 #ifndef NDEBUG      // Only in -g mode...
291     if (!isa<Constant>(V)) {
292       dbgs() << "While deleting: " << *this
293              << "\n\nUse still stuck around after Def is destroyed: "
294              << *V << "\n\n";
295     }
296 #endif
297     assert(isa<Constant>(V) && "References remain to Constant being destroyed");
298     cast<Constant>(V)->destroyConstant();
299
300     // The constant should remove itself from our use list...
301     assert((use_empty() || user_back() != V) && "Constant not removed!");
302   }
303
304   // Value has no outstanding references it is safe to delete it now...
305   delete this;
306 }
307
308 static bool canTrapImpl(const Constant *C,
309                         SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) {
310   assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
311   // The only thing that could possibly trap are constant exprs.
312   const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
313   if (!CE)
314     return false;
315
316   // ConstantExpr traps if any operands can trap.
317   for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
318     if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
319       if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps))
320         return true;
321     }
322   }
323
324   // Otherwise, only specific operations can trap.
325   switch (CE->getOpcode()) {
326   default:
327     return false;
328   case Instruction::UDiv:
329   case Instruction::SDiv:
330   case Instruction::FDiv:
331   case Instruction::URem:
332   case Instruction::SRem:
333   case Instruction::FRem:
334     // Div and rem can trap if the RHS is not known to be non-zero.
335     if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
336       return true;
337     return false;
338   }
339 }
340
341 /// canTrap - Return true if evaluation of this constant could trap.  This is
342 /// true for things like constant expressions that could divide by zero.
343 bool Constant::canTrap() const {
344   SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
345   return canTrapImpl(this, NonTrappingOps);
346 }
347
348 /// Check if C contains a GlobalValue for which Predicate is true.
349 static bool
350 ConstHasGlobalValuePredicate(const Constant *C,
351                              bool (*Predicate)(const GlobalValue *)) {
352   SmallPtrSet<const Constant *, 8> Visited;
353   SmallVector<const Constant *, 8> WorkList;
354   WorkList.push_back(C);
355   Visited.insert(C);
356
357   while (!WorkList.empty()) {
358     const Constant *WorkItem = WorkList.pop_back_val();
359     if (const auto *GV = dyn_cast<GlobalValue>(WorkItem))
360       if (Predicate(GV))
361         return true;
362     for (const Value *Op : WorkItem->operands()) {
363       const Constant *ConstOp = dyn_cast<Constant>(Op);
364       if (!ConstOp)
365         continue;
366       if (Visited.insert(ConstOp).second)
367         WorkList.push_back(ConstOp);
368     }
369   }
370   return false;
371 }
372
373 /// Return true if the value can vary between threads.
374 bool Constant::isThreadDependent() const {
375   auto DLLImportPredicate = [](const GlobalValue *GV) {
376     return GV->isThreadLocal();
377   };
378   return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
379 }
380
381 bool Constant::isDLLImportDependent() const {
382   auto DLLImportPredicate = [](const GlobalValue *GV) {
383     return GV->hasDLLImportStorageClass();
384   };
385   return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
386 }
387
388 /// Return true if the constant has users other than constant exprs and other
389 /// dangling things.
390 bool Constant::isConstantUsed() const {
391   for (const User *U : users()) {
392     const Constant *UC = dyn_cast<Constant>(U);
393     if (!UC || isa<GlobalValue>(UC))
394       return true;
395
396     if (UC->isConstantUsed())
397       return true;
398   }
399   return false;
400 }
401
402
403
404 /// getRelocationInfo - This method classifies the entry according to
405 /// whether or not it may generate a relocation entry.  This must be
406 /// conservative, so if it might codegen to a relocatable entry, it should say
407 /// so.  The return values are:
408 /// 
409 ///  NoRelocation: This constant pool entry is guaranteed to never have a
410 ///     relocation applied to it (because it holds a simple constant like
411 ///     '4').
412 ///  LocalRelocation: This entry has relocations, but the entries are
413 ///     guaranteed to be resolvable by the static linker, so the dynamic
414 ///     linker will never see them.
415 ///  GlobalRelocations: This entry may have arbitrary relocations.
416 ///
417 /// FIXME: This really should not be in IR.
418 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
419   if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
420     if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
421       return LocalRelocation;  // Local to this file/library.
422     return GlobalRelocations;    // Global reference.
423   }
424   
425   if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
426     return BA->getFunction()->getRelocationInfo();
427   
428   // While raw uses of blockaddress need to be relocated, differences between
429   // two of them don't when they are for labels in the same function.  This is a
430   // common idiom when creating a table for the indirect goto extension, so we
431   // handle it efficiently here.
432   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
433     if (CE->getOpcode() == Instruction::Sub) {
434       ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
435       ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
436       if (LHS && RHS &&
437           LHS->getOpcode() == Instruction::PtrToInt &&
438           RHS->getOpcode() == Instruction::PtrToInt &&
439           isa<BlockAddress>(LHS->getOperand(0)) &&
440           isa<BlockAddress>(RHS->getOperand(0)) &&
441           cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
442             cast<BlockAddress>(RHS->getOperand(0))->getFunction())
443         return NoRelocation;
444     }
445
446   PossibleRelocationsTy Result = NoRelocation;
447   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
448     Result = std::max(Result,
449                       cast<Constant>(getOperand(i))->getRelocationInfo());
450
451   return Result;
452 }
453
454 /// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
455 /// it.  This involves recursively eliminating any dead users of the
456 /// constantexpr.
457 static bool removeDeadUsersOfConstant(const Constant *C) {
458   if (isa<GlobalValue>(C)) return false; // Cannot remove this
459
460   while (!C->use_empty()) {
461     const Constant *User = dyn_cast<Constant>(C->user_back());
462     if (!User) return false; // Non-constant usage;
463     if (!removeDeadUsersOfConstant(User))
464       return false; // Constant wasn't dead
465   }
466
467   const_cast<Constant*>(C)->destroyConstant();
468   return true;
469 }
470
471
472 /// removeDeadConstantUsers - If there are any dead constant users dangling
473 /// off of this constant, remove them.  This method is useful for clients
474 /// that want to check to see if a global is unused, but don't want to deal
475 /// with potentially dead constants hanging off of the globals.
476 void Constant::removeDeadConstantUsers() const {
477   Value::const_user_iterator I = user_begin(), E = user_end();
478   Value::const_user_iterator LastNonDeadUser = E;
479   while (I != E) {
480     const Constant *User = dyn_cast<Constant>(*I);
481     if (!User) {
482       LastNonDeadUser = I;
483       ++I;
484       continue;
485     }
486
487     if (!removeDeadUsersOfConstant(User)) {
488       // If the constant wasn't dead, remember that this was the last live use
489       // and move on to the next constant.
490       LastNonDeadUser = I;
491       ++I;
492       continue;
493     }
494
495     // If the constant was dead, then the iterator is invalidated.
496     if (LastNonDeadUser == E) {
497       I = user_begin();
498       if (I == E) break;
499     } else {
500       I = LastNonDeadUser;
501       ++I;
502     }
503   }
504 }
505
506
507
508 //===----------------------------------------------------------------------===//
509 //                                ConstantInt
510 //===----------------------------------------------------------------------===//
511
512 void ConstantInt::anchor() { }
513
514 ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
515   : Constant(Ty, ConstantIntVal, nullptr, 0), Val(V) {
516   assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
517 }
518
519 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
520   LLVMContextImpl *pImpl = Context.pImpl;
521   if (!pImpl->TheTrueVal)
522     pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
523   return pImpl->TheTrueVal;
524 }
525
526 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
527   LLVMContextImpl *pImpl = Context.pImpl;
528   if (!pImpl->TheFalseVal)
529     pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
530   return pImpl->TheFalseVal;
531 }
532
533 Constant *ConstantInt::getTrue(Type *Ty) {
534   VectorType *VTy = dyn_cast<VectorType>(Ty);
535   if (!VTy) {
536     assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
537     return ConstantInt::getTrue(Ty->getContext());
538   }
539   assert(VTy->getElementType()->isIntegerTy(1) &&
540          "True must be vector of i1 or i1.");
541   return ConstantVector::getSplat(VTy->getNumElements(),
542                                   ConstantInt::getTrue(Ty->getContext()));
543 }
544
545 Constant *ConstantInt::getFalse(Type *Ty) {
546   VectorType *VTy = dyn_cast<VectorType>(Ty);
547   if (!VTy) {
548     assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
549     return ConstantInt::getFalse(Ty->getContext());
550   }
551   assert(VTy->getElementType()->isIntegerTy(1) &&
552          "False must be vector of i1 or i1.");
553   return ConstantVector::getSplat(VTy->getNumElements(),
554                                   ConstantInt::getFalse(Ty->getContext()));
555 }
556
557 // Get a ConstantInt from an APInt.
558 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
559   // get an existing value or the insertion position
560   LLVMContextImpl *pImpl = Context.pImpl;
561   ConstantInt *&Slot = pImpl->IntConstants[V];
562   if (!Slot) {
563     // Get the corresponding integer type for the bit width of the value.
564     IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
565     Slot = new ConstantInt(ITy, V);
566   }
567   assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth()));
568   return Slot;
569 }
570
571 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
572   Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
573
574   // For vectors, broadcast the value.
575   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
576     return ConstantVector::getSplat(VTy->getNumElements(), C);
577
578   return C;
579 }
580
581 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, 
582                               bool isSigned) {
583   return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
584 }
585
586 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
587   return get(Ty, V, true);
588 }
589
590 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
591   return get(Ty, V, true);
592 }
593
594 Constant *ConstantInt::get(Type *Ty, const APInt& V) {
595   ConstantInt *C = get(Ty->getContext(), V);
596   assert(C->getType() == Ty->getScalarType() &&
597          "ConstantInt type doesn't match the type implied by its value!");
598
599   // For vectors, broadcast the value.
600   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
601     return ConstantVector::getSplat(VTy->getNumElements(), C);
602
603   return C;
604 }
605
606 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str,
607                               uint8_t radix) {
608   return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
609 }
610
611 //===----------------------------------------------------------------------===//
612 //                                ConstantFP
613 //===----------------------------------------------------------------------===//
614
615 static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
616   if (Ty->isHalfTy())
617     return &APFloat::IEEEhalf;
618   if (Ty->isFloatTy())
619     return &APFloat::IEEEsingle;
620   if (Ty->isDoubleTy())
621     return &APFloat::IEEEdouble;
622   if (Ty->isX86_FP80Ty())
623     return &APFloat::x87DoubleExtended;
624   else if (Ty->isFP128Ty())
625     return &APFloat::IEEEquad;
626
627   assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
628   return &APFloat::PPCDoubleDouble;
629 }
630
631 void ConstantFP::anchor() { }
632
633 /// get() - This returns a constant fp for the specified value in the
634 /// specified type.  This should only be used for simple constant values like
635 /// 2.0/1.0 etc, that are known-valid both as double and as the target format.
636 Constant *ConstantFP::get(Type *Ty, double V) {
637   LLVMContext &Context = Ty->getContext();
638
639   APFloat FV(V);
640   bool ignored;
641   FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
642              APFloat::rmNearestTiesToEven, &ignored);
643   Constant *C = get(Context, FV);
644
645   // For vectors, broadcast the value.
646   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
647     return ConstantVector::getSplat(VTy->getNumElements(), C);
648
649   return C;
650 }
651
652
653 Constant *ConstantFP::get(Type *Ty, StringRef Str) {
654   LLVMContext &Context = Ty->getContext();
655
656   APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
657   Constant *C = get(Context, FV);
658
659   // For vectors, broadcast the value.
660   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
661     return ConstantVector::getSplat(VTy->getNumElements(), C);
662
663   return C; 
664 }
665
666 Constant *ConstantFP::getNegativeZero(Type *Ty) {
667   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
668   APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true);
669   Constant *C = get(Ty->getContext(), NegZero);
670
671   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
672     return ConstantVector::getSplat(VTy->getNumElements(), C);
673
674   return C;
675 }
676
677
678 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
679   if (Ty->isFPOrFPVectorTy())
680     return getNegativeZero(Ty);
681
682   return Constant::getNullValue(Ty);
683 }
684
685
686 // ConstantFP accessors.
687 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
688   LLVMContextImpl* pImpl = Context.pImpl;
689
690   ConstantFP *&Slot = pImpl->FPConstants[V];
691
692   if (!Slot) {
693     Type *Ty;
694     if (&V.getSemantics() == &APFloat::IEEEhalf)
695       Ty = Type::getHalfTy(Context);
696     else if (&V.getSemantics() == &APFloat::IEEEsingle)
697       Ty = Type::getFloatTy(Context);
698     else if (&V.getSemantics() == &APFloat::IEEEdouble)
699       Ty = Type::getDoubleTy(Context);
700     else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
701       Ty = Type::getX86_FP80Ty(Context);
702     else if (&V.getSemantics() == &APFloat::IEEEquad)
703       Ty = Type::getFP128Ty(Context);
704     else {
705       assert(&V.getSemantics() == &APFloat::PPCDoubleDouble && 
706              "Unknown FP format");
707       Ty = Type::getPPC_FP128Ty(Context);
708     }
709     Slot = new ConstantFP(Ty, V);
710   }
711
712   return Slot;
713 }
714
715 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) {
716   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
717   Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative));
718
719   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
720     return ConstantVector::getSplat(VTy->getNumElements(), C);
721
722   return C;
723 }
724
725 ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
726   : Constant(Ty, ConstantFPVal, nullptr, 0), Val(V) {
727   assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
728          "FP type Mismatch");
729 }
730
731 bool ConstantFP::isExactlyValue(const APFloat &V) const {
732   return Val.bitwiseIsEqual(V);
733 }
734
735 //===----------------------------------------------------------------------===//
736 //                   ConstantAggregateZero Implementation
737 //===----------------------------------------------------------------------===//
738
739 /// getSequentialElement - If this CAZ has array or vector type, return a zero
740 /// with the right element type.
741 Constant *ConstantAggregateZero::getSequentialElement() const {
742   return Constant::getNullValue(getType()->getSequentialElementType());
743 }
744
745 /// getStructElement - If this CAZ has struct type, return a zero with the
746 /// right element type for the specified element.
747 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
748   return Constant::getNullValue(getType()->getStructElementType(Elt));
749 }
750
751 /// getElementValue - Return a zero of the right value for the specified GEP
752 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
753 Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
754   if (isa<SequentialType>(getType()))
755     return getSequentialElement();
756   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
757 }
758
759 /// getElementValue - Return a zero of the right value for the specified GEP
760 /// index.
761 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
762   if (isa<SequentialType>(getType()))
763     return getSequentialElement();
764   return getStructElement(Idx);
765 }
766
767 unsigned ConstantAggregateZero::getNumElements() const {
768   const Type *Ty = getType();
769   if (const auto *AT = dyn_cast<ArrayType>(Ty))
770     return AT->getNumElements();
771   if (const auto *VT = dyn_cast<VectorType>(Ty))
772     return VT->getNumElements();
773   return Ty->getStructNumElements();
774 }
775
776 //===----------------------------------------------------------------------===//
777 //                         UndefValue Implementation
778 //===----------------------------------------------------------------------===//
779
780 /// getSequentialElement - If this undef has array or vector type, return an
781 /// undef with the right element type.
782 UndefValue *UndefValue::getSequentialElement() const {
783   return UndefValue::get(getType()->getSequentialElementType());
784 }
785
786 /// getStructElement - If this undef has struct type, return a zero with the
787 /// right element type for the specified element.
788 UndefValue *UndefValue::getStructElement(unsigned Elt) const {
789   return UndefValue::get(getType()->getStructElementType(Elt));
790 }
791
792 /// getElementValue - Return an undef of the right value for the specified GEP
793 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
794 UndefValue *UndefValue::getElementValue(Constant *C) const {
795   if (isa<SequentialType>(getType()))
796     return getSequentialElement();
797   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
798 }
799
800 /// getElementValue - Return an undef of the right value for the specified GEP
801 /// index.
802 UndefValue *UndefValue::getElementValue(unsigned Idx) const {
803   if (isa<SequentialType>(getType()))
804     return getSequentialElement();
805   return getStructElement(Idx);
806 }
807
808 unsigned UndefValue::getNumElements() const {
809   const Type *Ty = getType();
810   if (const auto *AT = dyn_cast<ArrayType>(Ty))
811     return AT->getNumElements();
812   if (const auto *VT = dyn_cast<VectorType>(Ty))
813     return VT->getNumElements();
814   return Ty->getStructNumElements();
815 }
816
817 //===----------------------------------------------------------------------===//
818 //                            ConstantXXX Classes
819 //===----------------------------------------------------------------------===//
820
821 template <typename ItTy, typename EltTy>
822 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
823   for (; Start != End; ++Start)
824     if (*Start != Elt)
825       return false;
826   return true;
827 }
828
829 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
830   : Constant(T, ConstantArrayVal,
831              OperandTraits<ConstantArray>::op_end(this) - V.size(),
832              V.size()) {
833   assert(V.size() == T->getNumElements() &&
834          "Invalid initializer vector for constant array");
835   for (unsigned i = 0, e = V.size(); i != e; ++i)
836     assert(V[i]->getType() == T->getElementType() &&
837            "Initializer for array element doesn't match array element type!");
838   std::copy(V.begin(), V.end(), op_begin());
839 }
840
841 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
842   if (Constant *C = getImpl(Ty, V))
843     return C;
844   return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V);
845 }
846 Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) {
847   // Empty arrays are canonicalized to ConstantAggregateZero.
848   if (V.empty())
849     return ConstantAggregateZero::get(Ty);
850
851   for (unsigned i = 0, e = V.size(); i != e; ++i) {
852     assert(V[i]->getType() == Ty->getElementType() &&
853            "Wrong type in array element initializer");
854   }
855
856   // If this is an all-zero array, return a ConstantAggregateZero object.  If
857   // all undef, return an UndefValue, if "all simple", then return a
858   // ConstantDataArray.
859   Constant *C = V[0];
860   if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
861     return UndefValue::get(Ty);
862
863   if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
864     return ConstantAggregateZero::get(Ty);
865
866   // Check to see if all of the elements are ConstantFP or ConstantInt and if
867   // the element type is compatible with ConstantDataVector.  If so, use it.
868   if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
869     // We speculatively build the elements here even if it turns out that there
870     // is a constantexpr or something else weird in the array, since it is so
871     // uncommon for that to happen.
872     if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
873       if (CI->getType()->isIntegerTy(8)) {
874         SmallVector<uint8_t, 16> Elts;
875         for (unsigned i = 0, e = V.size(); i != e; ++i)
876           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
877             Elts.push_back(CI->getZExtValue());
878           else
879             break;
880         if (Elts.size() == V.size())
881           return ConstantDataArray::get(C->getContext(), Elts);
882       } else if (CI->getType()->isIntegerTy(16)) {
883         SmallVector<uint16_t, 16> Elts;
884         for (unsigned i = 0, e = V.size(); i != e; ++i)
885           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
886             Elts.push_back(CI->getZExtValue());
887           else
888             break;
889         if (Elts.size() == V.size())
890           return ConstantDataArray::get(C->getContext(), Elts);
891       } else if (CI->getType()->isIntegerTy(32)) {
892         SmallVector<uint32_t, 16> Elts;
893         for (unsigned i = 0, e = V.size(); i != e; ++i)
894           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
895             Elts.push_back(CI->getZExtValue());
896           else
897             break;
898         if (Elts.size() == V.size())
899           return ConstantDataArray::get(C->getContext(), Elts);
900       } else if (CI->getType()->isIntegerTy(64)) {
901         SmallVector<uint64_t, 16> Elts;
902         for (unsigned i = 0, e = V.size(); i != e; ++i)
903           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
904             Elts.push_back(CI->getZExtValue());
905           else
906             break;
907         if (Elts.size() == V.size())
908           return ConstantDataArray::get(C->getContext(), Elts);
909       }
910     }
911
912     if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
913       if (CFP->getType()->isFloatTy()) {
914         SmallVector<uint32_t, 16> Elts;
915         for (unsigned i = 0, e = V.size(); i != e; ++i)
916           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
917             Elts.push_back(
918                 CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
919           else
920             break;
921         if (Elts.size() == V.size())
922           return ConstantDataArray::getFP(C->getContext(), Elts);
923       } else if (CFP->getType()->isDoubleTy()) {
924         SmallVector<uint64_t, 16> Elts;
925         for (unsigned i = 0, e = V.size(); i != e; ++i)
926           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
927             Elts.push_back(
928                 CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
929           else
930             break;
931         if (Elts.size() == V.size())
932           return ConstantDataArray::getFP(C->getContext(), Elts);
933       }
934     }
935   }
936
937   // Otherwise, we really do want to create a ConstantArray.
938   return nullptr;
939 }
940
941 /// getTypeForElements - Return an anonymous struct type to use for a constant
942 /// with the specified set of elements.  The list must not be empty.
943 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
944                                                ArrayRef<Constant*> V,
945                                                bool Packed) {
946   unsigned VecSize = V.size();
947   SmallVector<Type*, 16> EltTypes(VecSize);
948   for (unsigned i = 0; i != VecSize; ++i)
949     EltTypes[i] = V[i]->getType();
950
951   return StructType::get(Context, EltTypes, Packed);
952 }
953
954
955 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
956                                                bool Packed) {
957   assert(!V.empty() &&
958          "ConstantStruct::getTypeForElements cannot be called on empty list");
959   return getTypeForElements(V[0]->getContext(), V, Packed);
960 }
961
962
963 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
964   : Constant(T, ConstantStructVal,
965              OperandTraits<ConstantStruct>::op_end(this) - V.size(),
966              V.size()) {
967   assert(V.size() == T->getNumElements() &&
968          "Invalid initializer vector for constant structure");
969   for (unsigned i = 0, e = V.size(); i != e; ++i)
970     assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) &&
971            "Initializer for struct element doesn't match struct element type!");
972   std::copy(V.begin(), V.end(), op_begin());
973 }
974
975 // ConstantStruct accessors.
976 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
977   assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
978          "Incorrect # elements specified to ConstantStruct::get");
979
980   // Create a ConstantAggregateZero value if all elements are zeros.
981   bool isZero = true;
982   bool isUndef = false;
983   
984   if (!V.empty()) {
985     isUndef = isa<UndefValue>(V[0]);
986     isZero = V[0]->isNullValue();
987     if (isUndef || isZero) {
988       for (unsigned i = 0, e = V.size(); i != e; ++i) {
989         if (!V[i]->isNullValue())
990           isZero = false;
991         if (!isa<UndefValue>(V[i]))
992           isUndef = false;
993       }
994     }
995   }
996   if (isZero)
997     return ConstantAggregateZero::get(ST);
998   if (isUndef)
999     return UndefValue::get(ST);
1000
1001   return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
1002 }
1003
1004 Constant *ConstantStruct::get(StructType *T, ...) {
1005   va_list ap;
1006   SmallVector<Constant*, 8> Values;
1007   va_start(ap, T);
1008   while (Constant *Val = va_arg(ap, llvm::Constant*))
1009     Values.push_back(Val);
1010   va_end(ap);
1011   return get(T, Values);
1012 }
1013
1014 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
1015   : Constant(T, ConstantVectorVal,
1016              OperandTraits<ConstantVector>::op_end(this) - V.size(),
1017              V.size()) {
1018   for (size_t i = 0, e = V.size(); i != e; i++)
1019     assert(V[i]->getType() == T->getElementType() &&
1020            "Initializer for vector element doesn't match vector element type!");
1021   std::copy(V.begin(), V.end(), op_begin());
1022 }
1023
1024 // ConstantVector accessors.
1025 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
1026   if (Constant *C = getImpl(V))
1027     return C;
1028   VectorType *Ty = VectorType::get(V.front()->getType(), V.size());
1029   return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V);
1030 }
1031 Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) {
1032   assert(!V.empty() && "Vectors can't be empty");
1033   VectorType *T = VectorType::get(V.front()->getType(), V.size());
1034
1035   // If this is an all-undef or all-zero vector, return a
1036   // ConstantAggregateZero or UndefValue.
1037   Constant *C = V[0];
1038   bool isZero = C->isNullValue();
1039   bool isUndef = isa<UndefValue>(C);
1040
1041   if (isZero || isUndef) {
1042     for (unsigned i = 1, e = V.size(); i != e; ++i)
1043       if (V[i] != C) {
1044         isZero = isUndef = false;
1045         break;
1046       }
1047   }
1048
1049   if (isZero)
1050     return ConstantAggregateZero::get(T);
1051   if (isUndef)
1052     return UndefValue::get(T);
1053
1054   // Check to see if all of the elements are ConstantFP or ConstantInt and if
1055   // the element type is compatible with ConstantDataVector.  If so, use it.
1056   if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
1057     // We speculatively build the elements here even if it turns out that there
1058     // is a constantexpr or something else weird in the array, since it is so
1059     // uncommon for that to happen.
1060     if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
1061       if (CI->getType()->isIntegerTy(8)) {
1062         SmallVector<uint8_t, 16> Elts;
1063         for (unsigned i = 0, e = V.size(); i != e; ++i)
1064           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
1065             Elts.push_back(CI->getZExtValue());
1066           else
1067             break;
1068         if (Elts.size() == V.size())
1069           return ConstantDataVector::get(C->getContext(), Elts);
1070       } else if (CI->getType()->isIntegerTy(16)) {
1071         SmallVector<uint16_t, 16> Elts;
1072         for (unsigned i = 0, e = V.size(); i != e; ++i)
1073           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
1074             Elts.push_back(CI->getZExtValue());
1075           else
1076             break;
1077         if (Elts.size() == V.size())
1078           return ConstantDataVector::get(C->getContext(), Elts);
1079       } else if (CI->getType()->isIntegerTy(32)) {
1080         SmallVector<uint32_t, 16> Elts;
1081         for (unsigned i = 0, e = V.size(); i != e; ++i)
1082           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
1083             Elts.push_back(CI->getZExtValue());
1084           else
1085             break;
1086         if (Elts.size() == V.size())
1087           return ConstantDataVector::get(C->getContext(), Elts);
1088       } else if (CI->getType()->isIntegerTy(64)) {
1089         SmallVector<uint64_t, 16> Elts;
1090         for (unsigned i = 0, e = V.size(); i != e; ++i)
1091           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
1092             Elts.push_back(CI->getZExtValue());
1093           else
1094             break;
1095         if (Elts.size() == V.size())
1096           return ConstantDataVector::get(C->getContext(), Elts);
1097       }
1098     }
1099
1100     if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1101       if (CFP->getType()->isFloatTy()) {
1102         SmallVector<uint32_t, 16> Elts;
1103         for (unsigned i = 0, e = V.size(); i != e; ++i)
1104           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
1105             Elts.push_back(
1106                 CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
1107           else
1108             break;
1109         if (Elts.size() == V.size())
1110           return ConstantDataVector::getFP(C->getContext(), Elts);
1111       } else if (CFP->getType()->isDoubleTy()) {
1112         SmallVector<uint64_t, 16> Elts;
1113         for (unsigned i = 0, e = V.size(); i != e; ++i)
1114           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
1115             Elts.push_back(
1116                 CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
1117           else
1118             break;
1119         if (Elts.size() == V.size())
1120           return ConstantDataVector::getFP(C->getContext(), Elts);
1121       }
1122     }
1123   }
1124
1125   // Otherwise, the element type isn't compatible with ConstantDataVector, or
1126   // the operand list constants a ConstantExpr or something else strange.
1127   return nullptr;
1128 }
1129
1130 Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
1131   // If this splat is compatible with ConstantDataVector, use it instead of
1132   // ConstantVector.
1133   if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1134       ConstantDataSequential::isElementTypeCompatible(V->getType()))
1135     return ConstantDataVector::getSplat(NumElts, V);
1136
1137   SmallVector<Constant*, 32> Elts(NumElts, V);
1138   return get(Elts);
1139 }
1140
1141
1142 // Utility function for determining if a ConstantExpr is a CastOp or not. This
1143 // can't be inline because we don't want to #include Instruction.h into
1144 // Constant.h
1145 bool ConstantExpr::isCast() const {
1146   return Instruction::isCast(getOpcode());
1147 }
1148
1149 bool ConstantExpr::isCompare() const {
1150   return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1151 }
1152
1153 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
1154   if (getOpcode() != Instruction::GetElementPtr) return false;
1155
1156   gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
1157   User::const_op_iterator OI = std::next(this->op_begin());
1158
1159   // Skip the first index, as it has no static limit.
1160   ++GEPI;
1161   ++OI;
1162
1163   // The remaining indices must be compile-time known integers within the
1164   // bounds of the corresponding notional static array types.
1165   for (; GEPI != E; ++GEPI, ++OI) {
1166     ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
1167     if (!CI) return false;
1168     if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
1169       if (CI->getValue().getActiveBits() > 64 ||
1170           CI->getZExtValue() >= ATy->getNumElements())
1171         return false;
1172   }
1173
1174   // All the indices checked out.
1175   return true;
1176 }
1177
1178 bool ConstantExpr::hasIndices() const {
1179   return getOpcode() == Instruction::ExtractValue ||
1180          getOpcode() == Instruction::InsertValue;
1181 }
1182
1183 ArrayRef<unsigned> ConstantExpr::getIndices() const {
1184   if (const ExtractValueConstantExpr *EVCE =
1185         dyn_cast<ExtractValueConstantExpr>(this))
1186     return EVCE->Indices;
1187
1188   return cast<InsertValueConstantExpr>(this)->Indices;
1189 }
1190
1191 unsigned ConstantExpr::getPredicate() const {
1192   assert(isCompare());
1193   return ((const CompareConstantExpr*)this)->predicate;
1194 }
1195
1196 /// getWithOperandReplaced - Return a constant expression identical to this
1197 /// one, but with the specified operand set to the specified value.
1198 Constant *
1199 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
1200   assert(Op->getType() == getOperand(OpNo)->getType() &&
1201          "Replacing operand with value of different type!");
1202   if (getOperand(OpNo) == Op)
1203     return const_cast<ConstantExpr*>(this);
1204
1205   SmallVector<Constant*, 8> NewOps;
1206   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1207     NewOps.push_back(i == OpNo ? Op : getOperand(i));
1208
1209   return getWithOperands(NewOps);
1210 }
1211
1212 /// getWithOperands - This returns the current constant expression with the
1213 /// operands replaced with the specified values.  The specified array must
1214 /// have the same number of operands as our current one.
1215 Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1216                                         bool OnlyIfReduced) const {
1217   assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1218
1219   // If no operands changed return self.
1220   if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin()))
1221     return const_cast<ConstantExpr*>(this);
1222
1223   Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr;
1224   switch (getOpcode()) {
1225   case Instruction::Trunc:
1226   case Instruction::ZExt:
1227   case Instruction::SExt:
1228   case Instruction::FPTrunc:
1229   case Instruction::FPExt:
1230   case Instruction::UIToFP:
1231   case Instruction::SIToFP:
1232   case Instruction::FPToUI:
1233   case Instruction::FPToSI:
1234   case Instruction::PtrToInt:
1235   case Instruction::IntToPtr:
1236   case Instruction::BitCast:
1237   case Instruction::AddrSpaceCast:
1238     return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced);
1239   case Instruction::Select:
1240     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy);
1241   case Instruction::InsertElement:
1242     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2],
1243                                           OnlyIfReducedTy);
1244   case Instruction::ExtractElement:
1245     return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy);
1246   case Instruction::InsertValue:
1247     return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(),
1248                                         OnlyIfReducedTy);
1249   case Instruction::ExtractValue:
1250     return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy);
1251   case Instruction::ShuffleVector:
1252     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2],
1253                                           OnlyIfReducedTy);
1254   case Instruction::GetElementPtr:
1255     return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1),
1256                                           cast<GEPOperator>(this)->isInBounds(),
1257                                           OnlyIfReducedTy);
1258   case Instruction::ICmp:
1259   case Instruction::FCmp:
1260     return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1],
1261                                     OnlyIfReducedTy);
1262   default:
1263     assert(getNumOperands() == 2 && "Must be binary operator?");
1264     return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData,
1265                              OnlyIfReducedTy);
1266   }
1267 }
1268
1269
1270 //===----------------------------------------------------------------------===//
1271 //                      isValueValidForType implementations
1272
1273 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1274   unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1275   if (Ty->isIntegerTy(1))
1276     return Val == 0 || Val == 1;
1277   if (NumBits >= 64)
1278     return true; // always true, has to fit in largest type
1279   uint64_t Max = (1ll << NumBits) - 1;
1280   return Val <= Max;
1281 }
1282
1283 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1284   unsigned NumBits = Ty->getIntegerBitWidth();
1285   if (Ty->isIntegerTy(1))
1286     return Val == 0 || Val == 1 || Val == -1;
1287   if (NumBits >= 64)
1288     return true; // always true, has to fit in largest type
1289   int64_t Min = -(1ll << (NumBits-1));
1290   int64_t Max = (1ll << (NumBits-1)) - 1;
1291   return (Val >= Min && Val <= Max);
1292 }
1293
1294 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1295   // convert modifies in place, so make a copy.
1296   APFloat Val2 = APFloat(Val);
1297   bool losesInfo;
1298   switch (Ty->getTypeID()) {
1299   default:
1300     return false;         // These can't be represented as floating point!
1301
1302   // FIXME rounding mode needs to be more flexible
1303   case Type::HalfTyID: {
1304     if (&Val2.getSemantics() == &APFloat::IEEEhalf)
1305       return true;
1306     Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo);
1307     return !losesInfo;
1308   }
1309   case Type::FloatTyID: {
1310     if (&Val2.getSemantics() == &APFloat::IEEEsingle)
1311       return true;
1312     Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
1313     return !losesInfo;
1314   }
1315   case Type::DoubleTyID: {
1316     if (&Val2.getSemantics() == &APFloat::IEEEhalf ||
1317         &Val2.getSemantics() == &APFloat::IEEEsingle ||
1318         &Val2.getSemantics() == &APFloat::IEEEdouble)
1319       return true;
1320     Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
1321     return !losesInfo;
1322   }
1323   case Type::X86_FP80TyID:
1324     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1325            &Val2.getSemantics() == &APFloat::IEEEsingle || 
1326            &Val2.getSemantics() == &APFloat::IEEEdouble ||
1327            &Val2.getSemantics() == &APFloat::x87DoubleExtended;
1328   case Type::FP128TyID:
1329     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1330            &Val2.getSemantics() == &APFloat::IEEEsingle || 
1331            &Val2.getSemantics() == &APFloat::IEEEdouble ||
1332            &Val2.getSemantics() == &APFloat::IEEEquad;
1333   case Type::PPC_FP128TyID:
1334     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1335            &Val2.getSemantics() == &APFloat::IEEEsingle || 
1336            &Val2.getSemantics() == &APFloat::IEEEdouble ||
1337            &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
1338   }
1339 }
1340
1341
1342 //===----------------------------------------------------------------------===//
1343 //                      Factory Function Implementation
1344
1345 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1346   assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1347          "Cannot create an aggregate zero of non-aggregate type!");
1348   
1349   ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty];
1350   if (!Entry)
1351     Entry = new ConstantAggregateZero(Ty);
1352
1353   return Entry;
1354 }
1355
1356 /// destroyConstant - Remove the constant from the constant table.
1357 ///
1358 void ConstantAggregateZero::destroyConstant() {
1359   getContext().pImpl->CAZConstants.erase(getType());
1360   destroyConstantImpl();
1361 }
1362
1363 /// destroyConstant - Remove the constant from the constant table...
1364 ///
1365 void ConstantArray::destroyConstant() {
1366   getType()->getContext().pImpl->ArrayConstants.remove(this);
1367   destroyConstantImpl();
1368 }
1369
1370
1371 //---- ConstantStruct::get() implementation...
1372 //
1373
1374 // destroyConstant - Remove the constant from the constant table...
1375 //
1376 void ConstantStruct::destroyConstant() {
1377   getType()->getContext().pImpl->StructConstants.remove(this);
1378   destroyConstantImpl();
1379 }
1380
1381 // destroyConstant - Remove the constant from the constant table...
1382 //
1383 void ConstantVector::destroyConstant() {
1384   getType()->getContext().pImpl->VectorConstants.remove(this);
1385   destroyConstantImpl();
1386 }
1387
1388 /// getSplatValue - If this is a splat vector constant, meaning that all of
1389 /// the elements have the same value, return that value. Otherwise return 0.
1390 Constant *Constant::getSplatValue() const {
1391   assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1392   if (isa<ConstantAggregateZero>(this))
1393     return getNullValue(this->getType()->getVectorElementType());
1394   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1395     return CV->getSplatValue();
1396   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1397     return CV->getSplatValue();
1398   return nullptr;
1399 }
1400
1401 /// getSplatValue - If this is a splat constant, where all of the
1402 /// elements have the same value, return that value. Otherwise return null.
1403 Constant *ConstantVector::getSplatValue() const {
1404   // Check out first element.
1405   Constant *Elt = getOperand(0);
1406   // Then make sure all remaining elements point to the same value.
1407   for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1408     if (getOperand(I) != Elt)
1409       return nullptr;
1410   return Elt;
1411 }
1412
1413 /// If C is a constant integer then return its value, otherwise C must be a
1414 /// vector of constant integers, all equal, and the common value is returned.
1415 const APInt &Constant::getUniqueInteger() const {
1416   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1417     return CI->getValue();
1418   assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1419   const Constant *C = this->getAggregateElement(0U);
1420   assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1421   return cast<ConstantInt>(C)->getValue();
1422 }
1423
1424
1425 //---- ConstantPointerNull::get() implementation.
1426 //
1427
1428 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1429   ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty];
1430   if (!Entry)
1431     Entry = new ConstantPointerNull(Ty);
1432
1433   return Entry;
1434 }
1435
1436 // destroyConstant - Remove the constant from the constant table...
1437 //
1438 void ConstantPointerNull::destroyConstant() {
1439   getContext().pImpl->CPNConstants.erase(getType());
1440   // Free the constant and any dangling references to it.
1441   destroyConstantImpl();
1442 }
1443
1444
1445 //---- UndefValue::get() implementation.
1446 //
1447
1448 UndefValue *UndefValue::get(Type *Ty) {
1449   UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty];
1450   if (!Entry)
1451     Entry = new UndefValue(Ty);
1452
1453   return Entry;
1454 }
1455
1456 // destroyConstant - Remove the constant from the constant table.
1457 //
1458 void UndefValue::destroyConstant() {
1459   // Free the constant and any dangling references to it.
1460   getContext().pImpl->UVConstants.erase(getType());
1461   destroyConstantImpl();
1462 }
1463
1464 //---- BlockAddress::get() implementation.
1465 //
1466
1467 BlockAddress *BlockAddress::get(BasicBlock *BB) {
1468   assert(BB->getParent() && "Block must have a parent");
1469   return get(BB->getParent(), BB);
1470 }
1471
1472 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1473   BlockAddress *&BA =
1474     F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1475   if (!BA)
1476     BA = new BlockAddress(F, BB);
1477
1478   assert(BA->getFunction() == F && "Basic block moved between functions");
1479   return BA;
1480 }
1481
1482 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1483 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1484            &Op<0>(), 2) {
1485   setOperand(0, F);
1486   setOperand(1, BB);
1487   BB->AdjustBlockAddressRefCount(1);
1488 }
1489
1490 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) {
1491   if (!BB->hasAddressTaken())
1492     return nullptr;
1493
1494   const Function *F = BB->getParent();
1495   assert(F && "Block must have a parent");
1496   BlockAddress *BA =
1497       F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB));
1498   assert(BA && "Refcount and block address map disagree!");
1499   return BA;
1500 }
1501
1502 // destroyConstant - Remove the constant from the constant table.
1503 //
1504 void BlockAddress::destroyConstant() {
1505   getFunction()->getType()->getContext().pImpl
1506     ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1507   getBasicBlock()->AdjustBlockAddressRefCount(-1);
1508   destroyConstantImpl();
1509 }
1510
1511 void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
1512   // This could be replacing either the Basic Block or the Function.  In either
1513   // case, we have to remove the map entry.
1514   Function *NewF = getFunction();
1515   BasicBlock *NewBB = getBasicBlock();
1516
1517   if (U == &Op<0>())
1518     NewF = cast<Function>(To->stripPointerCasts());
1519   else
1520     NewBB = cast<BasicBlock>(To);
1521
1522   // See if the 'new' entry already exists, if not, just update this in place
1523   // and return early.
1524   BlockAddress *&NewBA =
1525     getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1526   if (NewBA) {
1527     replaceUsesOfWithOnConstantImpl(NewBA);
1528     return;
1529   }
1530
1531   getBasicBlock()->AdjustBlockAddressRefCount(-1);
1532
1533   // Remove the old entry, this can't cause the map to rehash (just a
1534   // tombstone will get added).
1535   getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1536                                                           getBasicBlock()));
1537   NewBA = this;
1538   setOperand(0, NewF);
1539   setOperand(1, NewBB);
1540   getBasicBlock()->AdjustBlockAddressRefCount(1);
1541 }
1542
1543 //---- ConstantExpr::get() implementations.
1544 //
1545
1546 /// This is a utility function to handle folding of casts and lookup of the
1547 /// cast in the ExprConstants map. It is used by the various get* methods below.
1548 static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty,
1549                                bool OnlyIfReduced = false) {
1550   assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1551   // Fold a few common cases
1552   if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1553     return FC;
1554
1555   if (OnlyIfReduced)
1556     return nullptr;
1557
1558   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1559
1560   // Look up the constant in the table first to ensure uniqueness.
1561   ConstantExprKeyType Key(opc, C);
1562
1563   return pImpl->ExprConstants.getOrCreate(Ty, Key);
1564 }
1565
1566 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty,
1567                                 bool OnlyIfReduced) {
1568   Instruction::CastOps opc = Instruction::CastOps(oc);
1569   assert(Instruction::isCast(opc) && "opcode out of range");
1570   assert(C && Ty && "Null arguments to getCast");
1571   assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1572
1573   switch (opc) {
1574   default:
1575     llvm_unreachable("Invalid cast opcode");
1576   case Instruction::Trunc:
1577     return getTrunc(C, Ty, OnlyIfReduced);
1578   case Instruction::ZExt:
1579     return getZExt(C, Ty, OnlyIfReduced);
1580   case Instruction::SExt:
1581     return getSExt(C, Ty, OnlyIfReduced);
1582   case Instruction::FPTrunc:
1583     return getFPTrunc(C, Ty, OnlyIfReduced);
1584   case Instruction::FPExt:
1585     return getFPExtend(C, Ty, OnlyIfReduced);
1586   case Instruction::UIToFP:
1587     return getUIToFP(C, Ty, OnlyIfReduced);
1588   case Instruction::SIToFP:
1589     return getSIToFP(C, Ty, OnlyIfReduced);
1590   case Instruction::FPToUI:
1591     return getFPToUI(C, Ty, OnlyIfReduced);
1592   case Instruction::FPToSI:
1593     return getFPToSI(C, Ty, OnlyIfReduced);
1594   case Instruction::PtrToInt:
1595     return getPtrToInt(C, Ty, OnlyIfReduced);
1596   case Instruction::IntToPtr:
1597     return getIntToPtr(C, Ty, OnlyIfReduced);
1598   case Instruction::BitCast:
1599     return getBitCast(C, Ty, OnlyIfReduced);
1600   case Instruction::AddrSpaceCast:
1601     return getAddrSpaceCast(C, Ty, OnlyIfReduced);
1602   }
1603 }
1604
1605 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1606   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1607     return getBitCast(C, Ty);
1608   return getZExt(C, Ty);
1609 }
1610
1611 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
1612   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1613     return getBitCast(C, Ty);
1614   return getSExt(C, Ty);
1615 }
1616
1617 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1618   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1619     return getBitCast(C, Ty);
1620   return getTrunc(C, Ty);
1621 }
1622
1623 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1624   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1625   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
1626           "Invalid cast");
1627
1628   if (Ty->isIntOrIntVectorTy())
1629     return getPtrToInt(S, Ty);
1630
1631   unsigned SrcAS = S->getType()->getPointerAddressSpace();
1632   if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
1633     return getAddrSpaceCast(S, Ty);
1634
1635   return getBitCast(S, Ty);
1636 }
1637
1638 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S,
1639                                                          Type *Ty) {
1640   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1641   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
1642
1643   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
1644     return getAddrSpaceCast(S, Ty);
1645
1646   return getBitCast(S, Ty);
1647 }
1648
1649 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty,
1650                                        bool isSigned) {
1651   assert(C->getType()->isIntOrIntVectorTy() &&
1652          Ty->isIntOrIntVectorTy() && "Invalid cast");
1653   unsigned SrcBits = C->getType()->getScalarSizeInBits();
1654   unsigned DstBits = Ty->getScalarSizeInBits();
1655   Instruction::CastOps opcode =
1656     (SrcBits == DstBits ? Instruction::BitCast :
1657      (SrcBits > DstBits ? Instruction::Trunc :
1658       (isSigned ? Instruction::SExt : Instruction::ZExt)));
1659   return getCast(opcode, C, Ty);
1660 }
1661
1662 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
1663   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1664          "Invalid cast");
1665   unsigned SrcBits = C->getType()->getScalarSizeInBits();
1666   unsigned DstBits = Ty->getScalarSizeInBits();
1667   if (SrcBits == DstBits)
1668     return C; // Avoid a useless cast
1669   Instruction::CastOps opcode =
1670     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1671   return getCast(opcode, C, Ty);
1672 }
1673
1674 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
1675 #ifndef NDEBUG
1676   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1677   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1678 #endif
1679   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1680   assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1681   assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1682   assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1683          "SrcTy must be larger than DestTy for Trunc!");
1684
1685   return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced);
1686 }
1687
1688 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
1689 #ifndef NDEBUG
1690   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1691   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1692 #endif
1693   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1694   assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1695   assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1696   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1697          "SrcTy must be smaller than DestTy for SExt!");
1698
1699   return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced);
1700 }
1701
1702 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
1703 #ifndef NDEBUG
1704   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1705   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1706 #endif
1707   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1708   assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1709   assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1710   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1711          "SrcTy must be smaller than DestTy for ZExt!");
1712
1713   return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced);
1714 }
1715
1716 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
1717 #ifndef NDEBUG
1718   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1719   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1720 #endif
1721   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1722   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1723          C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1724          "This is an illegal floating point truncation!");
1725   return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced);
1726 }
1727
1728 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) {
1729 #ifndef NDEBUG
1730   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1731   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1732 #endif
1733   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1734   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1735          C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1736          "This is an illegal floating point extension!");
1737   return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced);
1738 }
1739
1740 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
1741 #ifndef NDEBUG
1742   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1743   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1744 #endif
1745   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1746   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1747          "This is an illegal uint to floating point cast!");
1748   return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced);
1749 }
1750
1751 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
1752 #ifndef NDEBUG
1753   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1754   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1755 #endif
1756   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1757   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1758          "This is an illegal sint to floating point cast!");
1759   return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced);
1760 }
1761
1762 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) {
1763 #ifndef NDEBUG
1764   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1765   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1766 #endif
1767   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1768   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1769          "This is an illegal floating point to uint cast!");
1770   return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced);
1771 }
1772
1773 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) {
1774 #ifndef NDEBUG
1775   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1776   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1777 #endif
1778   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1779   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1780          "This is an illegal floating point to sint cast!");
1781   return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced);
1782 }
1783
1784 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy,
1785                                     bool OnlyIfReduced) {
1786   assert(C->getType()->getScalarType()->isPointerTy() &&
1787          "PtrToInt source must be pointer or pointer vector");
1788   assert(DstTy->getScalarType()->isIntegerTy() && 
1789          "PtrToInt destination must be integer or integer vector");
1790   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1791   if (isa<VectorType>(C->getType()))
1792     assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1793            "Invalid cast between a different number of vector elements");
1794   return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced);
1795 }
1796
1797 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy,
1798                                     bool OnlyIfReduced) {
1799   assert(C->getType()->getScalarType()->isIntegerTy() &&
1800          "IntToPtr source must be integer or integer vector");
1801   assert(DstTy->getScalarType()->isPointerTy() &&
1802          "IntToPtr destination must be a pointer or pointer vector");
1803   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1804   if (isa<VectorType>(C->getType()))
1805     assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1806            "Invalid cast between a different number of vector elements");
1807   return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced);
1808 }
1809
1810 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy,
1811                                    bool OnlyIfReduced) {
1812   assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
1813          "Invalid constantexpr bitcast!");
1814
1815   // It is common to ask for a bitcast of a value to its own type, handle this
1816   // speedily.
1817   if (C->getType() == DstTy) return C;
1818
1819   return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced);
1820 }
1821
1822 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy,
1823                                          bool OnlyIfReduced) {
1824   assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
1825          "Invalid constantexpr addrspacecast!");
1826
1827   // Canonicalize addrspacecasts between different pointer types by first
1828   // bitcasting the pointer type and then converting the address space.
1829   PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType());
1830   PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType());
1831   Type *DstElemTy = DstScalarTy->getElementType();
1832   if (SrcScalarTy->getElementType() != DstElemTy) {
1833     Type *MidTy = PointerType::get(DstElemTy, SrcScalarTy->getAddressSpace());
1834     if (VectorType *VT = dyn_cast<VectorType>(DstTy)) {
1835       // Handle vectors of pointers.
1836       MidTy = VectorType::get(MidTy, VT->getNumElements());
1837     }
1838     C = getBitCast(C, MidTy);
1839   }
1840   return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced);
1841 }
1842
1843 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1844                             unsigned Flags, Type *OnlyIfReducedTy) {
1845   // Check the operands for consistency first.
1846   assert(Opcode >= Instruction::BinaryOpsBegin &&
1847          Opcode <  Instruction::BinaryOpsEnd   &&
1848          "Invalid opcode in binary constant expression");
1849   assert(C1->getType() == C2->getType() &&
1850          "Operand types in binary constant expression should match");
1851
1852 #ifndef NDEBUG
1853   switch (Opcode) {
1854   case Instruction::Add:
1855   case Instruction::Sub:
1856   case Instruction::Mul:
1857     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1858     assert(C1->getType()->isIntOrIntVectorTy() &&
1859            "Tried to create an integer operation on a non-integer type!");
1860     break;
1861   case Instruction::FAdd:
1862   case Instruction::FSub:
1863   case Instruction::FMul:
1864     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1865     assert(C1->getType()->isFPOrFPVectorTy() &&
1866            "Tried to create a floating-point operation on a "
1867            "non-floating-point type!");
1868     break;
1869   case Instruction::UDiv: 
1870   case Instruction::SDiv: 
1871     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1872     assert(C1->getType()->isIntOrIntVectorTy() &&
1873            "Tried to create an arithmetic operation on a non-arithmetic type!");
1874     break;
1875   case Instruction::FDiv:
1876     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1877     assert(C1->getType()->isFPOrFPVectorTy() &&
1878            "Tried to create an arithmetic operation on a non-arithmetic type!");
1879     break;
1880   case Instruction::URem: 
1881   case Instruction::SRem: 
1882     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1883     assert(C1->getType()->isIntOrIntVectorTy() &&
1884            "Tried to create an arithmetic operation on a non-arithmetic type!");
1885     break;
1886   case Instruction::FRem:
1887     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1888     assert(C1->getType()->isFPOrFPVectorTy() &&
1889            "Tried to create an arithmetic operation on a non-arithmetic type!");
1890     break;
1891   case Instruction::And:
1892   case Instruction::Or:
1893   case Instruction::Xor:
1894     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1895     assert(C1->getType()->isIntOrIntVectorTy() &&
1896            "Tried to create a logical operation on a non-integral type!");
1897     break;
1898   case Instruction::Shl:
1899   case Instruction::LShr:
1900   case Instruction::AShr:
1901     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1902     assert(C1->getType()->isIntOrIntVectorTy() &&
1903            "Tried to create a shift operation on a non-integer type!");
1904     break;
1905   default:
1906     break;
1907   }
1908 #endif
1909
1910   if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1911     return FC;          // Fold a few common cases.
1912
1913   if (OnlyIfReducedTy == C1->getType())
1914     return nullptr;
1915
1916   Constant *ArgVec[] = { C1, C2 };
1917   ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
1918
1919   LLVMContextImpl *pImpl = C1->getContext().pImpl;
1920   return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
1921 }
1922
1923 Constant *ConstantExpr::getSizeOf(Type* Ty) {
1924   // sizeof is implemented as: (i64) gep (Ty*)null, 1
1925   // Note that a non-inbounds gep is used, as null isn't within any object.
1926   Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1927   Constant *GEP = getGetElementPtr(
1928                  Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1929   return getPtrToInt(GEP, 
1930                      Type::getInt64Ty(Ty->getContext()));
1931 }
1932
1933 Constant *ConstantExpr::getAlignOf(Type* Ty) {
1934   // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1935   // Note that a non-inbounds gep is used, as null isn't within any object.
1936   Type *AligningTy = 
1937     StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, nullptr);
1938   Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0));
1939   Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
1940   Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1941   Constant *Indices[2] = { Zero, One };
1942   Constant *GEP = getGetElementPtr(NullPtr, Indices);
1943   return getPtrToInt(GEP,
1944                      Type::getInt64Ty(Ty->getContext()));
1945 }
1946
1947 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
1948   return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
1949                                            FieldNo));
1950 }
1951
1952 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
1953   // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1954   // Note that a non-inbounds gep is used, as null isn't within any object.
1955   Constant *GEPIdx[] = {
1956     ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
1957     FieldNo
1958   };
1959   Constant *GEP = getGetElementPtr(
1960                 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1961   return getPtrToInt(GEP,
1962                      Type::getInt64Ty(Ty->getContext()));
1963 }
1964
1965 Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1,
1966                                    Constant *C2, bool OnlyIfReduced) {
1967   assert(C1->getType() == C2->getType() && "Op types should be identical!");
1968
1969   switch (Predicate) {
1970   default: llvm_unreachable("Invalid CmpInst predicate");
1971   case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1972   case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1973   case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1974   case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
1975   case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
1976   case CmpInst::FCMP_TRUE:
1977     return getFCmp(Predicate, C1, C2, OnlyIfReduced);
1978
1979   case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
1980   case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
1981   case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
1982   case CmpInst::ICMP_SLE:
1983     return getICmp(Predicate, C1, C2, OnlyIfReduced);
1984   }
1985 }
1986
1987 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2,
1988                                   Type *OnlyIfReducedTy) {
1989   assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
1990
1991   if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
1992     return SC;        // Fold common cases
1993
1994   if (OnlyIfReducedTy == V1->getType())
1995     return nullptr;
1996
1997   Constant *ArgVec[] = { C, V1, V2 };
1998   ConstantExprKeyType Key(Instruction::Select, ArgVec);
1999
2000   LLVMContextImpl *pImpl = C->getContext().pImpl;
2001   return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
2002 }
2003
2004 Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs,
2005                                          bool InBounds, Type *OnlyIfReducedTy) {
2006   assert(C->getType()->isPtrOrPtrVectorTy() &&
2007          "Non-pointer type for constant GetElementPtr expression");
2008
2009   if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs))
2010     return FC;          // Fold a few common cases.
2011
2012   // Get the result type of the getelementptr!
2013   Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), Idxs);
2014   assert(Ty && "GEP indices invalid!");
2015   unsigned AS = C->getType()->getPointerAddressSpace();
2016   Type *ReqTy = Ty->getPointerTo(AS);
2017   if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
2018     ReqTy = VectorType::get(ReqTy, VecTy->getNumElements());
2019
2020   if (OnlyIfReducedTy == ReqTy)
2021     return nullptr;
2022
2023   // Look up the constant in the table first to ensure uniqueness
2024   std::vector<Constant*> ArgVec;
2025   ArgVec.reserve(1 + Idxs.size());
2026   ArgVec.push_back(C);
2027   for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
2028     assert(Idxs[i]->getType()->isVectorTy() == ReqTy->isVectorTy() &&
2029            "getelementptr index type missmatch");
2030     assert((!Idxs[i]->getType()->isVectorTy() ||
2031             ReqTy->getVectorNumElements() ==
2032             Idxs[i]->getType()->getVectorNumElements()) &&
2033            "getelementptr index type missmatch");
2034     ArgVec.push_back(cast<Constant>(Idxs[i]));
2035   }
2036   const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
2037                                 InBounds ? GEPOperator::IsInBounds : 0);
2038
2039   LLVMContextImpl *pImpl = C->getContext().pImpl;
2040   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2041 }
2042
2043 Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS,
2044                                 Constant *RHS, bool OnlyIfReduced) {
2045   assert(LHS->getType() == RHS->getType());
2046   assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE && 
2047          pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
2048
2049   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2050     return FC;          // Fold a few common cases...
2051
2052   if (OnlyIfReduced)
2053     return nullptr;
2054
2055   // Look up the constant in the table first to ensure uniqueness
2056   Constant *ArgVec[] = { LHS, RHS };
2057   // Get the key type with both the opcode and predicate
2058   const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred);
2059
2060   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2061   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2062     ResultTy = VectorType::get(ResultTy, VT->getNumElements());
2063
2064   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2065   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2066 }
2067
2068 Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS,
2069                                 Constant *RHS, bool OnlyIfReduced) {
2070   assert(LHS->getType() == RHS->getType());
2071   assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
2072
2073   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2074     return FC;          // Fold a few common cases...
2075
2076   if (OnlyIfReduced)
2077     return nullptr;
2078
2079   // Look up the constant in the table first to ensure uniqueness
2080   Constant *ArgVec[] = { LHS, RHS };
2081   // Get the key type with both the opcode and predicate
2082   const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred);
2083
2084   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2085   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2086     ResultTy = VectorType::get(ResultTy, VT->getNumElements());
2087
2088   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2089   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2090 }
2091
2092 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx,
2093                                           Type *OnlyIfReducedTy) {
2094   assert(Val->getType()->isVectorTy() &&
2095          "Tried to create extractelement operation on non-vector type!");
2096   assert(Idx->getType()->isIntegerTy() &&
2097          "Extractelement index must be an integer type!");
2098
2099   if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
2100     return FC;          // Fold a few common cases.
2101
2102   Type *ReqTy = Val->getType()->getVectorElementType();
2103   if (OnlyIfReducedTy == ReqTy)
2104     return nullptr;
2105
2106   // Look up the constant in the table first to ensure uniqueness
2107   Constant *ArgVec[] = { Val, Idx };
2108   const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec);
2109
2110   LLVMContextImpl *pImpl = Val->getContext().pImpl;
2111   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2112 }
2113
2114 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
2115                                          Constant *Idx, Type *OnlyIfReducedTy) {
2116   assert(Val->getType()->isVectorTy() &&
2117          "Tried to create insertelement operation on non-vector type!");
2118   assert(Elt->getType() == Val->getType()->getVectorElementType() &&
2119          "Insertelement types must match!");
2120   assert(Idx->getType()->isIntegerTy() &&
2121          "Insertelement index must be i32 type!");
2122
2123   if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
2124     return FC;          // Fold a few common cases.
2125
2126   if (OnlyIfReducedTy == Val->getType())
2127     return nullptr;
2128
2129   // Look up the constant in the table first to ensure uniqueness
2130   Constant *ArgVec[] = { Val, Elt, Idx };
2131   const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec);
2132
2133   LLVMContextImpl *pImpl = Val->getContext().pImpl;
2134   return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
2135 }
2136
2137 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
2138                                          Constant *Mask, Type *OnlyIfReducedTy) {
2139   assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
2140          "Invalid shuffle vector constant expr operands!");
2141
2142   if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
2143     return FC;          // Fold a few common cases.
2144
2145   unsigned NElts = Mask->getType()->getVectorNumElements();
2146   Type *EltTy = V1->getType()->getVectorElementType();
2147   Type *ShufTy = VectorType::get(EltTy, NElts);
2148
2149   if (OnlyIfReducedTy == ShufTy)
2150     return nullptr;
2151
2152   // Look up the constant in the table first to ensure uniqueness
2153   Constant *ArgVec[] = { V1, V2, Mask };
2154   const ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec);
2155
2156   LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
2157   return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
2158 }
2159
2160 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
2161                                        ArrayRef<unsigned> Idxs,
2162                                        Type *OnlyIfReducedTy) {
2163   assert(Agg->getType()->isFirstClassType() &&
2164          "Non-first-class type for constant insertvalue expression");
2165
2166   assert(ExtractValueInst::getIndexedType(Agg->getType(),
2167                                           Idxs) == Val->getType() &&
2168          "insertvalue indices invalid!");
2169   Type *ReqTy = Val->getType();
2170
2171   if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
2172     return FC;
2173
2174   if (OnlyIfReducedTy == ReqTy)
2175     return nullptr;
2176
2177   Constant *ArgVec[] = { Agg, Val };
2178   const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
2179
2180   LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2181   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2182 }
2183
2184 Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
2185                                         Type *OnlyIfReducedTy) {
2186   assert(Agg->getType()->isFirstClassType() &&
2187          "Tried to create extractelement operation on non-first-class type!");
2188
2189   Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
2190   (void)ReqTy;
2191   assert(ReqTy && "extractvalue indices invalid!");
2192
2193   assert(Agg->getType()->isFirstClassType() &&
2194          "Non-first-class type for constant extractvalue expression");
2195   if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
2196     return FC;
2197
2198   if (OnlyIfReducedTy == ReqTy)
2199     return nullptr;
2200
2201   Constant *ArgVec[] = { Agg };
2202   const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
2203
2204   LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2205   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2206 }
2207
2208 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
2209   assert(C->getType()->isIntOrIntVectorTy() &&
2210          "Cannot NEG a nonintegral value!");
2211   return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
2212                 C, HasNUW, HasNSW);
2213 }
2214
2215 Constant *ConstantExpr::getFNeg(Constant *C) {
2216   assert(C->getType()->isFPOrFPVectorTy() &&
2217          "Cannot FNEG a non-floating-point value!");
2218   return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
2219 }
2220
2221 Constant *ConstantExpr::getNot(Constant *C) {
2222   assert(C->getType()->isIntOrIntVectorTy() &&
2223          "Cannot NOT a nonintegral value!");
2224   return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
2225 }
2226
2227 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
2228                                bool HasNUW, bool HasNSW) {
2229   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2230                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2231   return get(Instruction::Add, C1, C2, Flags);
2232 }
2233
2234 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
2235   return get(Instruction::FAdd, C1, C2);
2236 }
2237
2238 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2239                                bool HasNUW, bool HasNSW) {
2240   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2241                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2242   return get(Instruction::Sub, C1, C2, Flags);
2243 }
2244
2245 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
2246   return get(Instruction::FSub, C1, C2);
2247 }
2248
2249 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2250                                bool HasNUW, bool HasNSW) {
2251   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2252                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2253   return get(Instruction::Mul, C1, C2, Flags);
2254 }
2255
2256 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
2257   return get(Instruction::FMul, C1, C2);
2258 }
2259
2260 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
2261   return get(Instruction::UDiv, C1, C2,
2262              isExact ? PossiblyExactOperator::IsExact : 0);
2263 }
2264
2265 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
2266   return get(Instruction::SDiv, C1, C2,
2267              isExact ? PossiblyExactOperator::IsExact : 0);
2268 }
2269
2270 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
2271   return get(Instruction::FDiv, C1, C2);
2272 }
2273
2274 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
2275   return get(Instruction::URem, C1, C2);
2276 }
2277
2278 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
2279   return get(Instruction::SRem, C1, C2);
2280 }
2281
2282 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
2283   return get(Instruction::FRem, C1, C2);
2284 }
2285
2286 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
2287   return get(Instruction::And, C1, C2);
2288 }
2289
2290 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
2291   return get(Instruction::Or, C1, C2);
2292 }
2293
2294 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2295   return get(Instruction::Xor, C1, C2);
2296 }
2297
2298 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2299                                bool HasNUW, bool HasNSW) {
2300   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2301                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2302   return get(Instruction::Shl, C1, C2, Flags);
2303 }
2304
2305 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2306   return get(Instruction::LShr, C1, C2,
2307              isExact ? PossiblyExactOperator::IsExact : 0);
2308 }
2309
2310 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2311   return get(Instruction::AShr, C1, C2,
2312              isExact ? PossiblyExactOperator::IsExact : 0);
2313 }
2314
2315 /// getBinOpIdentity - Return the identity for the given binary operation,
2316 /// i.e. a constant C such that X op C = X and C op X = X for every X.  It
2317 /// returns null if the operator doesn't have an identity.
2318 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) {
2319   switch (Opcode) {
2320   default:
2321     // Doesn't have an identity.
2322     return nullptr;
2323
2324   case Instruction::Add:
2325   case Instruction::Or:
2326   case Instruction::Xor:
2327     return Constant::getNullValue(Ty);
2328
2329   case Instruction::Mul:
2330     return ConstantInt::get(Ty, 1);
2331
2332   case Instruction::And:
2333     return Constant::getAllOnesValue(Ty);
2334   }
2335 }
2336
2337 /// getBinOpAbsorber - Return the absorbing element for the given binary
2338 /// operation, i.e. a constant C such that X op C = C and C op X = C for
2339 /// every X.  For example, this returns zero for integer multiplication.
2340 /// It returns null if the operator doesn't have an absorbing element.
2341 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2342   switch (Opcode) {
2343   default:
2344     // Doesn't have an absorber.
2345     return nullptr;
2346
2347   case Instruction::Or:
2348     return Constant::getAllOnesValue(Ty);
2349
2350   case Instruction::And:
2351   case Instruction::Mul:
2352     return Constant::getNullValue(Ty);
2353   }
2354 }
2355
2356 // destroyConstant - Remove the constant from the constant table...
2357 //
2358 void ConstantExpr::destroyConstant() {
2359   getType()->getContext().pImpl->ExprConstants.remove(this);
2360   destroyConstantImpl();
2361 }
2362
2363 const char *ConstantExpr::getOpcodeName() const {
2364   return Instruction::getOpcodeName(getOpcode());
2365 }
2366
2367
2368
2369 GetElementPtrConstantExpr::
2370 GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList,
2371                           Type *DestTy)
2372   : ConstantExpr(DestTy, Instruction::GetElementPtr,
2373                  OperandTraits<GetElementPtrConstantExpr>::op_end(this)
2374                  - (IdxList.size()+1), IdxList.size()+1) {
2375   OperandList[0] = C;
2376   for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2377     OperandList[i+1] = IdxList[i];
2378 }
2379
2380 //===----------------------------------------------------------------------===//
2381 //                       ConstantData* implementations
2382
2383 void ConstantDataArray::anchor() {}
2384 void ConstantDataVector::anchor() {}
2385
2386 /// getElementType - Return the element type of the array/vector.
2387 Type *ConstantDataSequential::getElementType() const {
2388   return getType()->getElementType();
2389 }
2390
2391 StringRef ConstantDataSequential::getRawDataValues() const {
2392   return StringRef(DataElements, getNumElements()*getElementByteSize());
2393 }
2394
2395 /// isElementTypeCompatible - Return true if a ConstantDataSequential can be
2396 /// formed with a vector or array of the specified element type.
2397 /// ConstantDataArray only works with normal float and int types that are
2398 /// stored densely in memory, not with things like i42 or x86_f80.
2399 bool ConstantDataSequential::isElementTypeCompatible(const Type *Ty) {
2400   if (Ty->isFloatTy() || Ty->isDoubleTy()) return true;
2401   if (const IntegerType *IT = dyn_cast<IntegerType>(Ty)) {
2402     switch (IT->getBitWidth()) {
2403     case 8:
2404     case 16:
2405     case 32:
2406     case 64:
2407       return true;
2408     default: break;
2409     }
2410   }
2411   return false;
2412 }
2413
2414 /// getNumElements - Return the number of elements in the array or vector.
2415 unsigned ConstantDataSequential::getNumElements() const {
2416   if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2417     return AT->getNumElements();
2418   return getType()->getVectorNumElements();
2419 }
2420
2421
2422 /// getElementByteSize - Return the size in bytes of the elements in the data.
2423 uint64_t ConstantDataSequential::getElementByteSize() const {
2424   return getElementType()->getPrimitiveSizeInBits()/8;
2425 }
2426
2427 /// getElementPointer - Return the start of the specified element.
2428 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2429   assert(Elt < getNumElements() && "Invalid Elt");
2430   return DataElements+Elt*getElementByteSize();
2431 }
2432
2433
2434 /// isAllZeros - return true if the array is empty or all zeros.
2435 static bool isAllZeros(StringRef Arr) {
2436   for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I)
2437     if (*I != 0)
2438       return false;
2439   return true;
2440 }
2441
2442 /// getImpl - This is the underlying implementation of all of the
2443 /// ConstantDataSequential::get methods.  They all thunk down to here, providing
2444 /// the correct element type.  We take the bytes in as a StringRef because
2445 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
2446 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2447   assert(isElementTypeCompatible(Ty->getSequentialElementType()));
2448   // If the elements are all zero or there are no elements, return a CAZ, which
2449   // is more dense and canonical.
2450   if (isAllZeros(Elements))
2451     return ConstantAggregateZero::get(Ty);
2452
2453   // Do a lookup to see if we have already formed one of these.
2454   auto &Slot =
2455       *Ty->getContext()
2456            .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr))
2457            .first;
2458
2459   // The bucket can point to a linked list of different CDS's that have the same
2460   // body but different types.  For example, 0,0,0,1 could be a 4 element array
2461   // of i8, or a 1-element array of i32.  They'll both end up in the same
2462   /// StringMap bucket, linked up by their Next pointers.  Walk the list.
2463   ConstantDataSequential **Entry = &Slot.second;
2464   for (ConstantDataSequential *Node = *Entry; Node;
2465        Entry = &Node->Next, Node = *Entry)
2466     if (Node->getType() == Ty)
2467       return Node;
2468
2469   // Okay, we didn't get a hit.  Create a node of the right class, link it in,
2470   // and return it.
2471   if (isa<ArrayType>(Ty))
2472     return *Entry = new ConstantDataArray(Ty, Slot.first().data());
2473
2474   assert(isa<VectorType>(Ty));
2475   return *Entry = new ConstantDataVector(Ty, Slot.first().data());
2476 }
2477
2478 void ConstantDataSequential::destroyConstant() {
2479   // Remove the constant from the StringMap.
2480   StringMap<ConstantDataSequential*> &CDSConstants = 
2481     getType()->getContext().pImpl->CDSConstants;
2482
2483   StringMap<ConstantDataSequential*>::iterator Slot =
2484     CDSConstants.find(getRawDataValues());
2485
2486   assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2487
2488   ConstantDataSequential **Entry = &Slot->getValue();
2489
2490   // Remove the entry from the hash table.
2491   if (!(*Entry)->Next) {
2492     // If there is only one value in the bucket (common case) it must be this
2493     // entry, and removing the entry should remove the bucket completely.
2494     assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
2495     getContext().pImpl->CDSConstants.erase(Slot);
2496   } else {
2497     // Otherwise, there are multiple entries linked off the bucket, unlink the 
2498     // node we care about but keep the bucket around.
2499     for (ConstantDataSequential *Node = *Entry; ;
2500          Entry = &Node->Next, Node = *Entry) {
2501       assert(Node && "Didn't find entry in its uniquing hash table!");
2502       // If we found our entry, unlink it from the list and we're done.
2503       if (Node == this) {
2504         *Entry = Node->Next;
2505         break;
2506       }
2507     }
2508   }
2509
2510   // If we were part of a list, make sure that we don't delete the list that is
2511   // still owned by the uniquing map.
2512   Next = nullptr;
2513
2514   // Finally, actually delete it.
2515   destroyConstantImpl();
2516 }
2517
2518 /// get() constructors - Return a constant with array type with an element
2519 /// count and element type matching the ArrayRef passed in.  Note that this
2520 /// can return a ConstantAggregateZero object.
2521 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) {
2522   Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size());
2523   const char *Data = reinterpret_cast<const char *>(Elts.data());
2524   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2525 }
2526 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2527   Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size());
2528   const char *Data = reinterpret_cast<const char *>(Elts.data());
2529   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2530 }
2531 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2532   Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size());
2533   const char *Data = reinterpret_cast<const char *>(Elts.data());
2534   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2535 }
2536 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2537   Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size());
2538   const char *Data = reinterpret_cast<const char *>(Elts.data());
2539   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2540 }
2541 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) {
2542   Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2543   const char *Data = reinterpret_cast<const char *>(Elts.data());
2544   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2545 }
2546 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) {
2547   Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2548   const char *Data = reinterpret_cast<const char *>(Elts.data());
2549   return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2550 }
2551
2552 /// getFP() constructors - Return a constant with array type with an element
2553 /// count and element type of float with precision matching the number of
2554 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
2555 /// double for 64bits) Note that this can return a ConstantAggregateZero
2556 /// object.
2557 Constant *ConstantDataArray::getFP(LLVMContext &Context,
2558                                    ArrayRef<uint16_t> Elts) {
2559   Type *Ty = VectorType::get(Type::getHalfTy(Context), Elts.size());
2560   const char *Data = reinterpret_cast<const char *>(Elts.data());
2561   return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 2), Ty);
2562 }
2563 Constant *ConstantDataArray::getFP(LLVMContext &Context,
2564                                    ArrayRef<uint32_t> Elts) {
2565   Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2566   const char *Data = reinterpret_cast<const char *>(Elts.data());
2567   return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 4), Ty);
2568 }
2569 Constant *ConstantDataArray::getFP(LLVMContext &Context,
2570                                    ArrayRef<uint64_t> Elts) {
2571   Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2572   const char *Data = reinterpret_cast<const char *>(Elts.data());
2573   return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2574 }
2575
2576 /// getString - This method constructs a CDS and initializes it with a text
2577 /// string. The default behavior (AddNull==true) causes a null terminator to
2578 /// be placed at the end of the array (increasing the length of the string by
2579 /// one more than the StringRef would normally indicate.  Pass AddNull=false
2580 /// to disable this behavior.
2581 Constant *ConstantDataArray::getString(LLVMContext &Context,
2582                                        StringRef Str, bool AddNull) {
2583   if (!AddNull) {
2584     const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
2585     return get(Context, makeArrayRef(const_cast<uint8_t *>(Data),
2586                Str.size()));
2587   }
2588
2589   SmallVector<uint8_t, 64> ElementVals;
2590   ElementVals.append(Str.begin(), Str.end());
2591   ElementVals.push_back(0);
2592   return get(Context, ElementVals);
2593 }
2594
2595 /// get() constructors - Return a constant with vector type with an element
2596 /// count and element type matching the ArrayRef passed in.  Note that this
2597 /// can return a ConstantAggregateZero object.
2598 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
2599   Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
2600   const char *Data = reinterpret_cast<const char *>(Elts.data());
2601   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2602 }
2603 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2604   Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
2605   const char *Data = reinterpret_cast<const char *>(Elts.data());
2606   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2607 }
2608 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2609   Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
2610   const char *Data = reinterpret_cast<const char *>(Elts.data());
2611   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2612 }
2613 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2614   Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
2615   const char *Data = reinterpret_cast<const char *>(Elts.data());
2616   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2617 }
2618 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
2619   Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2620   const char *Data = reinterpret_cast<const char *>(Elts.data());
2621   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2622 }
2623 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
2624   Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2625   const char *Data = reinterpret_cast<const char *>(Elts.data());
2626   return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2627 }
2628
2629 /// getFP() constructors - Return a constant with vector type with an element
2630 /// count and element type of float with the precision matching the number of
2631 /// bits in the ArrayRef passed in.  (i.e. half for 16bits, float for 32bits,
2632 /// double for 64bits) Note that this can return a ConstantAggregateZero
2633 /// object.
2634 Constant *ConstantDataVector::getFP(LLVMContext &Context,
2635                                     ArrayRef<uint16_t> Elts) {
2636   Type *Ty = VectorType::get(Type::getHalfTy(Context), Elts.size());
2637   const char *Data = reinterpret_cast<const char *>(Elts.data());
2638   return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 2), Ty);
2639 }
2640 Constant *ConstantDataVector::getFP(LLVMContext &Context,
2641                                     ArrayRef<uint32_t> Elts) {
2642   Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2643   const char *Data = reinterpret_cast<const char *>(Elts.data());
2644   return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 4), Ty);
2645 }
2646 Constant *ConstantDataVector::getFP(LLVMContext &Context,
2647                                     ArrayRef<uint64_t> Elts) {
2648   Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2649   const char *Data = reinterpret_cast<const char *>(Elts.data());
2650   return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2651 }
2652
2653 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
2654   assert(isElementTypeCompatible(V->getType()) &&
2655          "Element type not compatible with ConstantData");
2656   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2657     if (CI->getType()->isIntegerTy(8)) {
2658       SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
2659       return get(V->getContext(), Elts);
2660     }
2661     if (CI->getType()->isIntegerTy(16)) {
2662       SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
2663       return get(V->getContext(), Elts);
2664     }
2665     if (CI->getType()->isIntegerTy(32)) {
2666       SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
2667       return get(V->getContext(), Elts);
2668     }
2669     assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2670     SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
2671     return get(V->getContext(), Elts);
2672   }
2673
2674   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2675     if (CFP->getType()->isFloatTy()) {
2676       SmallVector<uint32_t, 16> Elts(
2677           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2678       return getFP(V->getContext(), Elts);
2679     }
2680     if (CFP->getType()->isDoubleTy()) {
2681       SmallVector<uint64_t, 16> Elts(
2682           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2683       return getFP(V->getContext(), Elts);
2684     }
2685   }
2686   return ConstantVector::getSplat(NumElts, V);
2687 }
2688
2689
2690 /// getElementAsInteger - If this is a sequential container of integers (of
2691 /// any size), return the specified element in the low bits of a uint64_t.
2692 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
2693   assert(isa<IntegerType>(getElementType()) &&
2694          "Accessor can only be used when element is an integer");
2695   const char *EltPtr = getElementPointer(Elt);
2696
2697   // The data is stored in host byte order, make sure to cast back to the right
2698   // type to load with the right endianness.
2699   switch (getElementType()->getIntegerBitWidth()) {
2700   default: llvm_unreachable("Invalid bitwidth for CDS");
2701   case 8:
2702     return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr));
2703   case 16:
2704     return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr));
2705   case 32:
2706     return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr));
2707   case 64:
2708     return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr));
2709   }
2710 }
2711
2712 /// getElementAsAPFloat - If this is a sequential container of floating point
2713 /// type, return the specified element as an APFloat.
2714 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
2715   const char *EltPtr = getElementPointer(Elt);
2716
2717   switch (getElementType()->getTypeID()) {
2718   default:
2719     llvm_unreachable("Accessor can only be used when element is float/double!");
2720   case Type::FloatTyID: {
2721     auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
2722     return APFloat(APFloat::IEEEsingle, APInt(32, EltVal));
2723   }
2724   case Type::DoubleTyID: {
2725     auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
2726     return APFloat(APFloat::IEEEdouble, APInt(64, EltVal));
2727   }
2728   }
2729 }
2730
2731 /// getElementAsFloat - If this is an sequential container of floats, return
2732 /// the specified element as a float.
2733 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
2734   assert(getElementType()->isFloatTy() &&
2735          "Accessor can only be used when element is a 'float'");
2736   const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt));
2737   return *const_cast<float *>(EltPtr);
2738 }
2739
2740 /// getElementAsDouble - If this is an sequential container of doubles, return
2741 /// the specified element as a float.
2742 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
2743   assert(getElementType()->isDoubleTy() &&
2744          "Accessor can only be used when element is a 'float'");
2745   const double *EltPtr =
2746       reinterpret_cast<const double *>(getElementPointer(Elt));
2747   return *const_cast<double *>(EltPtr);
2748 }
2749
2750 /// getElementAsConstant - Return a Constant for a specified index's element.
2751 /// Note that this has to compute a new constant to return, so it isn't as
2752 /// efficient as getElementAsInteger/Float/Double.
2753 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
2754   if (getElementType()->isFloatTy() || getElementType()->isDoubleTy())
2755     return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
2756
2757   return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
2758 }
2759
2760 /// isString - This method returns true if this is an array of i8.
2761 bool ConstantDataSequential::isString() const {
2762   return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8);
2763 }
2764
2765 /// isCString - This method returns true if the array "isString", ends with a
2766 /// nul byte, and does not contains any other nul bytes.
2767 bool ConstantDataSequential::isCString() const {
2768   if (!isString())
2769     return false;
2770
2771   StringRef Str = getAsString();
2772
2773   // The last value must be nul.
2774   if (Str.back() != 0) return false;
2775
2776   // Other elements must be non-nul.
2777   return Str.drop_back().find(0) == StringRef::npos;
2778 }
2779
2780 /// getSplatValue - If this is a splat constant, meaning that all of the
2781 /// elements have the same value, return that value. Otherwise return nullptr.
2782 Constant *ConstantDataVector::getSplatValue() const {
2783   const char *Base = getRawDataValues().data();
2784
2785   // Compare elements 1+ to the 0'th element.
2786   unsigned EltSize = getElementByteSize();
2787   for (unsigned i = 1, e = getNumElements(); i != e; ++i)
2788     if (memcmp(Base, Base+i*EltSize, EltSize))
2789       return nullptr;
2790
2791   // If they're all the same, return the 0th one as a representative.
2792   return getElementAsConstant(0);
2793 }
2794
2795 //===----------------------------------------------------------------------===//
2796 //                replaceUsesOfWithOnConstant implementations
2797
2798 /// replaceUsesOfWithOnConstant - Update this constant array to change uses of
2799 /// 'From' to be uses of 'To'.  This must update the uniquing data structures
2800 /// etc.
2801 ///
2802 /// Note that we intentionally replace all uses of From with To here.  Consider
2803 /// a large array that uses 'From' 1000 times.  By handling this case all here,
2804 /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
2805 /// single invocation handles all 1000 uses.  Handling them one at a time would
2806 /// work, but would be really slow because it would have to unique each updated
2807 /// array instance.
2808 ///
2809 void Constant::replaceUsesOfWithOnConstantImpl(Constant *Replacement) {
2810   // I do need to replace this with an existing value.
2811   assert(Replacement != this && "I didn't contain From!");
2812
2813   // Everyone using this now uses the replacement.
2814   replaceAllUsesWith(Replacement);
2815
2816   // Delete the old constant!
2817   destroyConstant();
2818 }
2819
2820 void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
2821                                                 Use *U) {
2822   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2823   Constant *ToC = cast<Constant>(To);
2824
2825   SmallVector<Constant*, 8> Values;
2826   Values.reserve(getNumOperands());  // Build replacement array.
2827
2828   // Fill values with the modified operands of the constant array.  Also,
2829   // compute whether this turns into an all-zeros array.
2830   unsigned NumUpdated = 0;
2831
2832   // Keep track of whether all the values in the array are "ToC".
2833   bool AllSame = true;
2834   for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2835     Constant *Val = cast<Constant>(O->get());
2836     if (Val == From) {
2837       Val = ToC;
2838       ++NumUpdated;
2839     }
2840     Values.push_back(Val);
2841     AllSame &= Val == ToC;
2842   }
2843
2844   if (AllSame && ToC->isNullValue()) {
2845     replaceUsesOfWithOnConstantImpl(ConstantAggregateZero::get(getType()));
2846     return;
2847   }
2848   if (AllSame && isa<UndefValue>(ToC)) {
2849     replaceUsesOfWithOnConstantImpl(UndefValue::get(getType()));
2850     return;
2851   }
2852
2853   // Check for any other type of constant-folding.
2854   if (Constant *C = getImpl(getType(), Values)) {
2855     replaceUsesOfWithOnConstantImpl(C);
2856     return;
2857   }
2858
2859   // Update to the new value.
2860   if (Constant *C = getContext().pImpl->ArrayConstants.replaceOperandsInPlace(
2861           Values, this, From, ToC, NumUpdated, U - OperandList))
2862     replaceUsesOfWithOnConstantImpl(C);
2863 }
2864
2865 void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
2866                                                  Use *U) {
2867   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2868   Constant *ToC = cast<Constant>(To);
2869
2870   unsigned OperandToUpdate = U-OperandList;
2871   assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
2872
2873   SmallVector<Constant*, 8> Values;
2874   Values.reserve(getNumOperands());  // Build replacement struct.
2875
2876   // Fill values with the modified operands of the constant struct.  Also,
2877   // compute whether this turns into an all-zeros struct.
2878   bool isAllZeros = false;
2879   bool isAllUndef = false;
2880   if (ToC->isNullValue()) {
2881     isAllZeros = true;
2882     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2883       Constant *Val = cast<Constant>(O->get());
2884       Values.push_back(Val);
2885       if (isAllZeros) isAllZeros = Val->isNullValue();
2886     }
2887   } else if (isa<UndefValue>(ToC)) {
2888     isAllUndef = true;
2889     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2890       Constant *Val = cast<Constant>(O->get());
2891       Values.push_back(Val);
2892       if (isAllUndef) isAllUndef = isa<UndefValue>(Val);
2893     }
2894   } else {
2895     for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
2896       Values.push_back(cast<Constant>(O->get()));
2897   }
2898   Values[OperandToUpdate] = ToC;
2899
2900   if (isAllZeros) {
2901     replaceUsesOfWithOnConstantImpl(ConstantAggregateZero::get(getType()));
2902     return;
2903   }
2904   if (isAllUndef) {
2905     replaceUsesOfWithOnConstantImpl(UndefValue::get(getType()));
2906     return;
2907   }
2908
2909   // Update to the new value.
2910   if (Constant *C = getContext().pImpl->StructConstants.replaceOperandsInPlace(
2911           Values, this, From, ToC))
2912     replaceUsesOfWithOnConstantImpl(C);
2913 }
2914
2915 void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
2916                                                  Use *U) {
2917   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2918   Constant *ToC = cast<Constant>(To);
2919
2920   SmallVector<Constant*, 8> Values;
2921   Values.reserve(getNumOperands());  // Build replacement array...
2922   unsigned NumUpdated = 0;
2923   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2924     Constant *Val = getOperand(i);
2925     if (Val == From) {
2926       ++NumUpdated;
2927       Val = ToC;
2928     }
2929     Values.push_back(Val);
2930   }
2931
2932   if (Constant *C = getImpl(Values)) {
2933     replaceUsesOfWithOnConstantImpl(C);
2934     return;
2935   }
2936
2937   // Update to the new value.
2938   if (Constant *C = getContext().pImpl->VectorConstants.replaceOperandsInPlace(
2939           Values, this, From, ToC, NumUpdated, U - OperandList))
2940     replaceUsesOfWithOnConstantImpl(C);
2941 }
2942
2943 void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
2944                                                Use *U) {
2945   assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2946   Constant *To = cast<Constant>(ToV);
2947
2948   SmallVector<Constant*, 8> NewOps;
2949   unsigned NumUpdated = 0;
2950   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2951     Constant *Op = getOperand(i);
2952     if (Op == From) {
2953       ++NumUpdated;
2954       Op = To;
2955     }
2956     NewOps.push_back(Op);
2957   }
2958   assert(NumUpdated && "I didn't contain From!");
2959
2960   if (Constant *C = getWithOperands(NewOps, getType(), true)) {
2961     replaceUsesOfWithOnConstantImpl(C);
2962     return;
2963   }
2964
2965   // Update to the new value.
2966   if (Constant *C = getContext().pImpl->ExprConstants.replaceOperandsInPlace(
2967           NewOps, this, From, To, NumUpdated, U - OperandList))
2968     replaceUsesOfWithOnConstantImpl(C);
2969 }
2970
2971 Instruction *ConstantExpr::getAsInstruction() {
2972   SmallVector<Value *, 4> ValueOperands(op_begin(), op_end());
2973   ArrayRef<Value*> Ops(ValueOperands);
2974
2975   switch (getOpcode()) {
2976   case Instruction::Trunc:
2977   case Instruction::ZExt:
2978   case Instruction::SExt:
2979   case Instruction::FPTrunc:
2980   case Instruction::FPExt:
2981   case Instruction::UIToFP:
2982   case Instruction::SIToFP:
2983   case Instruction::FPToUI:
2984   case Instruction::FPToSI:
2985   case Instruction::PtrToInt:
2986   case Instruction::IntToPtr:
2987   case Instruction::BitCast:
2988   case Instruction::AddrSpaceCast:
2989     return CastInst::Create((Instruction::CastOps)getOpcode(),
2990                             Ops[0], getType());
2991   case Instruction::Select:
2992     return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
2993   case Instruction::InsertElement:
2994     return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
2995   case Instruction::ExtractElement:
2996     return ExtractElementInst::Create(Ops[0], Ops[1]);
2997   case Instruction::InsertValue:
2998     return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
2999   case Instruction::ExtractValue:
3000     return ExtractValueInst::Create(Ops[0], getIndices());
3001   case Instruction::ShuffleVector:
3002     return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
3003
3004   case Instruction::GetElementPtr: {
3005     const auto *GO = cast<GEPOperator>(this);
3006     if (GO->isInBounds())
3007       return GetElementPtrInst::CreateInBounds(GO->getSourceElementType(),
3008                                                Ops[0], Ops.slice(1));
3009     return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0],
3010                                      Ops.slice(1));
3011   }
3012   case Instruction::ICmp:
3013   case Instruction::FCmp:
3014     return CmpInst::Create((Instruction::OtherOps)getOpcode(),
3015                            getPredicate(), Ops[0], Ops[1]);
3016
3017   default:
3018     assert(getNumOperands() == 2 && "Must be binary operator?");
3019     BinaryOperator *BO =
3020       BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
3021                              Ops[0], Ops[1]);
3022     if (isa<OverflowingBinaryOperator>(BO)) {
3023       BO->setHasNoUnsignedWrap(SubclassOptionalData &
3024                                OverflowingBinaryOperator::NoUnsignedWrap);
3025       BO->setHasNoSignedWrap(SubclassOptionalData &
3026                              OverflowingBinaryOperator::NoSignedWrap);
3027     }
3028     if (isa<PossiblyExactOperator>(BO))
3029       BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
3030     return BO;
3031   }
3032 }