Move all of the header files which are involved in modelling the LLVM IR
[oota-llvm.git] / lib / IR / ConstantFold.cpp
1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements folding of constants for LLVM.  This implements the
11 // (internal) ConstantFold.h interface, which is used by the
12 // ConstantExpr::get* methods to automatically fold constants when possible.
13 //
14 // The current constant folding implementation is implemented in two pieces: the
15 // pieces that don't need DataLayout, and the pieces that do. This is to avoid
16 // a dependence in IR on Target.
17 //
18 //===----------------------------------------------------------------------===//
19
20 #include "ConstantFold.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GlobalAlias.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/Support/Compiler.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/GetElementPtrTypeIterator.h"
32 #include "llvm/Support/ManagedStatic.h"
33 #include "llvm/Support/MathExtras.h"
34 #include <limits>
35 using namespace llvm;
36
37 //===----------------------------------------------------------------------===//
38 //                ConstantFold*Instruction Implementations
39 //===----------------------------------------------------------------------===//
40
41 /// BitCastConstantVector - Convert the specified vector Constant node to the
42 /// specified vector type.  At this point, we know that the elements of the
43 /// input vector constant are all simple integer or FP values.
44 static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) {
45
46   if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy);
47   if (CV->isNullValue()) return Constant::getNullValue(DstTy);
48
49   // If this cast changes element count then we can't handle it here:
50   // doing so requires endianness information.  This should be handled by
51   // Analysis/ConstantFolding.cpp
52   unsigned NumElts = DstTy->getNumElements();
53   if (NumElts != CV->getType()->getVectorNumElements())
54     return 0;
55   
56   Type *DstEltTy = DstTy->getElementType();
57
58   SmallVector<Constant*, 16> Result;
59   Type *Ty = IntegerType::get(CV->getContext(), 32);
60   for (unsigned i = 0; i != NumElts; ++i) {
61     Constant *C =
62       ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i));
63     C = ConstantExpr::getBitCast(C, DstEltTy);
64     Result.push_back(C);
65   }
66
67   return ConstantVector::get(Result);
68 }
69
70 /// This function determines which opcode to use to fold two constant cast 
71 /// expressions together. It uses CastInst::isEliminableCastPair to determine
72 /// the opcode. Consequently its just a wrapper around that function.
73 /// @brief Determine if it is valid to fold a cast of a cast
74 static unsigned
75 foldConstantCastPair(
76   unsigned opc,          ///< opcode of the second cast constant expression
77   ConstantExpr *Op,      ///< the first cast constant expression
78   Type *DstTy      ///< desintation type of the first cast
79 ) {
80   assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
81   assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
82   assert(CastInst::isCast(opc) && "Invalid cast opcode");
83
84   // The the types and opcodes for the two Cast constant expressions
85   Type *SrcTy = Op->getOperand(0)->getType();
86   Type *MidTy = Op->getType();
87   Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
88   Instruction::CastOps secondOp = Instruction::CastOps(opc);
89
90   // Assume that pointers are never more than 64 bits wide.
91   IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext());
92
93   // Let CastInst::isEliminableCastPair do the heavy lifting.
94   return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
95                                         FakeIntPtrTy, FakeIntPtrTy,
96                                         FakeIntPtrTy);
97 }
98
99 static Constant *FoldBitCast(Constant *V, Type *DestTy) {
100   Type *SrcTy = V->getType();
101   if (SrcTy == DestTy)
102     return V; // no-op cast
103
104   // Check to see if we are casting a pointer to an aggregate to a pointer to
105   // the first element.  If so, return the appropriate GEP instruction.
106   if (PointerType *PTy = dyn_cast<PointerType>(V->getType()))
107     if (PointerType *DPTy = dyn_cast<PointerType>(DestTy))
108       if (PTy->getAddressSpace() == DPTy->getAddressSpace()
109           && DPTy->getElementType()->isSized()) {
110         SmallVector<Value*, 8> IdxList;
111         Value *Zero =
112           Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
113         IdxList.push_back(Zero);
114         Type *ElTy = PTy->getElementType();
115         while (ElTy != DPTy->getElementType()) {
116           if (StructType *STy = dyn_cast<StructType>(ElTy)) {
117             if (STy->getNumElements() == 0) break;
118             ElTy = STy->getElementType(0);
119             IdxList.push_back(Zero);
120           } else if (SequentialType *STy = 
121                      dyn_cast<SequentialType>(ElTy)) {
122             if (ElTy->isPointerTy()) break;  // Can't index into pointers!
123             ElTy = STy->getElementType();
124             IdxList.push_back(Zero);
125           } else {
126             break;
127           }
128         }
129
130         if (ElTy == DPTy->getElementType())
131           // This GEP is inbounds because all indices are zero.
132           return ConstantExpr::getInBoundsGetElementPtr(V, IdxList);
133       }
134
135   // Handle casts from one vector constant to another.  We know that the src 
136   // and dest type have the same size (otherwise its an illegal cast).
137   if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
138     if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
139       assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
140              "Not cast between same sized vectors!");
141       SrcTy = NULL;
142       // First, check for null.  Undef is already handled.
143       if (isa<ConstantAggregateZero>(V))
144         return Constant::getNullValue(DestTy);
145
146       // Handle ConstantVector and ConstantAggregateVector.
147       return BitCastConstantVector(V, DestPTy);
148     }
149
150     // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
151     // This allows for other simplifications (although some of them
152     // can only be handled by Analysis/ConstantFolding.cpp).
153     if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
154       return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy);
155   }
156
157   // Finally, implement bitcast folding now.   The code below doesn't handle
158   // bitcast right.
159   if (isa<ConstantPointerNull>(V))  // ptr->ptr cast.
160     return ConstantPointerNull::get(cast<PointerType>(DestTy));
161
162   // Handle integral constant input.
163   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
164     if (DestTy->isIntegerTy())
165       // Integral -> Integral. This is a no-op because the bit widths must
166       // be the same. Consequently, we just fold to V.
167       return V;
168
169     if (DestTy->isFloatingPointTy())
170       return ConstantFP::get(DestTy->getContext(),
171                              APFloat(CI->getValue(),
172                                      !DestTy->isPPC_FP128Ty()));
173
174     // Otherwise, can't fold this (vector?)
175     return 0;
176   }
177
178   // Handle ConstantFP input: FP -> Integral.
179   if (ConstantFP *FP = dyn_cast<ConstantFP>(V))
180     return ConstantInt::get(FP->getContext(),
181                             FP->getValueAPF().bitcastToAPInt());
182
183   return 0;
184 }
185
186
187 /// ExtractConstantBytes - V is an integer constant which only has a subset of
188 /// its bytes used.  The bytes used are indicated by ByteStart (which is the
189 /// first byte used, counting from the least significant byte) and ByteSize,
190 /// which is the number of bytes used.
191 ///
192 /// This function analyzes the specified constant to see if the specified byte
193 /// range can be returned as a simplified constant.  If so, the constant is
194 /// returned, otherwise null is returned.
195 /// 
196 static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
197                                       unsigned ByteSize) {
198   assert(C->getType()->isIntegerTy() &&
199          (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
200          "Non-byte sized integer input");
201   unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
202   assert(ByteSize && "Must be accessing some piece");
203   assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
204   assert(ByteSize != CSize && "Should not extract everything");
205   
206   // Constant Integers are simple.
207   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
208     APInt V = CI->getValue();
209     if (ByteStart)
210       V = V.lshr(ByteStart*8);
211     V = V.trunc(ByteSize*8);
212     return ConstantInt::get(CI->getContext(), V);
213   }
214   
215   // In the input is a constant expr, we might be able to recursively simplify.
216   // If not, we definitely can't do anything.
217   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
218   if (CE == 0) return 0;
219   
220   switch (CE->getOpcode()) {
221   default: return 0;
222   case Instruction::Or: {
223     Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
224     if (RHS == 0)
225       return 0;
226     
227     // X | -1 -> -1.
228     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS))
229       if (RHSC->isAllOnesValue())
230         return RHSC;
231     
232     Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
233     if (LHS == 0)
234       return 0;
235     return ConstantExpr::getOr(LHS, RHS);
236   }
237   case Instruction::And: {
238     Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
239     if (RHS == 0)
240       return 0;
241     
242     // X & 0 -> 0.
243     if (RHS->isNullValue())
244       return RHS;
245     
246     Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
247     if (LHS == 0)
248       return 0;
249     return ConstantExpr::getAnd(LHS, RHS);
250   }
251   case Instruction::LShr: {
252     ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
253     if (Amt == 0)
254       return 0;
255     unsigned ShAmt = Amt->getZExtValue();
256     // Cannot analyze non-byte shifts.
257     if ((ShAmt & 7) != 0)
258       return 0;
259     ShAmt >>= 3;
260     
261     // If the extract is known to be all zeros, return zero.
262     if (ByteStart >= CSize-ShAmt)
263       return Constant::getNullValue(IntegerType::get(CE->getContext(),
264                                                      ByteSize*8));
265     // If the extract is known to be fully in the input, extract it.
266     if (ByteStart+ByteSize+ShAmt <= CSize)
267       return ExtractConstantBytes(CE->getOperand(0), ByteStart+ShAmt, ByteSize);
268     
269     // TODO: Handle the 'partially zero' case.
270     return 0;
271   }
272     
273   case Instruction::Shl: {
274     ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
275     if (Amt == 0)
276       return 0;
277     unsigned ShAmt = Amt->getZExtValue();
278     // Cannot analyze non-byte shifts.
279     if ((ShAmt & 7) != 0)
280       return 0;
281     ShAmt >>= 3;
282     
283     // If the extract is known to be all zeros, return zero.
284     if (ByteStart+ByteSize <= ShAmt)
285       return Constant::getNullValue(IntegerType::get(CE->getContext(),
286                                                      ByteSize*8));
287     // If the extract is known to be fully in the input, extract it.
288     if (ByteStart >= ShAmt)
289       return ExtractConstantBytes(CE->getOperand(0), ByteStart-ShAmt, ByteSize);
290     
291     // TODO: Handle the 'partially zero' case.
292     return 0;
293   }
294       
295   case Instruction::ZExt: {
296     unsigned SrcBitSize =
297       cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();
298     
299     // If extracting something that is completely zero, return 0.
300     if (ByteStart*8 >= SrcBitSize)
301       return Constant::getNullValue(IntegerType::get(CE->getContext(),
302                                                      ByteSize*8));
303
304     // If exactly extracting the input, return it.
305     if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
306       return CE->getOperand(0);
307     
308     // If extracting something completely in the input, if if the input is a
309     // multiple of 8 bits, recurse.
310     if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
311       return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);
312       
313     // Otherwise, if extracting a subset of the input, which is not multiple of
314     // 8 bits, do a shift and trunc to get the bits.
315     if ((ByteStart+ByteSize)*8 < SrcBitSize) {
316       assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
317       Constant *Res = CE->getOperand(0);
318       if (ByteStart)
319         Res = ConstantExpr::getLShr(Res, 
320                                  ConstantInt::get(Res->getType(), ByteStart*8));
321       return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(),
322                                                           ByteSize*8));
323     }
324     
325     // TODO: Handle the 'partially zero' case.
326     return 0;
327   }
328   }
329 }
330
331 /// getFoldedSizeOf - Return a ConstantExpr with type DestTy for sizeof
332 /// on Ty, with any known factors factored out. If Folded is false,
333 /// return null if no factoring was possible, to avoid endlessly
334 /// bouncing an unfoldable expression back into the top-level folder.
335 ///
336 static Constant *getFoldedSizeOf(Type *Ty, Type *DestTy,
337                                  bool Folded) {
338   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
339     Constant *N = ConstantInt::get(DestTy, ATy->getNumElements());
340     Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
341     return ConstantExpr::getNUWMul(E, N);
342   }
343
344   if (StructType *STy = dyn_cast<StructType>(Ty))
345     if (!STy->isPacked()) {
346       unsigned NumElems = STy->getNumElements();
347       // An empty struct has size zero.
348       if (NumElems == 0)
349         return ConstantExpr::getNullValue(DestTy);
350       // Check for a struct with all members having the same size.
351       Constant *MemberSize =
352         getFoldedSizeOf(STy->getElementType(0), DestTy, true);
353       bool AllSame = true;
354       for (unsigned i = 1; i != NumElems; ++i)
355         if (MemberSize !=
356             getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
357           AllSame = false;
358           break;
359         }
360       if (AllSame) {
361         Constant *N = ConstantInt::get(DestTy, NumElems);
362         return ConstantExpr::getNUWMul(MemberSize, N);
363       }
364     }
365
366   // Pointer size doesn't depend on the pointee type, so canonicalize them
367   // to an arbitrary pointee.
368   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
369     if (!PTy->getElementType()->isIntegerTy(1))
370       return
371         getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1),
372                                          PTy->getAddressSpace()),
373                         DestTy, true);
374
375   // If there's no interesting folding happening, bail so that we don't create
376   // a constant that looks like it needs folding but really doesn't.
377   if (!Folded)
378     return 0;
379
380   // Base case: Get a regular sizeof expression.
381   Constant *C = ConstantExpr::getSizeOf(Ty);
382   C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
383                                                     DestTy, false),
384                             C, DestTy);
385   return C;
386 }
387
388 /// getFoldedAlignOf - Return a ConstantExpr with type DestTy for alignof
389 /// on Ty, with any known factors factored out. If Folded is false,
390 /// return null if no factoring was possible, to avoid endlessly
391 /// bouncing an unfoldable expression back into the top-level folder.
392 ///
393 static Constant *getFoldedAlignOf(Type *Ty, Type *DestTy,
394                                   bool Folded) {
395   // The alignment of an array is equal to the alignment of the
396   // array element. Note that this is not always true for vectors.
397   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
398     Constant *C = ConstantExpr::getAlignOf(ATy->getElementType());
399     C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
400                                                       DestTy,
401                                                       false),
402                               C, DestTy);
403     return C;
404   }
405
406   if (StructType *STy = dyn_cast<StructType>(Ty)) {
407     // Packed structs always have an alignment of 1.
408     if (STy->isPacked())
409       return ConstantInt::get(DestTy, 1);
410
411     // Otherwise, struct alignment is the maximum alignment of any member.
412     // Without target data, we can't compare much, but we can check to see
413     // if all the members have the same alignment.
414     unsigned NumElems = STy->getNumElements();
415     // An empty struct has minimal alignment.
416     if (NumElems == 0)
417       return ConstantInt::get(DestTy, 1);
418     // Check for a struct with all members having the same alignment.
419     Constant *MemberAlign =
420       getFoldedAlignOf(STy->getElementType(0), DestTy, true);
421     bool AllSame = true;
422     for (unsigned i = 1; i != NumElems; ++i)
423       if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) {
424         AllSame = false;
425         break;
426       }
427     if (AllSame)
428       return MemberAlign;
429   }
430
431   // Pointer alignment doesn't depend on the pointee type, so canonicalize them
432   // to an arbitrary pointee.
433   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
434     if (!PTy->getElementType()->isIntegerTy(1))
435       return
436         getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(),
437                                                            1),
438                                           PTy->getAddressSpace()),
439                          DestTy, true);
440
441   // If there's no interesting folding happening, bail so that we don't create
442   // a constant that looks like it needs folding but really doesn't.
443   if (!Folded)
444     return 0;
445
446   // Base case: Get a regular alignof expression.
447   Constant *C = ConstantExpr::getAlignOf(Ty);
448   C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
449                                                     DestTy, false),
450                             C, DestTy);
451   return C;
452 }
453
454 /// getFoldedOffsetOf - Return a ConstantExpr with type DestTy for offsetof
455 /// on Ty and FieldNo, with any known factors factored out. If Folded is false,
456 /// return null if no factoring was possible, to avoid endlessly
457 /// bouncing an unfoldable expression back into the top-level folder.
458 ///
459 static Constant *getFoldedOffsetOf(Type *Ty, Constant *FieldNo,
460                                    Type *DestTy,
461                                    bool Folded) {
462   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
463     Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false,
464                                                                 DestTy, false),
465                                         FieldNo, DestTy);
466     Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
467     return ConstantExpr::getNUWMul(E, N);
468   }
469
470   if (StructType *STy = dyn_cast<StructType>(Ty))
471     if (!STy->isPacked()) {
472       unsigned NumElems = STy->getNumElements();
473       // An empty struct has no members.
474       if (NumElems == 0)
475         return 0;
476       // Check for a struct with all members having the same size.
477       Constant *MemberSize =
478         getFoldedSizeOf(STy->getElementType(0), DestTy, true);
479       bool AllSame = true;
480       for (unsigned i = 1; i != NumElems; ++i)
481         if (MemberSize !=
482             getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
483           AllSame = false;
484           break;
485         }
486       if (AllSame) {
487         Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo,
488                                                                     false,
489                                                                     DestTy,
490                                                                     false),
491                                             FieldNo, DestTy);
492         return ConstantExpr::getNUWMul(MemberSize, N);
493       }
494     }
495
496   // If there's no interesting folding happening, bail so that we don't create
497   // a constant that looks like it needs folding but really doesn't.
498   if (!Folded)
499     return 0;
500
501   // Base case: Get a regular offsetof expression.
502   Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo);
503   C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
504                                                     DestTy, false),
505                             C, DestTy);
506   return C;
507 }
508
509 Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
510                                             Type *DestTy) {
511   if (isa<UndefValue>(V)) {
512     // zext(undef) = 0, because the top bits will be zero.
513     // sext(undef) = 0, because the top bits will all be the same.
514     // [us]itofp(undef) = 0, because the result value is bounded.
515     if (opc == Instruction::ZExt || opc == Instruction::SExt ||
516         opc == Instruction::UIToFP || opc == Instruction::SIToFP)
517       return Constant::getNullValue(DestTy);
518     return UndefValue::get(DestTy);
519   }
520
521   if (V->isNullValue() && !DestTy->isX86_MMXTy())
522     return Constant::getNullValue(DestTy);
523
524   // If the cast operand is a constant expression, there's a few things we can
525   // do to try to simplify it.
526   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
527     if (CE->isCast()) {
528       // Try hard to fold cast of cast because they are often eliminable.
529       if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
530         return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
531     } else if (CE->getOpcode() == Instruction::GetElementPtr) {
532       // If all of the indexes in the GEP are null values, there is no pointer
533       // adjustment going on.  We might as well cast the source pointer.
534       bool isAllNull = true;
535       for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
536         if (!CE->getOperand(i)->isNullValue()) {
537           isAllNull = false;
538           break;
539         }
540       if (isAllNull)
541         // This is casting one pointer type to another, always BitCast
542         return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
543     }
544   }
545
546   // If the cast operand is a constant vector, perform the cast by
547   // operating on each element. In the cast of bitcasts, the element
548   // count may be mismatched; don't attempt to handle that here.
549   if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) &&
550       DestTy->isVectorTy() &&
551       DestTy->getVectorNumElements() == V->getType()->getVectorNumElements()) {
552     SmallVector<Constant*, 16> res;
553     VectorType *DestVecTy = cast<VectorType>(DestTy);
554     Type *DstEltTy = DestVecTy->getElementType();
555     Type *Ty = IntegerType::get(V->getContext(), 32);
556     for (unsigned i = 0, e = V->getType()->getVectorNumElements(); i != e; ++i) {
557       Constant *C =
558         ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
559       res.push_back(ConstantExpr::getCast(opc, C, DstEltTy));
560     }
561     return ConstantVector::get(res);
562   }
563
564   // We actually have to do a cast now. Perform the cast according to the
565   // opcode specified.
566   switch (opc) {
567   default:
568     llvm_unreachable("Failed to cast constant expression");
569   case Instruction::FPTrunc:
570   case Instruction::FPExt:
571     if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
572       bool ignored;
573       APFloat Val = FPC->getValueAPF();
574       Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf :
575                   DestTy->isFloatTy() ? APFloat::IEEEsingle :
576                   DestTy->isDoubleTy() ? APFloat::IEEEdouble :
577                   DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended :
578                   DestTy->isFP128Ty() ? APFloat::IEEEquad :
579                   DestTy->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble :
580                   APFloat::Bogus,
581                   APFloat::rmNearestTiesToEven, &ignored);
582       return ConstantFP::get(V->getContext(), Val);
583     }
584     return 0; // Can't fold.
585   case Instruction::FPToUI: 
586   case Instruction::FPToSI:
587     if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
588       const APFloat &V = FPC->getValueAPF();
589       bool ignored;
590       uint64_t x[2]; 
591       uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
592       (void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
593                                 APFloat::rmTowardZero, &ignored);
594       APInt Val(DestBitWidth, x);
595       return ConstantInt::get(FPC->getContext(), Val);
596     }
597     return 0; // Can't fold.
598   case Instruction::IntToPtr:   //always treated as unsigned
599     if (V->isNullValue())       // Is it an integral null value?
600       return ConstantPointerNull::get(cast<PointerType>(DestTy));
601     return 0;                   // Other pointer types cannot be casted
602   case Instruction::PtrToInt:   // always treated as unsigned
603     // Is it a null pointer value?
604     if (V->isNullValue())
605       return ConstantInt::get(DestTy, 0);
606     // If this is a sizeof-like expression, pull out multiplications by
607     // known factors to expose them to subsequent folding. If it's an
608     // alignof-like expression, factor out known factors.
609     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
610       if (CE->getOpcode() == Instruction::GetElementPtr &&
611           CE->getOperand(0)->isNullValue()) {
612         Type *Ty =
613           cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
614         if (CE->getNumOperands() == 2) {
615           // Handle a sizeof-like expression.
616           Constant *Idx = CE->getOperand(1);
617           bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne();
618           if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) {
619             Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true,
620                                                                 DestTy, false),
621                                         Idx, DestTy);
622             return ConstantExpr::getMul(C, Idx);
623           }
624         } else if (CE->getNumOperands() == 3 &&
625                    CE->getOperand(1)->isNullValue()) {
626           // Handle an alignof-like expression.
627           if (StructType *STy = dyn_cast<StructType>(Ty))
628             if (!STy->isPacked()) {
629               ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2));
630               if (CI->isOne() &&
631                   STy->getNumElements() == 2 &&
632                   STy->getElementType(0)->isIntegerTy(1)) {
633                 return getFoldedAlignOf(STy->getElementType(1), DestTy, false);
634               }
635             }
636           // Handle an offsetof-like expression.
637           if (Ty->isStructTy() || Ty->isArrayTy()) {
638             if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2),
639                                                 DestTy, false))
640               return C;
641           }
642         }
643       }
644     // Other pointer types cannot be casted
645     return 0;
646   case Instruction::UIToFP:
647   case Instruction::SIToFP:
648     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
649       APInt api = CI->getValue();
650       APFloat apf(APInt::getNullValue(DestTy->getPrimitiveSizeInBits()),
651                   !DestTy->isPPC_FP128Ty() /* isEEEE */);
652       (void)apf.convertFromAPInt(api, 
653                                  opc==Instruction::SIToFP,
654                                  APFloat::rmNearestTiesToEven);
655       return ConstantFP::get(V->getContext(), apf);
656     }
657     return 0;
658   case Instruction::ZExt:
659     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
660       uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
661       return ConstantInt::get(V->getContext(),
662                               CI->getValue().zext(BitWidth));
663     }
664     return 0;
665   case Instruction::SExt:
666     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
667       uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
668       return ConstantInt::get(V->getContext(),
669                               CI->getValue().sext(BitWidth));
670     }
671     return 0;
672   case Instruction::Trunc: {
673     uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
674     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
675       return ConstantInt::get(V->getContext(),
676                               CI->getValue().trunc(DestBitWidth));
677     }
678     
679     // The input must be a constantexpr.  See if we can simplify this based on
680     // the bytes we are demanding.  Only do this if the source and dest are an
681     // even multiple of a byte.
682     if ((DestBitWidth & 7) == 0 &&
683         (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
684       if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
685         return Res;
686       
687     return 0;
688   }
689   case Instruction::BitCast:
690     return FoldBitCast(V, DestTy);
691   }
692 }
693
694 Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
695                                               Constant *V1, Constant *V2) {
696   // Check for i1 and vector true/false conditions.
697   if (Cond->isNullValue()) return V2;
698   if (Cond->isAllOnesValue()) return V1;
699
700   // If the condition is a vector constant, fold the result elementwise.
701   if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) {
702     SmallVector<Constant*, 16> Result;
703     Type *Ty = IntegerType::get(CondV->getContext(), 32);
704     for (unsigned i = 0, e = V1->getType()->getVectorNumElements(); i != e;++i){
705       ConstantInt *Cond = dyn_cast<ConstantInt>(CondV->getOperand(i));
706       if (Cond == 0) break;
707       
708       Constant *V = Cond->isNullValue() ? V2 : V1;
709       Constant *Res = ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
710       Result.push_back(Res);
711     }
712     
713     // If we were able to build the vector, return it.
714     if (Result.size() == V1->getType()->getVectorNumElements())
715       return ConstantVector::get(Result);
716   }
717
718   if (isa<UndefValue>(Cond)) {
719     if (isa<UndefValue>(V1)) return V1;
720     return V2;
721   }
722   if (isa<UndefValue>(V1)) return V2;
723   if (isa<UndefValue>(V2)) return V1;
724   if (V1 == V2) return V1;
725
726   if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) {
727     if (TrueVal->getOpcode() == Instruction::Select)
728       if (TrueVal->getOperand(0) == Cond)
729         return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2);
730   }
731   if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) {
732     if (FalseVal->getOpcode() == Instruction::Select)
733       if (FalseVal->getOperand(0) == Cond)
734         return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2));
735   }
736
737   return 0;
738 }
739
740 Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
741                                                       Constant *Idx) {
742   if (isa<UndefValue>(Val))  // ee(undef, x) -> undef
743     return UndefValue::get(Val->getType()->getVectorElementType());
744   if (Val->isNullValue())  // ee(zero, x) -> zero
745     return Constant::getNullValue(Val->getType()->getVectorElementType());
746   // ee({w,x,y,z}, undef) -> undef
747   if (isa<UndefValue>(Idx))
748     return UndefValue::get(Val->getType()->getVectorElementType());
749
750   if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
751     uint64_t Index = CIdx->getZExtValue();
752     // ee({w,x,y,z}, wrong_value) -> undef
753     if (Index >= Val->getType()->getVectorNumElements())
754       return UndefValue::get(Val->getType()->getVectorElementType());
755     return Val->getAggregateElement(Index);
756   }
757   return 0;
758 }
759
760 Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
761                                                      Constant *Elt,
762                                                      Constant *Idx) {
763   ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
764   if (!CIdx) return 0;
765   const APInt &IdxVal = CIdx->getValue();
766   
767   SmallVector<Constant*, 16> Result;
768   Type *Ty = IntegerType::get(Val->getContext(), 32);
769   for (unsigned i = 0, e = Val->getType()->getVectorNumElements(); i != e; ++i){
770     if (i == IdxVal) {
771       Result.push_back(Elt);
772       continue;
773     }
774     
775     Constant *C =
776       ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i));
777     Result.push_back(C);
778   }
779   
780   return ConstantVector::get(Result);
781 }
782
783 Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1,
784                                                      Constant *V2,
785                                                      Constant *Mask) {
786   unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
787   Type *EltTy = V1->getType()->getVectorElementType();
788
789   // Undefined shuffle mask -> undefined value.
790   if (isa<UndefValue>(Mask))
791     return UndefValue::get(VectorType::get(EltTy, MaskNumElts));
792
793   // Don't break the bitcode reader hack.
794   if (isa<ConstantExpr>(Mask)) return 0;
795   
796   unsigned SrcNumElts = V1->getType()->getVectorNumElements();
797
798   // Loop over the shuffle mask, evaluating each element.
799   SmallVector<Constant*, 32> Result;
800   for (unsigned i = 0; i != MaskNumElts; ++i) {
801     int Elt = ShuffleVectorInst::getMaskValue(Mask, i);
802     if (Elt == -1) {
803       Result.push_back(UndefValue::get(EltTy));
804       continue;
805     }
806     Constant *InElt;
807     if (unsigned(Elt) >= SrcNumElts*2)
808       InElt = UndefValue::get(EltTy);
809     else if (unsigned(Elt) >= SrcNumElts) {
810       Type *Ty = IntegerType::get(V2->getContext(), 32);
811       InElt =
812         ConstantExpr::getExtractElement(V2,
813                                         ConstantInt::get(Ty, Elt - SrcNumElts));
814     } else {
815       Type *Ty = IntegerType::get(V1->getContext(), 32);
816       InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt));
817     }
818     Result.push_back(InElt);
819   }
820
821   return ConstantVector::get(Result);
822 }
823
824 Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
825                                                     ArrayRef<unsigned> Idxs) {
826   // Base case: no indices, so return the entire value.
827   if (Idxs.empty())
828     return Agg;
829
830   if (Constant *C = Agg->getAggregateElement(Idxs[0]))
831     return ConstantFoldExtractValueInstruction(C, Idxs.slice(1));
832
833   return 0;
834 }
835
836 Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
837                                                    Constant *Val,
838                                                    ArrayRef<unsigned> Idxs) {
839   // Base case: no indices, so replace the entire value.
840   if (Idxs.empty())
841     return Val;
842
843   unsigned NumElts;
844   if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
845     NumElts = ST->getNumElements();
846   else if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
847     NumElts = AT->getNumElements();
848   else
849     NumElts = AT->getVectorNumElements();
850   
851   SmallVector<Constant*, 32> Result;
852   for (unsigned i = 0; i != NumElts; ++i) {
853     Constant *C = Agg->getAggregateElement(i);
854     if (C == 0) return 0;
855     
856     if (Idxs[0] == i)
857       C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1));
858     
859     Result.push_back(C);
860   }
861   
862   if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
863     return ConstantStruct::get(ST, Result);
864   if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
865     return ConstantArray::get(AT, Result);
866   return ConstantVector::get(Result);
867 }
868
869
870 Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
871                                               Constant *C1, Constant *C2) {
872   // Handle UndefValue up front.
873   if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
874     switch (Opcode) {
875     case Instruction::Xor:
876       if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
877         // Handle undef ^ undef -> 0 special case. This is a common
878         // idiom (misuse).
879         return Constant::getNullValue(C1->getType());
880       // Fallthrough
881     case Instruction::Add:
882     case Instruction::Sub:
883       return UndefValue::get(C1->getType());
884     case Instruction::And:
885       if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef
886         return C1;
887       return Constant::getNullValue(C1->getType());   // undef & X -> 0
888     case Instruction::Mul: {
889       ConstantInt *CI;
890       // X * undef -> undef   if X is odd or undef
891       if (((CI = dyn_cast<ConstantInt>(C1)) && CI->getValue()[0]) ||
892           ((CI = dyn_cast<ConstantInt>(C2)) && CI->getValue()[0]) ||
893           (isa<UndefValue>(C1) && isa<UndefValue>(C2)))
894         return UndefValue::get(C1->getType());
895
896       // X * undef -> 0       otherwise
897       return Constant::getNullValue(C1->getType());
898     }
899     case Instruction::UDiv:
900     case Instruction::SDiv:
901       // undef / 1 -> undef
902       if (Opcode == Instruction::UDiv || Opcode == Instruction::SDiv)
903         if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2))
904           if (CI2->isOne())
905             return C1;
906       // FALL THROUGH
907     case Instruction::URem:
908     case Instruction::SRem:
909       if (!isa<UndefValue>(C2))                    // undef / X -> 0
910         return Constant::getNullValue(C1->getType());
911       return C2;                                   // X / undef -> undef
912     case Instruction::Or:                          // X | undef -> -1
913       if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef
914         return C1;
915       return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0
916     case Instruction::LShr:
917       if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
918         return C1;                                  // undef lshr undef -> undef
919       return Constant::getNullValue(C1->getType()); // X lshr undef -> 0
920                                                     // undef lshr X -> 0
921     case Instruction::AShr:
922       if (!isa<UndefValue>(C2))                     // undef ashr X --> all ones
923         return Constant::getAllOnesValue(C1->getType());
924       else if (isa<UndefValue>(C1)) 
925         return C1;                                  // undef ashr undef -> undef
926       else
927         return C1;                                  // X ashr undef --> X
928     case Instruction::Shl:
929       if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
930         return C1;                                  // undef shl undef -> undef
931       // undef << X -> 0   or   X << undef -> 0
932       return Constant::getNullValue(C1->getType());
933     }
934   }
935
936   // Handle simplifications when the RHS is a constant int.
937   if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
938     switch (Opcode) {
939     case Instruction::Add:
940       if (CI2->equalsInt(0)) return C1;                         // X + 0 == X
941       break;
942     case Instruction::Sub:
943       if (CI2->equalsInt(0)) return C1;                         // X - 0 == X
944       break;
945     case Instruction::Mul:
946       if (CI2->equalsInt(0)) return C2;                         // X * 0 == 0
947       if (CI2->equalsInt(1))
948         return C1;                                              // X * 1 == X
949       break;
950     case Instruction::UDiv:
951     case Instruction::SDiv:
952       if (CI2->equalsInt(1))
953         return C1;                                            // X / 1 == X
954       if (CI2->equalsInt(0))
955         return UndefValue::get(CI2->getType());               // X / 0 == undef
956       break;
957     case Instruction::URem:
958     case Instruction::SRem:
959       if (CI2->equalsInt(1))
960         return Constant::getNullValue(CI2->getType());        // X % 1 == 0
961       if (CI2->equalsInt(0))
962         return UndefValue::get(CI2->getType());               // X % 0 == undef
963       break;
964     case Instruction::And:
965       if (CI2->isZero()) return C2;                           // X & 0 == 0
966       if (CI2->isAllOnesValue())
967         return C1;                                            // X & -1 == X
968
969       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
970         // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
971         if (CE1->getOpcode() == Instruction::ZExt) {
972           unsigned DstWidth = CI2->getType()->getBitWidth();
973           unsigned SrcWidth =
974             CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
975           APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
976           if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
977             return C1;
978         }
979
980         // If and'ing the address of a global with a constant, fold it.
981         if (CE1->getOpcode() == Instruction::PtrToInt && 
982             isa<GlobalValue>(CE1->getOperand(0))) {
983           GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
984
985           // Functions are at least 4-byte aligned.
986           unsigned GVAlign = GV->getAlignment();
987           if (isa<Function>(GV))
988             GVAlign = std::max(GVAlign, 4U);
989
990           if (GVAlign > 1) {
991             unsigned DstWidth = CI2->getType()->getBitWidth();
992             unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
993             APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
994
995             // If checking bits we know are clear, return zero.
996             if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
997               return Constant::getNullValue(CI2->getType());
998           }
999         }
1000       }
1001       break;
1002     case Instruction::Or:
1003       if (CI2->equalsInt(0)) return C1;    // X | 0 == X
1004       if (CI2->isAllOnesValue())
1005         return C2;                         // X | -1 == -1
1006       break;
1007     case Instruction::Xor:
1008       if (CI2->equalsInt(0)) return C1;    // X ^ 0 == X
1009
1010       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1011         switch (CE1->getOpcode()) {
1012         default: break;
1013         case Instruction::ICmp:
1014         case Instruction::FCmp:
1015           // cmp pred ^ true -> cmp !pred
1016           assert(CI2->equalsInt(1));
1017           CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
1018           pred = CmpInst::getInversePredicate(pred);
1019           return ConstantExpr::getCompare(pred, CE1->getOperand(0),
1020                                           CE1->getOperand(1));
1021         }
1022       }
1023       break;
1024     case Instruction::AShr:
1025       // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
1026       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
1027         if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero.
1028           return ConstantExpr::getLShr(C1, C2);
1029       break;
1030     }
1031   } else if (isa<ConstantInt>(C1)) {
1032     // If C1 is a ConstantInt and C2 is not, swap the operands.
1033     if (Instruction::isCommutative(Opcode))
1034       return ConstantExpr::get(Opcode, C2, C1);
1035   }
1036
1037   // At this point we know neither constant is an UndefValue.
1038   if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
1039     if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1040       const APInt &C1V = CI1->getValue();
1041       const APInt &C2V = CI2->getValue();
1042       switch (Opcode) {
1043       default:
1044         break;
1045       case Instruction::Add:     
1046         return ConstantInt::get(CI1->getContext(), C1V + C2V);
1047       case Instruction::Sub:     
1048         return ConstantInt::get(CI1->getContext(), C1V - C2V);
1049       case Instruction::Mul:     
1050         return ConstantInt::get(CI1->getContext(), C1V * C2V);
1051       case Instruction::UDiv:
1052         assert(!CI2->isNullValue() && "Div by zero handled above");
1053         return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
1054       case Instruction::SDiv:
1055         assert(!CI2->isNullValue() && "Div by zero handled above");
1056         if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1057           return UndefValue::get(CI1->getType());   // MIN_INT / -1 -> undef
1058         return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
1059       case Instruction::URem:
1060         assert(!CI2->isNullValue() && "Div by zero handled above");
1061         return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
1062       case Instruction::SRem:
1063         assert(!CI2->isNullValue() && "Div by zero handled above");
1064         if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1065           return UndefValue::get(CI1->getType());   // MIN_INT % -1 -> undef
1066         return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
1067       case Instruction::And:
1068         return ConstantInt::get(CI1->getContext(), C1V & C2V);
1069       case Instruction::Or:
1070         return ConstantInt::get(CI1->getContext(), C1V | C2V);
1071       case Instruction::Xor:
1072         return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
1073       case Instruction::Shl: {
1074         uint32_t shiftAmt = C2V.getZExtValue();
1075         if (shiftAmt < C1V.getBitWidth())
1076           return ConstantInt::get(CI1->getContext(), C1V.shl(shiftAmt));
1077         else
1078           return UndefValue::get(C1->getType()); // too big shift is undef
1079       }
1080       case Instruction::LShr: {
1081         uint32_t shiftAmt = C2V.getZExtValue();
1082         if (shiftAmt < C1V.getBitWidth())
1083           return ConstantInt::get(CI1->getContext(), C1V.lshr(shiftAmt));
1084         else
1085           return UndefValue::get(C1->getType()); // too big shift is undef
1086       }
1087       case Instruction::AShr: {
1088         uint32_t shiftAmt = C2V.getZExtValue();
1089         if (shiftAmt < C1V.getBitWidth())
1090           return ConstantInt::get(CI1->getContext(), C1V.ashr(shiftAmt));
1091         else
1092           return UndefValue::get(C1->getType()); // too big shift is undef
1093       }
1094       }
1095     }
1096
1097     switch (Opcode) {
1098     case Instruction::SDiv:
1099     case Instruction::UDiv:
1100     case Instruction::URem:
1101     case Instruction::SRem:
1102     case Instruction::LShr:
1103     case Instruction::AShr:
1104     case Instruction::Shl:
1105       if (CI1->equalsInt(0)) return C1;
1106       break;
1107     default:
1108       break;
1109     }
1110   } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
1111     if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
1112       APFloat C1V = CFP1->getValueAPF();
1113       APFloat C2V = CFP2->getValueAPF();
1114       APFloat C3V = C1V;  // copy for modification
1115       switch (Opcode) {
1116       default:                   
1117         break;
1118       case Instruction::FAdd:
1119         (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
1120         return ConstantFP::get(C1->getContext(), C3V);
1121       case Instruction::FSub:
1122         (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
1123         return ConstantFP::get(C1->getContext(), C3V);
1124       case Instruction::FMul:
1125         (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
1126         return ConstantFP::get(C1->getContext(), C3V);
1127       case Instruction::FDiv:
1128         (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
1129         return ConstantFP::get(C1->getContext(), C3V);
1130       case Instruction::FRem:
1131         (void)C3V.mod(C2V, APFloat::rmNearestTiesToEven);
1132         return ConstantFP::get(C1->getContext(), C3V);
1133       }
1134     }
1135   } else if (VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
1136     // Perform elementwise folding.
1137     SmallVector<Constant*, 16> Result;
1138     Type *Ty = IntegerType::get(VTy->getContext(), 32);
1139     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1140       Constant *LHS =
1141         ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i));
1142       Constant *RHS =
1143         ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i));
1144       
1145       Result.push_back(ConstantExpr::get(Opcode, LHS, RHS));
1146     }
1147     
1148     return ConstantVector::get(Result);
1149   }
1150
1151   if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1152     // There are many possible foldings we could do here.  We should probably
1153     // at least fold add of a pointer with an integer into the appropriate
1154     // getelementptr.  This will improve alias analysis a bit.
1155
1156     // Given ((a + b) + c), if (b + c) folds to something interesting, return
1157     // (a + (b + c)).
1158     if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) {
1159       Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
1160       if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
1161         return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
1162     }
1163   } else if (isa<ConstantExpr>(C2)) {
1164     // If C2 is a constant expr and C1 isn't, flop them around and fold the
1165     // other way if possible.
1166     if (Instruction::isCommutative(Opcode))
1167       return ConstantFoldBinaryInstruction(Opcode, C2, C1);
1168   }
1169
1170   // i1 can be simplified in many cases.
1171   if (C1->getType()->isIntegerTy(1)) {
1172     switch (Opcode) {
1173     case Instruction::Add:
1174     case Instruction::Sub:
1175       return ConstantExpr::getXor(C1, C2);
1176     case Instruction::Mul:
1177       return ConstantExpr::getAnd(C1, C2);
1178     case Instruction::Shl:
1179     case Instruction::LShr:
1180     case Instruction::AShr:
1181       // We can assume that C2 == 0.  If it were one the result would be
1182       // undefined because the shift value is as large as the bitwidth.
1183       return C1;
1184     case Instruction::SDiv:
1185     case Instruction::UDiv:
1186       // We can assume that C2 == 1.  If it were zero the result would be
1187       // undefined through division by zero.
1188       return C1;
1189     case Instruction::URem:
1190     case Instruction::SRem:
1191       // We can assume that C2 == 1.  If it were zero the result would be
1192       // undefined through division by zero.
1193       return ConstantInt::getFalse(C1->getContext());
1194     default:
1195       break;
1196     }
1197   }
1198
1199   // We don't know how to fold this.
1200   return 0;
1201 }
1202
1203 /// isZeroSizedType - This type is zero sized if its an array or structure of
1204 /// zero sized types.  The only leaf zero sized type is an empty structure.
1205 static bool isMaybeZeroSizedType(Type *Ty) {
1206   if (StructType *STy = dyn_cast<StructType>(Ty)) {
1207     if (STy->isOpaque()) return true;  // Can't say.
1208
1209     // If all of elements have zero size, this does too.
1210     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1211       if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
1212     return true;
1213
1214   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1215     return isMaybeZeroSizedType(ATy->getElementType());
1216   }
1217   return false;
1218 }
1219
1220 /// IdxCompare - Compare the two constants as though they were getelementptr
1221 /// indices.  This allows coersion of the types to be the same thing.
1222 ///
1223 /// If the two constants are the "same" (after coersion), return 0.  If the
1224 /// first is less than the second, return -1, if the second is less than the
1225 /// first, return 1.  If the constants are not integral, return -2.
1226 ///
1227 static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy) {
1228   if (C1 == C2) return 0;
1229
1230   // Ok, we found a different index.  If they are not ConstantInt, we can't do
1231   // anything with them.
1232   if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
1233     return -2; // don't know!
1234
1235   // Ok, we have two differing integer indices.  Sign extend them to be the same
1236   // type.  Long is always big enough, so we use it.
1237   if (!C1->getType()->isIntegerTy(64))
1238     C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(C1->getContext()));
1239
1240   if (!C2->getType()->isIntegerTy(64))
1241     C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(C1->getContext()));
1242
1243   if (C1 == C2) return 0;  // They are equal
1244
1245   // If the type being indexed over is really just a zero sized type, there is
1246   // no pointer difference being made here.
1247   if (isMaybeZeroSizedType(ElTy))
1248     return -2; // dunno.
1249
1250   // If they are really different, now that they are the same type, then we
1251   // found a difference!
1252   if (cast<ConstantInt>(C1)->getSExtValue() < 
1253       cast<ConstantInt>(C2)->getSExtValue())
1254     return -1;
1255   else
1256     return 1;
1257 }
1258
1259 /// evaluateFCmpRelation - This function determines if there is anything we can
1260 /// decide about the two constants provided.  This doesn't need to handle simple
1261 /// things like ConstantFP comparisons, but should instead handle ConstantExprs.
1262 /// If we can determine that the two constants have a particular relation to 
1263 /// each other, we should return the corresponding FCmpInst predicate, 
1264 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1265 /// ConstantFoldCompareInstruction.
1266 ///
1267 /// To simplify this code we canonicalize the relation so that the first
1268 /// operand is always the most "complex" of the two.  We consider ConstantFP
1269 /// to be the simplest, and ConstantExprs to be the most complex.
1270 static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
1271   assert(V1->getType() == V2->getType() &&
1272          "Cannot compare values of different types!");
1273
1274   // Handle degenerate case quickly
1275   if (V1 == V2) return FCmpInst::FCMP_OEQ;
1276
1277   if (!isa<ConstantExpr>(V1)) {
1278     if (!isa<ConstantExpr>(V2)) {
1279       // We distilled thisUse the standard constant folder for a few cases
1280       ConstantInt *R = 0;
1281       R = dyn_cast<ConstantInt>(
1282                       ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
1283       if (R && !R->isZero()) 
1284         return FCmpInst::FCMP_OEQ;
1285       R = dyn_cast<ConstantInt>(
1286                       ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
1287       if (R && !R->isZero()) 
1288         return FCmpInst::FCMP_OLT;
1289       R = dyn_cast<ConstantInt>(
1290                       ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
1291       if (R && !R->isZero()) 
1292         return FCmpInst::FCMP_OGT;
1293
1294       // Nothing more we can do
1295       return FCmpInst::BAD_FCMP_PREDICATE;
1296     }
1297
1298     // If the first operand is simple and second is ConstantExpr, swap operands.
1299     FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
1300     if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
1301       return FCmpInst::getSwappedPredicate(SwappedRelation);
1302   } else {
1303     // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1304     // constantexpr or a simple constant.
1305     ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1306     switch (CE1->getOpcode()) {
1307     case Instruction::FPTrunc:
1308     case Instruction::FPExt:
1309     case Instruction::UIToFP:
1310     case Instruction::SIToFP:
1311       // We might be able to do something with these but we don't right now.
1312       break;
1313     default:
1314       break;
1315     }
1316   }
1317   // There are MANY other foldings that we could perform here.  They will
1318   // probably be added on demand, as they seem needed.
1319   return FCmpInst::BAD_FCMP_PREDICATE;
1320 }
1321
1322 /// evaluateICmpRelation - This function determines if there is anything we can
1323 /// decide about the two constants provided.  This doesn't need to handle simple
1324 /// things like integer comparisons, but should instead handle ConstantExprs
1325 /// and GlobalValues.  If we can determine that the two constants have a
1326 /// particular relation to each other, we should return the corresponding ICmp
1327 /// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
1328 ///
1329 /// To simplify this code we canonicalize the relation so that the first
1330 /// operand is always the most "complex" of the two.  We consider simple
1331 /// constants (like ConstantInt) to be the simplest, followed by
1332 /// GlobalValues, followed by ConstantExpr's (the most complex).
1333 ///
1334 static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
1335                                                 bool isSigned) {
1336   assert(V1->getType() == V2->getType() &&
1337          "Cannot compare different types of values!");
1338   if (V1 == V2) return ICmpInst::ICMP_EQ;
1339
1340   if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
1341       !isa<BlockAddress>(V1)) {
1342     if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
1343         !isa<BlockAddress>(V2)) {
1344       // We distilled this down to a simple case, use the standard constant
1345       // folder.
1346       ConstantInt *R = 0;
1347       ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
1348       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1349       if (R && !R->isZero()) 
1350         return pred;
1351       pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1352       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1353       if (R && !R->isZero())
1354         return pred;
1355       pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1356       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1357       if (R && !R->isZero())
1358         return pred;
1359
1360       // If we couldn't figure it out, bail.
1361       return ICmpInst::BAD_ICMP_PREDICATE;
1362     }
1363
1364     // If the first operand is simple, swap operands.
1365     ICmpInst::Predicate SwappedRelation = 
1366       evaluateICmpRelation(V2, V1, isSigned);
1367     if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1368       return ICmpInst::getSwappedPredicate(SwappedRelation);
1369
1370   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
1371     if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1372       ICmpInst::Predicate SwappedRelation = 
1373         evaluateICmpRelation(V2, V1, isSigned);
1374       if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1375         return ICmpInst::getSwappedPredicate(SwappedRelation);
1376       return ICmpInst::BAD_ICMP_PREDICATE;
1377     }
1378
1379     // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1380     // constant (which, since the types must match, means that it's a
1381     // ConstantPointerNull).
1382     if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1383       // Don't try to decide equality of aliases.
1384       if (!isa<GlobalAlias>(GV) && !isa<GlobalAlias>(GV2))
1385         if (!GV->hasExternalWeakLinkage() || !GV2->hasExternalWeakLinkage())
1386           return ICmpInst::ICMP_NE;
1387     } else if (isa<BlockAddress>(V2)) {
1388       return ICmpInst::ICMP_NE; // Globals never equal labels.
1389     } else {
1390       assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1391       // GlobalVals can never be null unless they have external weak linkage.
1392       // We don't try to evaluate aliases here.
1393       if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV))
1394         return ICmpInst::ICMP_NE;
1395     }
1396   } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
1397     if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1398       ICmpInst::Predicate SwappedRelation = 
1399         evaluateICmpRelation(V2, V1, isSigned);
1400       if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1401         return ICmpInst::getSwappedPredicate(SwappedRelation);
1402       return ICmpInst::BAD_ICMP_PREDICATE;
1403     }
1404     
1405     // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1406     // constant (which, since the types must match, means that it is a
1407     // ConstantPointerNull).
1408     if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
1409       // Block address in another function can't equal this one, but block
1410       // addresses in the current function might be the same if blocks are
1411       // empty.
1412       if (BA2->getFunction() != BA->getFunction())
1413         return ICmpInst::ICMP_NE;
1414     } else {
1415       // Block addresses aren't null, don't equal the address of globals.
1416       assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
1417              "Canonicalization guarantee!");
1418       return ICmpInst::ICMP_NE;
1419     }
1420   } else {
1421     // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1422     // constantexpr, a global, block address, or a simple constant.
1423     ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1424     Constant *CE1Op0 = CE1->getOperand(0);
1425
1426     switch (CE1->getOpcode()) {
1427     case Instruction::Trunc:
1428     case Instruction::FPTrunc:
1429     case Instruction::FPExt:
1430     case Instruction::FPToUI:
1431     case Instruction::FPToSI:
1432       break; // We can't evaluate floating point casts or truncations.
1433
1434     case Instruction::UIToFP:
1435     case Instruction::SIToFP:
1436     case Instruction::BitCast:
1437     case Instruction::ZExt:
1438     case Instruction::SExt:
1439       // If the cast is not actually changing bits, and the second operand is a
1440       // null pointer, do the comparison with the pre-casted value.
1441       if (V2->isNullValue() &&
1442           (CE1->getType()->isPointerTy() || CE1->getType()->isIntegerTy())) {
1443         if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1444         if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1445         return evaluateICmpRelation(CE1Op0,
1446                                     Constant::getNullValue(CE1Op0->getType()), 
1447                                     isSigned);
1448       }
1449       break;
1450
1451     case Instruction::GetElementPtr:
1452       // Ok, since this is a getelementptr, we know that the constant has a
1453       // pointer type.  Check the various cases.
1454       if (isa<ConstantPointerNull>(V2)) {
1455         // If we are comparing a GEP to a null pointer, check to see if the base
1456         // of the GEP equals the null pointer.
1457         if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1458           if (GV->hasExternalWeakLinkage())
1459             // Weak linkage GVals could be zero or not. We're comparing that
1460             // to null pointer so its greater-or-equal
1461             return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1462           else 
1463             // If its not weak linkage, the GVal must have a non-zero address
1464             // so the result is greater-than
1465             return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1466         } else if (isa<ConstantPointerNull>(CE1Op0)) {
1467           // If we are indexing from a null pointer, check to see if we have any
1468           // non-zero indices.
1469           for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1470             if (!CE1->getOperand(i)->isNullValue())
1471               // Offsetting from null, must not be equal.
1472               return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1473           // Only zero indexes from null, must still be zero.
1474           return ICmpInst::ICMP_EQ;
1475         }
1476         // Otherwise, we can't really say if the first operand is null or not.
1477       } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1478         if (isa<ConstantPointerNull>(CE1Op0)) {
1479           if (GV2->hasExternalWeakLinkage())
1480             // Weak linkage GVals could be zero or not. We're comparing it to
1481             // a null pointer, so its less-or-equal
1482             return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1483           else
1484             // If its not weak linkage, the GVal must have a non-zero address
1485             // so the result is less-than
1486             return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1487         } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1488           if (GV == GV2) {
1489             // If this is a getelementptr of the same global, then it must be
1490             // different.  Because the types must match, the getelementptr could
1491             // only have at most one index, and because we fold getelementptr's
1492             // with a single zero index, it must be nonzero.
1493             assert(CE1->getNumOperands() == 2 &&
1494                    !CE1->getOperand(1)->isNullValue() &&
1495                    "Surprising getelementptr!");
1496             return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1497           } else {
1498             // If they are different globals, we don't know what the value is,
1499             // but they can't be equal.
1500             return ICmpInst::ICMP_NE;
1501           }
1502         }
1503       } else {
1504         ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1505         Constant *CE2Op0 = CE2->getOperand(0);
1506
1507         // There are MANY other foldings that we could perform here.  They will
1508         // probably be added on demand, as they seem needed.
1509         switch (CE2->getOpcode()) {
1510         default: break;
1511         case Instruction::GetElementPtr:
1512           // By far the most common case to handle is when the base pointers are
1513           // obviously to the same or different globals.
1514           if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1515             if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal
1516               return ICmpInst::ICMP_NE;
1517             // Ok, we know that both getelementptr instructions are based on the
1518             // same global.  From this, we can precisely determine the relative
1519             // ordering of the resultant pointers.
1520             unsigned i = 1;
1521
1522             // The logic below assumes that the result of the comparison
1523             // can be determined by finding the first index that differs.
1524             // This doesn't work if there is over-indexing in any
1525             // subsequent indices, so check for that case first.
1526             if (!CE1->isGEPWithNoNotionalOverIndexing() ||
1527                 !CE2->isGEPWithNoNotionalOverIndexing())
1528                return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1529
1530             // Compare all of the operands the GEP's have in common.
1531             gep_type_iterator GTI = gep_type_begin(CE1);
1532             for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1533                  ++i, ++GTI)
1534               switch (IdxCompare(CE1->getOperand(i),
1535                                  CE2->getOperand(i), GTI.getIndexedType())) {
1536               case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1537               case 1:  return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1538               case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1539               }
1540
1541             // Ok, we ran out of things they have in common.  If any leftovers
1542             // are non-zero then we have a difference, otherwise we are equal.
1543             for (; i < CE1->getNumOperands(); ++i)
1544               if (!CE1->getOperand(i)->isNullValue()) {
1545                 if (isa<ConstantInt>(CE1->getOperand(i)))
1546                   return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1547                 else
1548                   return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1549               }
1550
1551             for (; i < CE2->getNumOperands(); ++i)
1552               if (!CE2->getOperand(i)->isNullValue()) {
1553                 if (isa<ConstantInt>(CE2->getOperand(i)))
1554                   return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1555                 else
1556                   return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1557               }
1558             return ICmpInst::ICMP_EQ;
1559           }
1560         }
1561       }
1562     default:
1563       break;
1564     }
1565   }
1566
1567   return ICmpInst::BAD_ICMP_PREDICATE;
1568 }
1569
1570 Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred, 
1571                                                Constant *C1, Constant *C2) {
1572   Type *ResultTy;
1573   if (VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1574     ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
1575                                VT->getNumElements());
1576   else
1577     ResultTy = Type::getInt1Ty(C1->getContext());
1578
1579   // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1580   if (pred == FCmpInst::FCMP_FALSE)
1581     return Constant::getNullValue(ResultTy);
1582
1583   if (pred == FCmpInst::FCMP_TRUE)
1584     return Constant::getAllOnesValue(ResultTy);
1585
1586   // Handle some degenerate cases first
1587   if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1588     // For EQ and NE, we can always pick a value for the undef to make the
1589     // predicate pass or fail, so we can return undef.
1590     // Also, if both operands are undef, we can return undef.
1591     if (ICmpInst::isEquality(ICmpInst::Predicate(pred)) ||
1592         (isa<UndefValue>(C1) && isa<UndefValue>(C2)))
1593       return UndefValue::get(ResultTy);
1594     // Otherwise, pick the same value as the non-undef operand, and fold
1595     // it to true or false.
1596     return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(pred));
1597   }
1598
1599   // icmp eq/ne(null,GV) -> false/true
1600   if (C1->isNullValue()) {
1601     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1602       // Don't try to evaluate aliases.  External weak GV can be null.
1603       if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1604         if (pred == ICmpInst::ICMP_EQ)
1605           return ConstantInt::getFalse(C1->getContext());
1606         else if (pred == ICmpInst::ICMP_NE)
1607           return ConstantInt::getTrue(C1->getContext());
1608       }
1609   // icmp eq/ne(GV,null) -> false/true
1610   } else if (C2->isNullValue()) {
1611     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1612       // Don't try to evaluate aliases.  External weak GV can be null.
1613       if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1614         if (pred == ICmpInst::ICMP_EQ)
1615           return ConstantInt::getFalse(C1->getContext());
1616         else if (pred == ICmpInst::ICMP_NE)
1617           return ConstantInt::getTrue(C1->getContext());
1618       }
1619   }
1620
1621   // If the comparison is a comparison between two i1's, simplify it.
1622   if (C1->getType()->isIntegerTy(1)) {
1623     switch(pred) {
1624     case ICmpInst::ICMP_EQ:
1625       if (isa<ConstantInt>(C2))
1626         return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
1627       return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
1628     case ICmpInst::ICMP_NE:
1629       return ConstantExpr::getXor(C1, C2);
1630     default:
1631       break;
1632     }
1633   }
1634
1635   if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1636     APInt V1 = cast<ConstantInt>(C1)->getValue();
1637     APInt V2 = cast<ConstantInt>(C2)->getValue();
1638     switch (pred) {
1639     default: llvm_unreachable("Invalid ICmp Predicate");
1640     case ICmpInst::ICMP_EQ:  return ConstantInt::get(ResultTy, V1 == V2);
1641     case ICmpInst::ICMP_NE:  return ConstantInt::get(ResultTy, V1 != V2);
1642     case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2));
1643     case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2));
1644     case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2));
1645     case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2));
1646     case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2));
1647     case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2));
1648     case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2));
1649     case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2));
1650     }
1651   } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1652     APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
1653     APFloat C2V = cast<ConstantFP>(C2)->getValueAPF();
1654     APFloat::cmpResult R = C1V.compare(C2V);
1655     switch (pred) {
1656     default: llvm_unreachable("Invalid FCmp Predicate");
1657     case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy);
1658     case FCmpInst::FCMP_TRUE:  return Constant::getAllOnesValue(ResultTy);
1659     case FCmpInst::FCMP_UNO:
1660       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered);
1661     case FCmpInst::FCMP_ORD:
1662       return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered);
1663     case FCmpInst::FCMP_UEQ:
1664       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1665                                         R==APFloat::cmpEqual);
1666     case FCmpInst::FCMP_OEQ:   
1667       return ConstantInt::get(ResultTy, R==APFloat::cmpEqual);
1668     case FCmpInst::FCMP_UNE:
1669       return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual);
1670     case FCmpInst::FCMP_ONE:   
1671       return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1672                                         R==APFloat::cmpGreaterThan);
1673     case FCmpInst::FCMP_ULT: 
1674       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1675                                         R==APFloat::cmpLessThan);
1676     case FCmpInst::FCMP_OLT:   
1677       return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan);
1678     case FCmpInst::FCMP_UGT:
1679       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1680                                         R==APFloat::cmpGreaterThan);
1681     case FCmpInst::FCMP_OGT:
1682       return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan);
1683     case FCmpInst::FCMP_ULE:
1684       return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan);
1685     case FCmpInst::FCMP_OLE: 
1686       return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1687                                         R==APFloat::cmpEqual);
1688     case FCmpInst::FCMP_UGE:
1689       return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan);
1690     case FCmpInst::FCMP_OGE: 
1691       return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan ||
1692                                         R==APFloat::cmpEqual);
1693     }
1694   } else if (C1->getType()->isVectorTy()) {
1695     // If we can constant fold the comparison of each element, constant fold
1696     // the whole vector comparison.
1697     SmallVector<Constant*, 4> ResElts;
1698     Type *Ty = IntegerType::get(C1->getContext(), 32);
1699     // Compare the elements, producing an i1 result or constant expr.
1700     for (unsigned i = 0, e = C1->getType()->getVectorNumElements(); i != e;++i){
1701       Constant *C1E =
1702         ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i));
1703       Constant *C2E =
1704         ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i));
1705       
1706       ResElts.push_back(ConstantExpr::getCompare(pred, C1E, C2E));
1707     }
1708     
1709     return ConstantVector::get(ResElts);
1710   }
1711
1712   if (C1->getType()->isFloatingPointTy()) {
1713     int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1714     switch (evaluateFCmpRelation(C1, C2)) {
1715     default: llvm_unreachable("Unknown relation!");
1716     case FCmpInst::FCMP_UNO:
1717     case FCmpInst::FCMP_ORD:
1718     case FCmpInst::FCMP_UEQ:
1719     case FCmpInst::FCMP_UNE:
1720     case FCmpInst::FCMP_ULT:
1721     case FCmpInst::FCMP_UGT:
1722     case FCmpInst::FCMP_ULE:
1723     case FCmpInst::FCMP_UGE:
1724     case FCmpInst::FCMP_TRUE:
1725     case FCmpInst::FCMP_FALSE:
1726     case FCmpInst::BAD_FCMP_PREDICATE:
1727       break; // Couldn't determine anything about these constants.
1728     case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1729       Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1730                 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
1731                 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1732       break;
1733     case FCmpInst::FCMP_OLT: // We know that C1 < C2
1734       Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1735                 pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
1736                 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
1737       break;
1738     case FCmpInst::FCMP_OGT: // We know that C1 > C2
1739       Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1740                 pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
1741                 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1742       break;
1743     case FCmpInst::FCMP_OLE: // We know that C1 <= C2
1744       // We can only partially decide this relation.
1745       if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT) 
1746         Result = 0;
1747       else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT) 
1748         Result = 1;
1749       break;
1750     case FCmpInst::FCMP_OGE: // We known that C1 >= C2
1751       // We can only partially decide this relation.
1752       if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT) 
1753         Result = 0;
1754       else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT) 
1755         Result = 1;
1756       break;
1757     case FCmpInst::FCMP_ONE: // We know that C1 != C2
1758       // We can only partially decide this relation.
1759       if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ) 
1760         Result = 0;
1761       else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE) 
1762         Result = 1;
1763       break;
1764     }
1765
1766     // If we evaluated the result, return it now.
1767     if (Result != -1)
1768       return ConstantInt::get(ResultTy, Result);
1769
1770   } else {
1771     // Evaluate the relation between the two constants, per the predicate.
1772     int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1773     switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(pred))) {
1774     default: llvm_unreachable("Unknown relational!");
1775     case ICmpInst::BAD_ICMP_PREDICATE:
1776       break;  // Couldn't determine anything about these constants.
1777     case ICmpInst::ICMP_EQ:   // We know the constants are equal!
1778       // If we know the constants are equal, we can decide the result of this
1779       // computation precisely.
1780       Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred);
1781       break;
1782     case ICmpInst::ICMP_ULT:
1783       switch (pred) {
1784       case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
1785         Result = 1; break;
1786       case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
1787         Result = 0; break;
1788       }
1789       break;
1790     case ICmpInst::ICMP_SLT:
1791       switch (pred) {
1792       case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
1793         Result = 1; break;
1794       case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
1795         Result = 0; break;
1796       }
1797       break;
1798     case ICmpInst::ICMP_UGT:
1799       switch (pred) {
1800       case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
1801         Result = 1; break;
1802       case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
1803         Result = 0; break;
1804       }
1805       break;
1806     case ICmpInst::ICMP_SGT:
1807       switch (pred) {
1808       case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
1809         Result = 1; break;
1810       case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
1811         Result = 0; break;
1812       }
1813       break;
1814     case ICmpInst::ICMP_ULE:
1815       if (pred == ICmpInst::ICMP_UGT) Result = 0;
1816       if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1;
1817       break;
1818     case ICmpInst::ICMP_SLE:
1819       if (pred == ICmpInst::ICMP_SGT) Result = 0;
1820       if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1;
1821       break;
1822     case ICmpInst::ICMP_UGE:
1823       if (pred == ICmpInst::ICMP_ULT) Result = 0;
1824       if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1;
1825       break;
1826     case ICmpInst::ICMP_SGE:
1827       if (pred == ICmpInst::ICMP_SLT) Result = 0;
1828       if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1;
1829       break;
1830     case ICmpInst::ICMP_NE:
1831       if (pred == ICmpInst::ICMP_EQ) Result = 0;
1832       if (pred == ICmpInst::ICMP_NE) Result = 1;
1833       break;
1834     }
1835
1836     // If we evaluated the result, return it now.
1837     if (Result != -1)
1838       return ConstantInt::get(ResultTy, Result);
1839
1840     // If the right hand side is a bitcast, try using its inverse to simplify
1841     // it by moving it to the left hand side.  We can't do this if it would turn
1842     // a vector compare into a scalar compare or visa versa.
1843     if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
1844       Constant *CE2Op0 = CE2->getOperand(0);
1845       if (CE2->getOpcode() == Instruction::BitCast &&
1846           CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy()) {
1847         Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
1848         return ConstantExpr::getICmp(pred, Inverse, CE2Op0);
1849       }
1850     }
1851
1852     // If the left hand side is an extension, try eliminating it.
1853     if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1854       if ((CE1->getOpcode() == Instruction::SExt && ICmpInst::isSigned(pred)) ||
1855           (CE1->getOpcode() == Instruction::ZExt && !ICmpInst::isSigned(pred))){
1856         Constant *CE1Op0 = CE1->getOperand(0);
1857         Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
1858         if (CE1Inverse == CE1Op0) {
1859           // Check whether we can safely truncate the right hand side.
1860           Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
1861           if (ConstantExpr::getZExt(C2Inverse, C2->getType()) == C2) {
1862             return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse);
1863           }
1864         }
1865       }
1866     }
1867
1868     if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
1869         (C1->isNullValue() && !C2->isNullValue())) {
1870       // If C2 is a constant expr and C1 isn't, flip them around and fold the
1871       // other way if possible.
1872       // Also, if C1 is null and C2 isn't, flip them around.
1873       pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
1874       return ConstantExpr::getICmp(pred, C2, C1);
1875     }
1876   }
1877   return 0;
1878 }
1879
1880 /// isInBoundsIndices - Test whether the given sequence of *normalized* indices
1881 /// is "inbounds".
1882 template<typename IndexTy>
1883 static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) {
1884   // No indices means nothing that could be out of bounds.
1885   if (Idxs.empty()) return true;
1886
1887   // If the first index is zero, it's in bounds.
1888   if (cast<Constant>(Idxs[0])->isNullValue()) return true;
1889
1890   // If the first index is one and all the rest are zero, it's in bounds,
1891   // by the one-past-the-end rule.
1892   if (!cast<ConstantInt>(Idxs[0])->isOne())
1893     return false;
1894   for (unsigned i = 1, e = Idxs.size(); i != e; ++i)
1895     if (!cast<Constant>(Idxs[i])->isNullValue())
1896       return false;
1897   return true;
1898 }
1899
1900 template<typename IndexTy>
1901 static Constant *ConstantFoldGetElementPtrImpl(Constant *C,
1902                                                bool inBounds,
1903                                                ArrayRef<IndexTy> Idxs) {
1904   if (Idxs.empty()) return C;
1905   Constant *Idx0 = cast<Constant>(Idxs[0]);
1906   if ((Idxs.size() == 1 && Idx0->isNullValue()))
1907     return C;
1908
1909   if (isa<UndefValue>(C)) {
1910     PointerType *Ptr = cast<PointerType>(C->getType());
1911     Type *Ty = GetElementPtrInst::getIndexedType(Ptr, Idxs);
1912     assert(Ty != 0 && "Invalid indices for GEP!");
1913     return UndefValue::get(PointerType::get(Ty, Ptr->getAddressSpace()));
1914   }
1915
1916   if (C->isNullValue()) {
1917     bool isNull = true;
1918     for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
1919       if (!cast<Constant>(Idxs[i])->isNullValue()) {
1920         isNull = false;
1921         break;
1922       }
1923     if (isNull) {
1924       PointerType *Ptr = cast<PointerType>(C->getType());
1925       Type *Ty = GetElementPtrInst::getIndexedType(Ptr, Idxs);
1926       assert(Ty != 0 && "Invalid indices for GEP!");
1927       return ConstantPointerNull::get(PointerType::get(Ty,
1928                                                        Ptr->getAddressSpace()));
1929     }
1930   }
1931
1932   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1933     // Combine Indices - If the source pointer to this getelementptr instruction
1934     // is a getelementptr instruction, combine the indices of the two
1935     // getelementptr instructions into a single instruction.
1936     //
1937     if (CE->getOpcode() == Instruction::GetElementPtr) {
1938       Type *LastTy = 0;
1939       for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
1940            I != E; ++I)
1941         LastTy = *I;
1942
1943       if ((LastTy && isa<SequentialType>(LastTy)) || Idx0->isNullValue()) {
1944         SmallVector<Value*, 16> NewIndices;
1945         NewIndices.reserve(Idxs.size() + CE->getNumOperands());
1946         for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
1947           NewIndices.push_back(CE->getOperand(i));
1948
1949         // Add the last index of the source with the first index of the new GEP.
1950         // Make sure to handle the case when they are actually different types.
1951         Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
1952         // Otherwise it must be an array.
1953         if (!Idx0->isNullValue()) {
1954           Type *IdxTy = Combined->getType();
1955           if (IdxTy != Idx0->getType()) {
1956             Type *Int64Ty = Type::getInt64Ty(IdxTy->getContext());
1957             Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Int64Ty);
1958             Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, Int64Ty);
1959             Combined = ConstantExpr::get(Instruction::Add, C1, C2);
1960           } else {
1961             Combined =
1962               ConstantExpr::get(Instruction::Add, Idx0, Combined);
1963           }
1964         }
1965
1966         NewIndices.push_back(Combined);
1967         NewIndices.append(Idxs.begin() + 1, Idxs.end());
1968         return
1969           ConstantExpr::getGetElementPtr(CE->getOperand(0), NewIndices,
1970                                          inBounds &&
1971                                            cast<GEPOperator>(CE)->isInBounds());
1972       }
1973     }
1974
1975     // Implement folding of:
1976     //    i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
1977     //                        i64 0, i64 0)
1978     // To: i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
1979     //
1980     if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) {
1981       if (PointerType *SPT =
1982           dyn_cast<PointerType>(CE->getOperand(0)->getType()))
1983         if (ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
1984           if (ArrayType *CAT =
1985         dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
1986             if (CAT->getElementType() == SAT->getElementType())
1987               return
1988                 ConstantExpr::getGetElementPtr((Constant*)CE->getOperand(0),
1989                                                Idxs, inBounds);
1990     }
1991   }
1992
1993   // Check to see if any array indices are not within the corresponding
1994   // notional array bounds. If so, try to determine if they can be factored
1995   // out into preceding dimensions.
1996   bool Unknown = false;
1997   SmallVector<Constant *, 8> NewIdxs;
1998   Type *Ty = C->getType();
1999   Type *Prev = 0;
2000   for (unsigned i = 0, e = Idxs.size(); i != e;
2001        Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) {
2002     if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
2003       if (ArrayType *ATy = dyn_cast<ArrayType>(Ty))
2004         if (ATy->getNumElements() <= INT64_MAX &&
2005             ATy->getNumElements() != 0 &&
2006             CI->getSExtValue() >= (int64_t)ATy->getNumElements()) {
2007           if (isa<SequentialType>(Prev)) {
2008             // It's out of range, but we can factor it into the prior
2009             // dimension.
2010             NewIdxs.resize(Idxs.size());
2011             ConstantInt *Factor = ConstantInt::get(CI->getType(),
2012                                                    ATy->getNumElements());
2013             NewIdxs[i] = ConstantExpr::getSRem(CI, Factor);
2014
2015             Constant *PrevIdx = cast<Constant>(Idxs[i-1]);
2016             Constant *Div = ConstantExpr::getSDiv(CI, Factor);
2017
2018             // Before adding, extend both operands to i64 to avoid
2019             // overflow trouble.
2020             if (!PrevIdx->getType()->isIntegerTy(64))
2021               PrevIdx = ConstantExpr::getSExt(PrevIdx,
2022                                            Type::getInt64Ty(Div->getContext()));
2023             if (!Div->getType()->isIntegerTy(64))
2024               Div = ConstantExpr::getSExt(Div,
2025                                           Type::getInt64Ty(Div->getContext()));
2026
2027             NewIdxs[i-1] = ConstantExpr::getAdd(PrevIdx, Div);
2028           } else {
2029             // It's out of range, but the prior dimension is a struct
2030             // so we can't do anything about it.
2031             Unknown = true;
2032           }
2033         }
2034     } else {
2035       // We don't know if it's in range or not.
2036       Unknown = true;
2037     }
2038   }
2039
2040   // If we did any factoring, start over with the adjusted indices.
2041   if (!NewIdxs.empty()) {
2042     for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
2043       if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]);
2044     return ConstantExpr::getGetElementPtr(C, NewIdxs, inBounds);
2045   }
2046
2047   // If all indices are known integers and normalized, we can do a simple
2048   // check for the "inbounds" property.
2049   if (!Unknown && !inBounds &&
2050       isa<GlobalVariable>(C) && isInBoundsIndices(Idxs))
2051     return ConstantExpr::getInBoundsGetElementPtr(C, Idxs);
2052
2053   return 0;
2054 }
2055
2056 Constant *llvm::ConstantFoldGetElementPtr(Constant *C,
2057                                           bool inBounds,
2058                                           ArrayRef<Constant *> Idxs) {
2059   return ConstantFoldGetElementPtrImpl(C, inBounds, Idxs);
2060 }
2061
2062 Constant *llvm::ConstantFoldGetElementPtr(Constant *C,
2063                                           bool inBounds,
2064                                           ArrayRef<Value *> Idxs) {
2065   return ConstantFoldGetElementPtrImpl(C, inBounds, Idxs);
2066 }