Taints the non-acquire RMW's store address with the load part
[oota-llvm.git] / lib / IR / AsmWriter.cpp
1 //===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This library implements the functionality defined in llvm/IR/Writer.h
11 //
12 // Note that these routines must be extremely tolerant of various errors in the
13 // LLVM code, because it can be used for debugging transformations.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/IR/AssemblyAnnotationWriter.h"
23 #include "llvm/IR/CFG.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DebugInfo.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/IRPrintingPasses.h"
29 #include "llvm/IR/InlineAsm.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/ModuleSlotTracker.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/Statepoint.h"
36 #include "llvm/IR/TypeFinder.h"
37 #include "llvm/IR/UseListOrder.h"
38 #include "llvm/IR/ValueSymbolTable.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/Dwarf.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/Format.h"
43 #include "llvm/Support/FormattedStream.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <algorithm>
47 #include <cctype>
48 using namespace llvm;
49
50 // Make virtual table appear in this compilation unit.
51 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
52
53 //===----------------------------------------------------------------------===//
54 // Helper Functions
55 //===----------------------------------------------------------------------===//
56
57 namespace {
58 struct OrderMap {
59   DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
60
61   unsigned size() const { return IDs.size(); }
62   std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
63   std::pair<unsigned, bool> lookup(const Value *V) const {
64     return IDs.lookup(V);
65   }
66   void index(const Value *V) {
67     // Explicitly sequence get-size and insert-value operations to avoid UB.
68     unsigned ID = IDs.size() + 1;
69     IDs[V].first = ID;
70   }
71 };
72 }
73
74 static void orderValue(const Value *V, OrderMap &OM) {
75   if (OM.lookup(V).first)
76     return;
77
78   if (const Constant *C = dyn_cast<Constant>(V))
79     if (C->getNumOperands() && !isa<GlobalValue>(C))
80       for (const Value *Op : C->operands())
81         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
82           orderValue(Op, OM);
83
84   // Note: we cannot cache this lookup above, since inserting into the map
85   // changes the map's size, and thus affects the other IDs.
86   OM.index(V);
87 }
88
89 static OrderMap orderModule(const Module *M) {
90   // This needs to match the order used by ValueEnumerator::ValueEnumerator()
91   // and ValueEnumerator::incorporateFunction().
92   OrderMap OM;
93
94   for (const GlobalVariable &G : M->globals()) {
95     if (G.hasInitializer())
96       if (!isa<GlobalValue>(G.getInitializer()))
97         orderValue(G.getInitializer(), OM);
98     orderValue(&G, OM);
99   }
100   for (const GlobalAlias &A : M->aliases()) {
101     if (!isa<GlobalValue>(A.getAliasee()))
102       orderValue(A.getAliasee(), OM);
103     orderValue(&A, OM);
104   }
105   for (const Function &F : *M) {
106     for (const Use &U : F.operands())
107       if (!isa<GlobalValue>(U.get()))
108         orderValue(U.get(), OM);
109
110     orderValue(&F, OM);
111
112     if (F.isDeclaration())
113       continue;
114
115     for (const Argument &A : F.args())
116       orderValue(&A, OM);
117     for (const BasicBlock &BB : F) {
118       orderValue(&BB, OM);
119       for (const Instruction &I : BB) {
120         for (const Value *Op : I.operands())
121           if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
122               isa<InlineAsm>(*Op))
123             orderValue(Op, OM);
124         orderValue(&I, OM);
125       }
126     }
127   }
128   return OM;
129 }
130
131 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
132                                          unsigned ID, const OrderMap &OM,
133                                          UseListOrderStack &Stack) {
134   // Predict use-list order for this one.
135   typedef std::pair<const Use *, unsigned> Entry;
136   SmallVector<Entry, 64> List;
137   for (const Use &U : V->uses())
138     // Check if this user will be serialized.
139     if (OM.lookup(U.getUser()).first)
140       List.push_back(std::make_pair(&U, List.size()));
141
142   if (List.size() < 2)
143     // We may have lost some users.
144     return;
145
146   bool GetsReversed =
147       !isa<GlobalVariable>(V) && !isa<Function>(V) && !isa<BasicBlock>(V);
148   if (auto *BA = dyn_cast<BlockAddress>(V))
149     ID = OM.lookup(BA->getBasicBlock()).first;
150   std::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) {
151     const Use *LU = L.first;
152     const Use *RU = R.first;
153     if (LU == RU)
154       return false;
155
156     auto LID = OM.lookup(LU->getUser()).first;
157     auto RID = OM.lookup(RU->getUser()).first;
158
159     // If ID is 4, then expect: 7 6 5 1 2 3.
160     if (LID < RID) {
161       if (GetsReversed)
162         if (RID <= ID)
163           return true;
164       return false;
165     }
166     if (RID < LID) {
167       if (GetsReversed)
168         if (LID <= ID)
169           return false;
170       return true;
171     }
172
173     // LID and RID are equal, so we have different operands of the same user.
174     // Assume operands are added in order for all instructions.
175     if (GetsReversed)
176       if (LID <= ID)
177         return LU->getOperandNo() < RU->getOperandNo();
178     return LU->getOperandNo() > RU->getOperandNo();
179   });
180
181   if (std::is_sorted(
182           List.begin(), List.end(),
183           [](const Entry &L, const Entry &R) { return L.second < R.second; }))
184     // Order is already correct.
185     return;
186
187   // Store the shuffle.
188   Stack.emplace_back(V, F, List.size());
189   assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
190   for (size_t I = 0, E = List.size(); I != E; ++I)
191     Stack.back().Shuffle[I] = List[I].second;
192 }
193
194 static void predictValueUseListOrder(const Value *V, const Function *F,
195                                      OrderMap &OM, UseListOrderStack &Stack) {
196   auto &IDPair = OM[V];
197   assert(IDPair.first && "Unmapped value");
198   if (IDPair.second)
199     // Already predicted.
200     return;
201
202   // Do the actual prediction.
203   IDPair.second = true;
204   if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
205     predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
206
207   // Recursive descent into constants.
208   if (const Constant *C = dyn_cast<Constant>(V))
209     if (C->getNumOperands()) // Visit GlobalValues.
210       for (const Value *Op : C->operands())
211         if (isa<Constant>(Op)) // Visit GlobalValues.
212           predictValueUseListOrder(Op, F, OM, Stack);
213 }
214
215 static UseListOrderStack predictUseListOrder(const Module *M) {
216   OrderMap OM = orderModule(M);
217
218   // Use-list orders need to be serialized after all the users have been added
219   // to a value, or else the shuffles will be incomplete.  Store them per
220   // function in a stack.
221   //
222   // Aside from function order, the order of values doesn't matter much here.
223   UseListOrderStack Stack;
224
225   // We want to visit the functions backward now so we can list function-local
226   // constants in the last Function they're used in.  Module-level constants
227   // have already been visited above.
228   for (const Function &F : make_range(M->rbegin(), M->rend())) {
229     if (F.isDeclaration())
230       continue;
231     for (const BasicBlock &BB : F)
232       predictValueUseListOrder(&BB, &F, OM, Stack);
233     for (const Argument &A : F.args())
234       predictValueUseListOrder(&A, &F, OM, Stack);
235     for (const BasicBlock &BB : F)
236       for (const Instruction &I : BB)
237         for (const Value *Op : I.operands())
238           if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
239             predictValueUseListOrder(Op, &F, OM, Stack);
240     for (const BasicBlock &BB : F)
241       for (const Instruction &I : BB)
242         predictValueUseListOrder(&I, &F, OM, Stack);
243   }
244
245   // Visit globals last.
246   for (const GlobalVariable &G : M->globals())
247     predictValueUseListOrder(&G, nullptr, OM, Stack);
248   for (const Function &F : *M)
249     predictValueUseListOrder(&F, nullptr, OM, Stack);
250   for (const GlobalAlias &A : M->aliases())
251     predictValueUseListOrder(&A, nullptr, OM, Stack);
252   for (const GlobalVariable &G : M->globals())
253     if (G.hasInitializer())
254       predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
255   for (const GlobalAlias &A : M->aliases())
256     predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
257   for (const Function &F : *M)
258     for (const Use &U : F.operands())
259       predictValueUseListOrder(U.get(), nullptr, OM, Stack);
260
261   return Stack;
262 }
263
264 static const Module *getModuleFromVal(const Value *V) {
265   if (const Argument *MA = dyn_cast<Argument>(V))
266     return MA->getParent() ? MA->getParent()->getParent() : nullptr;
267
268   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
269     return BB->getParent() ? BB->getParent()->getParent() : nullptr;
270
271   if (const Instruction *I = dyn_cast<Instruction>(V)) {
272     const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
273     return M ? M->getParent() : nullptr;
274   }
275
276   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
277     return GV->getParent();
278
279   if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
280     for (const User *U : MAV->users())
281       if (isa<Instruction>(U))
282         if (const Module *M = getModuleFromVal(U))
283           return M;
284     return nullptr;
285   }
286
287   return nullptr;
288 }
289
290 static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
291   switch (cc) {
292   default:                         Out << "cc" << cc; break;
293   case CallingConv::Fast:          Out << "fastcc"; break;
294   case CallingConv::Cold:          Out << "coldcc"; break;
295   case CallingConv::WebKit_JS:     Out << "webkit_jscc"; break;
296   case CallingConv::AnyReg:        Out << "anyregcc"; break;
297   case CallingConv::PreserveMost:  Out << "preserve_mostcc"; break;
298   case CallingConv::PreserveAll:   Out << "preserve_allcc"; break;
299   case CallingConv::CXX_FAST_TLS:  Out << "cxx_fast_tlscc"; break;
300   case CallingConv::GHC:           Out << "ghccc"; break;
301   case CallingConv::X86_StdCall:   Out << "x86_stdcallcc"; break;
302   case CallingConv::X86_FastCall:  Out << "x86_fastcallcc"; break;
303   case CallingConv::X86_ThisCall:  Out << "x86_thiscallcc"; break;
304   case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
305   case CallingConv::Intel_OCL_BI:  Out << "intel_ocl_bicc"; break;
306   case CallingConv::ARM_APCS:      Out << "arm_apcscc"; break;
307   case CallingConv::ARM_AAPCS:     Out << "arm_aapcscc"; break;
308   case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
309   case CallingConv::MSP430_INTR:   Out << "msp430_intrcc"; break;
310   case CallingConv::PTX_Kernel:    Out << "ptx_kernel"; break;
311   case CallingConv::PTX_Device:    Out << "ptx_device"; break;
312   case CallingConv::X86_64_SysV:   Out << "x86_64_sysvcc"; break;
313   case CallingConv::X86_64_Win64:  Out << "x86_64_win64cc"; break;
314   case CallingConv::SPIR_FUNC:     Out << "spir_func"; break;
315   case CallingConv::SPIR_KERNEL:   Out << "spir_kernel"; break;
316   case CallingConv::X86_INTR:      Out << "x86_intrcc"; break;
317   case CallingConv::HHVM:          Out << "hhvmcc"; break;
318   case CallingConv::HHVM_C:        Out << "hhvm_ccc"; break;
319   }
320 }
321
322 // PrintEscapedString - Print each character of the specified string, escaping
323 // it if it is not printable or if it is an escape char.
324 static void PrintEscapedString(StringRef Name, raw_ostream &Out) {
325   for (unsigned i = 0, e = Name.size(); i != e; ++i) {
326     unsigned char C = Name[i];
327     if (isprint(C) && C != '\\' && C != '"')
328       Out << C;
329     else
330       Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
331   }
332 }
333
334 enum PrefixType {
335   GlobalPrefix,
336   ComdatPrefix,
337   LabelPrefix,
338   LocalPrefix,
339   NoPrefix
340 };
341
342 void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) {
343   assert(!Name.empty() && "Cannot get empty name!");
344
345   // Scan the name to see if it needs quotes first.
346   bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
347   if (!NeedsQuotes) {
348     for (unsigned i = 0, e = Name.size(); i != e; ++i) {
349       // By making this unsigned, the value passed in to isalnum will always be
350       // in the range 0-255.  This is important when building with MSVC because
351       // its implementation will assert.  This situation can arise when dealing
352       // with UTF-8 multibyte characters.
353       unsigned char C = Name[i];
354       if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
355           C != '_') {
356         NeedsQuotes = true;
357         break;
358       }
359     }
360   }
361
362   // If we didn't need any quotes, just write out the name in one blast.
363   if (!NeedsQuotes) {
364     OS << Name;
365     return;
366   }
367
368   // Okay, we need quotes.  Output the quotes and escape any scary characters as
369   // needed.
370   OS << '"';
371   PrintEscapedString(Name, OS);
372   OS << '"';
373 }
374
375 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
376 /// (if the string only contains simple characters) or is surrounded with ""'s
377 /// (if it has special chars in it). Print it out.
378 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
379   switch (Prefix) {
380   case NoPrefix:
381     break;
382   case GlobalPrefix:
383     OS << '@';
384     break;
385   case ComdatPrefix:
386     OS << '$';
387     break;
388   case LabelPrefix:
389     break;
390   case LocalPrefix:
391     OS << '%';
392     break;
393   }
394   printLLVMNameWithoutPrefix(OS, Name);
395 }
396
397 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
398 /// (if the string only contains simple characters) or is surrounded with ""'s
399 /// (if it has special chars in it). Print it out.
400 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
401   PrintLLVMName(OS, V->getName(),
402                 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
403 }
404
405
406 namespace {
407 class TypePrinting {
408   TypePrinting(const TypePrinting &) = delete;
409   void operator=(const TypePrinting&) = delete;
410 public:
411
412   /// NamedTypes - The named types that are used by the current module.
413   TypeFinder NamedTypes;
414
415   /// NumberedTypes - The numbered types, along with their value.
416   DenseMap<StructType*, unsigned> NumberedTypes;
417
418   TypePrinting() = default;
419
420   void incorporateTypes(const Module &M);
421
422   void print(Type *Ty, raw_ostream &OS);
423
424   void printStructBody(StructType *Ty, raw_ostream &OS);
425 };
426 } // namespace
427
428 void TypePrinting::incorporateTypes(const Module &M) {
429   NamedTypes.run(M, false);
430
431   // The list of struct types we got back includes all the struct types, split
432   // the unnamed ones out to a numbering and remove the anonymous structs.
433   unsigned NextNumber = 0;
434
435   std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
436   for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
437     StructType *STy = *I;
438
439     // Ignore anonymous types.
440     if (STy->isLiteral())
441       continue;
442
443     if (STy->getName().empty())
444       NumberedTypes[STy] = NextNumber++;
445     else
446       *NextToUse++ = STy;
447   }
448
449   NamedTypes.erase(NextToUse, NamedTypes.end());
450 }
451
452
453 /// CalcTypeName - Write the specified type to the specified raw_ostream, making
454 /// use of type names or up references to shorten the type name where possible.
455 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
456   switch (Ty->getTypeID()) {
457   case Type::VoidTyID:      OS << "void"; return;
458   case Type::HalfTyID:      OS << "half"; return;
459   case Type::FloatTyID:     OS << "float"; return;
460   case Type::DoubleTyID:    OS << "double"; return;
461   case Type::X86_FP80TyID:  OS << "x86_fp80"; return;
462   case Type::FP128TyID:     OS << "fp128"; return;
463   case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
464   case Type::LabelTyID:     OS << "label"; return;
465   case Type::MetadataTyID:  OS << "metadata"; return;
466   case Type::X86_MMXTyID:   OS << "x86_mmx"; return;
467   case Type::TokenTyID:     OS << "token"; return;
468   case Type::IntegerTyID:
469     OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
470     return;
471
472   case Type::FunctionTyID: {
473     FunctionType *FTy = cast<FunctionType>(Ty);
474     print(FTy->getReturnType(), OS);
475     OS << " (";
476     for (FunctionType::param_iterator I = FTy->param_begin(),
477          E = FTy->param_end(); I != E; ++I) {
478       if (I != FTy->param_begin())
479         OS << ", ";
480       print(*I, OS);
481     }
482     if (FTy->isVarArg()) {
483       if (FTy->getNumParams()) OS << ", ";
484       OS << "...";
485     }
486     OS << ')';
487     return;
488   }
489   case Type::StructTyID: {
490     StructType *STy = cast<StructType>(Ty);
491
492     if (STy->isLiteral())
493       return printStructBody(STy, OS);
494
495     if (!STy->getName().empty())
496       return PrintLLVMName(OS, STy->getName(), LocalPrefix);
497
498     DenseMap<StructType*, unsigned>::iterator I = NumberedTypes.find(STy);
499     if (I != NumberedTypes.end())
500       OS << '%' << I->second;
501     else  // Not enumerated, print the hex address.
502       OS << "%\"type " << STy << '\"';
503     return;
504   }
505   case Type::PointerTyID: {
506     PointerType *PTy = cast<PointerType>(Ty);
507     print(PTy->getElementType(), OS);
508     if (unsigned AddressSpace = PTy->getAddressSpace())
509       OS << " addrspace(" << AddressSpace << ')';
510     OS << '*';
511     return;
512   }
513   case Type::ArrayTyID: {
514     ArrayType *ATy = cast<ArrayType>(Ty);
515     OS << '[' << ATy->getNumElements() << " x ";
516     print(ATy->getElementType(), OS);
517     OS << ']';
518     return;
519   }
520   case Type::VectorTyID: {
521     VectorType *PTy = cast<VectorType>(Ty);
522     OS << "<" << PTy->getNumElements() << " x ";
523     print(PTy->getElementType(), OS);
524     OS << '>';
525     return;
526   }
527   }
528   llvm_unreachable("Invalid TypeID");
529 }
530
531 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
532   if (STy->isOpaque()) {
533     OS << "opaque";
534     return;
535   }
536
537   if (STy->isPacked())
538     OS << '<';
539
540   if (STy->getNumElements() == 0) {
541     OS << "{}";
542   } else {
543     StructType::element_iterator I = STy->element_begin();
544     OS << "{ ";
545     print(*I++, OS);
546     for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
547       OS << ", ";
548       print(*I, OS);
549     }
550
551     OS << " }";
552   }
553   if (STy->isPacked())
554     OS << '>';
555 }
556
557 namespace llvm {
558 //===----------------------------------------------------------------------===//
559 // SlotTracker Class: Enumerate slot numbers for unnamed values
560 //===----------------------------------------------------------------------===//
561 /// This class provides computation of slot numbers for LLVM Assembly writing.
562 ///
563 class SlotTracker {
564 public:
565   /// ValueMap - A mapping of Values to slot numbers.
566   typedef DenseMap<const Value*, unsigned> ValueMap;
567
568 private:
569   /// TheModule - The module for which we are holding slot numbers.
570   const Module* TheModule;
571
572   /// TheFunction - The function for which we are holding slot numbers.
573   const Function* TheFunction;
574   bool FunctionProcessed;
575   bool ShouldInitializeAllMetadata;
576
577   /// mMap - The slot map for the module level data.
578   ValueMap mMap;
579   unsigned mNext;
580
581   /// fMap - The slot map for the function level data.
582   ValueMap fMap;
583   unsigned fNext;
584
585   /// mdnMap - Map for MDNodes.
586   DenseMap<const MDNode*, unsigned> mdnMap;
587   unsigned mdnNext;
588
589   /// asMap - The slot map for attribute sets.
590   DenseMap<AttributeSet, unsigned> asMap;
591   unsigned asNext;
592 public:
593   /// Construct from a module.
594   ///
595   /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
596   /// functions, giving correct numbering for metadata referenced only from
597   /// within a function (even if no functions have been initialized).
598   explicit SlotTracker(const Module *M,
599                        bool ShouldInitializeAllMetadata = false);
600   /// Construct from a function, starting out in incorp state.
601   ///
602   /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
603   /// functions, giving correct numbering for metadata referenced only from
604   /// within a function (even if no functions have been initialized).
605   explicit SlotTracker(const Function *F,
606                        bool ShouldInitializeAllMetadata = false);
607
608   /// Return the slot number of the specified value in it's type
609   /// plane.  If something is not in the SlotTracker, return -1.
610   int getLocalSlot(const Value *V);
611   int getGlobalSlot(const GlobalValue *V);
612   int getMetadataSlot(const MDNode *N);
613   int getAttributeGroupSlot(AttributeSet AS);
614
615   /// If you'd like to deal with a function instead of just a module, use
616   /// this method to get its data into the SlotTracker.
617   void incorporateFunction(const Function *F) {
618     TheFunction = F;
619     FunctionProcessed = false;
620   }
621
622   const Function *getFunction() const { return TheFunction; }
623
624   /// After calling incorporateFunction, use this method to remove the
625   /// most recently incorporated function from the SlotTracker. This
626   /// will reset the state of the machine back to just the module contents.
627   void purgeFunction();
628
629   /// MDNode map iterators.
630   typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
631   mdn_iterator mdn_begin() { return mdnMap.begin(); }
632   mdn_iterator mdn_end() { return mdnMap.end(); }
633   unsigned mdn_size() const { return mdnMap.size(); }
634   bool mdn_empty() const { return mdnMap.empty(); }
635
636   /// AttributeSet map iterators.
637   typedef DenseMap<AttributeSet, unsigned>::iterator as_iterator;
638   as_iterator as_begin()   { return asMap.begin(); }
639   as_iterator as_end()     { return asMap.end(); }
640   unsigned as_size() const { return asMap.size(); }
641   bool as_empty() const    { return asMap.empty(); }
642
643   /// This function does the actual initialization.
644   inline void initialize();
645
646   // Implementation Details
647 private:
648   /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
649   void CreateModuleSlot(const GlobalValue *V);
650
651   /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
652   void CreateMetadataSlot(const MDNode *N);
653
654   /// CreateFunctionSlot - Insert the specified Value* into the slot table.
655   void CreateFunctionSlot(const Value *V);
656
657   /// \brief Insert the specified AttributeSet into the slot table.
658   void CreateAttributeSetSlot(AttributeSet AS);
659
660   /// Add all of the module level global variables (and their initializers)
661   /// and function declarations, but not the contents of those functions.
662   void processModule();
663
664   /// Add all of the functions arguments, basic blocks, and instructions.
665   void processFunction();
666
667   /// Add all of the metadata from a function.
668   void processFunctionMetadata(const Function &F);
669
670   /// Add all of the metadata from an instruction.
671   void processInstructionMetadata(const Instruction &I);
672
673   SlotTracker(const SlotTracker &) = delete;
674   void operator=(const SlotTracker &) = delete;
675 };
676 } // namespace llvm
677
678 ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
679                                      const Function *F)
680     : M(M), F(F), Machine(&Machine) {}
681
682 ModuleSlotTracker::ModuleSlotTracker(const Module *M,
683                                      bool ShouldInitializeAllMetadata)
684     : MachineStorage(M ? new SlotTracker(M, ShouldInitializeAllMetadata)
685                        : nullptr),
686       M(M), Machine(MachineStorage.get()) {}
687
688 ModuleSlotTracker::~ModuleSlotTracker() {}
689
690 void ModuleSlotTracker::incorporateFunction(const Function &F) {
691   if (!Machine)
692     return;
693
694   // Nothing to do if this is the right function already.
695   if (this->F == &F)
696     return;
697   if (this->F)
698     Machine->purgeFunction();
699   Machine->incorporateFunction(&F);
700   this->F = &F;
701 }
702
703 int ModuleSlotTracker::getLocalSlot(const Value *V) {
704   assert(F && "No function incorporated");
705   return Machine->getLocalSlot(V);
706 }
707
708 static SlotTracker *createSlotTracker(const Value *V) {
709   if (const Argument *FA = dyn_cast<Argument>(V))
710     return new SlotTracker(FA->getParent());
711
712   if (const Instruction *I = dyn_cast<Instruction>(V))
713     if (I->getParent())
714       return new SlotTracker(I->getParent()->getParent());
715
716   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
717     return new SlotTracker(BB->getParent());
718
719   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
720     return new SlotTracker(GV->getParent());
721
722   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
723     return new SlotTracker(GA->getParent());
724
725   if (const Function *Func = dyn_cast<Function>(V))
726     return new SlotTracker(Func);
727
728   return nullptr;
729 }
730
731 #if 0
732 #define ST_DEBUG(X) dbgs() << X
733 #else
734 #define ST_DEBUG(X)
735 #endif
736
737 // Module level constructor. Causes the contents of the Module (sans functions)
738 // to be added to the slot table.
739 SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
740     : TheModule(M), TheFunction(nullptr), FunctionProcessed(false),
741       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), mNext(0),
742       fNext(0), mdnNext(0), asNext(0) {}
743
744 // Function level constructor. Causes the contents of the Module and the one
745 // function provided to be added to the slot table.
746 SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
747     : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
748       FunctionProcessed(false),
749       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), mNext(0),
750       fNext(0), mdnNext(0), asNext(0) {}
751
752 inline void SlotTracker::initialize() {
753   if (TheModule) {
754     processModule();
755     TheModule = nullptr; ///< Prevent re-processing next time we're called.
756   }
757
758   if (TheFunction && !FunctionProcessed)
759     processFunction();
760 }
761
762 // Iterate through all the global variables, functions, and global
763 // variable initializers and create slots for them.
764 void SlotTracker::processModule() {
765   ST_DEBUG("begin processModule!\n");
766
767   // Add all of the unnamed global variables to the value table.
768   for (const GlobalVariable &Var : TheModule->globals()) {
769     if (!Var.hasName())
770       CreateModuleSlot(&Var);
771   }
772
773   for (const GlobalAlias &A : TheModule->aliases()) {
774     if (!A.hasName())
775       CreateModuleSlot(&A);
776   }
777
778   // Add metadata used by named metadata.
779   for (const NamedMDNode &NMD : TheModule->named_metadata()) {
780     for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
781       CreateMetadataSlot(NMD.getOperand(i));
782   }
783
784   for (const Function &F : *TheModule) {
785     if (!F.hasName())
786       // Add all the unnamed functions to the table.
787       CreateModuleSlot(&F);
788
789     if (ShouldInitializeAllMetadata)
790       processFunctionMetadata(F);
791
792     // Add all the function attributes to the table.
793     // FIXME: Add attributes of other objects?
794     AttributeSet FnAttrs = F.getAttributes().getFnAttributes();
795     if (FnAttrs.hasAttributes(AttributeSet::FunctionIndex))
796       CreateAttributeSetSlot(FnAttrs);
797   }
798
799   ST_DEBUG("end processModule!\n");
800 }
801
802 // Process the arguments, basic blocks, and instructions  of a function.
803 void SlotTracker::processFunction() {
804   ST_DEBUG("begin processFunction!\n");
805   fNext = 0;
806
807   // Process function metadata if it wasn't hit at the module-level.
808   if (!ShouldInitializeAllMetadata)
809     processFunctionMetadata(*TheFunction);
810
811   // Add all the function arguments with no names.
812   for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
813       AE = TheFunction->arg_end(); AI != AE; ++AI)
814     if (!AI->hasName())
815       CreateFunctionSlot(&*AI);
816
817   ST_DEBUG("Inserting Instructions:\n");
818
819   // Add all of the basic blocks and instructions with no names.
820   for (auto &BB : *TheFunction) {
821     if (!BB.hasName())
822       CreateFunctionSlot(&BB);
823
824     for (auto &I : BB) {
825       if (!I.getType()->isVoidTy() && !I.hasName())
826         CreateFunctionSlot(&I);
827
828       // We allow direct calls to any llvm.foo function here, because the
829       // target may not be linked into the optimizer.
830       if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
831         // Add all the call attributes to the table.
832         AttributeSet Attrs = CI->getAttributes().getFnAttributes();
833         if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
834           CreateAttributeSetSlot(Attrs);
835       } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
836         // Add all the call attributes to the table.
837         AttributeSet Attrs = II->getAttributes().getFnAttributes();
838         if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
839           CreateAttributeSetSlot(Attrs);
840       }
841     }
842   }
843
844   FunctionProcessed = true;
845
846   ST_DEBUG("end processFunction!\n");
847 }
848
849 void SlotTracker::processFunctionMetadata(const Function &F) {
850   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
851   F.getAllMetadata(MDs);
852   for (auto &MD : MDs)
853     CreateMetadataSlot(MD.second);
854
855   for (auto &BB : F) {
856     for (auto &I : BB)
857       processInstructionMetadata(I);
858   }
859 }
860
861 void SlotTracker::processInstructionMetadata(const Instruction &I) {
862   // Process metadata used directly by intrinsics.
863   if (const CallInst *CI = dyn_cast<CallInst>(&I))
864     if (Function *F = CI->getCalledFunction())
865       if (F->isIntrinsic())
866         for (auto &Op : I.operands())
867           if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
868             if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
869               CreateMetadataSlot(N);
870
871   // Process metadata attached to this instruction.
872   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
873   I.getAllMetadata(MDs);
874   for (auto &MD : MDs)
875     CreateMetadataSlot(MD.second);
876 }
877
878 /// Clean up after incorporating a function. This is the only way to get out of
879 /// the function incorporation state that affects get*Slot/Create*Slot. Function
880 /// incorporation state is indicated by TheFunction != 0.
881 void SlotTracker::purgeFunction() {
882   ST_DEBUG("begin purgeFunction!\n");
883   fMap.clear(); // Simply discard the function level map
884   TheFunction = nullptr;
885   FunctionProcessed = false;
886   ST_DEBUG("end purgeFunction!\n");
887 }
888
889 /// getGlobalSlot - Get the slot number of a global value.
890 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
891   // Check for uninitialized state and do lazy initialization.
892   initialize();
893
894   // Find the value in the module map
895   ValueMap::iterator MI = mMap.find(V);
896   return MI == mMap.end() ? -1 : (int)MI->second;
897 }
898
899 /// getMetadataSlot - Get the slot number of a MDNode.
900 int SlotTracker::getMetadataSlot(const MDNode *N) {
901   // Check for uninitialized state and do lazy initialization.
902   initialize();
903
904   // Find the MDNode in the module map
905   mdn_iterator MI = mdnMap.find(N);
906   return MI == mdnMap.end() ? -1 : (int)MI->second;
907 }
908
909
910 /// getLocalSlot - Get the slot number for a value that is local to a function.
911 int SlotTracker::getLocalSlot(const Value *V) {
912   assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
913
914   // Check for uninitialized state and do lazy initialization.
915   initialize();
916
917   ValueMap::iterator FI = fMap.find(V);
918   return FI == fMap.end() ? -1 : (int)FI->second;
919 }
920
921 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
922   // Check for uninitialized state and do lazy initialization.
923   initialize();
924
925   // Find the AttributeSet in the module map.
926   as_iterator AI = asMap.find(AS);
927   return AI == asMap.end() ? -1 : (int)AI->second;
928 }
929
930 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
931 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
932   assert(V && "Can't insert a null Value into SlotTracker!");
933   assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
934   assert(!V->hasName() && "Doesn't need a slot!");
935
936   unsigned DestSlot = mNext++;
937   mMap[V] = DestSlot;
938
939   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
940            DestSlot << " [");
941   // G = Global, F = Function, A = Alias, o = other
942   ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
943             (isa<Function>(V) ? 'F' :
944              (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
945 }
946
947 /// CreateSlot - Create a new slot for the specified value if it has no name.
948 void SlotTracker::CreateFunctionSlot(const Value *V) {
949   assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
950
951   unsigned DestSlot = fNext++;
952   fMap[V] = DestSlot;
953
954   // G = Global, F = Function, o = other
955   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
956            DestSlot << " [o]\n");
957 }
958
959 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
960 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
961   assert(N && "Can't insert a null Value into SlotTracker!");
962
963   unsigned DestSlot = mdnNext;
964   if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
965     return;
966   ++mdnNext;
967
968   // Recursively add any MDNodes referenced by operands.
969   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
970     if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
971       CreateMetadataSlot(Op);
972 }
973
974 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
975   assert(AS.hasAttributes(AttributeSet::FunctionIndex) &&
976          "Doesn't need a slot!");
977
978   as_iterator I = asMap.find(AS);
979   if (I != asMap.end())
980     return;
981
982   unsigned DestSlot = asNext++;
983   asMap[AS] = DestSlot;
984 }
985
986 //===----------------------------------------------------------------------===//
987 // AsmWriter Implementation
988 //===----------------------------------------------------------------------===//
989
990 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
991                                    TypePrinting *TypePrinter,
992                                    SlotTracker *Machine,
993                                    const Module *Context);
994
995 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
996                                    TypePrinting *TypePrinter,
997                                    SlotTracker *Machine, const Module *Context,
998                                    bool FromValue = false);
999
1000 static const char *getPredicateText(unsigned predicate) {
1001   const char * pred = "unknown";
1002   switch (predicate) {
1003   case FCmpInst::FCMP_FALSE: pred = "false"; break;
1004   case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
1005   case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
1006   case FCmpInst::FCMP_OGE:   pred = "oge"; break;
1007   case FCmpInst::FCMP_OLT:   pred = "olt"; break;
1008   case FCmpInst::FCMP_OLE:   pred = "ole"; break;
1009   case FCmpInst::FCMP_ONE:   pred = "one"; break;
1010   case FCmpInst::FCMP_ORD:   pred = "ord"; break;
1011   case FCmpInst::FCMP_UNO:   pred = "uno"; break;
1012   case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
1013   case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
1014   case FCmpInst::FCMP_UGE:   pred = "uge"; break;
1015   case FCmpInst::FCMP_ULT:   pred = "ult"; break;
1016   case FCmpInst::FCMP_ULE:   pred = "ule"; break;
1017   case FCmpInst::FCMP_UNE:   pred = "une"; break;
1018   case FCmpInst::FCMP_TRUE:  pred = "true"; break;
1019   case ICmpInst::ICMP_EQ:    pred = "eq"; break;
1020   case ICmpInst::ICMP_NE:    pred = "ne"; break;
1021   case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
1022   case ICmpInst::ICMP_SGE:   pred = "sge"; break;
1023   case ICmpInst::ICMP_SLT:   pred = "slt"; break;
1024   case ICmpInst::ICMP_SLE:   pred = "sle"; break;
1025   case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
1026   case ICmpInst::ICMP_UGE:   pred = "uge"; break;
1027   case ICmpInst::ICMP_ULT:   pred = "ult"; break;
1028   case ICmpInst::ICMP_ULE:   pred = "ule"; break;
1029   }
1030   return pred;
1031 }
1032
1033 static void writeAtomicRMWOperation(raw_ostream &Out,
1034                                     AtomicRMWInst::BinOp Op) {
1035   switch (Op) {
1036   default: Out << " <unknown operation " << Op << ">"; break;
1037   case AtomicRMWInst::Xchg: Out << " xchg"; break;
1038   case AtomicRMWInst::Add:  Out << " add"; break;
1039   case AtomicRMWInst::Sub:  Out << " sub"; break;
1040   case AtomicRMWInst::And:  Out << " and"; break;
1041   case AtomicRMWInst::Nand: Out << " nand"; break;
1042   case AtomicRMWInst::Or:   Out << " or"; break;
1043   case AtomicRMWInst::Xor:  Out << " xor"; break;
1044   case AtomicRMWInst::Max:  Out << " max"; break;
1045   case AtomicRMWInst::Min:  Out << " min"; break;
1046   case AtomicRMWInst::UMax: Out << " umax"; break;
1047   case AtomicRMWInst::UMin: Out << " umin"; break;
1048   }
1049 }
1050
1051 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
1052   if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
1053     // Unsafe algebra implies all the others, no need to write them all out
1054     if (FPO->hasUnsafeAlgebra())
1055       Out << " fast";
1056     else {
1057       if (FPO->hasNoNaNs())
1058         Out << " nnan";
1059       if (FPO->hasNoInfs())
1060         Out << " ninf";
1061       if (FPO->hasNoSignedZeros())
1062         Out << " nsz";
1063       if (FPO->hasAllowReciprocal())
1064         Out << " arcp";
1065     }
1066   }
1067
1068   if (const OverflowingBinaryOperator *OBO =
1069         dyn_cast<OverflowingBinaryOperator>(U)) {
1070     if (OBO->hasNoUnsignedWrap())
1071       Out << " nuw";
1072     if (OBO->hasNoSignedWrap())
1073       Out << " nsw";
1074   } else if (const PossiblyExactOperator *Div =
1075                dyn_cast<PossiblyExactOperator>(U)) {
1076     if (Div->isExact())
1077       Out << " exact";
1078   } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
1079     if (GEP->isInBounds())
1080       Out << " inbounds";
1081   }
1082 }
1083
1084 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
1085                                   TypePrinting &TypePrinter,
1086                                   SlotTracker *Machine,
1087                                   const Module *Context) {
1088   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1089     if (CI->getType()->isIntegerTy(1)) {
1090       Out << (CI->getZExtValue() ? "true" : "false");
1091       return;
1092     }
1093     Out << CI->getValue();
1094     return;
1095   }
1096
1097   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1098     if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle ||
1099         &CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble) {
1100       // We would like to output the FP constant value in exponential notation,
1101       // but we cannot do this if doing so will lose precision.  Check here to
1102       // make sure that we only output it in exponential format if we can parse
1103       // the value back and get the same value.
1104       //
1105       bool ignored;
1106       bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
1107       bool isInf = CFP->getValueAPF().isInfinity();
1108       bool isNaN = CFP->getValueAPF().isNaN();
1109       if (!isInf && !isNaN) {
1110         double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
1111                                 CFP->getValueAPF().convertToFloat();
1112         SmallString<128> StrVal;
1113         raw_svector_ostream(StrVal) << Val;
1114
1115         // Check to make sure that the stringized number is not some string like
1116         // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
1117         // that the string matches the "[-+]?[0-9]" regex.
1118         //
1119         if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
1120             ((StrVal[0] == '-' || StrVal[0] == '+') &&
1121              (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
1122           // Reparse stringized version!
1123           if (APFloat(APFloat::IEEEdouble, StrVal).convertToDouble() == Val) {
1124             Out << StrVal;
1125             return;
1126           }
1127         }
1128       }
1129       // Otherwise we could not reparse it to exactly the same value, so we must
1130       // output the string in hexadecimal format!  Note that loading and storing
1131       // floating point types changes the bits of NaNs on some hosts, notably
1132       // x86, so we must not use these types.
1133       static_assert(sizeof(double) == sizeof(uint64_t),
1134                     "assuming that double is 64 bits!");
1135       APFloat apf = CFP->getValueAPF();
1136       // Floats are represented in ASCII IR as double, convert.
1137       if (!isDouble)
1138         apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1139                           &ignored);
1140       Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
1141       return;
1142     }
1143
1144     // Either half, or some form of long double.
1145     // These appear as a magic letter identifying the type, then a
1146     // fixed number of hex digits.
1147     Out << "0x";
1148     APInt API = CFP->getValueAPF().bitcastToAPInt();
1149     if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
1150       Out << 'K';
1151       Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
1152                                   /*Upper=*/true);
1153       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1154                                   /*Upper=*/true);
1155       return;
1156     } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) {
1157       Out << 'L';
1158       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1159                                   /*Upper=*/true);
1160       Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1161                                   /*Upper=*/true);
1162     } else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) {
1163       Out << 'M';
1164       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1165                                   /*Upper=*/true);
1166       Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1167                                   /*Upper=*/true);
1168     } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEhalf) {
1169       Out << 'H';
1170       Out << format_hex_no_prefix(API.getZExtValue(), 4,
1171                                   /*Upper=*/true);
1172     } else
1173       llvm_unreachable("Unsupported floating point type");
1174     return;
1175   }
1176
1177   if (isa<ConstantAggregateZero>(CV)) {
1178     Out << "zeroinitializer";
1179     return;
1180   }
1181
1182   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
1183     Out << "blockaddress(";
1184     WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
1185                            Context);
1186     Out << ", ";
1187     WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
1188                            Context);
1189     Out << ")";
1190     return;
1191   }
1192
1193   if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1194     Type *ETy = CA->getType()->getElementType();
1195     Out << '[';
1196     TypePrinter.print(ETy, Out);
1197     Out << ' ';
1198     WriteAsOperandInternal(Out, CA->getOperand(0),
1199                            &TypePrinter, Machine,
1200                            Context);
1201     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1202       Out << ", ";
1203       TypePrinter.print(ETy, Out);
1204       Out << ' ';
1205       WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
1206                              Context);
1207     }
1208     Out << ']';
1209     return;
1210   }
1211
1212   if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
1213     // As a special case, print the array as a string if it is an array of
1214     // i8 with ConstantInt values.
1215     if (CA->isString()) {
1216       Out << "c\"";
1217       PrintEscapedString(CA->getAsString(), Out);
1218       Out << '"';
1219       return;
1220     }
1221
1222     Type *ETy = CA->getType()->getElementType();
1223     Out << '[';
1224     TypePrinter.print(ETy, Out);
1225     Out << ' ';
1226     WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
1227                            &TypePrinter, Machine,
1228                            Context);
1229     for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
1230       Out << ", ";
1231       TypePrinter.print(ETy, Out);
1232       Out << ' ';
1233       WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
1234                              Machine, Context);
1235     }
1236     Out << ']';
1237     return;
1238   }
1239
1240
1241   if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1242     if (CS->getType()->isPacked())
1243       Out << '<';
1244     Out << '{';
1245     unsigned N = CS->getNumOperands();
1246     if (N) {
1247       Out << ' ';
1248       TypePrinter.print(CS->getOperand(0)->getType(), Out);
1249       Out << ' ';
1250
1251       WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
1252                              Context);
1253
1254       for (unsigned i = 1; i < N; i++) {
1255         Out << ", ";
1256         TypePrinter.print(CS->getOperand(i)->getType(), Out);
1257         Out << ' ';
1258
1259         WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
1260                                Context);
1261       }
1262       Out << ' ';
1263     }
1264
1265     Out << '}';
1266     if (CS->getType()->isPacked())
1267       Out << '>';
1268     return;
1269   }
1270
1271   if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
1272     Type *ETy = CV->getType()->getVectorElementType();
1273     Out << '<';
1274     TypePrinter.print(ETy, Out);
1275     Out << ' ';
1276     WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
1277                            Machine, Context);
1278     for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){
1279       Out << ", ";
1280       TypePrinter.print(ETy, Out);
1281       Out << ' ';
1282       WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
1283                              Machine, Context);
1284     }
1285     Out << '>';
1286     return;
1287   }
1288
1289   if (isa<ConstantPointerNull>(CV)) {
1290     Out << "null";
1291     return;
1292   }
1293
1294   if (isa<ConstantTokenNone>(CV)) {
1295     Out << "none";
1296     return;
1297   }
1298
1299   if (isa<UndefValue>(CV)) {
1300     Out << "undef";
1301     return;
1302   }
1303
1304   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1305     Out << CE->getOpcodeName();
1306     WriteOptimizationInfo(Out, CE);
1307     if (CE->isCompare())
1308       Out << ' ' << getPredicateText(CE->getPredicate());
1309     Out << " (";
1310
1311     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
1312       TypePrinter.print(GEP->getSourceElementType(), Out);
1313       Out << ", ";
1314     }
1315
1316     for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1317       TypePrinter.print((*OI)->getType(), Out);
1318       Out << ' ';
1319       WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
1320       if (OI+1 != CE->op_end())
1321         Out << ", ";
1322     }
1323
1324     if (CE->hasIndices()) {
1325       ArrayRef<unsigned> Indices = CE->getIndices();
1326       for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1327         Out << ", " << Indices[i];
1328     }
1329
1330     if (CE->isCast()) {
1331       Out << " to ";
1332       TypePrinter.print(CE->getType(), Out);
1333     }
1334
1335     Out << ')';
1336     return;
1337   }
1338
1339   Out << "<placeholder or erroneous Constant>";
1340 }
1341
1342 static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
1343                          TypePrinting *TypePrinter, SlotTracker *Machine,
1344                          const Module *Context) {
1345   Out << "!{";
1346   for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1347     const Metadata *MD = Node->getOperand(mi);
1348     if (!MD)
1349       Out << "null";
1350     else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
1351       Value *V = MDV->getValue();
1352       TypePrinter->print(V->getType(), Out);
1353       Out << ' ';
1354       WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context);
1355     } else {
1356       WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1357     }
1358     if (mi + 1 != me)
1359       Out << ", ";
1360   }
1361
1362   Out << "}";
1363 }
1364
1365 namespace {
1366 struct FieldSeparator {
1367   bool Skip;
1368   const char *Sep;
1369   FieldSeparator(const char *Sep = ", ") : Skip(true), Sep(Sep) {}
1370 };
1371 raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
1372   if (FS.Skip) {
1373     FS.Skip = false;
1374     return OS;
1375   }
1376   return OS << FS.Sep;
1377 }
1378 struct MDFieldPrinter {
1379   raw_ostream &Out;
1380   FieldSeparator FS;
1381   TypePrinting *TypePrinter;
1382   SlotTracker *Machine;
1383   const Module *Context;
1384
1385   explicit MDFieldPrinter(raw_ostream &Out)
1386       : Out(Out), TypePrinter(nullptr), Machine(nullptr), Context(nullptr) {}
1387   MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter,
1388                  SlotTracker *Machine, const Module *Context)
1389       : Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) {
1390   }
1391   void printTag(const DINode *N);
1392   void printMacinfoType(const DIMacroNode *N);
1393   void printString(StringRef Name, StringRef Value,
1394                    bool ShouldSkipEmpty = true);
1395   void printMetadata(StringRef Name, const Metadata *MD,
1396                      bool ShouldSkipNull = true);
1397   template <class IntTy>
1398   void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
1399   void printBool(StringRef Name, bool Value);
1400   void printDIFlags(StringRef Name, unsigned Flags);
1401   template <class IntTy, class Stringifier>
1402   void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
1403                       bool ShouldSkipZero = true);
1404 };
1405 } // end namespace
1406
1407 void MDFieldPrinter::printTag(const DINode *N) {
1408   Out << FS << "tag: ";
1409   if (const char *Tag = dwarf::TagString(N->getTag()))
1410     Out << Tag;
1411   else
1412     Out << N->getTag();
1413 }
1414
1415 void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
1416   Out << FS << "type: ";
1417   if (const char *Type = dwarf::MacinfoString(N->getMacinfoType()))
1418     Out << Type;
1419   else
1420     Out << N->getMacinfoType();
1421 }
1422
1423 void MDFieldPrinter::printString(StringRef Name, StringRef Value,
1424                                  bool ShouldSkipEmpty) {
1425   if (ShouldSkipEmpty && Value.empty())
1426     return;
1427
1428   Out << FS << Name << ": \"";
1429   PrintEscapedString(Value, Out);
1430   Out << "\"";
1431 }
1432
1433 static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
1434                                    TypePrinting *TypePrinter,
1435                                    SlotTracker *Machine,
1436                                    const Module *Context) {
1437   if (!MD) {
1438     Out << "null";
1439     return;
1440   }
1441   WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1442 }
1443
1444 void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
1445                                    bool ShouldSkipNull) {
1446   if (ShouldSkipNull && !MD)
1447     return;
1448
1449   Out << FS << Name << ": ";
1450   writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context);
1451 }
1452
1453 template <class IntTy>
1454 void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
1455   if (ShouldSkipZero && !Int)
1456     return;
1457
1458   Out << FS << Name << ": " << Int;
1459 }
1460
1461 void MDFieldPrinter::printBool(StringRef Name, bool Value) {
1462   Out << FS << Name << ": " << (Value ? "true" : "false");
1463 }
1464
1465 void MDFieldPrinter::printDIFlags(StringRef Name, unsigned Flags) {
1466   if (!Flags)
1467     return;
1468
1469   Out << FS << Name << ": ";
1470
1471   SmallVector<unsigned, 8> SplitFlags;
1472   unsigned Extra = DINode::splitFlags(Flags, SplitFlags);
1473
1474   FieldSeparator FlagsFS(" | ");
1475   for (unsigned F : SplitFlags) {
1476     const char *StringF = DINode::getFlagString(F);
1477     assert(StringF && "Expected valid flag");
1478     Out << FlagsFS << StringF;
1479   }
1480   if (Extra || SplitFlags.empty())
1481     Out << FlagsFS << Extra;
1482 }
1483
1484 template <class IntTy, class Stringifier>
1485 void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
1486                                     Stringifier toString, bool ShouldSkipZero) {
1487   if (!Value)
1488     return;
1489
1490   Out << FS << Name << ": ";
1491   if (const char *S = toString(Value))
1492     Out << S;
1493   else
1494     Out << Value;
1495 }
1496
1497 static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
1498                                TypePrinting *TypePrinter, SlotTracker *Machine,
1499                                const Module *Context) {
1500   Out << "!GenericDINode(";
1501   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1502   Printer.printTag(N);
1503   Printer.printString("header", N->getHeader());
1504   if (N->getNumDwarfOperands()) {
1505     Out << Printer.FS << "operands: {";
1506     FieldSeparator IFS;
1507     for (auto &I : N->dwarf_operands()) {
1508       Out << IFS;
1509       writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context);
1510     }
1511     Out << "}";
1512   }
1513   Out << ")";
1514 }
1515
1516 static void writeDILocation(raw_ostream &Out, const DILocation *DL,
1517                             TypePrinting *TypePrinter, SlotTracker *Machine,
1518                             const Module *Context) {
1519   Out << "!DILocation(";
1520   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1521   // Always output the line, since 0 is a relevant and important value for it.
1522   Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
1523   Printer.printInt("column", DL->getColumn());
1524   Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
1525   Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
1526   Out << ")";
1527 }
1528
1529 static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
1530                             TypePrinting *, SlotTracker *, const Module *) {
1531   Out << "!DISubrange(";
1532   MDFieldPrinter Printer(Out);
1533   Printer.printInt("count", N->getCount(), /* ShouldSkipZero */ false);
1534   Printer.printInt("lowerBound", N->getLowerBound());
1535   Out << ")";
1536 }
1537
1538 static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
1539                               TypePrinting *, SlotTracker *, const Module *) {
1540   Out << "!DIEnumerator(";
1541   MDFieldPrinter Printer(Out);
1542   Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
1543   Printer.printInt("value", N->getValue(), /* ShouldSkipZero */ false);
1544   Out << ")";
1545 }
1546
1547 static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
1548                              TypePrinting *, SlotTracker *, const Module *) {
1549   Out << "!DIBasicType(";
1550   MDFieldPrinter Printer(Out);
1551   if (N->getTag() != dwarf::DW_TAG_base_type)
1552     Printer.printTag(N);
1553   Printer.printString("name", N->getName());
1554   Printer.printInt("size", N->getSizeInBits());
1555   Printer.printInt("align", N->getAlignInBits());
1556   Printer.printDwarfEnum("encoding", N->getEncoding(),
1557                          dwarf::AttributeEncodingString);
1558   Out << ")";
1559 }
1560
1561 static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
1562                                TypePrinting *TypePrinter, SlotTracker *Machine,
1563                                const Module *Context) {
1564   Out << "!DIDerivedType(";
1565   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1566   Printer.printTag(N);
1567   Printer.printString("name", N->getName());
1568   Printer.printMetadata("scope", N->getRawScope());
1569   Printer.printMetadata("file", N->getRawFile());
1570   Printer.printInt("line", N->getLine());
1571   Printer.printMetadata("baseType", N->getRawBaseType(),
1572                         /* ShouldSkipNull */ false);
1573   Printer.printInt("size", N->getSizeInBits());
1574   Printer.printInt("align", N->getAlignInBits());
1575   Printer.printInt("offset", N->getOffsetInBits());
1576   Printer.printDIFlags("flags", N->getFlags());
1577   Printer.printMetadata("extraData", N->getRawExtraData());
1578   Out << ")";
1579 }
1580
1581 static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
1582                                  TypePrinting *TypePrinter,
1583                                  SlotTracker *Machine, const Module *Context) {
1584   Out << "!DICompositeType(";
1585   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1586   Printer.printTag(N);
1587   Printer.printString("name", N->getName());
1588   Printer.printMetadata("scope", N->getRawScope());
1589   Printer.printMetadata("file", N->getRawFile());
1590   Printer.printInt("line", N->getLine());
1591   Printer.printMetadata("baseType", N->getRawBaseType());
1592   Printer.printInt("size", N->getSizeInBits());
1593   Printer.printInt("align", N->getAlignInBits());
1594   Printer.printInt("offset", N->getOffsetInBits());
1595   Printer.printDIFlags("flags", N->getFlags());
1596   Printer.printMetadata("elements", N->getRawElements());
1597   Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
1598                          dwarf::LanguageString);
1599   Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
1600   Printer.printMetadata("templateParams", N->getRawTemplateParams());
1601   Printer.printString("identifier", N->getIdentifier());
1602   Out << ")";
1603 }
1604
1605 static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
1606                                   TypePrinting *TypePrinter,
1607                                   SlotTracker *Machine, const Module *Context) {
1608   Out << "!DISubroutineType(";
1609   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1610   Printer.printDIFlags("flags", N->getFlags());
1611   Printer.printMetadata("types", N->getRawTypeArray(),
1612                         /* ShouldSkipNull */ false);
1613   Out << ")";
1614 }
1615
1616 static void writeDIFile(raw_ostream &Out, const DIFile *N, TypePrinting *,
1617                         SlotTracker *, const Module *) {
1618   Out << "!DIFile(";
1619   MDFieldPrinter Printer(Out);
1620   Printer.printString("filename", N->getFilename(),
1621                       /* ShouldSkipEmpty */ false);
1622   Printer.printString("directory", N->getDirectory(),
1623                       /* ShouldSkipEmpty */ false);
1624   Out << ")";
1625 }
1626
1627 static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
1628                                TypePrinting *TypePrinter, SlotTracker *Machine,
1629                                const Module *Context) {
1630   Out << "!DICompileUnit(";
1631   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1632   Printer.printDwarfEnum("language", N->getSourceLanguage(),
1633                          dwarf::LanguageString, /* ShouldSkipZero */ false);
1634   Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
1635   Printer.printString("producer", N->getProducer());
1636   Printer.printBool("isOptimized", N->isOptimized());
1637   Printer.printString("flags", N->getFlags());
1638   Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
1639                    /* ShouldSkipZero */ false);
1640   Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
1641   Printer.printInt("emissionKind", N->getEmissionKind(),
1642                    /* ShouldSkipZero */ false);
1643   Printer.printMetadata("enums", N->getRawEnumTypes());
1644   Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
1645   Printer.printMetadata("subprograms", N->getRawSubprograms());
1646   Printer.printMetadata("globals", N->getRawGlobalVariables());
1647   Printer.printMetadata("imports", N->getRawImportedEntities());
1648   Printer.printMetadata("macros", N->getRawMacros());
1649   Printer.printInt("dwoId", N->getDWOId());
1650   Out << ")";
1651 }
1652
1653 static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
1654                               TypePrinting *TypePrinter, SlotTracker *Machine,
1655                               const Module *Context) {
1656   Out << "!DISubprogram(";
1657   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1658   Printer.printString("name", N->getName());
1659   Printer.printString("linkageName", N->getLinkageName());
1660   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1661   Printer.printMetadata("file", N->getRawFile());
1662   Printer.printInt("line", N->getLine());
1663   Printer.printMetadata("type", N->getRawType());
1664   Printer.printBool("isLocal", N->isLocalToUnit());
1665   Printer.printBool("isDefinition", N->isDefinition());
1666   Printer.printInt("scopeLine", N->getScopeLine());
1667   Printer.printMetadata("containingType", N->getRawContainingType());
1668   Printer.printDwarfEnum("virtuality", N->getVirtuality(),
1669                          dwarf::VirtualityString);
1670   Printer.printInt("virtualIndex", N->getVirtualIndex());
1671   Printer.printDIFlags("flags", N->getFlags());
1672   Printer.printBool("isOptimized", N->isOptimized());
1673   Printer.printMetadata("templateParams", N->getRawTemplateParams());
1674   Printer.printMetadata("declaration", N->getRawDeclaration());
1675   Printer.printMetadata("variables", N->getRawVariables());
1676   Out << ")";
1677 }
1678
1679 static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
1680                                 TypePrinting *TypePrinter, SlotTracker *Machine,
1681                                 const Module *Context) {
1682   Out << "!DILexicalBlock(";
1683   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1684   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1685   Printer.printMetadata("file", N->getRawFile());
1686   Printer.printInt("line", N->getLine());
1687   Printer.printInt("column", N->getColumn());
1688   Out << ")";
1689 }
1690
1691 static void writeDILexicalBlockFile(raw_ostream &Out,
1692                                     const DILexicalBlockFile *N,
1693                                     TypePrinting *TypePrinter,
1694                                     SlotTracker *Machine,
1695                                     const Module *Context) {
1696   Out << "!DILexicalBlockFile(";
1697   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1698   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1699   Printer.printMetadata("file", N->getRawFile());
1700   Printer.printInt("discriminator", N->getDiscriminator(),
1701                    /* ShouldSkipZero */ false);
1702   Out << ")";
1703 }
1704
1705 static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
1706                              TypePrinting *TypePrinter, SlotTracker *Machine,
1707                              const Module *Context) {
1708   Out << "!DINamespace(";
1709   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1710   Printer.printString("name", N->getName());
1711   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1712   Printer.printMetadata("file", N->getRawFile());
1713   Printer.printInt("line", N->getLine());
1714   Out << ")";
1715 }
1716
1717 static void writeDIMacro(raw_ostream &Out, const DIMacro *N,
1718                          TypePrinting *TypePrinter, SlotTracker *Machine,
1719                          const Module *Context) {
1720   Out << "!DIMacro(";
1721   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1722   Printer.printMacinfoType(N);
1723   Printer.printInt("line", N->getLine());
1724   Printer.printString("name", N->getName());
1725   Printer.printString("value", N->getValue());
1726   Out << ")";
1727 }
1728
1729 static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N,
1730                              TypePrinting *TypePrinter, SlotTracker *Machine,
1731                              const Module *Context) {
1732   Out << "!DIMacroFile(";
1733   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1734   Printer.printInt("line", N->getLine());
1735   Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
1736   Printer.printMetadata("nodes", N->getRawElements());
1737   Out << ")";
1738 }
1739
1740 static void writeDIModule(raw_ostream &Out, const DIModule *N,
1741                           TypePrinting *TypePrinter, SlotTracker *Machine,
1742                           const Module *Context) {
1743   Out << "!DIModule(";
1744   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1745   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1746   Printer.printString("name", N->getName());
1747   Printer.printString("configMacros", N->getConfigurationMacros());
1748   Printer.printString("includePath", N->getIncludePath());
1749   Printer.printString("isysroot", N->getISysRoot());
1750   Out << ")";
1751 }
1752
1753
1754 static void writeDITemplateTypeParameter(raw_ostream &Out,
1755                                          const DITemplateTypeParameter *N,
1756                                          TypePrinting *TypePrinter,
1757                                          SlotTracker *Machine,
1758                                          const Module *Context) {
1759   Out << "!DITemplateTypeParameter(";
1760   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1761   Printer.printString("name", N->getName());
1762   Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
1763   Out << ")";
1764 }
1765
1766 static void writeDITemplateValueParameter(raw_ostream &Out,
1767                                           const DITemplateValueParameter *N,
1768                                           TypePrinting *TypePrinter,
1769                                           SlotTracker *Machine,
1770                                           const Module *Context) {
1771   Out << "!DITemplateValueParameter(";
1772   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1773   if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
1774     Printer.printTag(N);
1775   Printer.printString("name", N->getName());
1776   Printer.printMetadata("type", N->getRawType());
1777   Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
1778   Out << ")";
1779 }
1780
1781 static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
1782                                   TypePrinting *TypePrinter,
1783                                   SlotTracker *Machine, const Module *Context) {
1784   Out << "!DIGlobalVariable(";
1785   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1786   Printer.printString("name", N->getName());
1787   Printer.printString("linkageName", N->getLinkageName());
1788   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1789   Printer.printMetadata("file", N->getRawFile());
1790   Printer.printInt("line", N->getLine());
1791   Printer.printMetadata("type", N->getRawType());
1792   Printer.printBool("isLocal", N->isLocalToUnit());
1793   Printer.printBool("isDefinition", N->isDefinition());
1794   Printer.printMetadata("variable", N->getRawVariable());
1795   Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
1796   Out << ")";
1797 }
1798
1799 static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
1800                                  TypePrinting *TypePrinter,
1801                                  SlotTracker *Machine, const Module *Context) {
1802   Out << "!DILocalVariable(";
1803   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1804   Printer.printString("name", N->getName());
1805   Printer.printInt("arg", N->getArg());
1806   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1807   Printer.printMetadata("file", N->getRawFile());
1808   Printer.printInt("line", N->getLine());
1809   Printer.printMetadata("type", N->getRawType());
1810   Printer.printDIFlags("flags", N->getFlags());
1811   Out << ")";
1812 }
1813
1814 static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
1815                               TypePrinting *TypePrinter, SlotTracker *Machine,
1816                               const Module *Context) {
1817   Out << "!DIExpression(";
1818   FieldSeparator FS;
1819   if (N->isValid()) {
1820     for (auto I = N->expr_op_begin(), E = N->expr_op_end(); I != E; ++I) {
1821       const char *OpStr = dwarf::OperationEncodingString(I->getOp());
1822       assert(OpStr && "Expected valid opcode");
1823
1824       Out << FS << OpStr;
1825       for (unsigned A = 0, AE = I->getNumArgs(); A != AE; ++A)
1826         Out << FS << I->getArg(A);
1827     }
1828   } else {
1829     for (const auto &I : N->getElements())
1830       Out << FS << I;
1831   }
1832   Out << ")";
1833 }
1834
1835 static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
1836                                 TypePrinting *TypePrinter, SlotTracker *Machine,
1837                                 const Module *Context) {
1838   Out << "!DIObjCProperty(";
1839   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1840   Printer.printString("name", N->getName());
1841   Printer.printMetadata("file", N->getRawFile());
1842   Printer.printInt("line", N->getLine());
1843   Printer.printString("setter", N->getSetterName());
1844   Printer.printString("getter", N->getGetterName());
1845   Printer.printInt("attributes", N->getAttributes());
1846   Printer.printMetadata("type", N->getRawType());
1847   Out << ")";
1848 }
1849
1850 static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
1851                                   TypePrinting *TypePrinter,
1852                                   SlotTracker *Machine, const Module *Context) {
1853   Out << "!DIImportedEntity(";
1854   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1855   Printer.printTag(N);
1856   Printer.printString("name", N->getName());
1857   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1858   Printer.printMetadata("entity", N->getRawEntity());
1859   Printer.printInt("line", N->getLine());
1860   Out << ")";
1861 }
1862
1863
1864 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
1865                                     TypePrinting *TypePrinter,
1866                                     SlotTracker *Machine,
1867                                     const Module *Context) {
1868   if (Node->isDistinct())
1869     Out << "distinct ";
1870   else if (Node->isTemporary())
1871     Out << "<temporary!> "; // Handle broken code.
1872
1873   switch (Node->getMetadataID()) {
1874   default:
1875     llvm_unreachable("Expected uniquable MDNode");
1876 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1877   case Metadata::CLASS##Kind:                                                  \
1878     write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context);       \
1879     break;
1880 #include "llvm/IR/Metadata.def"
1881   }
1882 }
1883
1884 // Full implementation of printing a Value as an operand with support for
1885 // TypePrinting, etc.
1886 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1887                                    TypePrinting *TypePrinter,
1888                                    SlotTracker *Machine,
1889                                    const Module *Context) {
1890   if (V->hasName()) {
1891     PrintLLVMName(Out, V);
1892     return;
1893   }
1894
1895   const Constant *CV = dyn_cast<Constant>(V);
1896   if (CV && !isa<GlobalValue>(CV)) {
1897     assert(TypePrinter && "Constants require TypePrinting!");
1898     WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
1899     return;
1900   }
1901
1902   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1903     Out << "asm ";
1904     if (IA->hasSideEffects())
1905       Out << "sideeffect ";
1906     if (IA->isAlignStack())
1907       Out << "alignstack ";
1908     // We don't emit the AD_ATT dialect as it's the assumed default.
1909     if (IA->getDialect() == InlineAsm::AD_Intel)
1910       Out << "inteldialect ";
1911     Out << '"';
1912     PrintEscapedString(IA->getAsmString(), Out);
1913     Out << "\", \"";
1914     PrintEscapedString(IA->getConstraintString(), Out);
1915     Out << '"';
1916     return;
1917   }
1918
1919   if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
1920     WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine,
1921                            Context, /* FromValue */ true);
1922     return;
1923   }
1924
1925   char Prefix = '%';
1926   int Slot;
1927   // If we have a SlotTracker, use it.
1928   if (Machine) {
1929     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1930       Slot = Machine->getGlobalSlot(GV);
1931       Prefix = '@';
1932     } else {
1933       Slot = Machine->getLocalSlot(V);
1934
1935       // If the local value didn't succeed, then we may be referring to a value
1936       // from a different function.  Translate it, as this can happen when using
1937       // address of blocks.
1938       if (Slot == -1)
1939         if ((Machine = createSlotTracker(V))) {
1940           Slot = Machine->getLocalSlot(V);
1941           delete Machine;
1942         }
1943     }
1944   } else if ((Machine = createSlotTracker(V))) {
1945     // Otherwise, create one to get the # and then destroy it.
1946     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1947       Slot = Machine->getGlobalSlot(GV);
1948       Prefix = '@';
1949     } else {
1950       Slot = Machine->getLocalSlot(V);
1951     }
1952     delete Machine;
1953     Machine = nullptr;
1954   } else {
1955     Slot = -1;
1956   }
1957
1958   if (Slot != -1)
1959     Out << Prefix << Slot;
1960   else
1961     Out << "<badref>";
1962 }
1963
1964 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
1965                                    TypePrinting *TypePrinter,
1966                                    SlotTracker *Machine, const Module *Context,
1967                                    bool FromValue) {
1968   if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1969     std::unique_ptr<SlotTracker> MachineStorage;
1970     if (!Machine) {
1971       MachineStorage = make_unique<SlotTracker>(Context);
1972       Machine = MachineStorage.get();
1973     }
1974     int Slot = Machine->getMetadataSlot(N);
1975     if (Slot == -1)
1976       // Give the pointer value instead of "badref", since this comes up all
1977       // the time when debugging.
1978       Out << "<" << N << ">";
1979     else
1980       Out << '!' << Slot;
1981     return;
1982   }
1983
1984   if (const MDString *MDS = dyn_cast<MDString>(MD)) {
1985     Out << "!\"";
1986     PrintEscapedString(MDS->getString(), Out);
1987     Out << '"';
1988     return;
1989   }
1990
1991   auto *V = cast<ValueAsMetadata>(MD);
1992   assert(TypePrinter && "TypePrinter required for metadata values");
1993   assert((FromValue || !isa<LocalAsMetadata>(V)) &&
1994          "Unexpected function-local metadata outside of value argument");
1995
1996   TypePrinter->print(V->getValue()->getType(), Out);
1997   Out << ' ';
1998   WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context);
1999 }
2000
2001 namespace {
2002 class AssemblyWriter {
2003   formatted_raw_ostream &Out;
2004   const Module *TheModule;
2005   std::unique_ptr<SlotTracker> SlotTrackerStorage;
2006   SlotTracker &Machine;
2007   TypePrinting TypePrinter;
2008   AssemblyAnnotationWriter *AnnotationWriter;
2009   SetVector<const Comdat *> Comdats;
2010   bool IsForDebug;
2011   bool ShouldPreserveUseListOrder;
2012   UseListOrderStack UseListOrders;
2013   SmallVector<StringRef, 8> MDNames;
2014
2015 public:
2016   /// Construct an AssemblyWriter with an external SlotTracker
2017   AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
2018                  AssemblyAnnotationWriter *AAW, bool IsForDebug,
2019                  bool ShouldPreserveUseListOrder = false);
2020
2021   void printMDNodeBody(const MDNode *MD);
2022   void printNamedMDNode(const NamedMDNode *NMD);
2023
2024   void printModule(const Module *M);
2025
2026   void writeOperand(const Value *Op, bool PrintType);
2027   void writeParamOperand(const Value *Operand, AttributeSet Attrs,unsigned Idx);
2028   void writeOperandBundles(ImmutableCallSite CS);
2029   void writeAtomic(AtomicOrdering Ordering, SynchronizationScope SynchScope);
2030   void writeAtomicCmpXchg(AtomicOrdering SuccessOrdering,
2031                           AtomicOrdering FailureOrdering,
2032                           SynchronizationScope SynchScope);
2033
2034   void writeAllMDNodes();
2035   void writeMDNode(unsigned Slot, const MDNode *Node);
2036   void writeAllAttributeGroups();
2037
2038   void printTypeIdentities();
2039   void printGlobal(const GlobalVariable *GV);
2040   void printAlias(const GlobalAlias *GV);
2041   void printComdat(const Comdat *C);
2042   void printFunction(const Function *F);
2043   void printArgument(const Argument *FA, AttributeSet Attrs, unsigned Idx);
2044   void printBasicBlock(const BasicBlock *BB);
2045   void printInstructionLine(const Instruction &I);
2046   void printInstruction(const Instruction &I);
2047
2048   void printUseListOrder(const UseListOrder &Order);
2049   void printUseLists(const Function *F);
2050
2051 private:
2052   /// \brief Print out metadata attachments.
2053   void printMetadataAttachments(
2054       const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2055       StringRef Separator);
2056
2057   // printInfoComment - Print a little comment after the instruction indicating
2058   // which slot it occupies.
2059   void printInfoComment(const Value &V);
2060
2061   // printGCRelocateComment - print comment after call to the gc.relocate
2062   // intrinsic indicating base and derived pointer names.
2063   void printGCRelocateComment(const GCRelocateInst &Relocate);
2064 };
2065 } // namespace
2066
2067 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2068                                const Module *M, AssemblyAnnotationWriter *AAW,
2069                                bool IsForDebug, bool ShouldPreserveUseListOrder)
2070     : Out(o), TheModule(M), Machine(Mac), AnnotationWriter(AAW),
2071       IsForDebug(IsForDebug),
2072       ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2073   if (!TheModule)
2074     return;
2075   TypePrinter.incorporateTypes(*TheModule);
2076   for (const Function &F : *TheModule)
2077     if (const Comdat *C = F.getComdat())
2078       Comdats.insert(C);
2079   for (const GlobalVariable &GV : TheModule->globals())
2080     if (const Comdat *C = GV.getComdat())
2081       Comdats.insert(C);
2082 }
2083
2084 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
2085   if (!Operand) {
2086     Out << "<null operand!>";
2087     return;
2088   }
2089   if (PrintType) {
2090     TypePrinter.print(Operand->getType(), Out);
2091     Out << ' ';
2092   }
2093   WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2094 }
2095
2096 void AssemblyWriter::writeAtomic(AtomicOrdering Ordering,
2097                                  SynchronizationScope SynchScope) {
2098   if (Ordering == NotAtomic)
2099     return;
2100
2101   switch (SynchScope) {
2102   case SingleThread: Out << " singlethread"; break;
2103   case CrossThread: break;
2104   }
2105
2106   switch (Ordering) {
2107   default: Out << " <bad ordering " << int(Ordering) << ">"; break;
2108   case Unordered: Out << " unordered"; break;
2109   case Monotonic: Out << " monotonic"; break;
2110   case Acquire: Out << " acquire"; break;
2111   case Release: Out << " release"; break;
2112   case AcquireRelease: Out << " acq_rel"; break;
2113   case SequentiallyConsistent: Out << " seq_cst"; break;
2114   }
2115 }
2116
2117 void AssemblyWriter::writeAtomicCmpXchg(AtomicOrdering SuccessOrdering,
2118                                         AtomicOrdering FailureOrdering,
2119                                         SynchronizationScope SynchScope) {
2120   assert(SuccessOrdering != NotAtomic && FailureOrdering != NotAtomic);
2121
2122   switch (SynchScope) {
2123   case SingleThread: Out << " singlethread"; break;
2124   case CrossThread: break;
2125   }
2126
2127   switch (SuccessOrdering) {
2128   default: Out << " <bad ordering " << int(SuccessOrdering) << ">"; break;
2129   case Unordered: Out << " unordered"; break;
2130   case Monotonic: Out << " monotonic"; break;
2131   case Acquire: Out << " acquire"; break;
2132   case Release: Out << " release"; break;
2133   case AcquireRelease: Out << " acq_rel"; break;
2134   case SequentiallyConsistent: Out << " seq_cst"; break;
2135   }
2136
2137   switch (FailureOrdering) {
2138   default: Out << " <bad ordering " << int(FailureOrdering) << ">"; break;
2139   case Unordered: Out << " unordered"; break;
2140   case Monotonic: Out << " monotonic"; break;
2141   case Acquire: Out << " acquire"; break;
2142   case Release: Out << " release"; break;
2143   case AcquireRelease: Out << " acq_rel"; break;
2144   case SequentiallyConsistent: Out << " seq_cst"; break;
2145   }
2146 }
2147
2148 void AssemblyWriter::writeParamOperand(const Value *Operand,
2149                                        AttributeSet Attrs, unsigned Idx) {
2150   if (!Operand) {
2151     Out << "<null operand!>";
2152     return;
2153   }
2154
2155   // Print the type
2156   TypePrinter.print(Operand->getType(), Out);
2157   // Print parameter attributes list
2158   if (Attrs.hasAttributes(Idx))
2159     Out << ' ' << Attrs.getAsString(Idx);
2160   Out << ' ';
2161   // Print the operand
2162   WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2163 }
2164
2165 void AssemblyWriter::writeOperandBundles(ImmutableCallSite CS) {
2166   if (!CS.hasOperandBundles())
2167     return;
2168
2169   Out << " [ ";
2170
2171   bool FirstBundle = true;
2172   for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2173     OperandBundleUse BU = CS.getOperandBundleAt(i);
2174
2175     if (!FirstBundle)
2176       Out << ", ";
2177     FirstBundle = false;
2178
2179     Out << '"';
2180     PrintEscapedString(BU.getTagName(), Out);
2181     Out << '"';
2182
2183     Out << '(';
2184
2185     bool FirstInput = true;
2186     for (const auto &Input : BU.Inputs) {
2187       if (!FirstInput)
2188         Out << ", ";
2189       FirstInput = false;
2190
2191       TypePrinter.print(Input->getType(), Out);
2192       Out << " ";
2193       WriteAsOperandInternal(Out, Input, &TypePrinter, &Machine, TheModule);
2194     }
2195
2196     Out << ')';
2197   }
2198
2199   Out << " ]";
2200 }
2201
2202 void AssemblyWriter::printModule(const Module *M) {
2203   Machine.initialize();
2204
2205   if (ShouldPreserveUseListOrder)
2206     UseListOrders = predictUseListOrder(M);
2207
2208   if (!M->getModuleIdentifier().empty() &&
2209       // Don't print the ID if it will start a new line (which would
2210       // require a comment char before it).
2211       M->getModuleIdentifier().find('\n') == std::string::npos)
2212     Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
2213
2214   const std::string &DL = M->getDataLayoutStr();
2215   if (!DL.empty())
2216     Out << "target datalayout = \"" << DL << "\"\n";
2217   if (!M->getTargetTriple().empty())
2218     Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
2219
2220   if (!M->getModuleInlineAsm().empty()) {
2221     Out << '\n';
2222
2223     // Split the string into lines, to make it easier to read the .ll file.
2224     StringRef Asm = M->getModuleInlineAsm();
2225     do {
2226       StringRef Front;
2227       std::tie(Front, Asm) = Asm.split('\n');
2228
2229       // We found a newline, print the portion of the asm string from the
2230       // last newline up to this newline.
2231       Out << "module asm \"";
2232       PrintEscapedString(Front, Out);
2233       Out << "\"\n";
2234     } while (!Asm.empty());
2235   }
2236
2237   printTypeIdentities();
2238
2239   // Output all comdats.
2240   if (!Comdats.empty())
2241     Out << '\n';
2242   for (const Comdat *C : Comdats) {
2243     printComdat(C);
2244     if (C != Comdats.back())
2245       Out << '\n';
2246   }
2247
2248   // Output all globals.
2249   if (!M->global_empty()) Out << '\n';
2250   for (const GlobalVariable &GV : M->globals()) {
2251     printGlobal(&GV); Out << '\n';
2252   }
2253
2254   // Output all aliases.
2255   if (!M->alias_empty()) Out << "\n";
2256   for (const GlobalAlias &GA : M->aliases())
2257     printAlias(&GA);
2258
2259   // Output global use-lists.
2260   printUseLists(nullptr);
2261
2262   // Output all of the functions.
2263   for (const Function &F : *M)
2264     printFunction(&F);
2265   assert(UseListOrders.empty() && "All use-lists should have been consumed");
2266
2267   // Output all attribute groups.
2268   if (!Machine.as_empty()) {
2269     Out << '\n';
2270     writeAllAttributeGroups();
2271   }
2272
2273   // Output named metadata.
2274   if (!M->named_metadata_empty()) Out << '\n';
2275
2276   for (const NamedMDNode &Node : M->named_metadata())
2277     printNamedMDNode(&Node);
2278
2279   // Output metadata.
2280   if (!Machine.mdn_empty()) {
2281     Out << '\n';
2282     writeAllMDNodes();
2283   }
2284 }
2285
2286 static void printMetadataIdentifier(StringRef Name,
2287                                     formatted_raw_ostream &Out) {
2288   if (Name.empty()) {
2289     Out << "<empty name> ";
2290   } else {
2291     if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' ||
2292         Name[0] == '$' || Name[0] == '.' || Name[0] == '_')
2293       Out << Name[0];
2294     else
2295       Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
2296     for (unsigned i = 1, e = Name.size(); i != e; ++i) {
2297       unsigned char C = Name[i];
2298       if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
2299           C == '.' || C == '_')
2300         Out << C;
2301       else
2302         Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
2303     }
2304   }
2305 }
2306
2307 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
2308   Out << '!';
2309   printMetadataIdentifier(NMD->getName(), Out);
2310   Out << " = !{";
2311   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2312     if (i)
2313       Out << ", ";
2314     int Slot = Machine.getMetadataSlot(NMD->getOperand(i));
2315     if (Slot == -1)
2316       Out << "<badref>";
2317     else
2318       Out << '!' << Slot;
2319   }
2320   Out << "}\n";
2321 }
2322
2323 static void PrintLinkage(GlobalValue::LinkageTypes LT,
2324                          formatted_raw_ostream &Out) {
2325   switch (LT) {
2326   case GlobalValue::ExternalLinkage: break;
2327   case GlobalValue::PrivateLinkage:       Out << "private ";        break;
2328   case GlobalValue::InternalLinkage:      Out << "internal ";       break;
2329   case GlobalValue::LinkOnceAnyLinkage:   Out << "linkonce ";       break;
2330   case GlobalValue::LinkOnceODRLinkage:   Out << "linkonce_odr ";   break;
2331   case GlobalValue::WeakAnyLinkage:       Out << "weak ";           break;
2332   case GlobalValue::WeakODRLinkage:       Out << "weak_odr ";       break;
2333   case GlobalValue::CommonLinkage:        Out << "common ";         break;
2334   case GlobalValue::AppendingLinkage:     Out << "appending ";      break;
2335   case GlobalValue::ExternalWeakLinkage:  Out << "extern_weak ";    break;
2336   case GlobalValue::AvailableExternallyLinkage:
2337     Out << "available_externally ";
2338     break;
2339   }
2340 }
2341
2342 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
2343                             formatted_raw_ostream &Out) {
2344   switch (Vis) {
2345   case GlobalValue::DefaultVisibility: break;
2346   case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
2347   case GlobalValue::ProtectedVisibility: Out << "protected "; break;
2348   }
2349 }
2350
2351 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
2352                                  formatted_raw_ostream &Out) {
2353   switch (SCT) {
2354   case GlobalValue::DefaultStorageClass: break;
2355   case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
2356   case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
2357   }
2358 }
2359
2360 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
2361                                   formatted_raw_ostream &Out) {
2362   switch (TLM) {
2363     case GlobalVariable::NotThreadLocal:
2364       break;
2365     case GlobalVariable::GeneralDynamicTLSModel:
2366       Out << "thread_local ";
2367       break;
2368     case GlobalVariable::LocalDynamicTLSModel:
2369       Out << "thread_local(localdynamic) ";
2370       break;
2371     case GlobalVariable::InitialExecTLSModel:
2372       Out << "thread_local(initialexec) ";
2373       break;
2374     case GlobalVariable::LocalExecTLSModel:
2375       Out << "thread_local(localexec) ";
2376       break;
2377   }
2378 }
2379
2380 static void maybePrintComdat(formatted_raw_ostream &Out,
2381                              const GlobalObject &GO) {
2382   const Comdat *C = GO.getComdat();
2383   if (!C)
2384     return;
2385
2386   if (isa<GlobalVariable>(GO))
2387     Out << ',';
2388   Out << " comdat";
2389
2390   if (GO.getName() == C->getName())
2391     return;
2392
2393   Out << '(';
2394   PrintLLVMName(Out, C->getName(), ComdatPrefix);
2395   Out << ')';
2396 }
2397
2398 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
2399   if (GV->isMaterializable())
2400     Out << "; Materializable\n";
2401
2402   WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
2403   Out << " = ";
2404
2405   if (!GV->hasInitializer() && GV->hasExternalLinkage())
2406     Out << "external ";
2407
2408   PrintLinkage(GV->getLinkage(), Out);
2409   PrintVisibility(GV->getVisibility(), Out);
2410   PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
2411   PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
2412   if (GV->hasUnnamedAddr())
2413     Out << "unnamed_addr ";
2414
2415   if (unsigned AddressSpace = GV->getType()->getAddressSpace())
2416     Out << "addrspace(" << AddressSpace << ") ";
2417   if (GV->isExternallyInitialized()) Out << "externally_initialized ";
2418   Out << (GV->isConstant() ? "constant " : "global ");
2419   TypePrinter.print(GV->getType()->getElementType(), Out);
2420
2421   if (GV->hasInitializer()) {
2422     Out << ' ';
2423     writeOperand(GV->getInitializer(), false);
2424   }
2425
2426   if (GV->hasSection()) {
2427     Out << ", section \"";
2428     PrintEscapedString(GV->getSection(), Out);
2429     Out << '"';
2430   }
2431   maybePrintComdat(Out, *GV);
2432   if (GV->getAlignment())
2433     Out << ", align " << GV->getAlignment();
2434
2435   printInfoComment(*GV);
2436 }
2437
2438 void AssemblyWriter::printAlias(const GlobalAlias *GA) {
2439   if (GA->isMaterializable())
2440     Out << "; Materializable\n";
2441
2442   WriteAsOperandInternal(Out, GA, &TypePrinter, &Machine, GA->getParent());
2443   Out << " = ";
2444
2445   PrintLinkage(GA->getLinkage(), Out);
2446   PrintVisibility(GA->getVisibility(), Out);
2447   PrintDLLStorageClass(GA->getDLLStorageClass(), Out);
2448   PrintThreadLocalModel(GA->getThreadLocalMode(), Out);
2449   if (GA->hasUnnamedAddr())
2450     Out << "unnamed_addr ";
2451
2452   Out << "alias ";
2453
2454   TypePrinter.print(GA->getValueType(), Out);
2455
2456   Out << ", ";
2457
2458   const Constant *Aliasee = GA->getAliasee();
2459
2460   if (!Aliasee) {
2461     TypePrinter.print(GA->getType(), Out);
2462     Out << " <<NULL ALIASEE>>";
2463   } else {
2464     writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee));
2465   }
2466
2467   printInfoComment(*GA);
2468   Out << '\n';
2469 }
2470
2471 void AssemblyWriter::printComdat(const Comdat *C) {
2472   C->print(Out);
2473 }
2474
2475 void AssemblyWriter::printTypeIdentities() {
2476   if (TypePrinter.NumberedTypes.empty() &&
2477       TypePrinter.NamedTypes.empty())
2478     return;
2479
2480   Out << '\n';
2481
2482   // We know all the numbers that each type is used and we know that it is a
2483   // dense assignment.  Convert the map to an index table.
2484   std::vector<StructType*> NumberedTypes(TypePrinter.NumberedTypes.size());
2485   for (DenseMap<StructType*, unsigned>::iterator I =
2486        TypePrinter.NumberedTypes.begin(), E = TypePrinter.NumberedTypes.end();
2487        I != E; ++I) {
2488     assert(I->second < NumberedTypes.size() && "Didn't get a dense numbering?");
2489     NumberedTypes[I->second] = I->first;
2490   }
2491
2492   // Emit all numbered types.
2493   for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
2494     Out << '%' << i << " = type ";
2495
2496     // Make sure we print out at least one level of the type structure, so
2497     // that we do not get %2 = type %2
2498     TypePrinter.printStructBody(NumberedTypes[i], Out);
2499     Out << '\n';
2500   }
2501
2502   for (unsigned i = 0, e = TypePrinter.NamedTypes.size(); i != e; ++i) {
2503     PrintLLVMName(Out, TypePrinter.NamedTypes[i]->getName(), LocalPrefix);
2504     Out << " = type ";
2505
2506     // Make sure we print out at least one level of the type structure, so
2507     // that we do not get %FILE = type %FILE
2508     TypePrinter.printStructBody(TypePrinter.NamedTypes[i], Out);
2509     Out << '\n';
2510   }
2511 }
2512
2513 /// printFunction - Print all aspects of a function.
2514 ///
2515 void AssemblyWriter::printFunction(const Function *F) {
2516   // Print out the return type and name.
2517   Out << '\n';
2518
2519   if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
2520
2521   if (F->isMaterializable())
2522     Out << "; Materializable\n";
2523
2524   const AttributeSet &Attrs = F->getAttributes();
2525   if (Attrs.hasAttributes(AttributeSet::FunctionIndex)) {
2526     AttributeSet AS = Attrs.getFnAttributes();
2527     std::string AttrStr;
2528
2529     unsigned Idx = 0;
2530     for (unsigned E = AS.getNumSlots(); Idx != E; ++Idx)
2531       if (AS.getSlotIndex(Idx) == AttributeSet::FunctionIndex)
2532         break;
2533
2534     for (AttributeSet::iterator I = AS.begin(Idx), E = AS.end(Idx);
2535          I != E; ++I) {
2536       Attribute Attr = *I;
2537       if (!Attr.isStringAttribute()) {
2538         if (!AttrStr.empty()) AttrStr += ' ';
2539         AttrStr += Attr.getAsString();
2540       }
2541     }
2542
2543     if (!AttrStr.empty())
2544       Out << "; Function Attrs: " << AttrStr << '\n';
2545   }
2546
2547   if (F->isDeclaration())
2548     Out << "declare ";
2549   else
2550     Out << "define ";
2551
2552   PrintLinkage(F->getLinkage(), Out);
2553   PrintVisibility(F->getVisibility(), Out);
2554   PrintDLLStorageClass(F->getDLLStorageClass(), Out);
2555
2556   // Print the calling convention.
2557   if (F->getCallingConv() != CallingConv::C) {
2558     PrintCallingConv(F->getCallingConv(), Out);
2559     Out << " ";
2560   }
2561
2562   FunctionType *FT = F->getFunctionType();
2563   if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
2564     Out <<  Attrs.getAsString(AttributeSet::ReturnIndex) << ' ';
2565   TypePrinter.print(F->getReturnType(), Out);
2566   Out << ' ';
2567   WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
2568   Out << '(';
2569   Machine.incorporateFunction(F);
2570
2571   // Loop over the arguments, printing them...
2572   if (F->isDeclaration() && !IsForDebug) {
2573     // We're only interested in the type here - don't print argument names.
2574     for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
2575       // Insert commas as we go... the first arg doesn't get a comma
2576       if (I)
2577         Out << ", ";
2578       // Output type...
2579       TypePrinter.print(FT->getParamType(I), Out);
2580
2581       if (Attrs.hasAttributes(I + 1))
2582         Out << ' ' << Attrs.getAsString(I + 1);
2583     }
2584   } else {
2585     // The arguments are meaningful here, print them in detail.
2586     unsigned Idx = 1;
2587     for (const Argument &Arg : F->args()) {
2588       // Insert commas as we go... the first arg doesn't get a comma
2589       if (Idx != 1)
2590         Out << ", ";
2591       printArgument(&Arg, Attrs, Idx++);
2592     }
2593   }
2594
2595   // Finish printing arguments...
2596   if (FT->isVarArg()) {
2597     if (FT->getNumParams()) Out << ", ";
2598     Out << "...";  // Output varargs portion of signature!
2599   }
2600   Out << ')';
2601   if (F->hasUnnamedAddr())
2602     Out << " unnamed_addr";
2603   if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
2604     Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
2605   if (F->hasSection()) {
2606     Out << " section \"";
2607     PrintEscapedString(F->getSection(), Out);
2608     Out << '"';
2609   }
2610   maybePrintComdat(Out, *F);
2611   if (F->getAlignment())
2612     Out << " align " << F->getAlignment();
2613   if (F->hasGC())
2614     Out << " gc \"" << F->getGC() << '"';
2615   if (F->hasPrefixData()) {
2616     Out << " prefix ";
2617     writeOperand(F->getPrefixData(), true);
2618   }
2619   if (F->hasPrologueData()) {
2620     Out << " prologue ";
2621     writeOperand(F->getPrologueData(), true);
2622   }
2623   if (F->hasPersonalityFn()) {
2624     Out << " personality ";
2625     writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
2626   }
2627
2628   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2629   F->getAllMetadata(MDs);
2630   printMetadataAttachments(MDs, " ");
2631
2632   if (F->isDeclaration()) {
2633     Out << '\n';
2634   } else {
2635     Out << " {";
2636     // Output all of the function's basic blocks.
2637     for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
2638       printBasicBlock(&*I);
2639
2640     // Output the function's use-lists.
2641     printUseLists(F);
2642
2643     Out << "}\n";
2644   }
2645
2646   Machine.purgeFunction();
2647 }
2648
2649 /// printArgument - This member is called for every argument that is passed into
2650 /// the function.  Simply print it out
2651 ///
2652 void AssemblyWriter::printArgument(const Argument *Arg,
2653                                    AttributeSet Attrs, unsigned Idx) {
2654   // Output type...
2655   TypePrinter.print(Arg->getType(), Out);
2656
2657   // Output parameter attributes list
2658   if (Attrs.hasAttributes(Idx))
2659     Out << ' ' << Attrs.getAsString(Idx);
2660
2661   // Output name, if available...
2662   if (Arg->hasName()) {
2663     Out << ' ';
2664     PrintLLVMName(Out, Arg);
2665   }
2666 }
2667
2668 /// printBasicBlock - This member is called for each basic block in a method.
2669 ///
2670 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
2671   if (BB->hasName()) {              // Print out the label if it exists...
2672     Out << "\n";
2673     PrintLLVMName(Out, BB->getName(), LabelPrefix);
2674     Out << ':';
2675   } else if (!BB->use_empty()) {      // Don't print block # of no uses...
2676     Out << "\n; <label>:";
2677     int Slot = Machine.getLocalSlot(BB);
2678     if (Slot != -1)
2679       Out << Slot;
2680     else
2681       Out << "<badref>";
2682   }
2683
2684   if (!BB->getParent()) {
2685     Out.PadToColumn(50);
2686     Out << "; Error: Block without parent!";
2687   } else if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
2688     // Output predecessors for the block.
2689     Out.PadToColumn(50);
2690     Out << ";";
2691     const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
2692
2693     if (PI == PE) {
2694       Out << " No predecessors!";
2695     } else {
2696       Out << " preds = ";
2697       writeOperand(*PI, false);
2698       for (++PI; PI != PE; ++PI) {
2699         Out << ", ";
2700         writeOperand(*PI, false);
2701       }
2702     }
2703   }
2704
2705   Out << "\n";
2706
2707   if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
2708
2709   // Output all of the instructions in the basic block...
2710   for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
2711     printInstructionLine(*I);
2712   }
2713
2714   if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
2715 }
2716
2717 /// printInstructionLine - Print an instruction and a newline character.
2718 void AssemblyWriter::printInstructionLine(const Instruction &I) {
2719   printInstruction(I);
2720   Out << '\n';
2721 }
2722
2723 /// printGCRelocateComment - print comment after call to the gc.relocate
2724 /// intrinsic indicating base and derived pointer names.
2725 void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) {
2726   Out << " ; (";
2727   writeOperand(Relocate.getBasePtr(), false);
2728   Out << ", ";
2729   writeOperand(Relocate.getDerivedPtr(), false);
2730   Out << ")";
2731 }
2732
2733 /// printInfoComment - Print a little comment after the instruction indicating
2734 /// which slot it occupies.
2735 ///
2736 void AssemblyWriter::printInfoComment(const Value &V) {
2737   if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V))
2738     printGCRelocateComment(*Relocate);
2739
2740   if (AnnotationWriter)
2741     AnnotationWriter->printInfoComment(V, Out);
2742 }
2743
2744 // This member is called for each Instruction in a function..
2745 void AssemblyWriter::printInstruction(const Instruction &I) {
2746   if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
2747
2748   // Print out indentation for an instruction.
2749   Out << "  ";
2750
2751   // Print out name if it exists...
2752   if (I.hasName()) {
2753     PrintLLVMName(Out, &I);
2754     Out << " = ";
2755   } else if (!I.getType()->isVoidTy()) {
2756     // Print out the def slot taken.
2757     int SlotNum = Machine.getLocalSlot(&I);
2758     if (SlotNum == -1)
2759       Out << "<badref> = ";
2760     else
2761       Out << '%' << SlotNum << " = ";
2762   }
2763
2764   if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
2765     if (CI->isMustTailCall())
2766       Out << "musttail ";
2767     else if (CI->isTailCall())
2768       Out << "tail ";
2769     else if (CI->isNoTailCall())
2770       Out << "notail ";
2771   }
2772
2773   // Print out the opcode...
2774   Out << I.getOpcodeName();
2775
2776   // If this is an atomic load or store, print out the atomic marker.
2777   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isAtomic()) ||
2778       (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
2779     Out << " atomic";
2780
2781   if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
2782     Out << " weak";
2783
2784   // If this is a volatile operation, print out the volatile marker.
2785   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
2786       (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
2787       (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
2788       (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
2789     Out << " volatile";
2790
2791   // Print out optimization information.
2792   WriteOptimizationInfo(Out, &I);
2793
2794   // Print out the compare instruction predicates
2795   if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
2796     Out << ' ' << getPredicateText(CI->getPredicate());
2797
2798   // Print out the atomicrmw operation
2799   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
2800     writeAtomicRMWOperation(Out, RMWI->getOperation());
2801
2802   // Print out the type of the operands...
2803   const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
2804
2805   // Special case conditional branches to swizzle the condition out to the front
2806   if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
2807     const BranchInst &BI(cast<BranchInst>(I));
2808     Out << ' ';
2809     writeOperand(BI.getCondition(), true);
2810     Out << ", ";
2811     writeOperand(BI.getSuccessor(0), true);
2812     Out << ", ";
2813     writeOperand(BI.getSuccessor(1), true);
2814
2815   } else if (isa<SwitchInst>(I)) {
2816     const SwitchInst& SI(cast<SwitchInst>(I));
2817     // Special case switch instruction to get formatting nice and correct.
2818     Out << ' ';
2819     writeOperand(SI.getCondition(), true);
2820     Out << ", ";
2821     writeOperand(SI.getDefaultDest(), true);
2822     Out << " [";
2823     for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2824          i != e; ++i) {
2825       Out << "\n    ";
2826       writeOperand(i.getCaseValue(), true);
2827       Out << ", ";
2828       writeOperand(i.getCaseSuccessor(), true);
2829     }
2830     Out << "\n  ]";
2831   } else if (isa<IndirectBrInst>(I)) {
2832     // Special case indirectbr instruction to get formatting nice and correct.
2833     Out << ' ';
2834     writeOperand(Operand, true);
2835     Out << ", [";
2836
2837     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2838       if (i != 1)
2839         Out << ", ";
2840       writeOperand(I.getOperand(i), true);
2841     }
2842     Out << ']';
2843   } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
2844     Out << ' ';
2845     TypePrinter.print(I.getType(), Out);
2846     Out << ' ';
2847
2848     for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
2849       if (op) Out << ", ";
2850       Out << "[ ";
2851       writeOperand(PN->getIncomingValue(op), false); Out << ", ";
2852       writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
2853     }
2854   } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
2855     Out << ' ';
2856     writeOperand(I.getOperand(0), true);
2857     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
2858       Out << ", " << *i;
2859   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
2860     Out << ' ';
2861     writeOperand(I.getOperand(0), true); Out << ", ";
2862     writeOperand(I.getOperand(1), true);
2863     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
2864       Out << ", " << *i;
2865   } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
2866     Out << ' ';
2867     TypePrinter.print(I.getType(), Out);
2868     if (LPI->isCleanup() || LPI->getNumClauses() != 0)
2869       Out << '\n';
2870
2871     if (LPI->isCleanup())
2872       Out << "          cleanup";
2873
2874     for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
2875       if (i != 0 || LPI->isCleanup()) Out << "\n";
2876       if (LPI->isCatch(i))
2877         Out << "          catch ";
2878       else
2879         Out << "          filter ";
2880
2881       writeOperand(LPI->getClause(i), true);
2882     }
2883   } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) {
2884     Out << " within ";
2885     writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false);
2886     Out << " [";
2887     unsigned Op = 0;
2888     for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
2889       if (Op > 0)
2890         Out << ", ";
2891       writeOperand(PadBB, /*PrintType=*/true);
2892       ++Op;
2893     }
2894     Out << "] unwind ";
2895     if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
2896       writeOperand(UnwindDest, /*PrintType=*/true);
2897     else
2898       Out << "to caller";
2899   } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) {
2900     Out << " within ";
2901     writeOperand(FPI->getParentPad(), /*PrintType=*/false);
2902     Out << " [";
2903     for (unsigned Op = 0, NumOps = FPI->getNumArgOperands(); Op < NumOps;
2904          ++Op) {
2905       if (Op > 0)
2906         Out << ", ";
2907       writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true);
2908     }
2909     Out << ']';
2910   } else if (isa<ReturnInst>(I) && !Operand) {
2911     Out << " void";
2912   } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) {
2913     Out << " from ";
2914     writeOperand(CRI->getOperand(0), /*PrintType=*/false);
2915
2916     Out << " to ";
2917     writeOperand(CRI->getOperand(1), /*PrintType=*/true);
2918   } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) {
2919     Out << " from ";
2920     writeOperand(CRI->getOperand(0), /*PrintType=*/false);
2921
2922     Out << " unwind ";
2923     if (CRI->hasUnwindDest())
2924       writeOperand(CRI->getOperand(1), /*PrintType=*/true);
2925     else
2926       Out << "to caller";
2927   } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
2928     // Print the calling convention being used.
2929     if (CI->getCallingConv() != CallingConv::C) {
2930       Out << " ";
2931       PrintCallingConv(CI->getCallingConv(), Out);
2932     }
2933
2934     Operand = CI->getCalledValue();
2935     FunctionType *FTy = cast<FunctionType>(CI->getFunctionType());
2936     Type *RetTy = FTy->getReturnType();
2937     const AttributeSet &PAL = CI->getAttributes();
2938
2939     if (PAL.hasAttributes(AttributeSet::ReturnIndex))
2940       Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
2941
2942     // If possible, print out the short form of the call instruction.  We can
2943     // only do this if the first argument is a pointer to a nonvararg function,
2944     // and if the return type is not a pointer to a function.
2945     //
2946     Out << ' ';
2947     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
2948     Out << ' ';
2949     writeOperand(Operand, false);
2950     Out << '(';
2951     for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
2952       if (op > 0)
2953         Out << ", ";
2954       writeParamOperand(CI->getArgOperand(op), PAL, op + 1);
2955     }
2956
2957     // Emit an ellipsis if this is a musttail call in a vararg function.  This
2958     // is only to aid readability, musttail calls forward varargs by default.
2959     if (CI->isMustTailCall() && CI->getParent() &&
2960         CI->getParent()->getParent() &&
2961         CI->getParent()->getParent()->isVarArg())
2962       Out << ", ...";
2963
2964     Out << ')';
2965     if (PAL.hasAttributes(AttributeSet::FunctionIndex))
2966       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
2967
2968     writeOperandBundles(CI);
2969
2970   } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
2971     Operand = II->getCalledValue();
2972     FunctionType *FTy = cast<FunctionType>(II->getFunctionType());
2973     Type *RetTy = FTy->getReturnType();
2974     const AttributeSet &PAL = II->getAttributes();
2975
2976     // Print the calling convention being used.
2977     if (II->getCallingConv() != CallingConv::C) {
2978       Out << " ";
2979       PrintCallingConv(II->getCallingConv(), Out);
2980     }
2981
2982     if (PAL.hasAttributes(AttributeSet::ReturnIndex))
2983       Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
2984
2985     // If possible, print out the short form of the invoke instruction. We can
2986     // only do this if the first argument is a pointer to a nonvararg function,
2987     // and if the return type is not a pointer to a function.
2988     //
2989     Out << ' ';
2990     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
2991     Out << ' ';
2992     writeOperand(Operand, false);
2993     Out << '(';
2994     for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
2995       if (op)
2996         Out << ", ";
2997       writeParamOperand(II->getArgOperand(op), PAL, op + 1);
2998     }
2999
3000     Out << ')';
3001     if (PAL.hasAttributes(AttributeSet::FunctionIndex))
3002       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
3003
3004     writeOperandBundles(II);
3005
3006     Out << "\n          to ";
3007     writeOperand(II->getNormalDest(), true);
3008     Out << " unwind ";
3009     writeOperand(II->getUnwindDest(), true);
3010
3011   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
3012     Out << ' ';
3013     if (AI->isUsedWithInAlloca())
3014       Out << "inalloca ";
3015     TypePrinter.print(AI->getAllocatedType(), Out);
3016
3017     // Explicitly write the array size if the code is broken, if it's an array
3018     // allocation, or if the type is not canonical for scalar allocations.  The
3019     // latter case prevents the type from mutating when round-tripping through
3020     // assembly.
3021     if (!AI->getArraySize() || AI->isArrayAllocation() ||
3022         !AI->getArraySize()->getType()->isIntegerTy(32)) {
3023       Out << ", ";
3024       writeOperand(AI->getArraySize(), true);
3025     }
3026     if (AI->getAlignment()) {
3027       Out << ", align " << AI->getAlignment();
3028     }
3029   } else if (isa<CastInst>(I)) {
3030     if (Operand) {
3031       Out << ' ';
3032       writeOperand(Operand, true);   // Work with broken code
3033     }
3034     Out << " to ";
3035     TypePrinter.print(I.getType(), Out);
3036   } else if (isa<VAArgInst>(I)) {
3037     if (Operand) {
3038       Out << ' ';
3039       writeOperand(Operand, true);   // Work with broken code
3040     }
3041     Out << ", ";
3042     TypePrinter.print(I.getType(), Out);
3043   } else if (Operand) {   // Print the normal way.
3044     if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
3045       Out << ' ';
3046       TypePrinter.print(GEP->getSourceElementType(), Out);
3047       Out << ',';
3048     } else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
3049       Out << ' ';
3050       TypePrinter.print(LI->getType(), Out);
3051       Out << ',';
3052     }
3053
3054     // PrintAllTypes - Instructions who have operands of all the same type
3055     // omit the type from all but the first operand.  If the instruction has
3056     // different type operands (for example br), then they are all printed.
3057     bool PrintAllTypes = false;
3058     Type *TheType = Operand->getType();
3059
3060     // Select, Store and ShuffleVector always print all types.
3061     if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
3062         || isa<ReturnInst>(I)) {
3063       PrintAllTypes = true;
3064     } else {
3065       for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
3066         Operand = I.getOperand(i);
3067         // note that Operand shouldn't be null, but the test helps make dump()
3068         // more tolerant of malformed IR
3069         if (Operand && Operand->getType() != TheType) {
3070           PrintAllTypes = true;    // We have differing types!  Print them all!
3071           break;
3072         }
3073       }
3074     }
3075
3076     if (!PrintAllTypes) {
3077       Out << ' ';
3078       TypePrinter.print(TheType, Out);
3079     }
3080
3081     Out << ' ';
3082     for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
3083       if (i) Out << ", ";
3084       writeOperand(I.getOperand(i), PrintAllTypes);
3085     }
3086   }
3087
3088   // Print atomic ordering/alignment for memory operations
3089   if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
3090     if (LI->isAtomic())
3091       writeAtomic(LI->getOrdering(), LI->getSynchScope());
3092     if (LI->getAlignment())
3093       Out << ", align " << LI->getAlignment();
3094   } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
3095     if (SI->isAtomic())
3096       writeAtomic(SI->getOrdering(), SI->getSynchScope());
3097     if (SI->getAlignment())
3098       Out << ", align " << SI->getAlignment();
3099   } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
3100     writeAtomicCmpXchg(CXI->getSuccessOrdering(), CXI->getFailureOrdering(),
3101                        CXI->getSynchScope());
3102   } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
3103     writeAtomic(RMWI->getOrdering(), RMWI->getSynchScope());
3104   } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
3105     writeAtomic(FI->getOrdering(), FI->getSynchScope());
3106   }
3107
3108   // Print Metadata info.
3109   SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
3110   I.getAllMetadata(InstMD);
3111   printMetadataAttachments(InstMD, ", ");
3112
3113   // Print a nice comment.
3114   printInfoComment(I);
3115 }
3116
3117 void AssemblyWriter::printMetadataAttachments(
3118     const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
3119     StringRef Separator) {
3120   if (MDs.empty())
3121     return;
3122
3123   if (MDNames.empty())
3124     MDs[0].second->getContext().getMDKindNames(MDNames);
3125
3126   for (const auto &I : MDs) {
3127     unsigned Kind = I.first;
3128     Out << Separator;
3129     if (Kind < MDNames.size()) {
3130       Out << "!";
3131       printMetadataIdentifier(MDNames[Kind], Out);
3132     } else
3133       Out << "!<unknown kind #" << Kind << ">";
3134     Out << ' ';
3135     WriteAsOperandInternal(Out, I.second, &TypePrinter, &Machine, TheModule);
3136   }
3137 }
3138
3139 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
3140   Out << '!' << Slot << " = ";
3141   printMDNodeBody(Node);
3142   Out << "\n";
3143 }
3144
3145 void AssemblyWriter::writeAllMDNodes() {
3146   SmallVector<const MDNode *, 16> Nodes;
3147   Nodes.resize(Machine.mdn_size());
3148   for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
3149        I != E; ++I)
3150     Nodes[I->second] = cast<MDNode>(I->first);
3151
3152   for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
3153     writeMDNode(i, Nodes[i]);
3154   }
3155 }
3156
3157 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
3158   WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
3159 }
3160
3161 void AssemblyWriter::writeAllAttributeGroups() {
3162   std::vector<std::pair<AttributeSet, unsigned> > asVec;
3163   asVec.resize(Machine.as_size());
3164
3165   for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end();
3166        I != E; ++I)
3167     asVec[I->second] = *I;
3168
3169   for (std::vector<std::pair<AttributeSet, unsigned> >::iterator
3170          I = asVec.begin(), E = asVec.end(); I != E; ++I)
3171     Out << "attributes #" << I->second << " = { "
3172         << I->first.getAsString(AttributeSet::FunctionIndex, true) << " }\n";
3173 }
3174
3175 void AssemblyWriter::printUseListOrder(const UseListOrder &Order) {
3176   bool IsInFunction = Machine.getFunction();
3177   if (IsInFunction)
3178     Out << "  ";
3179
3180   Out << "uselistorder";
3181   if (const BasicBlock *BB =
3182           IsInFunction ? nullptr : dyn_cast<BasicBlock>(Order.V)) {
3183     Out << "_bb ";
3184     writeOperand(BB->getParent(), false);
3185     Out << ", ";
3186     writeOperand(BB, false);
3187   } else {
3188     Out << " ";
3189     writeOperand(Order.V, true);
3190   }
3191   Out << ", { ";
3192
3193   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3194   Out << Order.Shuffle[0];
3195   for (unsigned I = 1, E = Order.Shuffle.size(); I != E; ++I)
3196     Out << ", " << Order.Shuffle[I];
3197   Out << " }\n";
3198 }
3199
3200 void AssemblyWriter::printUseLists(const Function *F) {
3201   auto hasMore =
3202       [&]() { return !UseListOrders.empty() && UseListOrders.back().F == F; };
3203   if (!hasMore())
3204     // Nothing to do.
3205     return;
3206
3207   Out << "\n; uselistorder directives\n";
3208   while (hasMore()) {
3209     printUseListOrder(UseListOrders.back());
3210     UseListOrders.pop_back();
3211   }
3212 }
3213
3214 //===----------------------------------------------------------------------===//
3215 //                       External Interface declarations
3216 //===----------------------------------------------------------------------===//
3217
3218 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
3219                    bool ShouldPreserveUseListOrder, bool IsForDebug) const {
3220   SlotTracker SlotTable(this);
3221   formatted_raw_ostream OS(ROS);
3222   AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
3223                    ShouldPreserveUseListOrder);
3224   W.printModule(this);
3225 }
3226
3227 void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const {
3228   SlotTracker SlotTable(getParent());
3229   formatted_raw_ostream OS(ROS);
3230   AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
3231   W.printNamedMDNode(this);
3232 }
3233
3234 void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const {
3235   PrintLLVMName(ROS, getName(), ComdatPrefix);
3236   ROS << " = comdat ";
3237
3238   switch (getSelectionKind()) {
3239   case Comdat::Any:
3240     ROS << "any";
3241     break;
3242   case Comdat::ExactMatch:
3243     ROS << "exactmatch";
3244     break;
3245   case Comdat::Largest:
3246     ROS << "largest";
3247     break;
3248   case Comdat::NoDuplicates:
3249     ROS << "noduplicates";
3250     break;
3251   case Comdat::SameSize:
3252     ROS << "samesize";
3253     break;
3254   }
3255
3256   ROS << '\n';
3257 }
3258
3259 void Type::print(raw_ostream &OS, bool /*IsForDebug*/) const {
3260   TypePrinting TP;
3261   TP.print(const_cast<Type*>(this), OS);
3262
3263   // If the type is a named struct type, print the body as well.
3264   if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
3265     if (!STy->isLiteral()) {
3266       OS << " = type ";
3267       TP.printStructBody(STy, OS);
3268     }
3269 }
3270
3271 static bool isReferencingMDNode(const Instruction &I) {
3272   if (const auto *CI = dyn_cast<CallInst>(&I))
3273     if (Function *F = CI->getCalledFunction())
3274       if (F->isIntrinsic())
3275         for (auto &Op : I.operands())
3276           if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
3277             if (isa<MDNode>(V->getMetadata()))
3278               return true;
3279   return false;
3280 }
3281
3282 void Value::print(raw_ostream &ROS, bool IsForDebug) const {
3283   bool ShouldInitializeAllMetadata = false;
3284   if (auto *I = dyn_cast<Instruction>(this))
3285     ShouldInitializeAllMetadata = isReferencingMDNode(*I);
3286   else if (isa<Function>(this) || isa<MetadataAsValue>(this))
3287     ShouldInitializeAllMetadata = true;
3288
3289   ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
3290   print(ROS, MST, IsForDebug);
3291 }
3292
3293 void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST,
3294                   bool IsForDebug) const {
3295   formatted_raw_ostream OS(ROS);
3296   SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
3297   SlotTracker &SlotTable =
3298       MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
3299   auto incorporateFunction = [&](const Function *F) {
3300     if (F)
3301       MST.incorporateFunction(*F);
3302   };
3303
3304   if (const Instruction *I = dyn_cast<Instruction>(this)) {
3305     incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
3306     AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
3307     W.printInstruction(*I);
3308   } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
3309     incorporateFunction(BB->getParent());
3310     AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
3311     W.printBasicBlock(BB);
3312   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
3313     AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
3314     if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
3315       W.printGlobal(V);
3316     else if (const Function *F = dyn_cast<Function>(GV))
3317       W.printFunction(F);
3318     else
3319       W.printAlias(cast<GlobalAlias>(GV));
3320   } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
3321     V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
3322   } else if (const Constant *C = dyn_cast<Constant>(this)) {
3323     TypePrinting TypePrinter;
3324     TypePrinter.print(C->getType(), OS);
3325     OS << ' ';
3326     WriteConstantInternal(OS, C, TypePrinter, MST.getMachine(), nullptr);
3327   } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
3328     this->printAsOperand(OS, /* PrintType */ true, MST);
3329   } else {
3330     llvm_unreachable("Unknown value to print out!");
3331   }
3332 }
3333
3334 /// Print without a type, skipping the TypePrinting object.
3335 ///
3336 /// \return \c true iff printing was successful.
3337 static bool printWithoutType(const Value &V, raw_ostream &O,
3338                              SlotTracker *Machine, const Module *M) {
3339   if (V.hasName() || isa<GlobalValue>(V) ||
3340       (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
3341     WriteAsOperandInternal(O, &V, nullptr, Machine, M);
3342     return true;
3343   }
3344   return false;
3345 }
3346
3347 static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
3348                                ModuleSlotTracker &MST) {
3349   TypePrinting TypePrinter;
3350   if (const Module *M = MST.getModule())
3351     TypePrinter.incorporateTypes(*M);
3352   if (PrintType) {
3353     TypePrinter.print(V.getType(), O);
3354     O << ' ';
3355   }
3356
3357   WriteAsOperandInternal(O, &V, &TypePrinter, MST.getMachine(),
3358                          MST.getModule());
3359 }
3360
3361 void Value::printAsOperand(raw_ostream &O, bool PrintType,
3362                            const Module *M) const {
3363   if (!M)
3364     M = getModuleFromVal(this);
3365
3366   if (!PrintType)
3367     if (printWithoutType(*this, O, nullptr, M))
3368       return;
3369
3370   SlotTracker Machine(
3371       M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
3372   ModuleSlotTracker MST(Machine, M);
3373   printAsOperandImpl(*this, O, PrintType, MST);
3374 }
3375
3376 void Value::printAsOperand(raw_ostream &O, bool PrintType,
3377                            ModuleSlotTracker &MST) const {
3378   if (!PrintType)
3379     if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
3380       return;
3381
3382   printAsOperandImpl(*this, O, PrintType, MST);
3383 }
3384
3385 static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
3386                               ModuleSlotTracker &MST, const Module *M,
3387                               bool OnlyAsOperand) {
3388   formatted_raw_ostream OS(ROS);
3389
3390   TypePrinting TypePrinter;
3391   if (M)
3392     TypePrinter.incorporateTypes(*M);
3393
3394   WriteAsOperandInternal(OS, &MD, &TypePrinter, MST.getMachine(), M,
3395                          /* FromValue */ true);
3396
3397   auto *N = dyn_cast<MDNode>(&MD);
3398   if (OnlyAsOperand || !N)
3399     return;
3400
3401   OS << " = ";
3402   WriteMDNodeBodyInternal(OS, N, &TypePrinter, MST.getMachine(), M);
3403 }
3404
3405 void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
3406   ModuleSlotTracker MST(M, isa<MDNode>(this));
3407   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
3408 }
3409
3410 void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
3411                               const Module *M) const {
3412   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
3413 }
3414
3415 void Metadata::print(raw_ostream &OS, const Module *M,
3416                      bool /*IsForDebug*/) const {
3417   ModuleSlotTracker MST(M, isa<MDNode>(this));
3418   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
3419 }
3420
3421 void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
3422                      const Module *M, bool /*IsForDebug*/) const {
3423   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
3424 }
3425
3426 // Value::dump - allow easy printing of Values from the debugger.
3427 LLVM_DUMP_METHOD
3428 void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
3429
3430 // Type::dump - allow easy printing of Types from the debugger.
3431 LLVM_DUMP_METHOD
3432 void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
3433
3434 // Module::dump() - Allow printing of Modules from the debugger.
3435 LLVM_DUMP_METHOD
3436 void Module::dump() const {
3437   print(dbgs(), nullptr,
3438         /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
3439 }
3440
3441 // \brief Allow printing of Comdats from the debugger.
3442 LLVM_DUMP_METHOD
3443 void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
3444
3445 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
3446 LLVM_DUMP_METHOD
3447 void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
3448
3449 LLVM_DUMP_METHOD
3450 void Metadata::dump() const { dump(nullptr); }
3451
3452 LLVM_DUMP_METHOD
3453 void Metadata::dump(const Module *M) const {
3454   print(dbgs(), M, /*IsForDebug=*/true);
3455   dbgs() << '\n';
3456 }