Use the new script to sort the includes of every file under lib.
[oota-llvm.git] / lib / ExecutionEngine / RuntimeDyld / RuntimeDyldELF.cpp
1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of ELF support for the MC-JIT runtime dynamic linker.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "dyld"
15 #include "RuntimeDyldELF.h"
16 #include "JITRegistrar.h"
17 #include "ObjectImageCommon.h"
18 #include "llvm/ADT/IntervalMap.h"
19 #include "llvm/ADT/OwningPtr.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/ExecutionEngine/ObjectBuffer.h"
24 #include "llvm/ExecutionEngine/ObjectImage.h"
25 #include "llvm/Object/ELF.h"
26 #include "llvm/Object/ObjectFile.h"
27 #include "llvm/Support/ELF.h"
28 using namespace llvm;
29 using namespace llvm::object;
30
31 namespace {
32
33 static inline
34 error_code check(error_code Err) {
35   if (Err) {
36     report_fatal_error(Err.message());
37   }
38   return Err;
39 }
40
41 template<support::endianness target_endianness, bool is64Bits>
42 class DyldELFObject : public ELFObjectFile<target_endianness, is64Bits> {
43   LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits)
44
45   typedef Elf_Shdr_Impl<target_endianness, is64Bits> Elf_Shdr;
46   typedef Elf_Sym_Impl<target_endianness, is64Bits> Elf_Sym;
47   typedef Elf_Rel_Impl<target_endianness, is64Bits, false> Elf_Rel;
48   typedef Elf_Rel_Impl<target_endianness, is64Bits, true> Elf_Rela;
49
50   typedef Elf_Ehdr_Impl<target_endianness, is64Bits> Elf_Ehdr;
51
52   typedef typename ELFDataTypeTypedefHelper<
53           target_endianness, is64Bits>::value_type addr_type;
54
55 public:
56   DyldELFObject(MemoryBuffer *Wrapper, error_code &ec);
57
58   void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
59   void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr);
60
61   // Methods for type inquiry through isa, cast and dyn_cast
62   static inline bool classof(const Binary *v) {
63     return (isa<ELFObjectFile<target_endianness, is64Bits> >(v)
64             && classof(cast<ELFObjectFile<target_endianness, is64Bits> >(v)));
65   }
66   static inline bool classof(
67       const ELFObjectFile<target_endianness, is64Bits> *v) {
68     return v->isDyldType();
69   }
70 };
71
72 template<support::endianness target_endianness, bool is64Bits>
73 class ELFObjectImage : public ObjectImageCommon {
74   protected:
75     DyldELFObject<target_endianness, is64Bits> *DyldObj;
76     bool Registered;
77
78   public:
79     ELFObjectImage(ObjectBuffer *Input,
80                    DyldELFObject<target_endianness, is64Bits> *Obj)
81     : ObjectImageCommon(Input, Obj),
82       DyldObj(Obj),
83       Registered(false) {}
84
85     virtual ~ELFObjectImage() {
86       if (Registered)
87         deregisterWithDebugger();
88     }
89
90     // Subclasses can override these methods to update the image with loaded
91     // addresses for sections and common symbols
92     virtual void updateSectionAddress(const SectionRef &Sec, uint64_t Addr)
93     {
94       DyldObj->updateSectionAddress(Sec, Addr);
95     }
96
97     virtual void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr)
98     {
99       DyldObj->updateSymbolAddress(Sym, Addr);
100     }
101
102     virtual void registerWithDebugger()
103     {
104       JITRegistrar::getGDBRegistrar().registerObject(*Buffer);
105       Registered = true;
106     }
107     virtual void deregisterWithDebugger()
108     {
109       JITRegistrar::getGDBRegistrar().deregisterObject(*Buffer);
110     }
111 };
112
113 // The MemoryBuffer passed into this constructor is just a wrapper around the
114 // actual memory.  Ultimately, the Binary parent class will take ownership of
115 // this MemoryBuffer object but not the underlying memory.
116 template<support::endianness target_endianness, bool is64Bits>
117 DyldELFObject<target_endianness, is64Bits>::DyldELFObject(MemoryBuffer *Wrapper,
118                                                           error_code &ec)
119   : ELFObjectFile<target_endianness, is64Bits>(Wrapper, ec) {
120   this->isDyldELFObject = true;
121 }
122
123 template<support::endianness target_endianness, bool is64Bits>
124 void DyldELFObject<target_endianness, is64Bits>::updateSectionAddress(
125                                                        const SectionRef &Sec,
126                                                        uint64_t Addr) {
127   DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
128   Elf_Shdr *shdr = const_cast<Elf_Shdr*>(
129                           reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
130
131   // This assumes the address passed in matches the target address bitness
132   // The template-based type cast handles everything else.
133   shdr->sh_addr = static_cast<addr_type>(Addr);
134 }
135
136 template<support::endianness target_endianness, bool is64Bits>
137 void DyldELFObject<target_endianness, is64Bits>::updateSymbolAddress(
138                                                        const SymbolRef &SymRef,
139                                                        uint64_t Addr) {
140
141   Elf_Sym *sym = const_cast<Elf_Sym*>(
142                                  ELFObjectFile<target_endianness, is64Bits>::
143                                    getSymbol(SymRef.getRawDataRefImpl()));
144
145   // This assumes the address passed in matches the target address bitness
146   // The template-based type cast handles everything else.
147   sym->st_value = static_cast<addr_type>(Addr);
148 }
149
150 } // namespace
151
152
153 namespace llvm {
154
155 ObjectImage *RuntimeDyldELF::createObjectImage(ObjectBuffer *Buffer) {
156   if (Buffer->getBufferSize() < ELF::EI_NIDENT)
157     llvm_unreachable("Unexpected ELF object size");
158   std::pair<unsigned char, unsigned char> Ident = std::make_pair(
159                          (uint8_t)Buffer->getBufferStart()[ELF::EI_CLASS],
160                          (uint8_t)Buffer->getBufferStart()[ELF::EI_DATA]);
161   error_code ec;
162
163   if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2LSB) {
164     DyldELFObject<support::little, false> *Obj =
165            new DyldELFObject<support::little, false>(Buffer->getMemBuffer(), ec);
166     return new ELFObjectImage<support::little, false>(Buffer, Obj);
167   }
168   else if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2MSB) {
169     DyldELFObject<support::big, false> *Obj =
170            new DyldELFObject<support::big, false>(Buffer->getMemBuffer(), ec);
171     return new ELFObjectImage<support::big, false>(Buffer, Obj);
172   }
173   else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2MSB) {
174     DyldELFObject<support::big, true> *Obj =
175            new DyldELFObject<support::big, true>(Buffer->getMemBuffer(), ec);
176     return new ELFObjectImage<support::big, true>(Buffer, Obj);
177   }
178   else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2LSB) {
179     DyldELFObject<support::little, true> *Obj =
180            new DyldELFObject<support::little, true>(Buffer->getMemBuffer(), ec);
181     return new ELFObjectImage<support::little, true>(Buffer, Obj);
182   }
183   else
184     llvm_unreachable("Unexpected ELF format");
185 }
186
187 RuntimeDyldELF::~RuntimeDyldELF() {
188 }
189
190 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
191                                              uint64_t Offset,
192                                              uint64_t Value,
193                                              uint32_t Type,
194                                              int64_t Addend) {
195   switch (Type) {
196   default:
197     llvm_unreachable("Relocation type not implemented yet!");
198   break;
199   case ELF::R_X86_64_64: {
200     uint64_t *Target = reinterpret_cast<uint64_t*>(Section.Address + Offset);
201     *Target = Value + Addend;
202     DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend))
203                  << " at " << format("%p\n",Target));
204     break;
205   }
206   case ELF::R_X86_64_32:
207   case ELF::R_X86_64_32S: {
208     Value += Addend;
209     assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
210            (Type == ELF::R_X86_64_32S && 
211              ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
212     uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
213     uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
214     *Target = TruncatedAddr;
215     DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr)
216                  << " at " << format("%p\n",Target));
217     break;
218   }
219   case ELF::R_X86_64_PC32: {
220     // Get the placeholder value from the generated object since
221     // a previous relocation attempt may have overwritten the loaded version
222     uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
223                                                                    + Offset);
224     uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
225     uint64_t  FinalAddress = Section.LoadAddress + Offset;
226     int64_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
227     assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN);
228     int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
229     *Target = TruncOffset;
230     break;
231   }
232   }
233 }
234
235 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
236                                           uint64_t Offset,
237                                           uint32_t Value,
238                                           uint32_t Type,
239                                           int32_t Addend) {
240   switch (Type) {
241   case ELF::R_386_32: {
242     // Get the placeholder value from the generated object since
243     // a previous relocation attempt may have overwritten the loaded version
244     uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
245                                                                    + Offset);
246     uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
247     *Target = *Placeholder + Value + Addend;
248     break;
249   }
250   case ELF::R_386_PC32: {
251     // Get the placeholder value from the generated object since
252     // a previous relocation attempt may have overwritten the loaded version
253     uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
254                                                                    + Offset);
255     uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
256     uint32_t  FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
257     uint32_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
258     *Target = RealOffset;
259     break;
260     }
261     default:
262       // There are other relocation types, but it appears these are the
263       // only ones currently used by the LLVM ELF object writer
264       llvm_unreachable("Relocation type not implemented yet!");
265       break;
266   }
267 }
268
269 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
270                                           uint64_t Offset,
271                                           uint32_t Value,
272                                           uint32_t Type,
273                                           int32_t Addend) {
274   // TODO: Add Thumb relocations.
275   uint32_t* TargetPtr = (uint32_t*)(Section.Address + Offset);
276   uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
277   Value += Addend;
278
279   DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
280                << Section.Address + Offset
281                << " FinalAddress: " << format("%p",FinalAddress)
282                << " Value: " << format("%x",Value)
283                << " Type: " << format("%x",Type)
284                << " Addend: " << format("%x",Addend)
285                << "\n");
286
287   switch(Type) {
288   default:
289     llvm_unreachable("Not implemented relocation type!");
290
291   // Write a 32bit value to relocation address, taking into account the 
292   // implicit addend encoded in the target.
293   case ELF::R_ARM_TARGET1 :
294   case ELF::R_ARM_ABS32 :
295     *TargetPtr += Value;
296     break;
297
298   // Write first 16 bit of 32 bit value to the mov instruction.
299   // Last 4 bit should be shifted.
300   case ELF::R_ARM_MOVW_ABS_NC :
301     // We are not expecting any other addend in the relocation address.
302     // Using 0x000F0FFF because MOVW has its 16 bit immediate split into 2 
303     // non-contiguous fields.
304     assert((*TargetPtr & 0x000F0FFF) == 0);
305     Value = Value & 0xFFFF;
306     *TargetPtr |= Value & 0xFFF;
307     *TargetPtr |= ((Value >> 12) & 0xF) << 16;
308     break;
309
310   // Write last 16 bit of 32 bit value to the mov instruction.
311   // Last 4 bit should be shifted.
312   case ELF::R_ARM_MOVT_ABS :
313     // We are not expecting any other addend in the relocation address.
314     // Use 0x000F0FFF for the same reason as R_ARM_MOVW_ABS_NC.
315     assert((*TargetPtr & 0x000F0FFF) == 0);
316     Value = (Value >> 16) & 0xFFFF;
317     *TargetPtr |= Value & 0xFFF;
318     *TargetPtr |= ((Value >> 12) & 0xF) << 16;
319     break;
320
321   // Write 24 bit relative value to the branch instruction.
322   case ELF::R_ARM_PC24 :    // Fall through.
323   case ELF::R_ARM_CALL :    // Fall through.
324   case ELF::R_ARM_JUMP24 :
325     int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
326     RelValue = (RelValue & 0x03FFFFFC) >> 2;
327     *TargetPtr &= 0xFF000000;
328     *TargetPtr |= RelValue;
329     break;
330   }
331 }
332
333 void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section,
334                                            uint64_t Offset,
335                                            uint32_t Value,
336                                            uint32_t Type,
337                                            int32_t Addend) {
338   uint32_t* TargetPtr = (uint32_t*)(Section.Address + Offset);
339   Value += Addend;
340
341   DEBUG(dbgs() << "resolveMipselocation, LocalAddress: "
342                << Section.Address + Offset
343                << " FinalAddress: "
344                << format("%p",Section.LoadAddress + Offset)
345                << " Value: " << format("%x",Value)
346                << " Type: " << format("%x",Type)
347                << " Addend: " << format("%x",Addend)
348                << "\n");
349
350   switch(Type) {
351   default:
352     llvm_unreachable("Not implemented relocation type!");
353     break;
354   case ELF::R_MIPS_32:
355     *TargetPtr = Value + (*TargetPtr);
356     break;
357   case ELF::R_MIPS_26:
358     *TargetPtr = ((*TargetPtr) & 0xfc000000) | (( Value & 0x0fffffff) >> 2);
359     break;
360   case ELF::R_MIPS_HI16:
361     // Get the higher 16-bits. Also add 1 if bit 15 is 1.
362     Value += ((*TargetPtr) & 0x0000ffff) << 16;
363     *TargetPtr = ((*TargetPtr) & 0xffff0000) |
364                  (((Value + 0x8000) >> 16) & 0xffff);
365     break;
366    case ELF::R_MIPS_LO16:
367     Value += ((*TargetPtr) & 0x0000ffff);
368     *TargetPtr = ((*TargetPtr) & 0xffff0000) | (Value & 0xffff);
369     break;
370    }
371 }
372
373 // Return the .TOC. section address to R_PPC64_TOC relocations.
374 uint64_t RuntimeDyldELF::findPPC64TOC() const {
375   // The TOC consists of sections .got, .toc, .tocbss, .plt in that
376   // order. The TOC starts where the first of these sections starts.
377   SectionList::const_iterator it = Sections.begin();
378   SectionList::const_iterator ite = Sections.end();
379   for (; it != ite; ++it) {
380     if (it->Name == ".got" ||
381         it->Name == ".toc" ||
382         it->Name == ".tocbss" ||
383         it->Name == ".plt")
384       break;
385   }
386   if (it == ite) {
387     // This may happen for
388     // * references to TOC base base (sym@toc, .odp relocation) without
389     // a .toc directive.
390     // In this case just use the first section (which is usually
391     // the .odp) since the code won't reference the .toc base
392     // directly.
393     it = Sections.begin();
394   }
395   assert (it != ite);
396   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
397   // thus permitting a full 64 Kbytes segment.
398   return it->LoadAddress + 0x8000;
399 }
400
401 // Returns the sections and offset associated with the ODP entry referenced
402 // by Symbol.
403 void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj,
404                                          ObjSectionToIDMap &LocalSections,
405                                          RelocationValueRef &Rel) {
406   // Get the ELF symbol value (st_value) to compare with Relocation offset in
407   // .opd entries
408
409   error_code err;
410   for (section_iterator si = Obj.begin_sections(),
411      se = Obj.end_sections(); si != se; si.increment(err)) {
412     StringRef SectionName;
413     check(si->getName(SectionName));
414     if (SectionName != ".opd")
415       continue;
416
417     for (relocation_iterator i = si->begin_relocations(),
418          e = si->end_relocations(); i != e;) {
419       check(err);
420
421       // The R_PPC64_ADDR64 relocation indicates the first field
422       // of a .opd entry
423       uint64_t TypeFunc;
424       check(i->getType(TypeFunc));
425       if (TypeFunc != ELF::R_PPC64_ADDR64) {
426         i.increment(err);
427         continue;
428       }
429
430       SymbolRef TargetSymbol;
431       uint64_t TargetSymbolOffset;
432       int64_t TargetAdditionalInfo;
433       check(i->getSymbol(TargetSymbol));
434       check(i->getOffset(TargetSymbolOffset));
435       check(i->getAdditionalInfo(TargetAdditionalInfo));
436
437       i = i.increment(err);
438       if (i == e)
439         break;
440       check(err);
441
442       // Just check if following relocation is a R_PPC64_TOC
443       uint64_t TypeTOC;
444       check(i->getType(TypeTOC));
445       if (TypeTOC != ELF::R_PPC64_TOC)
446         continue;
447
448       // Finally compares the Symbol value and the target symbol offset
449       // to check if this .opd entry refers to the symbol the relocation
450       // points to.
451       if (Rel.Addend != (intptr_t)TargetSymbolOffset)
452         continue;
453
454       section_iterator tsi(Obj.end_sections());
455       check(TargetSymbol.getSection(tsi));
456       Rel.SectionID = findOrEmitSection(Obj, (*tsi), true, LocalSections);
457       Rel.Addend = (intptr_t)TargetAdditionalInfo;
458       return;
459     }
460   }
461   llvm_unreachable("Attempting to get address of ODP entry!");
462 }
463
464 // Relocation masks following the #lo(value), #hi(value), #higher(value),
465 // and #highest(value) macros defined in section 4.5.1. Relocation Types
466 // in PPC-elf64abi document.
467 //
468 static inline
469 uint16_t applyPPClo (uint64_t value)
470 {
471   return value & 0xffff;
472 }
473
474 static inline
475 uint16_t applyPPChi (uint64_t value)
476 {
477   return (value >> 16) & 0xffff;
478 }
479
480 static inline
481 uint16_t applyPPChigher (uint64_t value)
482 {
483   return (value >> 32) & 0xffff;
484 }
485
486 static inline
487 uint16_t applyPPChighest (uint64_t value)
488 {
489   return (value >> 48) & 0xffff;
490 }
491
492 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
493                                             uint64_t Offset,
494                                             uint64_t Value,
495                                             uint32_t Type,
496                                             int64_t Addend) {
497   uint8_t* LocalAddress = Section.Address + Offset;
498   switch (Type) {
499   default:
500     llvm_unreachable("Relocation type not implemented yet!");
501   break;
502   case ELF::R_PPC64_ADDR16_LO :
503     writeInt16BE(LocalAddress, applyPPClo (Value + Addend));
504     break;
505   case ELF::R_PPC64_ADDR16_HI :
506     writeInt16BE(LocalAddress, applyPPChi (Value + Addend));
507     break;
508   case ELF::R_PPC64_ADDR16_HIGHER :
509     writeInt16BE(LocalAddress, applyPPChigher (Value + Addend));
510     break;
511   case ELF::R_PPC64_ADDR16_HIGHEST :
512     writeInt16BE(LocalAddress, applyPPChighest (Value + Addend));
513     break;
514   case ELF::R_PPC64_ADDR14 : {
515     assert(((Value + Addend) & 3) == 0);
516     // Preserve the AA/LK bits in the branch instruction
517     uint8_t aalk = *(LocalAddress+3);
518     writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
519   } break;
520   case ELF::R_PPC64_REL24 : {
521     uint64_t FinalAddress = (Section.LoadAddress + Offset);
522     int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
523     if (SignExtend32<24>(delta) != delta)
524       llvm_unreachable("Relocation R_PPC64_REL24 overflow");
525     // Generates a 'bl <address>' instruction
526     writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC));
527   } break;
528   case ELF::R_PPC64_ADDR64 :
529     writeInt64BE(LocalAddress, Value + Addend);
530     break;
531   case ELF::R_PPC64_TOC :
532     writeInt64BE(LocalAddress, findPPC64TOC());
533     break;
534   case ELF::R_PPC64_TOC16 : {
535     uint64_t TOCStart = findPPC64TOC();
536     Value = applyPPClo((Value + Addend) - TOCStart);
537     writeInt16BE(LocalAddress, applyPPClo(Value));
538   } break;
539   case ELF::R_PPC64_TOC16_DS : {
540     uint64_t TOCStart = findPPC64TOC();
541     Value = ((Value + Addend) - TOCStart);
542     writeInt16BE(LocalAddress, applyPPClo(Value));
543   } break;
544   }
545 }
546
547
548 void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
549                                        uint64_t Offset,
550                                        uint64_t Value,
551                                        uint32_t Type,
552                                        int64_t Addend) {
553   switch (Arch) {
554   case Triple::x86_64:
555     resolveX86_64Relocation(Section, Offset, Value, Type, Addend);
556     break;
557   case Triple::x86:
558     resolveX86Relocation(Section, Offset,
559                          (uint32_t)(Value & 0xffffffffL), Type,
560                          (uint32_t)(Addend & 0xffffffffL));
561     break;
562   case Triple::arm:    // Fall through.
563   case Triple::thumb:
564     resolveARMRelocation(Section, Offset,
565                          (uint32_t)(Value & 0xffffffffL), Type,
566                          (uint32_t)(Addend & 0xffffffffL));
567     break;
568   case Triple::mips:    // Fall through.
569   case Triple::mipsel:
570     resolveMIPSRelocation(Section, Offset,
571                           (uint32_t)(Value & 0xffffffffL), Type,
572                           (uint32_t)(Addend & 0xffffffffL));
573     break;
574   case Triple::ppc64:
575     resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
576     break;
577   default: llvm_unreachable("Unsupported CPU type!");
578   }
579 }
580
581 void RuntimeDyldELF::processRelocationRef(const ObjRelocationInfo &Rel,
582                                           ObjectImage &Obj,
583                                           ObjSectionToIDMap &ObjSectionToID,
584                                           const SymbolTableMap &Symbols,
585                                           StubMap &Stubs) {
586
587   uint32_t RelType = (uint32_t)(Rel.Type & 0xffffffffL);
588   intptr_t Addend = (intptr_t)Rel.AdditionalInfo;
589   const SymbolRef &Symbol = Rel.Symbol;
590
591   // Obtain the symbol name which is referenced in the relocation
592   StringRef TargetName;
593   Symbol.getName(TargetName);
594   DEBUG(dbgs() << "\t\tRelType: " << RelType
595                << " Addend: " << Addend
596                << " TargetName: " << TargetName
597                << "\n");
598   RelocationValueRef Value;
599   // First search for the symbol in the local symbol table
600   SymbolTableMap::const_iterator lsi = Symbols.find(TargetName.data());
601   SymbolRef::Type SymType;
602   Symbol.getType(SymType);
603   if (lsi != Symbols.end()) {
604     Value.SectionID = lsi->second.first;
605     Value.Addend = lsi->second.second;
606   } else {
607     // Search for the symbol in the global symbol table
608     SymbolTableMap::const_iterator gsi =
609         GlobalSymbolTable.find(TargetName.data());
610     if (gsi != GlobalSymbolTable.end()) {
611       Value.SectionID = gsi->second.first;
612       Value.Addend = gsi->second.second;
613     } else {
614       switch (SymType) {
615         case SymbolRef::ST_Debug: {
616           // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
617           // and can be changed by another developers. Maybe best way is add
618           // a new symbol type ST_Section to SymbolRef and use it.
619           section_iterator si(Obj.end_sections());
620           Symbol.getSection(si);
621           if (si == Obj.end_sections())
622             llvm_unreachable("Symbol section not found, bad object file format!");
623           DEBUG(dbgs() << "\t\tThis is section symbol\n");
624           // Default to 'true' in case isText fails (though it never does).
625           bool isCode = true;
626           si->isText(isCode);
627           Value.SectionID = findOrEmitSection(Obj, 
628                                               (*si), 
629                                               isCode, 
630                                               ObjSectionToID);
631           Value.Addend = Addend;
632           break;
633         }
634         case SymbolRef::ST_Unknown: {
635           Value.SymbolName = TargetName.data();
636           Value.Addend = Addend;
637           break;
638         }
639         default:
640           llvm_unreachable("Unresolved symbol type!");
641           break;
642       }
643     }
644   }
645   DEBUG(dbgs() << "\t\tRel.SectionID: " << Rel.SectionID
646                << " Rel.Offset: " << Rel.Offset
647                << "\n");
648   if (Arch == Triple::arm &&
649       (RelType == ELF::R_ARM_PC24 ||
650        RelType == ELF::R_ARM_CALL ||
651        RelType == ELF::R_ARM_JUMP24)) {
652     // This is an ARM branch relocation, need to use a stub function.
653     DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.");
654     SectionEntry &Section = Sections[Rel.SectionID];
655
656     // Look for an existing stub.
657     StubMap::const_iterator i = Stubs.find(Value);
658     if (i != Stubs.end()) {
659         resolveRelocation(Section, Rel.Offset,
660                           (uint64_t)Section.Address + i->second, RelType, 0);
661       DEBUG(dbgs() << " Stub function found\n");
662     } else {
663       // Create a new stub function.
664       DEBUG(dbgs() << " Create a new stub function\n");
665       Stubs[Value] = Section.StubOffset;
666       uint8_t *StubTargetAddr = createStubFunction(Section.Address +
667                                                    Section.StubOffset);
668       RelocationEntry RE(Rel.SectionID, StubTargetAddr - Section.Address,
669                          ELF::R_ARM_ABS32, Value.Addend);
670       if (Value.SymbolName)
671         addRelocationForSymbol(RE, Value.SymbolName);
672       else
673         addRelocationForSection(RE, Value.SectionID);
674
675       resolveRelocation(Section, Rel.Offset,
676                         (uint64_t)Section.Address + Section.StubOffset,
677                         RelType, 0);
678       Section.StubOffset += getMaxStubSize();
679     }
680   } else if (Arch == Triple::mipsel && RelType == ELF::R_MIPS_26) {
681     // This is an Mips branch relocation, need to use a stub function.
682     DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
683     SectionEntry &Section = Sections[Rel.SectionID];
684     uint8_t *Target = Section.Address + Rel.Offset;
685     uint32_t *TargetAddress = (uint32_t *)Target;
686
687     // Extract the addend from the instruction.
688     uint32_t Addend = ((*TargetAddress) & 0x03ffffff) << 2;
689
690     Value.Addend += Addend;
691
692     //  Look up for existing stub.
693     StubMap::const_iterator i = Stubs.find(Value);
694     if (i != Stubs.end()) {
695       resolveRelocation(Section, Rel.Offset,
696                         (uint64_t)Section.Address + i->second, RelType, 0);
697       DEBUG(dbgs() << " Stub function found\n");
698     } else {
699       // Create a new stub function.
700       DEBUG(dbgs() << " Create a new stub function\n");
701       Stubs[Value] = Section.StubOffset;
702       uint8_t *StubTargetAddr = createStubFunction(Section.Address +
703                                                    Section.StubOffset);
704
705       // Creating Hi and Lo relocations for the filled stub instructions.
706       RelocationEntry REHi(Rel.SectionID,
707                            StubTargetAddr - Section.Address,
708                            ELF::R_MIPS_HI16, Value.Addend);
709       RelocationEntry RELo(Rel.SectionID,
710                            StubTargetAddr - Section.Address + 4,
711                            ELF::R_MIPS_LO16, Value.Addend);
712
713       if (Value.SymbolName) {
714         addRelocationForSymbol(REHi, Value.SymbolName);
715         addRelocationForSymbol(RELo, Value.SymbolName);
716       } else {
717         addRelocationForSection(REHi, Value.SectionID);
718         addRelocationForSection(RELo, Value.SectionID);
719       }
720
721       resolveRelocation(Section, Rel.Offset,
722                         (uint64_t)Section.Address + Section.StubOffset,
723                         RelType, 0);
724       Section.StubOffset += getMaxStubSize();
725     }
726   } else if (Arch == Triple::ppc64) {
727     if (RelType == ELF::R_PPC64_REL24) {
728       // A PPC branch relocation will need a stub function if the target is
729       // an external symbol (Symbol::ST_Unknown) or if the target address
730       // is not within the signed 24-bits branch address.
731       SectionEntry &Section = Sections[Rel.SectionID];
732       uint8_t *Target = Section.Address + Rel.Offset;
733       bool RangeOverflow = false;
734       if (SymType != SymbolRef::ST_Unknown) {
735         // A function call may points to the .opd entry, so the final symbol value
736         // in calculated based in the relocation values in .opd section.
737         findOPDEntrySection(Obj, ObjSectionToID, Value);
738         uint8_t *RelocTarget = Sections[Value.SectionID].Address + Value.Addend;
739         int32_t delta = static_cast<int32_t>(Target - RelocTarget);
740         // If it is within 24-bits branch range, just set the branch target
741         if (SignExtend32<24>(delta) == delta) {
742           RelocationEntry RE(Rel.SectionID, Rel.Offset, RelType, Value.Addend);
743           if (Value.SymbolName)
744             addRelocationForSymbol(RE, Value.SymbolName);
745           else
746             addRelocationForSection(RE, Value.SectionID);
747         } else {
748           RangeOverflow = true;
749         }
750       }
751       if (SymType == SymbolRef::ST_Unknown || RangeOverflow == true) {
752         // It is an external symbol (SymbolRef::ST_Unknown) or within a range
753         // larger than 24-bits.
754         StubMap::const_iterator i = Stubs.find(Value);
755         if (i != Stubs.end()) {
756           // Symbol function stub already created, just relocate to it
757           resolveRelocation(Section, Rel.Offset,
758                             (uint64_t)Section.Address + i->second, RelType, 0);
759           DEBUG(dbgs() << " Stub function found\n");
760         } else {
761           // Create a new stub function.
762           DEBUG(dbgs() << " Create a new stub function\n");
763           Stubs[Value] = Section.StubOffset;
764           uint8_t *StubTargetAddr = createStubFunction(Section.Address +
765                                                        Section.StubOffset);
766           RelocationEntry RE(Rel.SectionID, StubTargetAddr - Section.Address,
767                              ELF::R_PPC64_ADDR64, Value.Addend);
768
769           // Generates the 64-bits address loads as exemplified in section
770           // 4.5.1 in PPC64 ELF ABI.
771           RelocationEntry REhst(Rel.SectionID,
772                                 StubTargetAddr - Section.Address + 2,
773                                 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
774           RelocationEntry REhr(Rel.SectionID,
775                                StubTargetAddr - Section.Address + 6,
776                                ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
777           RelocationEntry REh(Rel.SectionID,
778                               StubTargetAddr - Section.Address + 14,
779                               ELF::R_PPC64_ADDR16_HI, Value.Addend);
780           RelocationEntry REl(Rel.SectionID,
781                               StubTargetAddr - Section.Address + 18,
782                               ELF::R_PPC64_ADDR16_LO, Value.Addend);
783
784           if (Value.SymbolName) {
785             addRelocationForSymbol(REhst, Value.SymbolName);
786             addRelocationForSymbol(REhr,  Value.SymbolName);
787             addRelocationForSymbol(REh,   Value.SymbolName);
788             addRelocationForSymbol(REl,   Value.SymbolName);
789           } else {
790             addRelocationForSection(REhst, Value.SectionID);
791             addRelocationForSection(REhr,  Value.SectionID);
792             addRelocationForSection(REh,   Value.SectionID);
793             addRelocationForSection(REl,   Value.SectionID);
794           }
795
796           resolveRelocation(Section, Rel.Offset,
797                             (uint64_t)Section.Address + Section.StubOffset,
798                             RelType, 0);
799           if (SymType == SymbolRef::ST_Unknown)
800             // Restore the TOC for external calls
801             writeInt32BE(Target+4, 0xE8410028); // ld r2,40(r1)
802           Section.StubOffset += getMaxStubSize();
803         }
804       }
805     } else {
806       RelocationEntry RE(Rel.SectionID, Rel.Offset, RelType, Value.Addend);
807       // Extra check to avoid relocation againt empty symbols (usually
808       // the R_PPC64_TOC).
809       if (Value.SymbolName && !TargetName.empty())
810         addRelocationForSymbol(RE, Value.SymbolName);
811       else
812         addRelocationForSection(RE, Value.SectionID);
813     }
814   } else {
815     RelocationEntry RE(Rel.SectionID, Rel.Offset, RelType, Value.Addend);
816     if (Value.SymbolName)
817       addRelocationForSymbol(RE, Value.SymbolName);
818     else
819       addRelocationForSection(RE, Value.SectionID);
820   }
821 }
822
823 unsigned RuntimeDyldELF::getCommonSymbolAlignment(const SymbolRef &Sym) {
824   // In ELF, the value of an SHN_COMMON symbol is its alignment requirement.
825   uint64_t Align;
826   Check(Sym.getValue(Align));
827   return Align;
828 }
829
830 bool RuntimeDyldELF::isCompatibleFormat(const ObjectBuffer *Buffer) const {
831   if (Buffer->getBufferSize() < strlen(ELF::ElfMagic))
832     return false;
833   return (memcmp(Buffer->getBufferStart(), ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
834 }
835 } // namespace llvm