0741f6ad94e63a7784efe2dd2216960486b01e10
[oota-llvm.git] / lib / ExecutionEngine / JIT / JITMemoryManager.cpp
1 //===-- JITMemoryManager.cpp - Memory Allocator for JIT'd code ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the DefaultJITMemoryManager class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/ExecutionEngine/JITMemoryManager.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/ADT/Twine.h"
18 #include "llvm/Config/config.h"
19 #include "llvm/IR/GlobalValue.h"
20 #include "llvm/Support/Allocator.h"
21 #include "llvm/Support/Compiler.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/DynamicLibrary.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/Memory.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <cassert>
28 #include <climits>
29 #include <cstring>
30 #include <vector>
31
32 #if defined(__linux__)
33 #if defined(HAVE_SYS_STAT_H)
34 #include <sys/stat.h>
35 #endif
36 #include <fcntl.h>
37 #include <unistd.h>
38 #endif
39
40 using namespace llvm;
41
42 #define DEBUG_TYPE "jit"
43
44 STATISTIC(NumSlabs, "Number of slabs of memory allocated by the JIT");
45
46 JITMemoryManager::~JITMemoryManager() {}
47
48 //===----------------------------------------------------------------------===//
49 // Memory Block Implementation.
50 //===----------------------------------------------------------------------===//
51
52 namespace {
53   /// MemoryRangeHeader - For a range of memory, this is the header that we put
54   /// on the block of memory.  It is carefully crafted to be one word of memory.
55   /// Allocated blocks have just this header, free'd blocks have FreeRangeHeader
56   /// which starts with this.
57   struct FreeRangeHeader;
58   struct MemoryRangeHeader {
59     /// ThisAllocated - This is true if this block is currently allocated.  If
60     /// not, this can be converted to a FreeRangeHeader.
61     unsigned ThisAllocated : 1;
62
63     /// PrevAllocated - Keep track of whether the block immediately before us is
64     /// allocated.  If not, the word immediately before this header is the size
65     /// of the previous block.
66     unsigned PrevAllocated : 1;
67
68     /// BlockSize - This is the size in bytes of this memory block,
69     /// including this header.
70     uintptr_t BlockSize : (sizeof(intptr_t)*CHAR_BIT - 2);
71
72
73     /// getBlockAfter - Return the memory block immediately after this one.
74     ///
75     MemoryRangeHeader &getBlockAfter() const {
76       return *reinterpret_cast<MemoryRangeHeader *>(
77                 reinterpret_cast<char*>(
78                   const_cast<MemoryRangeHeader *>(this))+BlockSize);
79     }
80
81     /// getFreeBlockBefore - If the block before this one is free, return it,
82     /// otherwise return null.
83     FreeRangeHeader *getFreeBlockBefore() const {
84       if (PrevAllocated) return nullptr;
85       intptr_t PrevSize = reinterpret_cast<intptr_t *>(
86                             const_cast<MemoryRangeHeader *>(this))[-1];
87       return reinterpret_cast<FreeRangeHeader *>(
88                reinterpret_cast<char*>(
89                  const_cast<MemoryRangeHeader *>(this))-PrevSize);
90     }
91
92     /// FreeBlock - Turn an allocated block into a free block, adjusting
93     /// bits in the object headers, and adding an end of region memory block.
94     FreeRangeHeader *FreeBlock(FreeRangeHeader *FreeList);
95
96     /// TrimAllocationToSize - If this allocated block is significantly larger
97     /// than NewSize, split it into two pieces (where the former is NewSize
98     /// bytes, including the header), and add the new block to the free list.
99     FreeRangeHeader *TrimAllocationToSize(FreeRangeHeader *FreeList,
100                                           uint64_t NewSize);
101   };
102
103   /// FreeRangeHeader - For a memory block that isn't already allocated, this
104   /// keeps track of the current block and has a pointer to the next free block.
105   /// Free blocks are kept on a circularly linked list.
106   struct FreeRangeHeader : public MemoryRangeHeader {
107     FreeRangeHeader *Prev;
108     FreeRangeHeader *Next;
109
110     /// getMinBlockSize - Get the minimum size for a memory block.  Blocks
111     /// smaller than this size cannot be created.
112     static unsigned getMinBlockSize() {
113       return sizeof(FreeRangeHeader)+sizeof(intptr_t);
114     }
115
116     /// SetEndOfBlockSizeMarker - The word at the end of every free block is
117     /// known to be the size of the free block.  Set it for this block.
118     void SetEndOfBlockSizeMarker() {
119       void *EndOfBlock = (char*)this + BlockSize;
120       ((intptr_t *)EndOfBlock)[-1] = BlockSize;
121     }
122
123     FreeRangeHeader *RemoveFromFreeList() {
124       assert(Next->Prev == this && Prev->Next == this && "Freelist broken!");
125       Next->Prev = Prev;
126       return Prev->Next = Next;
127     }
128
129     void AddToFreeList(FreeRangeHeader *FreeList) {
130       Next = FreeList;
131       Prev = FreeList->Prev;
132       Prev->Next = this;
133       Next->Prev = this;
134     }
135
136     /// GrowBlock - The block after this block just got deallocated.  Merge it
137     /// into the current block.
138     void GrowBlock(uintptr_t NewSize);
139
140     /// AllocateBlock - Mark this entire block allocated, updating freelists
141     /// etc.  This returns a pointer to the circular free-list.
142     FreeRangeHeader *AllocateBlock();
143   };
144 }
145
146
147 /// AllocateBlock - Mark this entire block allocated, updating freelists
148 /// etc.  This returns a pointer to the circular free-list.
149 FreeRangeHeader *FreeRangeHeader::AllocateBlock() {
150   assert(!ThisAllocated && !getBlockAfter().PrevAllocated &&
151          "Cannot allocate an allocated block!");
152   // Mark this block allocated.
153   ThisAllocated = 1;
154   getBlockAfter().PrevAllocated = 1;
155
156   // Remove it from the free list.
157   return RemoveFromFreeList();
158 }
159
160 /// FreeBlock - Turn an allocated block into a free block, adjusting
161 /// bits in the object headers, and adding an end of region memory block.
162 /// If possible, coalesce this block with neighboring blocks.  Return the
163 /// FreeRangeHeader to allocate from.
164 FreeRangeHeader *MemoryRangeHeader::FreeBlock(FreeRangeHeader *FreeList) {
165   MemoryRangeHeader *FollowingBlock = &getBlockAfter();
166   assert(ThisAllocated && "This block is already free!");
167   assert(FollowingBlock->PrevAllocated && "Flags out of sync!");
168
169   FreeRangeHeader *FreeListToReturn = FreeList;
170
171   // If the block after this one is free, merge it into this block.
172   if (!FollowingBlock->ThisAllocated) {
173     FreeRangeHeader &FollowingFreeBlock = *(FreeRangeHeader *)FollowingBlock;
174     // "FreeList" always needs to be a valid free block.  If we're about to
175     // coalesce with it, update our notion of what the free list is.
176     if (&FollowingFreeBlock == FreeList) {
177       FreeList = FollowingFreeBlock.Next;
178       FreeListToReturn = nullptr;
179       assert(&FollowingFreeBlock != FreeList && "No tombstone block?");
180     }
181     FollowingFreeBlock.RemoveFromFreeList();
182
183     // Include the following block into this one.
184     BlockSize += FollowingFreeBlock.BlockSize;
185     FollowingBlock = &FollowingFreeBlock.getBlockAfter();
186
187     // Tell the block after the block we are coalescing that this block is
188     // allocated.
189     FollowingBlock->PrevAllocated = 1;
190   }
191
192   assert(FollowingBlock->ThisAllocated && "Missed coalescing?");
193
194   if (FreeRangeHeader *PrevFreeBlock = getFreeBlockBefore()) {
195     PrevFreeBlock->GrowBlock(PrevFreeBlock->BlockSize + BlockSize);
196     return FreeListToReturn ? FreeListToReturn : PrevFreeBlock;
197   }
198
199   // Otherwise, mark this block free.
200   FreeRangeHeader &FreeBlock = *(FreeRangeHeader*)this;
201   FollowingBlock->PrevAllocated = 0;
202   FreeBlock.ThisAllocated = 0;
203
204   // Link this into the linked list of free blocks.
205   FreeBlock.AddToFreeList(FreeList);
206
207   // Add a marker at the end of the block, indicating the size of this free
208   // block.
209   FreeBlock.SetEndOfBlockSizeMarker();
210   return FreeListToReturn ? FreeListToReturn : &FreeBlock;
211 }
212
213 /// GrowBlock - The block after this block just got deallocated.  Merge it
214 /// into the current block.
215 void FreeRangeHeader::GrowBlock(uintptr_t NewSize) {
216   assert(NewSize > BlockSize && "Not growing block?");
217   BlockSize = NewSize;
218   SetEndOfBlockSizeMarker();
219   getBlockAfter().PrevAllocated = 0;
220 }
221
222 /// TrimAllocationToSize - If this allocated block is significantly larger
223 /// than NewSize, split it into two pieces (where the former is NewSize
224 /// bytes, including the header), and add the new block to the free list.
225 FreeRangeHeader *MemoryRangeHeader::
226 TrimAllocationToSize(FreeRangeHeader *FreeList, uint64_t NewSize) {
227   assert(ThisAllocated && getBlockAfter().PrevAllocated &&
228          "Cannot deallocate part of an allocated block!");
229
230   // Don't allow blocks to be trimmed below minimum required size
231   NewSize = std::max<uint64_t>(FreeRangeHeader::getMinBlockSize(), NewSize);
232
233   // Round up size for alignment of header.
234   unsigned HeaderAlign = __alignof(FreeRangeHeader);
235   NewSize = (NewSize+ (HeaderAlign-1)) & ~(HeaderAlign-1);
236
237   // Size is now the size of the block we will remove from the start of the
238   // current block.
239   assert(NewSize <= BlockSize &&
240          "Allocating more space from this block than exists!");
241
242   // If splitting this block will cause the remainder to be too small, do not
243   // split the block.
244   if (BlockSize <= NewSize+FreeRangeHeader::getMinBlockSize())
245     return FreeList;
246
247   // Otherwise, we splice the required number of bytes out of this block, form
248   // a new block immediately after it, then mark this block allocated.
249   MemoryRangeHeader &FormerNextBlock = getBlockAfter();
250
251   // Change the size of this block.
252   BlockSize = NewSize;
253
254   // Get the new block we just sliced out and turn it into a free block.
255   FreeRangeHeader &NewNextBlock = (FreeRangeHeader &)getBlockAfter();
256   NewNextBlock.BlockSize = (char*)&FormerNextBlock - (char*)&NewNextBlock;
257   NewNextBlock.ThisAllocated = 0;
258   NewNextBlock.PrevAllocated = 1;
259   NewNextBlock.SetEndOfBlockSizeMarker();
260   FormerNextBlock.PrevAllocated = 0;
261   NewNextBlock.AddToFreeList(FreeList);
262   return &NewNextBlock;
263 }
264
265 //===----------------------------------------------------------------------===//
266 // Memory Block Implementation.
267 //===----------------------------------------------------------------------===//
268
269 namespace {
270
271   class DefaultJITMemoryManager;
272
273   class JITAllocator {
274     DefaultJITMemoryManager &JMM;
275   public:
276     JITAllocator(DefaultJITMemoryManager &jmm) : JMM(jmm) { }
277     void *Allocate(size_t Size, size_t /*Alignment*/);
278     void Deallocate(void *Slab, size_t Size);
279   };
280
281   /// DefaultJITMemoryManager - Manage memory for the JIT code generation.
282   /// This splits a large block of MAP_NORESERVE'd memory into two
283   /// sections, one for function stubs, one for the functions themselves.  We
284   /// have to do this because we may need to emit a function stub while in the
285   /// middle of emitting a function, and we don't know how large the function we
286   /// are emitting is.
287   class DefaultJITMemoryManager : public JITMemoryManager {
288   public:
289     /// DefaultCodeSlabSize - When we have to go map more memory, we allocate at
290     /// least this much unless more is requested. Currently, in 512k slabs.
291     static const size_t DefaultCodeSlabSize = 512 * 1024;
292
293     /// DefaultSlabSize - Allocate globals and stubs into slabs of 64K (probably
294     /// 16 pages) unless we get an allocation above SizeThreshold.
295     static const size_t DefaultSlabSize = 64 * 1024;
296
297     /// DefaultSizeThreshold - For any allocation larger than 16K (probably
298     /// 4 pages), we should allocate a separate slab to avoid wasted space at
299     /// the end of a normal slab.
300     static const size_t DefaultSizeThreshold = 16 * 1024;
301
302   private:
303     // Whether to poison freed memory.
304     bool PoisonMemory;
305
306     /// LastSlab - This points to the last slab allocated and is used as the
307     /// NearBlock parameter to AllocateRWX so that we can attempt to lay out all
308     /// stubs, data, and code contiguously in memory.  In general, however, this
309     /// is not possible because the NearBlock parameter is ignored on Windows
310     /// platforms and even on Unix it works on a best-effort pasis.
311     sys::MemoryBlock LastSlab;
312
313     // Memory slabs allocated by the JIT.  We refer to them as slabs so we don't
314     // confuse them with the blocks of memory described above.
315     std::vector<sys::MemoryBlock> CodeSlabs;
316     BumpPtrAllocatorImpl<JITAllocator, DefaultSlabSize,
317                          DefaultSizeThreshold> StubAllocator;
318     BumpPtrAllocatorImpl<JITAllocator, DefaultSlabSize,
319                          DefaultSizeThreshold> DataAllocator;
320
321     // Circular list of free blocks.
322     FreeRangeHeader *FreeMemoryList;
323
324     // When emitting code into a memory block, this is the block.
325     MemoryRangeHeader *CurBlock;
326
327     std::unique_ptr<uint8_t[]> GOTBase; // Target Specific reserved memory
328   public:
329     DefaultJITMemoryManager();
330     ~DefaultJITMemoryManager();
331
332     /// allocateNewSlab - Allocates a new MemoryBlock and remembers it as the
333     /// last slab it allocated, so that subsequent allocations follow it.
334     sys::MemoryBlock allocateNewSlab(size_t size);
335
336     /// getPointerToNamedFunction - This method returns the address of the
337     /// specified function by using the dlsym function call.
338     void *getPointerToNamedFunction(const std::string &Name,
339                                     bool AbortOnFailure = true) override;
340
341     void AllocateGOT() override;
342
343     // Testing methods.
344     bool CheckInvariants(std::string &ErrorStr) override;
345     size_t GetDefaultCodeSlabSize() override { return DefaultCodeSlabSize; }
346     size_t GetDefaultDataSlabSize() override { return DefaultSlabSize; }
347     size_t GetDefaultStubSlabSize() override { return DefaultSlabSize; }
348     unsigned GetNumCodeSlabs() override { return CodeSlabs.size(); }
349     unsigned GetNumDataSlabs() override { return DataAllocator.GetNumSlabs(); }
350     unsigned GetNumStubSlabs() override { return StubAllocator.GetNumSlabs(); }
351
352     /// startFunctionBody - When a function starts, allocate a block of free
353     /// executable memory, returning a pointer to it and its actual size.
354     uint8_t *startFunctionBody(const Function *F,
355                                uintptr_t &ActualSize) override {
356
357       FreeRangeHeader* candidateBlock = FreeMemoryList;
358       FreeRangeHeader* head = FreeMemoryList;
359       FreeRangeHeader* iter = head->Next;
360
361       uintptr_t largest = candidateBlock->BlockSize;
362
363       // Search for the largest free block
364       while (iter != head) {
365         if (iter->BlockSize > largest) {
366           largest = iter->BlockSize;
367           candidateBlock = iter;
368         }
369         iter = iter->Next;
370       }
371
372       largest = largest - sizeof(MemoryRangeHeader);
373
374       // If this block isn't big enough for the allocation desired, allocate
375       // another block of memory and add it to the free list.
376       if (largest < ActualSize ||
377           largest <= FreeRangeHeader::getMinBlockSize()) {
378         DEBUG(dbgs() << "JIT: Allocating another slab of memory for function.");
379         candidateBlock = allocateNewCodeSlab((size_t)ActualSize);
380       }
381
382       // Select this candidate block for allocation
383       CurBlock = candidateBlock;
384
385       // Allocate the entire memory block.
386       FreeMemoryList = candidateBlock->AllocateBlock();
387       ActualSize = CurBlock->BlockSize - sizeof(MemoryRangeHeader);
388       return (uint8_t *)(CurBlock + 1);
389     }
390
391     /// allocateNewCodeSlab - Helper method to allocate a new slab of code
392     /// memory from the OS and add it to the free list.  Returns the new
393     /// FreeRangeHeader at the base of the slab.
394     FreeRangeHeader *allocateNewCodeSlab(size_t MinSize) {
395       // If the user needs at least MinSize free memory, then we account for
396       // two MemoryRangeHeaders: the one in the user's block, and the one at the
397       // end of the slab.
398       size_t PaddedMin = MinSize + 2 * sizeof(MemoryRangeHeader);
399       size_t SlabSize = std::max(DefaultCodeSlabSize, PaddedMin);
400       sys::MemoryBlock B = allocateNewSlab(SlabSize);
401       CodeSlabs.push_back(B);
402       char *MemBase = (char*)(B.base());
403
404       // Put a tiny allocated block at the end of the memory chunk, so when
405       // FreeBlock calls getBlockAfter it doesn't fall off the end.
406       MemoryRangeHeader *EndBlock =
407           (MemoryRangeHeader*)(MemBase + B.size()) - 1;
408       EndBlock->ThisAllocated = 1;
409       EndBlock->PrevAllocated = 0;
410       EndBlock->BlockSize = sizeof(MemoryRangeHeader);
411
412       // Start out with a vast new block of free memory.
413       FreeRangeHeader *NewBlock = (FreeRangeHeader*)MemBase;
414       NewBlock->ThisAllocated = 0;
415       // Make sure getFreeBlockBefore doesn't look into unmapped memory.
416       NewBlock->PrevAllocated = 1;
417       NewBlock->BlockSize = (uintptr_t)EndBlock - (uintptr_t)NewBlock;
418       NewBlock->SetEndOfBlockSizeMarker();
419       NewBlock->AddToFreeList(FreeMemoryList);
420
421       assert(NewBlock->BlockSize - sizeof(MemoryRangeHeader) >= MinSize &&
422              "The block was too small!");
423       return NewBlock;
424     }
425
426     /// endFunctionBody - The function F is now allocated, and takes the memory
427     /// in the range [FunctionStart,FunctionEnd).
428     void endFunctionBody(const Function *F, uint8_t *FunctionStart,
429                          uint8_t *FunctionEnd) override {
430       assert(FunctionEnd > FunctionStart);
431       assert(FunctionStart == (uint8_t *)(CurBlock+1) &&
432              "Mismatched function start/end!");
433
434       uintptr_t BlockSize = FunctionEnd - (uint8_t *)CurBlock;
435
436       // Release the memory at the end of this block that isn't needed.
437       FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
438     }
439
440     /// allocateSpace - Allocate a memory block of the given size.  This method
441     /// cannot be called between calls to startFunctionBody and endFunctionBody.
442     uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) override {
443       CurBlock = FreeMemoryList;
444       FreeMemoryList = FreeMemoryList->AllocateBlock();
445
446       uint8_t *result = (uint8_t *)(CurBlock + 1);
447
448       if (Alignment == 0) Alignment = 1;
449       result = (uint8_t*)(((intptr_t)result+Alignment-1) &
450                ~(intptr_t)(Alignment-1));
451
452       uintptr_t BlockSize = result + Size - (uint8_t *)CurBlock;
453       FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
454
455       return result;
456     }
457
458     /// allocateStub - Allocate memory for a function stub.
459     uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize,
460                           unsigned Alignment) override {
461       return (uint8_t*)StubAllocator.Allocate(StubSize, Alignment);
462     }
463
464     /// allocateGlobal - Allocate memory for a global.
465     uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) override {
466       return (uint8_t*)DataAllocator.Allocate(Size, Alignment);
467     }
468
469     /// allocateCodeSection - Allocate memory for a code section.
470     uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
471                                  unsigned SectionID,
472                                  StringRef SectionName) override {
473       // Grow the required block size to account for the block header
474       Size += sizeof(*CurBlock);
475
476       // Alignment handling.
477       if (!Alignment)
478         Alignment = 16;
479       Size += Alignment - 1;
480
481       FreeRangeHeader* candidateBlock = FreeMemoryList;
482       FreeRangeHeader* head = FreeMemoryList;
483       FreeRangeHeader* iter = head->Next;
484
485       uintptr_t largest = candidateBlock->BlockSize;
486
487       // Search for the largest free block.
488       while (iter != head) {
489         if (iter->BlockSize > largest) {
490           largest = iter->BlockSize;
491           candidateBlock = iter;
492         }
493         iter = iter->Next;
494       }
495
496       largest = largest - sizeof(MemoryRangeHeader);
497
498       // If this block isn't big enough for the allocation desired, allocate
499       // another block of memory and add it to the free list.
500       if (largest < Size || largest <= FreeRangeHeader::getMinBlockSize()) {
501         DEBUG(dbgs() << "JIT: Allocating another slab of memory for function.");
502         candidateBlock = allocateNewCodeSlab((size_t)Size);
503       }
504
505       // Select this candidate block for allocation
506       CurBlock = candidateBlock;
507
508       // Allocate the entire memory block.
509       FreeMemoryList = candidateBlock->AllocateBlock();
510       // Release the memory at the end of this block that isn't needed.
511       FreeMemoryList = CurBlock->TrimAllocationToSize(FreeMemoryList, Size);
512       uintptr_t unalignedAddr = (uintptr_t)CurBlock + sizeof(*CurBlock);
513       return (uint8_t*)RoundUpToAlignment((uint64_t)unalignedAddr, Alignment);
514     }
515
516     /// allocateDataSection - Allocate memory for a data section.
517     uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
518                                  unsigned SectionID, StringRef SectionName,
519                                  bool IsReadOnly) override {
520       return (uint8_t*)DataAllocator.Allocate(Size, Alignment);
521     }
522
523     bool finalizeMemory(std::string *ErrMsg) override {
524       return false;
525     }
526
527     uint8_t *getGOTBase() const override {
528       return GOTBase.get();
529     }
530
531     void deallocateBlock(void *Block) {
532       // Find the block that is allocated for this function.
533       MemoryRangeHeader *MemRange = static_cast<MemoryRangeHeader*>(Block) - 1;
534       assert(MemRange->ThisAllocated && "Block isn't allocated!");
535
536       // Fill the buffer with garbage!
537       if (PoisonMemory) {
538         memset(MemRange+1, 0xCD, MemRange->BlockSize-sizeof(*MemRange));
539       }
540
541       // Free the memory.
542       FreeMemoryList = MemRange->FreeBlock(FreeMemoryList);
543     }
544
545     /// deallocateFunctionBody - Deallocate all memory for the specified
546     /// function body.
547     void deallocateFunctionBody(void *Body) override {
548       if (Body) deallocateBlock(Body);
549     }
550
551     /// setMemoryWritable - When code generation is in progress,
552     /// the code pages may need permissions changed.
553     void setMemoryWritable() override {
554       for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
555         sys::Memory::setWritable(CodeSlabs[i]);
556     }
557     /// setMemoryExecutable - When code generation is done and we're ready to
558     /// start execution, the code pages may need permissions changed.
559     void setMemoryExecutable() override {
560       for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
561         sys::Memory::setExecutable(CodeSlabs[i]);
562     }
563
564     /// setPoisonMemory - Controls whether we write garbage over freed memory.
565     ///
566     void setPoisonMemory(bool poison) override {
567       PoisonMemory = poison;
568     }
569   };
570 }
571
572 void *JITAllocator::Allocate(size_t Size, size_t /*Alignment*/) {
573   sys::MemoryBlock B = JMM.allocateNewSlab(Size);
574   return B.base();
575 }
576
577 void JITAllocator::Deallocate(void *Slab, size_t Size) {
578   sys::MemoryBlock B(Slab, Size);
579   sys::Memory::ReleaseRWX(B);
580 }
581
582 DefaultJITMemoryManager::DefaultJITMemoryManager()
583     :
584 #ifdef NDEBUG
585       PoisonMemory(false),
586 #else
587       PoisonMemory(true),
588 #endif
589       LastSlab(nullptr, 0), StubAllocator(*this), DataAllocator(*this) {
590
591   // Allocate space for code.
592   sys::MemoryBlock MemBlock = allocateNewSlab(DefaultCodeSlabSize);
593   CodeSlabs.push_back(MemBlock);
594   uint8_t *MemBase = (uint8_t*)MemBlock.base();
595
596   // We set up the memory chunk with 4 mem regions, like this:
597   //  [ START
598   //    [ Free      #0 ] -> Large space to allocate functions from.
599   //    [ Allocated #1 ] -> Tiny space to separate regions.
600   //    [ Free      #2 ] -> Tiny space so there is always at least 1 free block.
601   //    [ Allocated #3 ] -> Tiny space to prevent looking past end of block.
602   //  END ]
603   //
604   // The last three blocks are never deallocated or touched.
605
606   // Add MemoryRangeHeader to the end of the memory region, indicating that
607   // the space after the block of memory is allocated.  This is block #3.
608   MemoryRangeHeader *Mem3 = (MemoryRangeHeader*)(MemBase+MemBlock.size())-1;
609   Mem3->ThisAllocated = 1;
610   Mem3->PrevAllocated = 0;
611   Mem3->BlockSize     = sizeof(MemoryRangeHeader);
612
613   /// Add a tiny free region so that the free list always has one entry.
614   FreeRangeHeader *Mem2 =
615     (FreeRangeHeader *)(((char*)Mem3)-FreeRangeHeader::getMinBlockSize());
616   Mem2->ThisAllocated = 0;
617   Mem2->PrevAllocated = 1;
618   Mem2->BlockSize     = FreeRangeHeader::getMinBlockSize();
619   Mem2->SetEndOfBlockSizeMarker();
620   Mem2->Prev = Mem2;   // Mem2 *is* the free list for now.
621   Mem2->Next = Mem2;
622
623   /// Add a tiny allocated region so that Mem2 is never coalesced away.
624   MemoryRangeHeader *Mem1 = (MemoryRangeHeader*)Mem2-1;
625   Mem1->ThisAllocated = 1;
626   Mem1->PrevAllocated = 0;
627   Mem1->BlockSize     = sizeof(MemoryRangeHeader);
628
629   // Add a FreeRangeHeader to the start of the function body region, indicating
630   // that the space is free.  Mark the previous block allocated so we never look
631   // at it.
632   FreeRangeHeader *Mem0 = (FreeRangeHeader*)MemBase;
633   Mem0->ThisAllocated = 0;
634   Mem0->PrevAllocated = 1;
635   Mem0->BlockSize = (char*)Mem1-(char*)Mem0;
636   Mem0->SetEndOfBlockSizeMarker();
637   Mem0->AddToFreeList(Mem2);
638
639   // Start out with the freelist pointing to Mem0.
640   FreeMemoryList = Mem0;
641 }
642
643 void DefaultJITMemoryManager::AllocateGOT() {
644   assert(!GOTBase && "Cannot allocate the got multiple times");
645   GOTBase = make_unique<uint8_t[]>(sizeof(void*) * 8192);
646   HasGOT = true;
647 }
648
649 DefaultJITMemoryManager::~DefaultJITMemoryManager() {
650   for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
651     sys::Memory::ReleaseRWX(CodeSlabs[i]);
652 }
653
654 sys::MemoryBlock DefaultJITMemoryManager::allocateNewSlab(size_t size) {
655   // Allocate a new block close to the last one.
656   std::string ErrMsg;
657   sys::MemoryBlock *LastSlabPtr = LastSlab.base() ? &LastSlab : nullptr;
658   sys::MemoryBlock B = sys::Memory::AllocateRWX(size, LastSlabPtr, &ErrMsg);
659   if (!B.base()) {
660     report_fatal_error("Allocation failed when allocating new memory in the"
661                        " JIT\n" + Twine(ErrMsg));
662   }
663   LastSlab = B;
664   ++NumSlabs;
665   // Initialize the slab to garbage when debugging.
666   if (PoisonMemory) {
667     memset(B.base(), 0xCD, B.size());
668   }
669   return B;
670 }
671
672 /// CheckInvariants - For testing only.  Return "" if all internal invariants
673 /// are preserved, and a helpful error message otherwise.  For free and
674 /// allocated blocks, make sure that adding BlockSize gives a valid block.
675 /// For free blocks, make sure they're in the free list and that their end of
676 /// block size marker is correct.  This function should return an error before
677 /// accessing bad memory.  This function is defined here instead of in
678 /// JITMemoryManagerTest.cpp so that we don't have to expose all of the
679 /// implementation details of DefaultJITMemoryManager.
680 bool DefaultJITMemoryManager::CheckInvariants(std::string &ErrorStr) {
681   raw_string_ostream Err(ErrorStr);
682
683   // Construct a the set of FreeRangeHeader pointers so we can query it
684   // efficiently.
685   llvm::SmallPtrSet<MemoryRangeHeader*, 16> FreeHdrSet;
686   FreeRangeHeader* FreeHead = FreeMemoryList;
687   FreeRangeHeader* FreeRange = FreeHead;
688
689   do {
690     // Check that the free range pointer is in the blocks we've allocated.
691     bool Found = false;
692     for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
693          E = CodeSlabs.end(); I != E && !Found; ++I) {
694       char *Start = (char*)I->base();
695       char *End = Start + I->size();
696       Found = (Start <= (char*)FreeRange && (char*)FreeRange < End);
697     }
698     if (!Found) {
699       Err << "Corrupt free list; points to " << FreeRange;
700       return false;
701     }
702
703     if (FreeRange->Next->Prev != FreeRange) {
704       Err << "Next and Prev pointers do not match.";
705       return false;
706     }
707
708     // Otherwise, add it to the set.
709     FreeHdrSet.insert(FreeRange);
710     FreeRange = FreeRange->Next;
711   } while (FreeRange != FreeHead);
712
713   // Go over each block, and look at each MemoryRangeHeader.
714   for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
715        E = CodeSlabs.end(); I != E; ++I) {
716     char *Start = (char*)I->base();
717     char *End = Start + I->size();
718
719     // Check each memory range.
720     for (MemoryRangeHeader *Hdr = (MemoryRangeHeader*)Start, *LastHdr = nullptr;
721          Start <= (char*)Hdr && (char*)Hdr < End;
722          Hdr = &Hdr->getBlockAfter()) {
723       if (Hdr->ThisAllocated == 0) {
724         // Check that this range is in the free list.
725         if (!FreeHdrSet.count(Hdr)) {
726           Err << "Found free header at " << Hdr << " that is not in free list.";
727           return false;
728         }
729
730         // Now make sure the size marker at the end of the block is correct.
731         uintptr_t *Marker = ((uintptr_t*)&Hdr->getBlockAfter()) - 1;
732         if (!(Start <= (char*)Marker && (char*)Marker < End)) {
733           Err << "Block size in header points out of current MemoryBlock.";
734           return false;
735         }
736         if (Hdr->BlockSize != *Marker) {
737           Err << "End of block size marker (" << *Marker << ") "
738               << "and BlockSize (" << Hdr->BlockSize << ") don't match.";
739           return false;
740         }
741       }
742
743       if (LastHdr && LastHdr->ThisAllocated != Hdr->PrevAllocated) {
744         Err << "Hdr->PrevAllocated (" << Hdr->PrevAllocated << ") != "
745             << "LastHdr->ThisAllocated (" << LastHdr->ThisAllocated << ")";
746         return false;
747       } else if (!LastHdr && !Hdr->PrevAllocated) {
748         Err << "The first header should have PrevAllocated true.";
749         return false;
750       }
751
752       // Remember the last header.
753       LastHdr = Hdr;
754     }
755   }
756
757   // All invariants are preserved.
758   return true;
759 }
760
761 //===----------------------------------------------------------------------===//
762 // getPointerToNamedFunction() implementation.
763 //===----------------------------------------------------------------------===//
764
765 // AtExitHandlers - List of functions to call when the program exits,
766 // registered with the atexit() library function.
767 static std::vector<void (*)()> AtExitHandlers;
768
769 /// runAtExitHandlers - Run any functions registered by the program's
770 /// calls to atexit(3), which we intercept and store in
771 /// AtExitHandlers.
772 ///
773 static void runAtExitHandlers() {
774   while (!AtExitHandlers.empty()) {
775     void (*Fn)() = AtExitHandlers.back();
776     AtExitHandlers.pop_back();
777     Fn();
778   }
779 }
780
781 //===----------------------------------------------------------------------===//
782 // Function stubs that are invoked instead of certain library calls
783 //
784 // Force the following functions to be linked in to anything that uses the
785 // JIT. This is a hack designed to work around the all-too-clever Glibc
786 // strategy of making these functions work differently when inlined vs. when
787 // not inlined, and hiding their real definitions in a separate archive file
788 // that the dynamic linker can't see. For more info, search for
789 // 'libc_nonshared.a' on Google, or read http://llvm.org/PR274.
790 #if defined(__linux__) && defined(__GLIBC__)
791 /* stat functions are redirecting to __xstat with a version number.  On x86-64
792  * linking with libc_nonshared.a and -Wl,--export-dynamic doesn't make 'stat'
793  * available as an exported symbol, so we have to add it explicitly.
794  */
795 namespace {
796 class StatSymbols {
797 public:
798   StatSymbols() {
799     sys::DynamicLibrary::AddSymbol("stat", (void*)(intptr_t)stat);
800     sys::DynamicLibrary::AddSymbol("fstat", (void*)(intptr_t)fstat);
801     sys::DynamicLibrary::AddSymbol("lstat", (void*)(intptr_t)lstat);
802     sys::DynamicLibrary::AddSymbol("stat64", (void*)(intptr_t)stat64);
803     sys::DynamicLibrary::AddSymbol("\x1stat64", (void*)(intptr_t)stat64);
804     sys::DynamicLibrary::AddSymbol("\x1open64", (void*)(intptr_t)open64);
805     sys::DynamicLibrary::AddSymbol("\x1lseek64", (void*)(intptr_t)lseek64);
806     sys::DynamicLibrary::AddSymbol("fstat64", (void*)(intptr_t)fstat64);
807     sys::DynamicLibrary::AddSymbol("lstat64", (void*)(intptr_t)lstat64);
808     sys::DynamicLibrary::AddSymbol("atexit", (void*)(intptr_t)atexit);
809     sys::DynamicLibrary::AddSymbol("mknod", (void*)(intptr_t)mknod);
810   }
811 };
812 }
813 static StatSymbols initStatSymbols;
814 #endif // __linux__
815
816 // jit_exit - Used to intercept the "exit" library call.
817 static void jit_exit(int Status) {
818   runAtExitHandlers();   // Run atexit handlers...
819   exit(Status);
820 }
821
822 // jit_atexit - Used to intercept the "atexit" library call.
823 static int jit_atexit(void (*Fn)()) {
824   AtExitHandlers.push_back(Fn);    // Take note of atexit handler...
825   return 0;  // Always successful
826 }
827
828 static int jit_noop() {
829   return 0;
830 }
831
832 //===----------------------------------------------------------------------===//
833 //
834 /// getPointerToNamedFunction - This method returns the address of the specified
835 /// function by using the dynamic loader interface.  As such it is only useful
836 /// for resolving library symbols, not code generated symbols.
837 ///
838 void *DefaultJITMemoryManager::getPointerToNamedFunction(const std::string &Name,
839                                                          bool AbortOnFailure) {
840   // Check to see if this is one of the functions we want to intercept.  Note,
841   // we cast to intptr_t here to silence a -pedantic warning that complains
842   // about casting a function pointer to a normal pointer.
843   if (Name == "exit") return (void*)(intptr_t)&jit_exit;
844   if (Name == "atexit") return (void*)(intptr_t)&jit_atexit;
845
846   // We should not invoke parent's ctors/dtors from generated main()!
847   // On Mingw and Cygwin, the symbol __main is resolved to
848   // callee's(eg. tools/lli) one, to invoke wrong duplicated ctors
849   // (and register wrong callee's dtors with atexit(3)).
850   // We expect ExecutionEngine::runStaticConstructorsDestructors()
851   // is called before ExecutionEngine::runFunctionAsMain() is called.
852   if (Name == "__main") return (void*)(intptr_t)&jit_noop;
853
854   const char *NameStr = Name.c_str();
855   // If this is an asm specifier, skip the sentinal.
856   if (NameStr[0] == 1) ++NameStr;
857
858   // If it's an external function, look it up in the process image...
859   void *Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr);
860   if (Ptr) return Ptr;
861
862   // If it wasn't found and if it starts with an underscore ('_') character,
863   // try again without the underscore.
864   if (NameStr[0] == '_') {
865     Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr+1);
866     if (Ptr) return Ptr;
867   }
868
869   // Darwin/PPC adds $LDBLStub suffixes to various symbols like printf.  These
870   // are references to hidden visibility symbols that dlsym cannot resolve.
871   // If we have one of these, strip off $LDBLStub and try again.
872 #if defined(__APPLE__) && defined(__ppc__)
873   if (Name.size() > 9 && Name[Name.size()-9] == '$' &&
874       memcmp(&Name[Name.size()-8], "LDBLStub", 8) == 0) {
875     // First try turning $LDBLStub into $LDBL128. If that fails, strip it off.
876     // This mirrors logic in libSystemStubs.a.
877     std::string Prefix = std::string(Name.begin(), Name.end()-9);
878     if (void *Ptr = getPointerToNamedFunction(Prefix+"$LDBL128", false))
879       return Ptr;
880     if (void *Ptr = getPointerToNamedFunction(Prefix, false))
881       return Ptr;
882   }
883 #endif
884
885   if (AbortOnFailure) {
886     report_fatal_error("Program used external function '"+Name+
887                       "' which could not be resolved!");
888   }
889   return nullptr;
890 }
891
892
893
894 JITMemoryManager *JITMemoryManager::CreateDefaultMemManager() {
895   return new DefaultJITMemoryManager();
896 }
897
898 const size_t DefaultJITMemoryManager::DefaultCodeSlabSize;
899 const size_t DefaultJITMemoryManager::DefaultSlabSize;
900 const size_t DefaultJITMemoryManager::DefaultSizeThreshold;