4b0ce21111b2048d388b3dbbb410ac58c5d4bfdc
[oota-llvm.git] / lib / CodeGen / WinEHPrepare.cpp
1 //===-- WinEHPrepare - Prepare exception handling for code generation ---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass lowers LLVM IR exception handling into something closer to what the
11 // backend wants. It snifs the personality function to see which kind of
12 // preparation is necessary. If the personality function uses the Itanium LSDA,
13 // this pass delegates to the DWARF EH preparation pass.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/CodeGen/Passes.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/TinyPtrVector.h"
22 #include "llvm/Analysis/LibCallSemantics.h"
23 #include "llvm/CodeGen/WinEHFuncInfo.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
36 #include "llvm/Transforms/Utils/Cloning.h"
37 #include "llvm/Transforms/Utils/Local.h"
38 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
39 #include <memory>
40
41 using namespace llvm;
42 using namespace llvm::PatternMatch;
43
44 #define DEBUG_TYPE "winehprepare"
45
46 namespace {
47
48 // This map is used to model frame variable usage during outlining, to
49 // construct a structure type to hold the frame variables in a frame
50 // allocation block, and to remap the frame variable allocas (including
51 // spill locations as needed) to GEPs that get the variable from the
52 // frame allocation structure.
53 typedef MapVector<Value *, TinyPtrVector<AllocaInst *>> FrameVarInfoMap;
54
55 // TinyPtrVector cannot hold nullptr, so we need our own sentinel that isn't
56 // quite null.
57 AllocaInst *getCatchObjectSentinel() {
58   return static_cast<AllocaInst *>(nullptr) + 1;
59 }
60
61 typedef SmallSet<BasicBlock *, 4> VisitedBlockSet;
62
63 class LandingPadActions;
64 class LandingPadMap;
65
66 typedef DenseMap<const BasicBlock *, CatchHandler *> CatchHandlerMapTy;
67 typedef DenseMap<const BasicBlock *, CleanupHandler *> CleanupHandlerMapTy;
68
69 class WinEHPrepare : public FunctionPass {
70 public:
71   static char ID; // Pass identification, replacement for typeid.
72   WinEHPrepare(const TargetMachine *TM = nullptr)
73       : FunctionPass(ID), DT(nullptr) {}
74
75   bool runOnFunction(Function &Fn) override;
76
77   bool doFinalization(Module &M) override;
78
79   void getAnalysisUsage(AnalysisUsage &AU) const override;
80
81   const char *getPassName() const override {
82     return "Windows exception handling preparation";
83   }
84
85 private:
86   bool prepareExceptionHandlers(Function &F,
87                                 SmallVectorImpl<LandingPadInst *> &LPads);
88   void promoteLandingPadValues(LandingPadInst *LPad);
89   void completeNestedLandingPad(Function *ParentFn,
90                                 LandingPadInst *OutlinedLPad,
91                                 const LandingPadInst *OriginalLPad,
92                                 FrameVarInfoMap &VarInfo);
93   bool outlineHandler(ActionHandler *Action, Function *SrcFn,
94                       LandingPadInst *LPad, BasicBlock *StartBB,
95                       FrameVarInfoMap &VarInfo);
96   void addStubInvokeToHandlerIfNeeded(Function *Handler, Value *PersonalityFn);
97
98   void mapLandingPadBlocks(LandingPadInst *LPad, LandingPadActions &Actions);
99   CatchHandler *findCatchHandler(BasicBlock *BB, BasicBlock *&NextBB,
100                                  VisitedBlockSet &VisitedBlocks);
101   void findCleanupHandlers(LandingPadActions &Actions, BasicBlock *StartBB,
102                            BasicBlock *EndBB);
103
104   void processSEHCatchHandler(CatchHandler *Handler, BasicBlock *StartBB);
105
106   // All fields are reset by runOnFunction.
107   DominatorTree *DT;
108   EHPersonality Personality;
109   CatchHandlerMapTy CatchHandlerMap;
110   CleanupHandlerMapTy CleanupHandlerMap;
111   DenseMap<const LandingPadInst *, LandingPadMap> LPadMaps;
112
113   // This maps landing pad instructions found in outlined handlers to
114   // the landing pad instruction in the parent function from which they
115   // were cloned.  The cloned/nested landing pad is used as the key
116   // because the landing pad may be cloned into multiple handlers.
117   // This map will be used to add the llvm.eh.actions call to the nested
118   // landing pads after all handlers have been outlined.
119   DenseMap<LandingPadInst *, const LandingPadInst *> NestedLPtoOriginalLP;
120
121   // This maps blocks in the parent function which are destinations of
122   // catch handlers to cloned blocks in (other) outlined handlers. This
123   // handles the case where a nested landing pads has a catch handler that
124   // returns to a handler function rather than the parent function.
125   // The original block is used as the key here because there should only
126   // ever be one handler function from which the cloned block is not pruned.
127   // The original block will be pruned from the parent function after all
128   // handlers have been outlined.  This map will be used to adjust the
129   // return instructions of handlers which return to the block that was
130   // outlined into a handler.  This is done after all handlers have been
131   // outlined but before the outlined code is pruned from the parent function.
132   DenseMap<const BasicBlock *, BasicBlock *> LPadTargetBlocks;
133 };
134
135 class WinEHFrameVariableMaterializer : public ValueMaterializer {
136 public:
137   WinEHFrameVariableMaterializer(Function *OutlinedFn,
138                                  FrameVarInfoMap &FrameVarInfo);
139   ~WinEHFrameVariableMaterializer() override {}
140
141   Value *materializeValueFor(Value *V) override;
142
143   void escapeCatchObject(Value *V);
144
145 private:
146   FrameVarInfoMap &FrameVarInfo;
147   IRBuilder<> Builder;
148 };
149
150 class LandingPadMap {
151 public:
152   LandingPadMap() : OriginLPad(nullptr) {}
153   void mapLandingPad(const LandingPadInst *LPad);
154
155   bool isInitialized() { return OriginLPad != nullptr; }
156
157   bool isOriginLandingPadBlock(const BasicBlock *BB) const;
158   bool isLandingPadSpecificInst(const Instruction *Inst) const;
159
160   void remapEHValues(ValueToValueMapTy &VMap, Value *EHPtrValue,
161                      Value *SelectorValue) const;
162
163 private:
164   const LandingPadInst *OriginLPad;
165   // We will normally only see one of each of these instructions, but
166   // if more than one occurs for some reason we can handle that.
167   TinyPtrVector<const ExtractValueInst *> ExtractedEHPtrs;
168   TinyPtrVector<const ExtractValueInst *> ExtractedSelectors;
169 };
170
171 class WinEHCloningDirectorBase : public CloningDirector {
172 public:
173   WinEHCloningDirectorBase(Function *HandlerFn, FrameVarInfoMap &VarInfo,
174                            LandingPadMap &LPadMap)
175       : Materializer(HandlerFn, VarInfo),
176         SelectorIDType(Type::getInt32Ty(HandlerFn->getContext())),
177         Int8PtrType(Type::getInt8PtrTy(HandlerFn->getContext())),
178         LPadMap(LPadMap) {}
179
180   CloningAction handleInstruction(ValueToValueMapTy &VMap,
181                                   const Instruction *Inst,
182                                   BasicBlock *NewBB) override;
183
184   virtual CloningAction handleBeginCatch(ValueToValueMapTy &VMap,
185                                          const Instruction *Inst,
186                                          BasicBlock *NewBB) = 0;
187   virtual CloningAction handleEndCatch(ValueToValueMapTy &VMap,
188                                        const Instruction *Inst,
189                                        BasicBlock *NewBB) = 0;
190   virtual CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
191                                         const Instruction *Inst,
192                                         BasicBlock *NewBB) = 0;
193   virtual CloningAction handleInvoke(ValueToValueMapTy &VMap,
194                                      const InvokeInst *Invoke,
195                                      BasicBlock *NewBB) = 0;
196   virtual CloningAction handleResume(ValueToValueMapTy &VMap,
197                                      const ResumeInst *Resume,
198                                      BasicBlock *NewBB) = 0;
199   virtual CloningAction handleLandingPad(ValueToValueMapTy &VMap,
200                                          const LandingPadInst *LPad,
201                                          BasicBlock *NewBB) = 0;
202
203   ValueMaterializer *getValueMaterializer() override { return &Materializer; }
204
205 protected:
206   WinEHFrameVariableMaterializer Materializer;
207   Type *SelectorIDType;
208   Type *Int8PtrType;
209   LandingPadMap &LPadMap;
210 };
211
212 class WinEHCatchDirector : public WinEHCloningDirectorBase {
213 public:
214   WinEHCatchDirector(
215       Function *CatchFn, Value *Selector, FrameVarInfoMap &VarInfo,
216       LandingPadMap &LPadMap,
217       DenseMap<LandingPadInst *, const LandingPadInst *> &NestedLPads)
218       : WinEHCloningDirectorBase(CatchFn, VarInfo, LPadMap),
219         CurrentSelector(Selector->stripPointerCasts()),
220         ExceptionObjectVar(nullptr), NestedLPtoOriginalLP(NestedLPads) {}
221
222   CloningAction handleBeginCatch(ValueToValueMapTy &VMap,
223                                  const Instruction *Inst,
224                                  BasicBlock *NewBB) override;
225   CloningAction handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst,
226                                BasicBlock *NewBB) override;
227   CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
228                                 const Instruction *Inst,
229                                 BasicBlock *NewBB) override;
230   CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke,
231                              BasicBlock *NewBB) override;
232   CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume,
233                              BasicBlock *NewBB) override;
234   CloningAction handleLandingPad(ValueToValueMapTy &VMap,
235                                  const LandingPadInst *LPad,
236                                  BasicBlock *NewBB) override;
237
238   Value *getExceptionVar() { return ExceptionObjectVar; }
239   TinyPtrVector<BasicBlock *> &getReturnTargets() { return ReturnTargets; }
240
241 private:
242   Value *CurrentSelector;
243
244   Value *ExceptionObjectVar;
245   TinyPtrVector<BasicBlock *> ReturnTargets;
246
247   // This will be a reference to the field of the same name in the WinEHPrepare
248   // object which instantiates this WinEHCatchDirector object.
249   DenseMap<LandingPadInst *, const LandingPadInst *> &NestedLPtoOriginalLP;
250 };
251
252 class WinEHCleanupDirector : public WinEHCloningDirectorBase {
253 public:
254   WinEHCleanupDirector(Function *CleanupFn, FrameVarInfoMap &VarInfo,
255                        LandingPadMap &LPadMap)
256       : WinEHCloningDirectorBase(CleanupFn, VarInfo, LPadMap) {}
257
258   CloningAction handleBeginCatch(ValueToValueMapTy &VMap,
259                                  const Instruction *Inst,
260                                  BasicBlock *NewBB) override;
261   CloningAction handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst,
262                                BasicBlock *NewBB) override;
263   CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
264                                 const Instruction *Inst,
265                                 BasicBlock *NewBB) override;
266   CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke,
267                              BasicBlock *NewBB) override;
268   CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume,
269                              BasicBlock *NewBB) override;
270   CloningAction handleLandingPad(ValueToValueMapTy &VMap,
271                                  const LandingPadInst *LPad,
272                                  BasicBlock *NewBB) override;
273 };
274
275 class LandingPadActions {
276 public:
277   LandingPadActions() : HasCleanupHandlers(false) {}
278
279   void insertCatchHandler(CatchHandler *Action) { Actions.push_back(Action); }
280   void insertCleanupHandler(CleanupHandler *Action) {
281     Actions.push_back(Action);
282     HasCleanupHandlers = true;
283   }
284
285   bool includesCleanup() const { return HasCleanupHandlers; }
286
287   SmallVectorImpl<ActionHandler *> &actions() { return Actions; }
288   SmallVectorImpl<ActionHandler *>::iterator begin() { return Actions.begin(); }
289   SmallVectorImpl<ActionHandler *>::iterator end() { return Actions.end(); }
290
291 private:
292   // Note that this class does not own the ActionHandler objects in this vector.
293   // The ActionHandlers are owned by the CatchHandlerMap and CleanupHandlerMap
294   // in the WinEHPrepare class.
295   SmallVector<ActionHandler *, 4> Actions;
296   bool HasCleanupHandlers;
297 };
298
299 } // end anonymous namespace
300
301 char WinEHPrepare::ID = 0;
302 INITIALIZE_TM_PASS(WinEHPrepare, "winehprepare", "Prepare Windows exceptions",
303                    false, false)
304
305 FunctionPass *llvm::createWinEHPass(const TargetMachine *TM) {
306   return new WinEHPrepare(TM);
307 }
308
309 // FIXME: Remove this once the backend can handle the prepared IR.
310 static cl::opt<bool>
311     SEHPrepare("sehprepare", cl::Hidden,
312                cl::desc("Prepare functions with SEH personalities"));
313
314 bool WinEHPrepare::runOnFunction(Function &Fn) {
315   SmallVector<LandingPadInst *, 4> LPads;
316   SmallVector<ResumeInst *, 4> Resumes;
317   for (BasicBlock &BB : Fn) {
318     if (auto *LP = BB.getLandingPadInst())
319       LPads.push_back(LP);
320     if (auto *Resume = dyn_cast<ResumeInst>(BB.getTerminator()))
321       Resumes.push_back(Resume);
322   }
323
324   // No need to prepare functions that lack landing pads.
325   if (LPads.empty())
326     return false;
327
328   // Classify the personality to see what kind of preparation we need.
329   Personality = classifyEHPersonality(LPads.back()->getPersonalityFn());
330
331   // Do nothing if this is not an MSVC personality.
332   if (!isMSVCEHPersonality(Personality))
333     return false;
334
335   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
336
337   if (isAsynchronousEHPersonality(Personality) && !SEHPrepare) {
338     // Replace all resume instructions with unreachable.
339     // FIXME: Remove this once the backend can handle the prepared IR.
340     for (ResumeInst *Resume : Resumes) {
341       IRBuilder<>(Resume).CreateUnreachable();
342       Resume->eraseFromParent();
343     }
344     return true;
345   }
346
347   // If there were any landing pads, prepareExceptionHandlers will make changes.
348   prepareExceptionHandlers(Fn, LPads);
349   return true;
350 }
351
352 bool WinEHPrepare::doFinalization(Module &M) { return false; }
353
354 void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {
355   AU.addRequired<DominatorTreeWrapperPass>();
356 }
357
358 bool WinEHPrepare::prepareExceptionHandlers(
359     Function &F, SmallVectorImpl<LandingPadInst *> &LPads) {
360   // These containers are used to re-map frame variables that are used in
361   // outlined catch and cleanup handlers.  They will be populated as the
362   // handlers are outlined.
363   FrameVarInfoMap FrameVarInfo;
364
365   bool HandlersOutlined = false;
366
367   Module *M = F.getParent();
368   LLVMContext &Context = M->getContext();
369
370   // Create a new function to receive the handler contents.
371   PointerType *Int8PtrType = Type::getInt8PtrTy(Context);
372   Type *Int32Type = Type::getInt32Ty(Context);
373   Function *ActionIntrin = Intrinsic::getDeclaration(M, Intrinsic::eh_actions);
374
375   for (LandingPadInst *LPad : LPads) {
376     // Look for evidence that this landingpad has already been processed.
377     bool LPadHasActionList = false;
378     BasicBlock *LPadBB = LPad->getParent();
379     for (Instruction &Inst : *LPadBB) {
380       if (auto *IntrinCall = dyn_cast<IntrinsicInst>(&Inst)) {
381         if (IntrinCall->getIntrinsicID() == Intrinsic::eh_actions) {
382           LPadHasActionList = true;
383           break;
384         }
385       }
386       // FIXME: This is here to help with the development of nested landing pad
387       //        outlining.  It should be removed when that is finished.
388       if (isa<UnreachableInst>(Inst)) {
389         LPadHasActionList = true;
390         break;
391       }
392     }
393
394     // If we've already outlined the handlers for this landingpad,
395     // there's nothing more to do here.
396     if (LPadHasActionList)
397       continue;
398
399     // If either of the values in the aggregate returned by the landing pad is
400     // extracted and stored to memory, promote the stored value to a register.
401     promoteLandingPadValues(LPad);
402
403     LandingPadActions Actions;
404     mapLandingPadBlocks(LPad, Actions);
405
406     HandlersOutlined |= !Actions.actions().empty();
407     for (ActionHandler *Action : Actions) {
408       if (Action->hasBeenProcessed())
409         continue;
410       BasicBlock *StartBB = Action->getStartBlock();
411
412       // SEH doesn't do any outlining for catches. Instead, pass the handler
413       // basic block addr to llvm.eh.actions and list the block as a return
414       // target.
415       if (isAsynchronousEHPersonality(Personality)) {
416         if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
417           processSEHCatchHandler(CatchAction, StartBB);
418           continue;
419         }
420       }
421
422       outlineHandler(Action, &F, LPad, StartBB, FrameVarInfo);
423     }
424
425     // Replace the landing pad with a new llvm.eh.action based landing pad.
426     BasicBlock *NewLPadBB = BasicBlock::Create(Context, "lpad", &F, LPadBB);
427     assert(!isa<PHINode>(LPadBB->begin()));
428     auto *NewLPad = cast<LandingPadInst>(LPad->clone());
429     NewLPadBB->getInstList().push_back(NewLPad);
430     while (!pred_empty(LPadBB)) {
431       auto *pred = *pred_begin(LPadBB);
432       InvokeInst *Invoke = cast<InvokeInst>(pred->getTerminator());
433       Invoke->setUnwindDest(NewLPadBB);
434     }
435
436     // If anyone is still using the old landingpad value, just give them undef
437     // instead. The eh pointer and selector values are not real.
438     LPad->replaceAllUsesWith(UndefValue::get(LPad->getType()));
439
440     // Replace the mapping of any nested landing pad that previously mapped
441     // to this landing pad with a referenced to the cloned version.
442     for (auto &LPadPair : NestedLPtoOriginalLP) {
443       const LandingPadInst *OriginalLPad = LPadPair.second;
444       if (OriginalLPad == LPad) {
445         LPadPair.second = NewLPad;
446       }
447     }
448
449     // Replace uses of the old lpad in phis with this block and delete the old
450     // block.
451     LPadBB->replaceSuccessorsPhiUsesWith(NewLPadBB);
452     LPadBB->getTerminator()->eraseFromParent();
453     new UnreachableInst(LPadBB->getContext(), LPadBB);
454
455     // Add a call to describe the actions for this landing pad.
456     std::vector<Value *> ActionArgs;
457     for (ActionHandler *Action : Actions) {
458       // Action codes from docs are: 0 cleanup, 1 catch.
459       if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
460         ActionArgs.push_back(ConstantInt::get(Int32Type, 1));
461         ActionArgs.push_back(CatchAction->getSelector());
462         // Find the frame escape index of the exception object alloca in the
463         // parent.
464         int FrameEscapeIdx = -1;
465         Value *EHObj = const_cast<Value *>(CatchAction->getExceptionVar());
466         if (EHObj && !isa<ConstantPointerNull>(EHObj)) {
467           auto I = FrameVarInfo.find(EHObj);
468           assert(I != FrameVarInfo.end() &&
469                  "failed to map llvm.eh.begincatch var");
470           FrameEscapeIdx = std::distance(FrameVarInfo.begin(), I);
471         }
472         ActionArgs.push_back(ConstantInt::get(Int32Type, FrameEscapeIdx));
473       } else {
474         ActionArgs.push_back(ConstantInt::get(Int32Type, 0));
475       }
476       ActionArgs.push_back(Action->getHandlerBlockOrFunc());
477     }
478     CallInst *Recover =
479         CallInst::Create(ActionIntrin, ActionArgs, "recover", NewLPadBB);
480
481     // Add an indirect branch listing possible successors of the catch handlers.
482     IndirectBrInst *Branch = IndirectBrInst::Create(Recover, 0, NewLPadBB);
483     for (ActionHandler *Action : Actions) {
484       if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
485         for (auto *Target : CatchAction->getReturnTargets()) {
486           Branch->addDestination(Target);
487         }
488       }
489     }
490   } // End for each landingpad
491
492   // If nothing got outlined, there is no more processing to be done.
493   if (!HandlersOutlined)
494     return false;
495
496   // Replace any nested landing pad stubs with the correct action handler.
497   // This must be done before we remove unreachable blocks because it
498   // cleans up references to outlined blocks that will be deleted.
499   for (auto &LPadPair : NestedLPtoOriginalLP)
500     completeNestedLandingPad(&F, LPadPair.first, LPadPair.second, FrameVarInfo);
501   NestedLPtoOriginalLP.clear();
502
503   F.addFnAttr("wineh-parent", F.getName());
504
505   // Delete any blocks that were only used by handlers that were outlined above.
506   removeUnreachableBlocks(F);
507
508   BasicBlock *Entry = &F.getEntryBlock();
509   IRBuilder<> Builder(F.getParent()->getContext());
510   Builder.SetInsertPoint(Entry->getFirstInsertionPt());
511
512   Function *FrameEscapeFn =
513       Intrinsic::getDeclaration(M, Intrinsic::frameescape);
514   Function *RecoverFrameFn =
515       Intrinsic::getDeclaration(M, Intrinsic::framerecover);
516
517   // Finally, replace all of the temporary allocas for frame variables used in
518   // the outlined handlers with calls to llvm.framerecover.
519   BasicBlock::iterator II = Entry->getFirstInsertionPt();
520   Instruction *AllocaInsertPt = II;
521   SmallVector<Value *, 8> AllocasToEscape;
522   for (auto &VarInfoEntry : FrameVarInfo) {
523     Value *ParentVal = VarInfoEntry.first;
524     TinyPtrVector<AllocaInst *> &Allocas = VarInfoEntry.second;
525
526     // If the mapped value isn't already an alloca, we need to spill it if it
527     // is a computed value or copy it if it is an argument.
528     AllocaInst *ParentAlloca = dyn_cast<AllocaInst>(ParentVal);
529     if (!ParentAlloca) {
530       if (auto *Arg = dyn_cast<Argument>(ParentVal)) {
531         // Lower this argument to a copy and then demote that to the stack.
532         // We can't just use the argument location because the handler needs
533         // it to be in the frame allocation block.
534         // Use 'select i8 true, %arg, undef' to simulate a 'no-op' instruction.
535         Value *TrueValue = ConstantInt::getTrue(Context);
536         Value *UndefValue = UndefValue::get(Arg->getType());
537         Instruction *SI =
538             SelectInst::Create(TrueValue, Arg, UndefValue,
539                                Arg->getName() + ".tmp", AllocaInsertPt);
540         Arg->replaceAllUsesWith(SI);
541         // Reset the select operand, because it was clobbered by the RAUW above.
542         SI->setOperand(1, Arg);
543         ParentAlloca = DemoteRegToStack(*SI, true, SI);
544       } else if (auto *PN = dyn_cast<PHINode>(ParentVal)) {
545         ParentAlloca = DemotePHIToStack(PN, AllocaInsertPt);
546       } else {
547         Instruction *ParentInst = cast<Instruction>(ParentVal);
548         // FIXME: This is a work-around to temporarily handle the case where an
549         //        instruction that is only used in handlers is not sunk.
550         //        Without uses, DemoteRegToStack would just eliminate the value.
551         //        This will fail if ParentInst is an invoke.
552         if (ParentInst->getNumUses() == 0) {
553           BasicBlock::iterator InsertPt = ParentInst;
554           ++InsertPt;
555           ParentAlloca =
556               new AllocaInst(ParentInst->getType(), nullptr,
557                              ParentInst->getName() + ".reg2mem",
558                              AllocaInsertPt);
559           new StoreInst(ParentInst, ParentAlloca, InsertPt);
560         } else {
561           ParentAlloca = DemoteRegToStack(*ParentInst, true, AllocaInsertPt);
562         }
563       }
564     }
565
566     // FIXME: We should try to sink unescaped allocas from the parent frame into
567     // the child frame. If the alloca is escaped, we have to use the lifetime
568     // markers to ensure that the alloca is only live within the child frame.
569
570     // Add this alloca to the list of things to escape.
571     AllocasToEscape.push_back(ParentAlloca);
572
573     // Next replace all outlined allocas that are mapped to it.
574     for (AllocaInst *TempAlloca : Allocas) {
575       if (TempAlloca == getCatchObjectSentinel())
576         continue; // Skip catch parameter sentinels.
577       Function *HandlerFn = TempAlloca->getParent()->getParent();
578       // FIXME: Sink this GEP into the blocks where it is used.
579       Builder.SetInsertPoint(TempAlloca);
580       Builder.SetCurrentDebugLocation(TempAlloca->getDebugLoc());
581       Value *RecoverArgs[] = {
582           Builder.CreateBitCast(&F, Int8PtrType, ""),
583           &(HandlerFn->getArgumentList().back()),
584           llvm::ConstantInt::get(Int32Type, AllocasToEscape.size() - 1)};
585       Value *RecoveredAlloca = Builder.CreateCall(RecoverFrameFn, RecoverArgs);
586       // Add a pointer bitcast if the alloca wasn't an i8.
587       if (RecoveredAlloca->getType() != TempAlloca->getType()) {
588         RecoveredAlloca->setName(Twine(TempAlloca->getName()) + ".i8");
589         RecoveredAlloca =
590             Builder.CreateBitCast(RecoveredAlloca, TempAlloca->getType());
591       }
592       TempAlloca->replaceAllUsesWith(RecoveredAlloca);
593       TempAlloca->removeFromParent();
594       RecoveredAlloca->takeName(TempAlloca);
595       delete TempAlloca;
596     }
597   } // End for each FrameVarInfo entry.
598
599   // Insert 'call void (...)* @llvm.frameescape(...)' at the end of the entry
600   // block.
601   Builder.SetInsertPoint(&F.getEntryBlock().back());
602   Builder.CreateCall(FrameEscapeFn, AllocasToEscape);
603
604   // Clean up the handler action maps we created for this function
605   DeleteContainerSeconds(CatchHandlerMap);
606   CatchHandlerMap.clear();
607   DeleteContainerSeconds(CleanupHandlerMap);
608   CleanupHandlerMap.clear();
609
610   return HandlersOutlined;
611 }
612
613 void WinEHPrepare::promoteLandingPadValues(LandingPadInst *LPad) {
614   // If the return values of the landing pad instruction are extracted and
615   // stored to memory, we want to promote the store locations to reg values.
616   SmallVector<AllocaInst *, 2> EHAllocas;
617
618   // The landingpad instruction returns an aggregate value.  Typically, its
619   // value will be passed to a pair of extract value instructions and the
620   // results of those extracts are often passed to store instructions.
621   // In unoptimized code the stored value will often be loaded and then stored
622   // again.
623   for (auto *U : LPad->users()) {
624     ExtractValueInst *Extract = dyn_cast<ExtractValueInst>(U);
625     if (!Extract)
626       continue;
627
628     for (auto *EU : Extract->users()) {
629       if (auto *Store = dyn_cast<StoreInst>(EU)) {
630         auto *AV = cast<AllocaInst>(Store->getPointerOperand());
631         EHAllocas.push_back(AV);
632       }
633     }
634   }
635
636   // We can't do this without a dominator tree.
637   assert(DT);
638
639   if (!EHAllocas.empty()) {
640     PromoteMemToReg(EHAllocas, *DT);
641     EHAllocas.clear();
642   }
643
644   // After promotion, some extracts may be trivially dead. Remove them.
645   SmallVector<Value *, 4> Users(LPad->user_begin(), LPad->user_end());
646   for (auto *U : Users)
647     RecursivelyDeleteTriviallyDeadInstructions(U);
648 }
649
650 void WinEHPrepare::completeNestedLandingPad(Function *ParentFn,
651                                             LandingPadInst *OutlinedLPad,
652                                             const LandingPadInst *OriginalLPad,
653                                             FrameVarInfoMap &FrameVarInfo) {
654   // Get the nested block and erase the unreachable instruction that was
655   // temporarily inserted as its terminator.
656   LLVMContext &Context = ParentFn->getContext();
657   BasicBlock *OutlinedBB = OutlinedLPad->getParent();
658   assert(isa<UnreachableInst>(OutlinedBB->getTerminator()));
659   OutlinedBB->getTerminator()->eraseFromParent();
660   // That should leave OutlinedLPad as the last instruction in its block.
661   assert(&OutlinedBB->back() == OutlinedLPad);
662
663   // The original landing pad will have already had its action intrinsic
664   // built by the outlining loop.  We need to clone that into the outlined
665   // location.  It may also be necessary to add references to the exception
666   // variables to the outlined handler in which this landing pad is nested
667   // and remap return instructions in the nested handlers that should return
668   // to an address in the outlined handler.
669   Function *OutlinedHandlerFn = OutlinedBB->getParent();
670   BasicBlock::const_iterator II = OriginalLPad;
671   ++II;
672   // The instruction after the landing pad should now be a call to eh.actions.
673   const Instruction *Recover = II;
674   assert(match(Recover, m_Intrinsic<Intrinsic::eh_actions>()));
675   IntrinsicInst *EHActions = cast<IntrinsicInst>(Recover->clone());
676
677   // Remap the exception variables into the outlined function.
678   WinEHFrameVariableMaterializer Materializer(OutlinedHandlerFn, FrameVarInfo);
679   SmallVector<BlockAddress *, 4> ActionTargets;
680   SmallVector<ActionHandler *, 4> ActionList;
681   parseEHActions(EHActions, ActionList);
682   for (auto *Action : ActionList) {
683     auto *Catch = dyn_cast<CatchHandler>(Action);
684     if (!Catch)
685       continue;
686     // The dyn_cast to function here selects C++ catch handlers and skips
687     // SEH catch handlers.
688     auto *Handler = dyn_cast<Function>(Catch->getHandlerBlockOrFunc());
689     if (!Handler)
690       continue;
691     // Visit all the return instructions, looking for places that return
692     // to a location within OutlinedHandlerFn.
693     for (BasicBlock &NestedHandlerBB : *Handler) {
694       auto *Ret = dyn_cast<ReturnInst>(NestedHandlerBB.getTerminator());
695       if (!Ret)
696         continue;
697
698       // Handler functions must always return a block address.
699       BlockAddress *BA = cast<BlockAddress>(Ret->getReturnValue());
700       // The original target will have been in the main parent function,
701       // but if it is the address of a block that has been outlined, it
702       // should be a block that was outlined into OutlinedHandlerFn.
703       assert(BA->getFunction() == ParentFn);
704
705       // Ignore targets that aren't part of OutlinedHandlerFn.
706       if (!LPadTargetBlocks.count(BA->getBasicBlock()))
707         continue;
708
709       // If the return value is the address ofF a block that we
710       // previously outlined into the parent handler function, replace
711       // the return instruction and add the mapped target to the list
712       // of possible return addresses.
713       BasicBlock *MappedBB = LPadTargetBlocks[BA->getBasicBlock()];
714       assert(MappedBB->getParent() == OutlinedHandlerFn);
715       BlockAddress *NewBA = BlockAddress::get(OutlinedHandlerFn, MappedBB);
716       Ret->eraseFromParent();
717       ReturnInst::Create(Context, NewBA, &NestedHandlerBB);
718       ActionTargets.push_back(NewBA);
719     }
720   }
721   DeleteContainerPointers(ActionList);
722   ActionList.clear();
723   OutlinedBB->getInstList().push_back(EHActions);
724
725   // Insert an indirect branch into the outlined landing pad BB.
726   IndirectBrInst *IBr = IndirectBrInst::Create(EHActions, 0, OutlinedBB);
727   // Add the previously collected action targets.
728   for (auto *Target : ActionTargets)
729     IBr->addDestination(Target->getBasicBlock());
730 }
731
732 // This function examines a block to determine whether the block ends with a
733 // conditional branch to a catch handler based on a selector comparison.
734 // This function is used both by the WinEHPrepare::findSelectorComparison() and
735 // WinEHCleanupDirector::handleTypeIdFor().
736 static bool isSelectorDispatch(BasicBlock *BB, BasicBlock *&CatchHandler,
737                                Constant *&Selector, BasicBlock *&NextBB) {
738   ICmpInst::Predicate Pred;
739   BasicBlock *TBB, *FBB;
740   Value *LHS, *RHS;
741
742   if (!match(BB->getTerminator(),
743              m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TBB, FBB)))
744     return false;
745
746   if (!match(LHS,
747              m_Intrinsic<Intrinsic::eh_typeid_for>(m_Constant(Selector))) &&
748       !match(RHS, m_Intrinsic<Intrinsic::eh_typeid_for>(m_Constant(Selector))))
749     return false;
750
751   if (Pred == CmpInst::ICMP_EQ) {
752     CatchHandler = TBB;
753     NextBB = FBB;
754     return true;
755   }
756
757   if (Pred == CmpInst::ICMP_NE) {
758     CatchHandler = FBB;
759     NextBB = TBB;
760     return true;
761   }
762
763   return false;
764 }
765
766 static BasicBlock *createStubLandingPad(Function *Handler,
767                                         Value *PersonalityFn) {
768   // FIXME: Finish this!
769   LLVMContext &Context = Handler->getContext();
770   BasicBlock *StubBB = BasicBlock::Create(Context, "stub");
771   Handler->getBasicBlockList().push_back(StubBB);
772   IRBuilder<> Builder(StubBB);
773   LandingPadInst *LPad = Builder.CreateLandingPad(
774       llvm::StructType::get(Type::getInt8PtrTy(Context),
775                             Type::getInt32Ty(Context), nullptr),
776       PersonalityFn, 0);
777   LPad->setCleanup(true);
778   Builder.CreateUnreachable();
779   return StubBB;
780 }
781
782 // Cycles through the blocks in an outlined handler function looking for an
783 // invoke instruction and inserts an invoke of llvm.donothing with an empty
784 // landing pad if none is found.  The code that generates the .xdata tables for
785 // the handler needs at least one landing pad to identify the parent function's
786 // personality.
787 void WinEHPrepare::addStubInvokeToHandlerIfNeeded(Function *Handler,
788                                                   Value *PersonalityFn) {
789   ReturnInst *Ret = nullptr;
790   for (BasicBlock &BB : *Handler) {
791     TerminatorInst *Terminator = BB.getTerminator();
792     // If we find an invoke, there is nothing to be done.
793     auto *II = dyn_cast<InvokeInst>(Terminator);
794     if (II)
795       return;
796     // If we've already recorded a return instruction, keep looking for invokes.
797     if (Ret)
798       continue;
799     // If we haven't recorded a return instruction yet, try this terminator.
800     Ret = dyn_cast<ReturnInst>(Terminator);
801   }
802
803   // If we got this far, the handler contains no invokes.  We should have seen
804   // at least one return.  We'll insert an invoke of llvm.donothing ahead of
805   // that return.
806   assert(Ret);
807   BasicBlock *OldRetBB = Ret->getParent();
808   BasicBlock *NewRetBB = SplitBlock(OldRetBB, Ret);
809   // SplitBlock adds an unconditional branch instruction at the end of the
810   // parent block.  We want to replace that with an invoke call, so we can
811   // erase it now.
812   OldRetBB->getTerminator()->eraseFromParent();
813   BasicBlock *StubLandingPad = createStubLandingPad(Handler, PersonalityFn);
814   Function *F =
815       Intrinsic::getDeclaration(Handler->getParent(), Intrinsic::donothing);
816   InvokeInst::Create(F, NewRetBB, StubLandingPad, None, "", OldRetBB);
817 }
818
819 bool WinEHPrepare::outlineHandler(ActionHandler *Action, Function *SrcFn,
820                                   LandingPadInst *LPad, BasicBlock *StartBB,
821                                   FrameVarInfoMap &VarInfo) {
822   Module *M = SrcFn->getParent();
823   LLVMContext &Context = M->getContext();
824
825   // Create a new function to receive the handler contents.
826   Type *Int8PtrType = Type::getInt8PtrTy(Context);
827   std::vector<Type *> ArgTys;
828   ArgTys.push_back(Int8PtrType);
829   ArgTys.push_back(Int8PtrType);
830   Function *Handler;
831   if (Action->getType() == Catch) {
832     FunctionType *FnType = FunctionType::get(Int8PtrType, ArgTys, false);
833     Handler = Function::Create(FnType, GlobalVariable::InternalLinkage,
834                                SrcFn->getName() + ".catch", M);
835   } else {
836     FunctionType *FnType =
837         FunctionType::get(Type::getVoidTy(Context), ArgTys, false);
838     Handler = Function::Create(FnType, GlobalVariable::InternalLinkage,
839                                SrcFn->getName() + ".cleanup", M);
840   }
841
842   Handler->addFnAttr("wineh-parent", SrcFn->getName());
843
844   // Generate a standard prolog to setup the frame recovery structure.
845   IRBuilder<> Builder(Context);
846   BasicBlock *Entry = BasicBlock::Create(Context, "entry");
847   Handler->getBasicBlockList().push_front(Entry);
848   Builder.SetInsertPoint(Entry);
849   Builder.SetCurrentDebugLocation(LPad->getDebugLoc());
850
851   std::unique_ptr<WinEHCloningDirectorBase> Director;
852
853   ValueToValueMapTy VMap;
854
855   LandingPadMap &LPadMap = LPadMaps[LPad];
856   if (!LPadMap.isInitialized())
857     LPadMap.mapLandingPad(LPad);
858   if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
859     Constant *Sel = CatchAction->getSelector();
860     Director.reset(new WinEHCatchDirector(Handler, Sel, VarInfo, LPadMap,
861                                           NestedLPtoOriginalLP));
862     LPadMap.remapEHValues(VMap, UndefValue::get(Int8PtrType),
863                           ConstantInt::get(Type::getInt32Ty(Context), 1));
864   } else {
865     Director.reset(new WinEHCleanupDirector(Handler, VarInfo, LPadMap));
866     LPadMap.remapEHValues(VMap, UndefValue::get(Int8PtrType),
867                           UndefValue::get(Type::getInt32Ty(Context)));
868   }
869
870   SmallVector<ReturnInst *, 8> Returns;
871   ClonedCodeInfo OutlinedFunctionInfo;
872
873   // If the start block contains PHI nodes, we need to map them.
874   BasicBlock::iterator II = StartBB->begin();
875   while (auto *PN = dyn_cast<PHINode>(II)) {
876     bool Mapped = false;
877     // Look for PHI values that we have already mapped (such as the selector).
878     for (Value *Val : PN->incoming_values()) {
879       if (VMap.count(Val)) {
880         VMap[PN] = VMap[Val];
881         Mapped = true;
882       }
883     }
884     // If we didn't find a match for this value, map it as an undef.
885     if (!Mapped) {
886       VMap[PN] = UndefValue::get(PN->getType());
887     }
888     ++II;
889   }
890
891   // Skip over PHIs and, if applicable, landingpad instructions.
892   II = StartBB->getFirstInsertionPt();
893
894   CloneAndPruneIntoFromInst(Handler, SrcFn, II, VMap,
895                             /*ModuleLevelChanges=*/false, Returns, "",
896                             &OutlinedFunctionInfo, Director.get());
897
898   // Move all the instructions in the first cloned block into our entry block.
899   BasicBlock *FirstClonedBB = std::next(Function::iterator(Entry));
900   Entry->getInstList().splice(Entry->end(), FirstClonedBB->getInstList());
901   FirstClonedBB->eraseFromParent();
902
903   // Make sure we can identify the handler's personality later.
904   addStubInvokeToHandlerIfNeeded(Handler, LPad->getPersonalityFn());
905
906   if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
907     WinEHCatchDirector *CatchDirector =
908         reinterpret_cast<WinEHCatchDirector *>(Director.get());
909     CatchAction->setExceptionVar(CatchDirector->getExceptionVar());
910     CatchAction->setReturnTargets(CatchDirector->getReturnTargets());
911
912     // Look for blocks that are not part of the landing pad that we just
913     // outlined but terminate with a call to llvm.eh.endcatch and a
914     // branch to a block that is in the handler we just outlined.
915     // These blocks will be part of a nested landing pad that intends to
916     // return to an address in this handler.  This case is best handled
917     // after both landing pads have been outlined, so for now we'll just
918     // save the association of the blocks in LPadTargetBlocks.  The
919     // return instructions which are created from these branches will be
920     // replaced after all landing pads have been outlined.
921     for (const auto MapEntry : VMap) {
922       // VMap maps all values and blocks that were just cloned, but dead
923       // blocks which were pruned will map to nullptr.
924       if (!isa<BasicBlock>(MapEntry.first) || MapEntry.second == nullptr)
925         continue;
926       const BasicBlock *MappedBB = cast<BasicBlock>(MapEntry.first);
927       for (auto *Pred : predecessors(const_cast<BasicBlock *>(MappedBB))) {
928         auto *Branch = dyn_cast<BranchInst>(Pred->getTerminator());
929         if (!Branch || !Branch->isUnconditional() || Pred->size() <= 1)
930           continue;
931         BasicBlock::iterator II = const_cast<BranchInst *>(Branch);
932         --II;
933         if (match(cast<Value>(II), m_Intrinsic<Intrinsic::eh_endcatch>())) {
934           // This would indicate that a nested landing pad wants to return
935           // to a block that is outlined into two different handlers.
936           assert(!LPadTargetBlocks.count(MappedBB));
937           LPadTargetBlocks[MappedBB] = cast<BasicBlock>(MapEntry.second);
938         }
939       }
940     }
941   } // End if (CatchAction)
942
943   Action->setHandlerBlockOrFunc(Handler);
944
945   return true;
946 }
947
948 /// This BB must end in a selector dispatch. All we need to do is pass the
949 /// handler block to llvm.eh.actions and list it as a possible indirectbr
950 /// target.
951 void WinEHPrepare::processSEHCatchHandler(CatchHandler *CatchAction,
952                                           BasicBlock *StartBB) {
953   BasicBlock *HandlerBB;
954   BasicBlock *NextBB;
955   Constant *Selector;
956   bool Res = isSelectorDispatch(StartBB, HandlerBB, Selector, NextBB);
957   if (Res) {
958     // If this was EH dispatch, this must be a conditional branch to the handler
959     // block.
960     // FIXME: Handle instructions in the dispatch block. Currently we drop them,
961     // leading to crashes if some optimization hoists stuff here.
962     assert(CatchAction->getSelector() && HandlerBB &&
963            "expected catch EH dispatch");
964   } else {
965     // This must be a catch-all. Split the block after the landingpad.
966     assert(CatchAction->getSelector()->isNullValue() && "expected catch-all");
967     HandlerBB =
968         StartBB->splitBasicBlock(StartBB->getFirstInsertionPt(), "catch.all");
969   }
970   CatchAction->setHandlerBlockOrFunc(BlockAddress::get(HandlerBB));
971   TinyPtrVector<BasicBlock *> Targets(HandlerBB);
972   CatchAction->setReturnTargets(Targets);
973 }
974
975 void LandingPadMap::mapLandingPad(const LandingPadInst *LPad) {
976   // Each instance of this class should only ever be used to map a single
977   // landing pad.
978   assert(OriginLPad == nullptr || OriginLPad == LPad);
979
980   // If the landing pad has already been mapped, there's nothing more to do.
981   if (OriginLPad == LPad)
982     return;
983
984   OriginLPad = LPad;
985
986   // The landingpad instruction returns an aggregate value.  Typically, its
987   // value will be passed to a pair of extract value instructions and the
988   // results of those extracts will have been promoted to reg values before
989   // this routine is called.
990   for (auto *U : LPad->users()) {
991     const ExtractValueInst *Extract = dyn_cast<ExtractValueInst>(U);
992     if (!Extract)
993       continue;
994     assert(Extract->getNumIndices() == 1 &&
995            "Unexpected operation: extracting both landing pad values");
996     unsigned int Idx = *(Extract->idx_begin());
997     assert((Idx == 0 || Idx == 1) &&
998            "Unexpected operation: extracting an unknown landing pad element");
999     if (Idx == 0) {
1000       ExtractedEHPtrs.push_back(Extract);
1001     } else if (Idx == 1) {
1002       ExtractedSelectors.push_back(Extract);
1003     }
1004   }
1005 }
1006
1007 bool LandingPadMap::isOriginLandingPadBlock(const BasicBlock *BB) const {
1008   return BB->getLandingPadInst() == OriginLPad;
1009 }
1010
1011 bool LandingPadMap::isLandingPadSpecificInst(const Instruction *Inst) const {
1012   if (Inst == OriginLPad)
1013     return true;
1014   for (auto *Extract : ExtractedEHPtrs) {
1015     if (Inst == Extract)
1016       return true;
1017   }
1018   for (auto *Extract : ExtractedSelectors) {
1019     if (Inst == Extract)
1020       return true;
1021   }
1022   return false;
1023 }
1024
1025 void LandingPadMap::remapEHValues(ValueToValueMapTy &VMap, Value *EHPtrValue,
1026                                   Value *SelectorValue) const {
1027   // Remap all landing pad extract instructions to the specified values.
1028   for (auto *Extract : ExtractedEHPtrs)
1029     VMap[Extract] = EHPtrValue;
1030   for (auto *Extract : ExtractedSelectors)
1031     VMap[Extract] = SelectorValue;
1032 }
1033
1034 CloningDirector::CloningAction WinEHCloningDirectorBase::handleInstruction(
1035     ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
1036   // If this is one of the boilerplate landing pad instructions, skip it.
1037   // The instruction will have already been remapped in VMap.
1038   if (LPadMap.isLandingPadSpecificInst(Inst))
1039     return CloningDirector::SkipInstruction;
1040
1041   // Nested landing pads will be cloned as stubs, with just the
1042   // landingpad instruction and an unreachable instruction. When
1043   // all landingpads have been outlined, we'll replace this with the
1044   // llvm.eh.actions call and indirect branch created when the
1045   // landing pad was outlined.
1046   if (auto *LPad = dyn_cast<LandingPadInst>(Inst)) {
1047     return handleLandingPad(VMap, LPad, NewBB);
1048   }
1049
1050   if (auto *Invoke = dyn_cast<InvokeInst>(Inst))
1051     return handleInvoke(VMap, Invoke, NewBB);
1052
1053   if (auto *Resume = dyn_cast<ResumeInst>(Inst))
1054     return handleResume(VMap, Resume, NewBB);
1055
1056   if (match(Inst, m_Intrinsic<Intrinsic::eh_begincatch>()))
1057     return handleBeginCatch(VMap, Inst, NewBB);
1058   if (match(Inst, m_Intrinsic<Intrinsic::eh_endcatch>()))
1059     return handleEndCatch(VMap, Inst, NewBB);
1060   if (match(Inst, m_Intrinsic<Intrinsic::eh_typeid_for>()))
1061     return handleTypeIdFor(VMap, Inst, NewBB);
1062
1063   // Continue with the default cloning behavior.
1064   return CloningDirector::CloneInstruction;
1065 }
1066
1067 CloningDirector::CloningAction WinEHCatchDirector::handleLandingPad(
1068     ValueToValueMapTy &VMap, const LandingPadInst *LPad, BasicBlock *NewBB) {
1069   Instruction *NewInst = LPad->clone();
1070   if (LPad->hasName())
1071     NewInst->setName(LPad->getName());
1072   // Save this correlation for later processing.
1073   NestedLPtoOriginalLP[cast<LandingPadInst>(NewInst)] = LPad;
1074   VMap[LPad] = NewInst;
1075   BasicBlock::InstListType &InstList = NewBB->getInstList();
1076   InstList.push_back(NewInst);
1077   InstList.push_back(new UnreachableInst(NewBB->getContext()));
1078   return CloningDirector::StopCloningBB;
1079 }
1080
1081 CloningDirector::CloningAction WinEHCatchDirector::handleBeginCatch(
1082     ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
1083   // The argument to the call is some form of the first element of the
1084   // landingpad aggregate value, but that doesn't matter.  It isn't used
1085   // here.
1086   // The second argument is an outparameter where the exception object will be
1087   // stored. Typically the exception object is a scalar, but it can be an
1088   // aggregate when catching by value.
1089   // FIXME: Leave something behind to indicate where the exception object lives
1090   // for this handler. Should it be part of llvm.eh.actions?
1091   assert(ExceptionObjectVar == nullptr && "Multiple calls to "
1092                                           "llvm.eh.begincatch found while "
1093                                           "outlining catch handler.");
1094   ExceptionObjectVar = Inst->getOperand(1)->stripPointerCasts();
1095   if (isa<ConstantPointerNull>(ExceptionObjectVar))
1096     return CloningDirector::SkipInstruction;
1097   assert(cast<AllocaInst>(ExceptionObjectVar)->isStaticAlloca() &&
1098          "catch parameter is not static alloca");
1099   Materializer.escapeCatchObject(ExceptionObjectVar);
1100   return CloningDirector::SkipInstruction;
1101 }
1102
1103 CloningDirector::CloningAction
1104 WinEHCatchDirector::handleEndCatch(ValueToValueMapTy &VMap,
1105                                    const Instruction *Inst, BasicBlock *NewBB) {
1106   auto *IntrinCall = dyn_cast<IntrinsicInst>(Inst);
1107   // It might be interesting to track whether or not we are inside a catch
1108   // function, but that might make the algorithm more brittle than it needs
1109   // to be.
1110
1111   // The end catch call can occur in one of two places: either in a
1112   // landingpad block that is part of the catch handlers exception mechanism,
1113   // or at the end of the catch block.  However, a catch-all handler may call
1114   // end catch from the original landing pad.  If the call occurs in a nested
1115   // landing pad block, we must skip it and continue so that the landing pad
1116   // gets cloned.
1117   auto *ParentBB = IntrinCall->getParent();
1118   if (ParentBB->isLandingPad() && !LPadMap.isOriginLandingPadBlock(ParentBB))
1119     return CloningDirector::SkipInstruction;
1120
1121   // If an end catch occurs anywhere else we want to terminate the handler
1122   // with a return to the code that follows the endcatch call.  If the
1123   // next instruction is not an unconditional branch, we need to split the
1124   // block to provide a clear target for the return instruction.
1125   BasicBlock *ContinueBB;
1126   auto Next = std::next(BasicBlock::const_iterator(IntrinCall));
1127   const BranchInst *Branch = dyn_cast<BranchInst>(Next);
1128   if (!Branch || !Branch->isUnconditional()) {
1129     // We're interrupting the cloning process at this location, so the
1130     // const_cast we're doing here will not cause a problem.
1131     ContinueBB = SplitBlock(const_cast<BasicBlock *>(ParentBB),
1132                             const_cast<Instruction *>(cast<Instruction>(Next)));
1133   } else {
1134     ContinueBB = Branch->getSuccessor(0);
1135   }
1136
1137   ReturnInst::Create(NewBB->getContext(), BlockAddress::get(ContinueBB), NewBB);
1138   ReturnTargets.push_back(ContinueBB);
1139
1140   // We just added a terminator to the cloned block.
1141   // Tell the caller to stop processing the current basic block so that
1142   // the branch instruction will be skipped.
1143   return CloningDirector::StopCloningBB;
1144 }
1145
1146 CloningDirector::CloningAction WinEHCatchDirector::handleTypeIdFor(
1147     ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
1148   auto *IntrinCall = dyn_cast<IntrinsicInst>(Inst);
1149   Value *Selector = IntrinCall->getArgOperand(0)->stripPointerCasts();
1150   // This causes a replacement that will collapse the landing pad CFG based
1151   // on the filter function we intend to match.
1152   if (Selector == CurrentSelector)
1153     VMap[Inst] = ConstantInt::get(SelectorIDType, 1);
1154   else
1155     VMap[Inst] = ConstantInt::get(SelectorIDType, 0);
1156   // Tell the caller not to clone this instruction.
1157   return CloningDirector::SkipInstruction;
1158 }
1159
1160 CloningDirector::CloningAction
1161 WinEHCatchDirector::handleInvoke(ValueToValueMapTy &VMap,
1162                                  const InvokeInst *Invoke, BasicBlock *NewBB) {
1163   return CloningDirector::CloneInstruction;
1164 }
1165
1166 CloningDirector::CloningAction
1167 WinEHCatchDirector::handleResume(ValueToValueMapTy &VMap,
1168                                  const ResumeInst *Resume, BasicBlock *NewBB) {
1169   // Resume instructions shouldn't be reachable from catch handlers.
1170   // We still need to handle it, but it will be pruned.
1171   BasicBlock::InstListType &InstList = NewBB->getInstList();
1172   InstList.push_back(new UnreachableInst(NewBB->getContext()));
1173   return CloningDirector::StopCloningBB;
1174 }
1175
1176 CloningDirector::CloningAction WinEHCleanupDirector::handleLandingPad(
1177     ValueToValueMapTy &VMap, const LandingPadInst *LPad, BasicBlock *NewBB) {
1178   // The MS runtime will terminate the process if an exception occurs in a
1179   // cleanup handler, so we shouldn't encounter landing pads in the actual
1180   // cleanup code, but they may appear in catch blocks.  Depending on where
1181   // we started cloning we may see one, but it will get dropped during dead
1182   // block pruning.
1183   Instruction *NewInst = new UnreachableInst(NewBB->getContext());
1184   VMap[LPad] = NewInst;
1185   BasicBlock::InstListType &InstList = NewBB->getInstList();
1186   InstList.push_back(NewInst);
1187   return CloningDirector::StopCloningBB;
1188 }
1189
1190 CloningDirector::CloningAction WinEHCleanupDirector::handleBeginCatch(
1191     ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
1192   // Catch blocks within cleanup handlers will always be unreachable.
1193   // We'll insert an unreachable instruction now, but it will be pruned
1194   // before the cloning process is complete.
1195   BasicBlock::InstListType &InstList = NewBB->getInstList();
1196   InstList.push_back(new UnreachableInst(NewBB->getContext()));
1197   return CloningDirector::StopCloningBB;
1198 }
1199
1200 CloningDirector::CloningAction WinEHCleanupDirector::handleEndCatch(
1201     ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
1202   // Cleanup handlers nested within catch handlers may begin with a call to
1203   // eh.endcatch.  We can just ignore that instruction.
1204   return CloningDirector::SkipInstruction;
1205 }
1206
1207 CloningDirector::CloningAction WinEHCleanupDirector::handleTypeIdFor(
1208     ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
1209   // If we encounter a selector comparison while cloning a cleanup handler,
1210   // we want to stop cloning immediately.  Anything after the dispatch
1211   // will be outlined into a different handler.
1212   BasicBlock *CatchHandler;
1213   Constant *Selector;
1214   BasicBlock *NextBB;
1215   if (isSelectorDispatch(const_cast<BasicBlock *>(Inst->getParent()),
1216                          CatchHandler, Selector, NextBB)) {
1217     ReturnInst::Create(NewBB->getContext(), nullptr, NewBB);
1218     return CloningDirector::StopCloningBB;
1219   }
1220   // If eg.typeid.for is called for any other reason, it can be ignored.
1221   VMap[Inst] = ConstantInt::get(SelectorIDType, 0);
1222   return CloningDirector::SkipInstruction;
1223 }
1224
1225 CloningDirector::CloningAction WinEHCleanupDirector::handleInvoke(
1226     ValueToValueMapTy &VMap, const InvokeInst *Invoke, BasicBlock *NewBB) {
1227   // All invokes in cleanup handlers can be replaced with calls.
1228   SmallVector<Value *, 16> CallArgs(Invoke->op_begin(), Invoke->op_end() - 3);
1229   // Insert a normal call instruction...
1230   CallInst *NewCall =
1231       CallInst::Create(const_cast<Value *>(Invoke->getCalledValue()), CallArgs,
1232                        Invoke->getName(), NewBB);
1233   NewCall->setCallingConv(Invoke->getCallingConv());
1234   NewCall->setAttributes(Invoke->getAttributes());
1235   NewCall->setDebugLoc(Invoke->getDebugLoc());
1236   VMap[Invoke] = NewCall;
1237
1238   // Remap the operands.
1239   llvm::RemapInstruction(NewCall, VMap, RF_None, nullptr, &Materializer);
1240
1241   // Insert an unconditional branch to the normal destination.
1242   BranchInst::Create(Invoke->getNormalDest(), NewBB);
1243
1244   // The unwind destination won't be cloned into the new function, so
1245   // we don't need to clean up its phi nodes.
1246
1247   // We just added a terminator to the cloned block.
1248   // Tell the caller to stop processing the current basic block.
1249   return CloningDirector::CloneSuccessors;
1250 }
1251
1252 CloningDirector::CloningAction WinEHCleanupDirector::handleResume(
1253     ValueToValueMapTy &VMap, const ResumeInst *Resume, BasicBlock *NewBB) {
1254   ReturnInst::Create(NewBB->getContext(), nullptr, NewBB);
1255
1256   // We just added a terminator to the cloned block.
1257   // Tell the caller to stop processing the current basic block so that
1258   // the branch instruction will be skipped.
1259   return CloningDirector::StopCloningBB;
1260 }
1261
1262 WinEHFrameVariableMaterializer::WinEHFrameVariableMaterializer(
1263     Function *OutlinedFn, FrameVarInfoMap &FrameVarInfo)
1264     : FrameVarInfo(FrameVarInfo), Builder(OutlinedFn->getContext()) {
1265   BasicBlock *EntryBB = &OutlinedFn->getEntryBlock();
1266   Builder.SetInsertPoint(EntryBB, EntryBB->getFirstInsertionPt());
1267 }
1268
1269 Value *WinEHFrameVariableMaterializer::materializeValueFor(Value *V) {
1270   // If we're asked to materialize a value that is an instruction, we
1271   // temporarily create an alloca in the outlined function and add this
1272   // to the FrameVarInfo map.  When all the outlining is complete, we'll
1273   // collect these into a structure, spilling non-alloca values in the
1274   // parent frame as necessary, and replace these temporary allocas with
1275   // GEPs referencing the frame allocation block.
1276
1277   // If the value is an alloca, the mapping is direct.
1278   if (auto *AV = dyn_cast<AllocaInst>(V)) {
1279     AllocaInst *NewAlloca = dyn_cast<AllocaInst>(AV->clone());
1280     Builder.Insert(NewAlloca, AV->getName());
1281     FrameVarInfo[AV].push_back(NewAlloca);
1282     return NewAlloca;
1283   }
1284
1285   // For other types of instructions or arguments, we need an alloca based on
1286   // the value's type and a load of the alloca.  The alloca will be replaced
1287   // by a GEP, but the load will stay.  In the parent function, the value will
1288   // be spilled to a location in the frame allocation block.
1289   if (isa<Instruction>(V) || isa<Argument>(V)) {
1290     AllocaInst *NewAlloca =
1291         Builder.CreateAlloca(V->getType(), nullptr, "eh.temp.alloca");
1292     FrameVarInfo[V].push_back(NewAlloca);
1293     LoadInst *NewLoad = Builder.CreateLoad(NewAlloca, V->getName() + ".reload");
1294     return NewLoad;
1295   }
1296
1297   // Don't materialize other values.
1298   return nullptr;
1299 }
1300
1301 void WinEHFrameVariableMaterializer::escapeCatchObject(Value *V) {
1302   // Catch parameter objects have to live in the parent frame. When we see a use
1303   // of a catch parameter, add a sentinel to the multimap to indicate that it's
1304   // used from another handler. This will prevent us from trying to sink the
1305   // alloca into the handler and ensure that the catch parameter is present in
1306   // the call to llvm.frameescape.
1307   FrameVarInfo[V].push_back(getCatchObjectSentinel());
1308 }
1309
1310 // This function maps the catch and cleanup handlers that are reachable from the
1311 // specified landing pad. The landing pad sequence will have this basic shape:
1312 //
1313 //  <cleanup handler>
1314 //  <selector comparison>
1315 //  <catch handler>
1316 //  <cleanup handler>
1317 //  <selector comparison>
1318 //  <catch handler>
1319 //  <cleanup handler>
1320 //  ...
1321 //
1322 // Any of the cleanup slots may be absent.  The cleanup slots may be occupied by
1323 // any arbitrary control flow, but all paths through the cleanup code must
1324 // eventually reach the next selector comparison and no path can skip to a
1325 // different selector comparisons, though some paths may terminate abnormally.
1326 // Therefore, we will use a depth first search from the start of any given
1327 // cleanup block and stop searching when we find the next selector comparison.
1328 //
1329 // If the landingpad instruction does not have a catch clause, we will assume
1330 // that any instructions other than selector comparisons and catch handlers can
1331 // be ignored.  In practice, these will only be the boilerplate instructions.
1332 //
1333 // The catch handlers may also have any control structure, but we are only
1334 // interested in the start of the catch handlers, so we don't need to actually
1335 // follow the flow of the catch handlers.  The start of the catch handlers can
1336 // be located from the compare instructions, but they can be skipped in the
1337 // flow by following the contrary branch.
1338 void WinEHPrepare::mapLandingPadBlocks(LandingPadInst *LPad,
1339                                        LandingPadActions &Actions) {
1340   unsigned int NumClauses = LPad->getNumClauses();
1341   unsigned int HandlersFound = 0;
1342   BasicBlock *BB = LPad->getParent();
1343
1344   DEBUG(dbgs() << "Mapping landing pad: " << BB->getName() << "\n");
1345
1346   if (NumClauses == 0) {
1347     findCleanupHandlers(Actions, BB, nullptr);
1348     return;
1349   }
1350
1351   VisitedBlockSet VisitedBlocks;
1352
1353   while (HandlersFound != NumClauses) {
1354     BasicBlock *NextBB = nullptr;
1355
1356     // See if the clause we're looking for is a catch-all.
1357     // If so, the catch begins immediately.
1358     if (isa<ConstantPointerNull>(LPad->getClause(HandlersFound))) {
1359       // The catch all must occur last.
1360       assert(HandlersFound == NumClauses - 1);
1361
1362       // For C++ EH, check if there is any interesting cleanup code before we
1363       // begin the catch. This is important because cleanups cannot rethrow
1364       // exceptions but code called from catches can. For SEH, it isn't
1365       // important if some finally code before a catch-all is executed out of
1366       // line or after recovering from the exception.
1367       if (Personality == EHPersonality::MSVC_CXX)
1368         findCleanupHandlers(Actions, BB, BB);
1369
1370       // Add the catch handler to the action list.
1371       CatchHandler *Action =
1372           new CatchHandler(BB, LPad->getClause(HandlersFound), nullptr);
1373       CatchHandlerMap[BB] = Action;
1374       Actions.insertCatchHandler(Action);
1375       DEBUG(dbgs() << "  Catch all handler at block " << BB->getName() << "\n");
1376       ++HandlersFound;
1377
1378       // Once we reach a catch-all, don't expect to hit a resume instruction.
1379       BB = nullptr;
1380       break;
1381     }
1382
1383     CatchHandler *CatchAction = findCatchHandler(BB, NextBB, VisitedBlocks);
1384     // See if there is any interesting code executed before the dispatch.
1385     findCleanupHandlers(Actions, BB, CatchAction->getStartBlock());
1386
1387     assert(CatchAction);
1388     ++HandlersFound;
1389
1390     // Add the catch handler to the action list.
1391     Actions.insertCatchHandler(CatchAction);
1392     DEBUG(dbgs() << "  Found catch dispatch in block "
1393                  << CatchAction->getStartBlock()->getName() << "\n");
1394
1395     // Move on to the block after the catch handler.
1396     BB = NextBB;
1397   }
1398
1399   // If we didn't wind up in a catch-all, see if there is any interesting code
1400   // executed before the resume.
1401   findCleanupHandlers(Actions, BB, BB);
1402
1403   // It's possible that some optimization moved code into a landingpad that
1404   // wasn't
1405   // previously being used for cleanup.  If that happens, we need to execute
1406   // that
1407   // extra code from a cleanup handler.
1408   if (Actions.includesCleanup() && !LPad->isCleanup())
1409     LPad->setCleanup(true);
1410 }
1411
1412 // This function searches starting with the input block for the next
1413 // block that terminates with a branch whose condition is based on a selector
1414 // comparison.  This may be the input block.  See the mapLandingPadBlocks
1415 // comments for a discussion of control flow assumptions.
1416 //
1417 CatchHandler *WinEHPrepare::findCatchHandler(BasicBlock *BB,
1418                                              BasicBlock *&NextBB,
1419                                              VisitedBlockSet &VisitedBlocks) {
1420   // See if we've already found a catch handler use it.
1421   // Call count() first to avoid creating a null entry for blocks
1422   // we haven't seen before.
1423   if (CatchHandlerMap.count(BB) && CatchHandlerMap[BB] != nullptr) {
1424     CatchHandler *Action = cast<CatchHandler>(CatchHandlerMap[BB]);
1425     NextBB = Action->getNextBB();
1426     return Action;
1427   }
1428
1429   // VisitedBlocks applies only to the current search.  We still
1430   // need to consider blocks that we've visited while mapping other
1431   // landing pads.
1432   VisitedBlocks.insert(BB);
1433
1434   BasicBlock *CatchBlock = nullptr;
1435   Constant *Selector = nullptr;
1436
1437   // If this is the first time we've visited this block from any landing pad
1438   // look to see if it is a selector dispatch block.
1439   if (!CatchHandlerMap.count(BB)) {
1440     if (isSelectorDispatch(BB, CatchBlock, Selector, NextBB)) {
1441       CatchHandler *Action = new CatchHandler(BB, Selector, NextBB);
1442       CatchHandlerMap[BB] = Action;
1443       return Action;
1444     }
1445   }
1446
1447   // Visit each successor, looking for the dispatch.
1448   // FIXME: We expect to find the dispatch quickly, so this will probably
1449   //        work better as a breadth first search.
1450   for (BasicBlock *Succ : successors(BB)) {
1451     if (VisitedBlocks.count(Succ))
1452       continue;
1453
1454     CatchHandler *Action = findCatchHandler(Succ, NextBB, VisitedBlocks);
1455     if (Action)
1456       return Action;
1457   }
1458   return nullptr;
1459 }
1460
1461 // These are helper functions to combine repeated code from findCleanupHandlers.
1462 static void createCleanupHandler(LandingPadActions &Actions,
1463                                  CleanupHandlerMapTy &CleanupHandlerMap,
1464                                  BasicBlock *BB) {
1465   CleanupHandler *Action = new CleanupHandler(BB);
1466   CleanupHandlerMap[BB] = Action;
1467   Actions.insertCleanupHandler(Action);
1468   DEBUG(dbgs() << "  Found cleanup code in block "
1469                << Action->getStartBlock()->getName() << "\n");
1470 }
1471
1472 static bool isFrameAddressCall(Value *V) {
1473   return match(V, m_Intrinsic<Intrinsic::frameaddress>(m_SpecificInt(0)));
1474 }
1475
1476 static CallSite matchOutlinedFinallyCall(BasicBlock *BB,
1477                                          Instruction *MaybeCall) {
1478   // Look for finally blocks that Clang has already outlined for us.
1479   //   %fp = call i8* @llvm.frameaddress(i32 0)
1480   //   call void @"fin$parent"(iN 1, i8* %fp)
1481   if (isFrameAddressCall(MaybeCall) && MaybeCall != BB->getTerminator())
1482     MaybeCall = MaybeCall->getNextNode();
1483   CallSite FinallyCall(MaybeCall);
1484   if (!FinallyCall || FinallyCall.arg_size() != 2)
1485     return CallSite();
1486   if (!match(FinallyCall.getArgument(0), m_SpecificInt(1)))
1487     return CallSite();
1488   if (!isFrameAddressCall(FinallyCall.getArgument(1)))
1489     return CallSite();
1490   return FinallyCall;
1491 }
1492
1493 static BasicBlock *followSingleUnconditionalBranches(BasicBlock *BB) {
1494   // Skip single ubr blocks.
1495   while (BB->getFirstNonPHIOrDbg() == BB->getTerminator()) {
1496     auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
1497     if (Br && Br->isUnconditional())
1498       BB = Br->getSuccessor(0);
1499     else
1500       return BB;
1501   }
1502   return BB;
1503 }
1504
1505 // This function searches starting with the input block for the next block that
1506 // contains code that is not part of a catch handler and would not be eliminated
1507 // during handler outlining.
1508 //
1509 void WinEHPrepare::findCleanupHandlers(LandingPadActions &Actions,
1510                                        BasicBlock *StartBB, BasicBlock *EndBB) {
1511   // Here we will skip over the following:
1512   //
1513   // landing pad prolog:
1514   //
1515   // Unconditional branches
1516   //
1517   // Selector dispatch
1518   //
1519   // Resume pattern
1520   //
1521   // Anything else marks the start of an interesting block
1522
1523   BasicBlock *BB = StartBB;
1524   // Anything other than an unconditional branch will kick us out of this loop
1525   // one way or another.
1526   while (BB) {
1527     BB = followSingleUnconditionalBranches(BB);
1528     // If we've already scanned this block, don't scan it again.  If it is
1529     // a cleanup block, there will be an action in the CleanupHandlerMap.
1530     // If we've scanned it and it is not a cleanup block, there will be a
1531     // nullptr in the CleanupHandlerMap.  If we have not scanned it, there will
1532     // be no entry in the CleanupHandlerMap.  We must call count() first to
1533     // avoid creating a null entry for blocks we haven't scanned.
1534     if (CleanupHandlerMap.count(BB)) {
1535       if (auto *Action = CleanupHandlerMap[BB]) {
1536         Actions.insertCleanupHandler(Action);
1537         DEBUG(dbgs() << "  Found cleanup code in block "
1538               << Action->getStartBlock()->getName() << "\n");
1539         // FIXME: This cleanup might chain into another, and we need to discover
1540         // that.
1541         return;
1542       } else {
1543         // Here we handle the case where the cleanup handler map contains a
1544         // value for this block but the value is a nullptr.  This means that
1545         // we have previously analyzed the block and determined that it did
1546         // not contain any cleanup code.  Based on the earlier analysis, we
1547         // know the the block must end in either an unconditional branch, a
1548         // resume or a conditional branch that is predicated on a comparison
1549         // with a selector.  Either the resume or the selector dispatch
1550         // would terminate the search for cleanup code, so the unconditional
1551         // branch is the only case for which we might need to continue
1552         // searching.
1553         BasicBlock *SuccBB = followSingleUnconditionalBranches(BB);
1554         if (SuccBB == BB || SuccBB == EndBB)
1555           return;
1556         BB = SuccBB;
1557         continue;
1558       }
1559     }
1560
1561     // Create an entry in the cleanup handler map for this block.  Initially
1562     // we create an entry that says this isn't a cleanup block.  If we find
1563     // cleanup code, the caller will replace this entry.
1564     CleanupHandlerMap[BB] = nullptr;
1565
1566     TerminatorInst *Terminator = BB->getTerminator();
1567
1568     // Landing pad blocks have extra instructions we need to accept.
1569     LandingPadMap *LPadMap = nullptr;
1570     if (BB->isLandingPad()) {
1571       LandingPadInst *LPad = BB->getLandingPadInst();
1572       LPadMap = &LPadMaps[LPad];
1573       if (!LPadMap->isInitialized())
1574         LPadMap->mapLandingPad(LPad);
1575     }
1576
1577     // Look for the bare resume pattern:
1578     //   %lpad.val1 = insertvalue { i8*, i32 } undef, i8* %exn, 0
1579     //   %lpad.val2 = insertvalue { i8*, i32 } %lpad.val1, i32 %sel, 1
1580     //   resume { i8*, i32 } %lpad.val2
1581     if (auto *Resume = dyn_cast<ResumeInst>(Terminator)) {
1582       InsertValueInst *Insert1 = nullptr;
1583       InsertValueInst *Insert2 = nullptr;
1584       Value *ResumeVal = Resume->getOperand(0);
1585       // If there is only one landingpad, we may use the lpad directly with no
1586       // insertions.
1587       if (isa<LandingPadInst>(ResumeVal))
1588         return;
1589       if (!isa<PHINode>(ResumeVal)) {
1590         Insert2 = dyn_cast<InsertValueInst>(ResumeVal);
1591         if (!Insert2)
1592           return createCleanupHandler(Actions, CleanupHandlerMap, BB);
1593         Insert1 = dyn_cast<InsertValueInst>(Insert2->getAggregateOperand());
1594         if (!Insert1)
1595           return createCleanupHandler(Actions, CleanupHandlerMap, BB);
1596       }
1597       for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end();
1598            II != IE; ++II) {
1599         Instruction *Inst = II;
1600         if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst))
1601           continue;
1602         if (Inst == Insert1 || Inst == Insert2 || Inst == Resume)
1603           continue;
1604         if (!Inst->hasOneUse() ||
1605             (Inst->user_back() != Insert1 && Inst->user_back() != Insert2)) {
1606           return createCleanupHandler(Actions, CleanupHandlerMap, BB);
1607         }
1608       }
1609       return;
1610     }
1611
1612     BranchInst *Branch = dyn_cast<BranchInst>(Terminator);
1613     if (Branch && Branch->isConditional()) {
1614       // Look for the selector dispatch.
1615       //   %2 = call i32 @llvm.eh.typeid.for(i8* bitcast (i8** @_ZTIf to i8*))
1616       //   %matches = icmp eq i32 %sel, %2
1617       //   br i1 %matches, label %catch14, label %eh.resume
1618       CmpInst *Compare = dyn_cast<CmpInst>(Branch->getCondition());
1619       if (!Compare || !Compare->isEquality())
1620         return createCleanupHandler(Actions, CleanupHandlerMap, BB);
1621       for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end();
1622            II != IE; ++II) {
1623         Instruction *Inst = II;
1624         if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst))
1625           continue;
1626         if (Inst == Compare || Inst == Branch)
1627           continue;
1628         if (match(Inst, m_Intrinsic<Intrinsic::eh_typeid_for>()))
1629           continue;
1630         return createCleanupHandler(Actions, CleanupHandlerMap, BB);
1631       }
1632       // The selector dispatch block should always terminate our search.
1633       assert(BB == EndBB);
1634       return;
1635     }
1636
1637     if (isAsynchronousEHPersonality(Personality)) {
1638       // If this is a landingpad block, split the block at the first non-landing
1639       // pad instruction.
1640       Instruction *MaybeCall = BB->getFirstNonPHIOrDbg();
1641       if (LPadMap) {
1642         while (MaybeCall != BB->getTerminator() &&
1643                LPadMap->isLandingPadSpecificInst(MaybeCall))
1644           MaybeCall = MaybeCall->getNextNode();
1645       }
1646
1647       // Look for outlined finally calls.
1648       if (CallSite FinallyCall = matchOutlinedFinallyCall(BB, MaybeCall)) {
1649         Function *Fin = FinallyCall.getCalledFunction();
1650         assert(Fin && "outlined finally call should be direct");
1651         auto *Action = new CleanupHandler(BB);
1652         Action->setHandlerBlockOrFunc(Fin);
1653         Actions.insertCleanupHandler(Action);
1654         CleanupHandlerMap[BB] = Action;
1655         DEBUG(dbgs() << "  Found frontend-outlined finally call to "
1656                      << Fin->getName() << " in block "
1657                      << Action->getStartBlock()->getName() << "\n");
1658
1659         // Split the block if there were more interesting instructions and look
1660         // for finally calls in the normal successor block.
1661         BasicBlock *SuccBB = BB;
1662         if (FinallyCall.getInstruction() != BB->getTerminator() &&
1663             FinallyCall.getInstruction()->getNextNode() != BB->getTerminator()) {
1664           SuccBB = BB->splitBasicBlock(FinallyCall.getInstruction()->getNextNode());
1665         } else {
1666           if (FinallyCall.isInvoke()) {
1667             SuccBB = cast<InvokeInst>(FinallyCall.getInstruction())->getNormalDest();
1668           } else {
1669             SuccBB = BB->getUniqueSuccessor();
1670             assert(SuccBB && "splitOutlinedFinallyCalls didn't insert a branch");
1671           }
1672         }
1673         BB = SuccBB;
1674         if (BB == EndBB)
1675           return;
1676         continue;
1677       }
1678     }
1679
1680     // Anything else is either a catch block or interesting cleanup code.
1681     for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end();
1682          II != IE; ++II) {
1683       Instruction *Inst = II;
1684       if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst))
1685         continue;
1686       // Unconditional branches fall through to this loop.
1687       if (Inst == Branch)
1688         continue;
1689       // If this is a catch block, there is no cleanup code to be found.
1690       if (match(Inst, m_Intrinsic<Intrinsic::eh_begincatch>()))
1691         return;
1692       // If this a nested landing pad, it may contain an endcatch call.
1693       if (match(Inst, m_Intrinsic<Intrinsic::eh_endcatch>()))
1694         return;
1695       // Anything else makes this interesting cleanup code.
1696       return createCleanupHandler(Actions, CleanupHandlerMap, BB);
1697     }
1698
1699     // Only unconditional branches in empty blocks should get this far.
1700     assert(Branch && Branch->isUnconditional());
1701     if (BB == EndBB)
1702       return;
1703     BB = Branch->getSuccessor(0);
1704   }
1705   return;
1706 }
1707
1708 // This is a public function, declared in WinEHFuncInfo.h and is also
1709 // referenced by WinEHNumbering in FunctionLoweringInfo.cpp.
1710 void llvm::parseEHActions(const IntrinsicInst *II,
1711                           SmallVectorImpl<ActionHandler *> &Actions) {
1712   for (unsigned I = 0, E = II->getNumArgOperands(); I != E;) {
1713     uint64_t ActionKind =
1714         cast<ConstantInt>(II->getArgOperand(I))->getZExtValue();
1715     if (ActionKind == /*catch=*/1) {
1716       auto *Selector = cast<Constant>(II->getArgOperand(I + 1));
1717       ConstantInt *EHObjIndex = cast<ConstantInt>(II->getArgOperand(I + 2));
1718       int64_t EHObjIndexVal = EHObjIndex->getSExtValue();
1719       Constant *Handler = cast<Constant>(II->getArgOperand(I + 3));
1720       I += 4;
1721       auto *CH = new CatchHandler(/*BB=*/nullptr, Selector, /*NextBB=*/nullptr);
1722       CH->setHandlerBlockOrFunc(Handler);
1723       CH->setExceptionVarIndex(EHObjIndexVal);
1724       Actions.push_back(CH);
1725     } else if (ActionKind == 0) {
1726       Constant *Handler = cast<Constant>(II->getArgOperand(I + 1));
1727       I += 2;
1728       auto *CH = new CleanupHandler(/*BB=*/nullptr);
1729       CH->setHandlerBlockOrFunc(Handler);
1730       Actions.push_back(CH);
1731     } else {
1732       llvm_unreachable("Expected either a catch or cleanup handler!");
1733     }
1734   }
1735   std::reverse(Actions.begin(), Actions.end());
1736 }