During two-address lowering, rescheduling an instruction does not untie
[oota-llvm.git] / lib / CodeGen / TwoAddressInstructionPass.cpp
1 //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TwoAddress instruction pass which is used
11 // by most register allocators. Two-Address instructions are rewritten
12 // from:
13 //
14 //     A = B op C
15 //
16 // to:
17 //
18 //     A = B
19 //     A op= C
20 //
21 // Note that if a register allocator chooses to use this pass, that it
22 // has to be capable of handling the non-SSA nature of these rewritten
23 // virtual registers.
24 //
25 // It is also worth noting that the duplicate operand of the two
26 // address instruction is removed.
27 //
28 //===----------------------------------------------------------------------===//
29
30 #define DEBUG_TYPE "twoaddrinstr"
31 #include "llvm/CodeGen/Passes.h"
32 #include "llvm/Function.h"
33 #include "llvm/CodeGen/LiveVariables.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/Analysis/AliasAnalysis.h"
39 #include "llvm/MC/MCInstrItineraries.h"
40 #include "llvm/Target/TargetRegisterInfo.h"
41 #include "llvm/Target/TargetInstrInfo.h"
42 #include "llvm/Target/TargetMachine.h"
43 #include "llvm/Target/TargetOptions.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/ADT/BitVector.h"
47 #include "llvm/ADT/DenseMap.h"
48 #include "llvm/ADT/SmallSet.h"
49 #include "llvm/ADT/Statistic.h"
50 #include "llvm/ADT/STLExtras.h"
51 using namespace llvm;
52
53 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
54 STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
55 STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
56 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
57 STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
58 STATISTIC(NumReMats,           "Number of instructions re-materialized");
59 STATISTIC(NumDeletes,          "Number of dead instructions deleted");
60 STATISTIC(NumReSchedUps,       "Number of instructions re-scheduled up");
61 STATISTIC(NumReSchedDowns,     "Number of instructions re-scheduled down");
62
63 namespace {
64   class TwoAddressInstructionPass : public MachineFunctionPass {
65     const TargetInstrInfo *TII;
66     const TargetRegisterInfo *TRI;
67     const InstrItineraryData *InstrItins;
68     MachineRegisterInfo *MRI;
69     LiveVariables *LV;
70     AliasAnalysis *AA;
71     CodeGenOpt::Level OptLevel;
72
73     // DistanceMap - Keep track the distance of a MI from the start of the
74     // current basic block.
75     DenseMap<MachineInstr*, unsigned> DistanceMap;
76
77     // SrcRegMap - A map from virtual registers to physical registers which
78     // are likely targets to be coalesced to due to copies from physical
79     // registers to virtual registers. e.g. v1024 = move r0.
80     DenseMap<unsigned, unsigned> SrcRegMap;
81
82     // DstRegMap - A map from virtual registers to physical registers which
83     // are likely targets to be coalesced to due to copies to physical
84     // registers from virtual registers. e.g. r1 = move v1024.
85     DenseMap<unsigned, unsigned> DstRegMap;
86
87     /// RegSequences - Keep track the list of REG_SEQUENCE instructions seen
88     /// during the initial walk of the machine function.
89     SmallVector<MachineInstr*, 16> RegSequences;
90
91     bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
92                               unsigned Reg,
93                               MachineBasicBlock::iterator OldPos);
94
95     bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
96                              MachineInstr *MI, MachineInstr *DefMI,
97                              MachineBasicBlock *MBB, unsigned Loc);
98
99     bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
100                            unsigned &LastDef);
101
102     MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB,
103                                    unsigned Dist);
104
105     bool isProfitableToCommute(unsigned regB, unsigned regC,
106                                MachineInstr *MI, MachineBasicBlock *MBB,
107                                unsigned Dist);
108
109     bool CommuteInstruction(MachineBasicBlock::iterator &mi,
110                             MachineFunction::iterator &mbbi,
111                             unsigned RegB, unsigned RegC, unsigned Dist);
112
113     bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB);
114
115     bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
116                             MachineBasicBlock::iterator &nmi,
117                             MachineFunction::iterator &mbbi,
118                             unsigned RegA, unsigned RegB, unsigned Dist);
119
120     typedef std::pair<std::pair<unsigned, bool>, MachineInstr*> NewKill;
121     bool canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
122                                SmallVector<NewKill, 4> &NewKills,
123                                MachineBasicBlock *MBB, unsigned Dist);
124     bool DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
125                            MachineBasicBlock::iterator &nmi,
126                            MachineFunction::iterator &mbbi, unsigned Dist);
127
128     bool isDefTooClose(unsigned Reg, unsigned Dist,
129                        MachineInstr *MI, MachineBasicBlock *MBB);
130
131     bool RescheduleMIBelowKill(MachineBasicBlock *MBB,
132                                MachineBasicBlock::iterator &mi,
133                                MachineBasicBlock::iterator &nmi,
134                                unsigned Reg);
135     bool RescheduleKillAboveMI(MachineBasicBlock *MBB,
136                                MachineBasicBlock::iterator &mi,
137                                MachineBasicBlock::iterator &nmi,
138                                unsigned Reg);
139
140     bool TryInstructionTransform(MachineBasicBlock::iterator &mi,
141                                  MachineBasicBlock::iterator &nmi,
142                                  MachineFunction::iterator &mbbi,
143                                  unsigned SrcIdx, unsigned DstIdx,
144                                  unsigned Dist,
145                                  SmallPtrSet<MachineInstr*, 8> &Processed);
146
147     void ScanUses(unsigned DstReg, MachineBasicBlock *MBB,
148                   SmallPtrSet<MachineInstr*, 8> &Processed);
149
150     void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
151                      SmallPtrSet<MachineInstr*, 8> &Processed);
152
153     void CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs, unsigned DstReg);
154
155     /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
156     /// of the de-ssa process. This replaces sources of REG_SEQUENCE as
157     /// sub-register references of the register defined by REG_SEQUENCE.
158     bool EliminateRegSequences();
159
160   public:
161     static char ID; // Pass identification, replacement for typeid
162     TwoAddressInstructionPass() : MachineFunctionPass(ID) {
163       initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
164     }
165
166     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
167       AU.setPreservesCFG();
168       AU.addRequired<AliasAnalysis>();
169       AU.addPreserved<LiveVariables>();
170       AU.addPreservedID(MachineLoopInfoID);
171       AU.addPreservedID(MachineDominatorsID);
172       MachineFunctionPass::getAnalysisUsage(AU);
173     }
174
175     /// runOnMachineFunction - Pass entry point.
176     bool runOnMachineFunction(MachineFunction&);
177   };
178 }
179
180 char TwoAddressInstructionPass::ID = 0;
181 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction",
182                 "Two-Address instruction pass", false, false)
183 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
184 INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction",
185                 "Two-Address instruction pass", false, false)
186
187 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
188
189 /// Sink3AddrInstruction - A two-address instruction has been converted to a
190 /// three-address instruction to avoid clobbering a register. Try to sink it
191 /// past the instruction that would kill the above mentioned register to reduce
192 /// register pressure.
193 bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
194                                            MachineInstr *MI, unsigned SavedReg,
195                                            MachineBasicBlock::iterator OldPos) {
196   // FIXME: Shouldn't we be trying to do this before we three-addressify the
197   // instruction?  After this transformation is done, we no longer need
198   // the instruction to be in three-address form.
199
200   // Check if it's safe to move this instruction.
201   bool SeenStore = true; // Be conservative.
202   if (!MI->isSafeToMove(TII, AA, SeenStore))
203     return false;
204
205   unsigned DefReg = 0;
206   SmallSet<unsigned, 4> UseRegs;
207
208   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
209     const MachineOperand &MO = MI->getOperand(i);
210     if (!MO.isReg())
211       continue;
212     unsigned MOReg = MO.getReg();
213     if (!MOReg)
214       continue;
215     if (MO.isUse() && MOReg != SavedReg)
216       UseRegs.insert(MO.getReg());
217     if (!MO.isDef())
218       continue;
219     if (MO.isImplicit())
220       // Don't try to move it if it implicitly defines a register.
221       return false;
222     if (DefReg)
223       // For now, don't move any instructions that define multiple registers.
224       return false;
225     DefReg = MO.getReg();
226   }
227
228   // Find the instruction that kills SavedReg.
229   MachineInstr *KillMI = NULL;
230   for (MachineRegisterInfo::use_nodbg_iterator
231          UI = MRI->use_nodbg_begin(SavedReg),
232          UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
233     MachineOperand &UseMO = UI.getOperand();
234     if (!UseMO.isKill())
235       continue;
236     KillMI = UseMO.getParent();
237     break;
238   }
239
240   // If we find the instruction that kills SavedReg, and it is in an
241   // appropriate location, we can try to sink the current instruction
242   // past it.
243   if (!KillMI || KillMI->getParent() != MBB || KillMI == MI ||
244       KillMI->isTerminator())
245     return false;
246
247   // If any of the definitions are used by another instruction between the
248   // position and the kill use, then it's not safe to sink it.
249   //
250   // FIXME: This can be sped up if there is an easy way to query whether an
251   // instruction is before or after another instruction. Then we can use
252   // MachineRegisterInfo def / use instead.
253   MachineOperand *KillMO = NULL;
254   MachineBasicBlock::iterator KillPos = KillMI;
255   ++KillPos;
256
257   unsigned NumVisited = 0;
258   for (MachineBasicBlock::iterator I = llvm::next(OldPos); I != KillPos; ++I) {
259     MachineInstr *OtherMI = I;
260     // DBG_VALUE cannot be counted against the limit.
261     if (OtherMI->isDebugValue())
262       continue;
263     if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
264       return false;
265     ++NumVisited;
266     for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
267       MachineOperand &MO = OtherMI->getOperand(i);
268       if (!MO.isReg())
269         continue;
270       unsigned MOReg = MO.getReg();
271       if (!MOReg)
272         continue;
273       if (DefReg == MOReg)
274         return false;
275
276       if (MO.isKill()) {
277         if (OtherMI == KillMI && MOReg == SavedReg)
278           // Save the operand that kills the register. We want to unset the kill
279           // marker if we can sink MI past it.
280           KillMO = &MO;
281         else if (UseRegs.count(MOReg))
282           // One of the uses is killed before the destination.
283           return false;
284       }
285     }
286   }
287
288   // Update kill and LV information.
289   KillMO->setIsKill(false);
290   KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
291   KillMO->setIsKill(true);
292
293   if (LV)
294     LV->replaceKillInstruction(SavedReg, KillMI, MI);
295
296   // Move instruction to its destination.
297   MBB->remove(MI);
298   MBB->insert(KillPos, MI);
299
300   ++Num3AddrSunk;
301   return true;
302 }
303
304 /// isTwoAddrUse - Return true if the specified MI is using the specified
305 /// register as a two-address operand.
306 static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
307   const MCInstrDesc &MCID = UseMI->getDesc();
308   for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
309     MachineOperand &MO = UseMI->getOperand(i);
310     if (MO.isReg() && MO.getReg() == Reg &&
311         (MO.isDef() || UseMI->isRegTiedToDefOperand(i)))
312       // Earlier use is a two-address one.
313       return true;
314   }
315   return false;
316 }
317
318 /// isProfitableToReMat - Return true if the heuristics determines it is likely
319 /// to be profitable to re-materialize the definition of Reg rather than copy
320 /// the register.
321 bool
322 TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
323                                          const TargetRegisterClass *RC,
324                                          MachineInstr *MI, MachineInstr *DefMI,
325                                          MachineBasicBlock *MBB, unsigned Loc) {
326   bool OtherUse = false;
327   for (MachineRegisterInfo::use_nodbg_iterator UI = MRI->use_nodbg_begin(Reg),
328          UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
329     MachineOperand &UseMO = UI.getOperand();
330     MachineInstr *UseMI = UseMO.getParent();
331     MachineBasicBlock *UseMBB = UseMI->getParent();
332     if (UseMBB == MBB) {
333       DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
334       if (DI != DistanceMap.end() && DI->second == Loc)
335         continue;  // Current use.
336       OtherUse = true;
337       // There is at least one other use in the MBB that will clobber the
338       // register.
339       if (isTwoAddrUse(UseMI, Reg))
340         return true;
341     }
342   }
343
344   // If other uses in MBB are not two-address uses, then don't remat.
345   if (OtherUse)
346     return false;
347
348   // No other uses in the same block, remat if it's defined in the same
349   // block so it does not unnecessarily extend the live range.
350   return MBB == DefMI->getParent();
351 }
352
353 /// NoUseAfterLastDef - Return true if there are no intervening uses between the
354 /// last instruction in the MBB that defines the specified register and the
355 /// two-address instruction which is being processed. It also returns the last
356 /// def location by reference
357 bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
358                                            MachineBasicBlock *MBB, unsigned Dist,
359                                            unsigned &LastDef) {
360   LastDef = 0;
361   unsigned LastUse = Dist;
362   for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
363          E = MRI->reg_end(); I != E; ++I) {
364     MachineOperand &MO = I.getOperand();
365     MachineInstr *MI = MO.getParent();
366     if (MI->getParent() != MBB || MI->isDebugValue())
367       continue;
368     DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
369     if (DI == DistanceMap.end())
370       continue;
371     if (MO.isUse() && DI->second < LastUse)
372       LastUse = DI->second;
373     if (MO.isDef() && DI->second > LastDef)
374       LastDef = DI->second;
375   }
376
377   return !(LastUse > LastDef && LastUse < Dist);
378 }
379
380 MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg,
381                                                          MachineBasicBlock *MBB,
382                                                          unsigned Dist) {
383   unsigned LastUseDist = 0;
384   MachineInstr *LastUse = 0;
385   for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
386          E = MRI->reg_end(); I != E; ++I) {
387     MachineOperand &MO = I.getOperand();
388     MachineInstr *MI = MO.getParent();
389     if (MI->getParent() != MBB || MI->isDebugValue())
390       continue;
391     DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
392     if (DI == DistanceMap.end())
393       continue;
394     if (DI->second >= Dist)
395       continue;
396
397     if (MO.isUse() && DI->second > LastUseDist) {
398       LastUse = DI->first;
399       LastUseDist = DI->second;
400     }
401   }
402   return LastUse;
403 }
404
405 /// isCopyToReg - Return true if the specified MI is a copy instruction or
406 /// a extract_subreg instruction. It also returns the source and destination
407 /// registers and whether they are physical registers by reference.
408 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
409                         unsigned &SrcReg, unsigned &DstReg,
410                         bool &IsSrcPhys, bool &IsDstPhys) {
411   SrcReg = 0;
412   DstReg = 0;
413   if (MI.isCopy()) {
414     DstReg = MI.getOperand(0).getReg();
415     SrcReg = MI.getOperand(1).getReg();
416   } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
417     DstReg = MI.getOperand(0).getReg();
418     SrcReg = MI.getOperand(2).getReg();
419   } else
420     return false;
421
422   IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
423   IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
424   return true;
425 }
426
427 /// isKilled - Test if the given register value, which is used by the given
428 /// instruction, is killed by the given instruction. This looks through
429 /// coalescable copies to see if the original value is potentially not killed.
430 ///
431 /// For example, in this code:
432 ///
433 ///   %reg1034 = copy %reg1024
434 ///   %reg1035 = copy %reg1025<kill>
435 ///   %reg1036 = add %reg1034<kill>, %reg1035<kill>
436 ///
437 /// %reg1034 is not considered to be killed, since it is copied from a
438 /// register which is not killed. Treating it as not killed lets the
439 /// normal heuristics commute the (two-address) add, which lets
440 /// coalescing eliminate the extra copy.
441 ///
442 static bool isKilled(MachineInstr &MI, unsigned Reg,
443                      const MachineRegisterInfo *MRI,
444                      const TargetInstrInfo *TII) {
445   MachineInstr *DefMI = &MI;
446   for (;;) {
447     if (!DefMI->killsRegister(Reg))
448       return false;
449     if (TargetRegisterInfo::isPhysicalRegister(Reg))
450       return true;
451     MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
452     // If there are multiple defs, we can't do a simple analysis, so just
453     // go with what the kill flag says.
454     if (llvm::next(Begin) != MRI->def_end())
455       return true;
456     DefMI = &*Begin;
457     bool IsSrcPhys, IsDstPhys;
458     unsigned SrcReg,  DstReg;
459     // If the def is something other than a copy, then it isn't going to
460     // be coalesced, so follow the kill flag.
461     if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
462       return true;
463     Reg = SrcReg;
464   }
465 }
466
467 /// isTwoAddrUse - Return true if the specified MI uses the specified register
468 /// as a two-address use. If so, return the destination register by reference.
469 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
470   const MCInstrDesc &MCID = MI.getDesc();
471   unsigned NumOps = MI.isInlineAsm()
472     ? MI.getNumOperands() : MCID.getNumOperands();
473   for (unsigned i = 0; i != NumOps; ++i) {
474     const MachineOperand &MO = MI.getOperand(i);
475     if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
476       continue;
477     unsigned ti;
478     if (MI.isRegTiedToDefOperand(i, &ti)) {
479       DstReg = MI.getOperand(ti).getReg();
480       return true;
481     }
482   }
483   return false;
484 }
485
486 /// findLocalKill - Look for an instruction below MI in the MBB that kills the
487 /// specified register. Returns null if there are any other Reg use between the
488 /// instructions.
489 static
490 MachineInstr *findLocalKill(unsigned Reg, MachineBasicBlock *MBB,
491                             MachineInstr *MI, MachineRegisterInfo *MRI,
492                             DenseMap<MachineInstr*, unsigned> &DistanceMap) {
493   MachineInstr *KillMI = 0;
494   for (MachineRegisterInfo::use_nodbg_iterator
495          UI = MRI->use_nodbg_begin(Reg),
496          UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
497     MachineInstr *UseMI = &*UI;
498     if (UseMI == MI || UseMI->getParent() != MBB)
499       continue;
500     if (DistanceMap.count(UseMI))
501       continue;
502     if (!UI.getOperand().isKill())
503       return 0;
504     if (KillMI)
505       return 0;  // -O0 kill markers cannot be trusted?
506     KillMI = UseMI;
507   }
508
509   return KillMI;
510 }
511
512 /// findOnlyInterestingUse - Given a register, if has a single in-basic block
513 /// use, return the use instruction if it's a copy or a two-address use.
514 static
515 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
516                                      MachineRegisterInfo *MRI,
517                                      const TargetInstrInfo *TII,
518                                      bool &IsCopy,
519                                      unsigned &DstReg, bool &IsDstPhys) {
520   if (!MRI->hasOneNonDBGUse(Reg))
521     // None or more than one use.
522     return 0;
523   MachineInstr &UseMI = *MRI->use_nodbg_begin(Reg);
524   if (UseMI.getParent() != MBB)
525     return 0;
526   unsigned SrcReg;
527   bool IsSrcPhys;
528   if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
529     IsCopy = true;
530     return &UseMI;
531   }
532   IsDstPhys = false;
533   if (isTwoAddrUse(UseMI, Reg, DstReg)) {
534     IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
535     return &UseMI;
536   }
537   return 0;
538 }
539
540 /// getMappedReg - Return the physical register the specified virtual register
541 /// might be mapped to.
542 static unsigned
543 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
544   while (TargetRegisterInfo::isVirtualRegister(Reg))  {
545     DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
546     if (SI == RegMap.end())
547       return 0;
548     Reg = SI->second;
549   }
550   if (TargetRegisterInfo::isPhysicalRegister(Reg))
551     return Reg;
552   return 0;
553 }
554
555 /// regsAreCompatible - Return true if the two registers are equal or aliased.
556 ///
557 static bool
558 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
559   if (RegA == RegB)
560     return true;
561   if (!RegA || !RegB)
562     return false;
563   return TRI->regsOverlap(RegA, RegB);
564 }
565
566
567 /// isProfitableToReMat - Return true if it's potentially profitable to commute
568 /// the two-address instruction that's being processed.
569 bool
570 TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
571                                        MachineInstr *MI, MachineBasicBlock *MBB,
572                                        unsigned Dist) {
573   if (OptLevel == CodeGenOpt::None)
574     return false;
575
576   // Determine if it's profitable to commute this two address instruction. In
577   // general, we want no uses between this instruction and the definition of
578   // the two-address register.
579   // e.g.
580   // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
581   // %reg1029<def> = MOV8rr %reg1028
582   // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
583   // insert => %reg1030<def> = MOV8rr %reg1028
584   // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
585   // In this case, it might not be possible to coalesce the second MOV8rr
586   // instruction if the first one is coalesced. So it would be profitable to
587   // commute it:
588   // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
589   // %reg1029<def> = MOV8rr %reg1028
590   // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
591   // insert => %reg1030<def> = MOV8rr %reg1029
592   // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
593
594   if (!MI->killsRegister(regC))
595     return false;
596
597   // Ok, we have something like:
598   // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
599   // let's see if it's worth commuting it.
600
601   // Look for situations like this:
602   // %reg1024<def> = MOV r1
603   // %reg1025<def> = MOV r0
604   // %reg1026<def> = ADD %reg1024, %reg1025
605   // r0            = MOV %reg1026
606   // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
607   unsigned FromRegB = getMappedReg(regB, SrcRegMap);
608   unsigned FromRegC = getMappedReg(regC, SrcRegMap);
609   unsigned ToRegB = getMappedReg(regB, DstRegMap);
610   unsigned ToRegC = getMappedReg(regC, DstRegMap);
611   if ((FromRegB && ToRegB && !regsAreCompatible(FromRegB, ToRegB, TRI)) &&
612       ((!FromRegC && !ToRegC) ||
613        regsAreCompatible(FromRegB, ToRegC, TRI) ||
614        regsAreCompatible(FromRegC, ToRegB, TRI)))
615     return true;
616
617   // If there is a use of regC between its last def (could be livein) and this
618   // instruction, then bail.
619   unsigned LastDefC = 0;
620   if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC))
621     return false;
622
623   // If there is a use of regB between its last def (could be livein) and this
624   // instruction, then go ahead and make this transformation.
625   unsigned LastDefB = 0;
626   if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB))
627     return true;
628
629   // Since there are no intervening uses for both registers, then commute
630   // if the def of regC is closer. Its live interval is shorter.
631   return LastDefB && LastDefC && LastDefC > LastDefB;
632 }
633
634 /// CommuteInstruction - Commute a two-address instruction and update the basic
635 /// block, distance map, and live variables if needed. Return true if it is
636 /// successful.
637 bool
638 TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
639                                MachineFunction::iterator &mbbi,
640                                unsigned RegB, unsigned RegC, unsigned Dist) {
641   MachineInstr *MI = mi;
642   DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI);
643   MachineInstr *NewMI = TII->commuteInstruction(MI);
644
645   if (NewMI == 0) {
646     DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
647     return false;
648   }
649
650   DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
651   // If the instruction changed to commute it, update livevar.
652   if (NewMI != MI) {
653     if (LV)
654       // Update live variables
655       LV->replaceKillInstruction(RegC, MI, NewMI);
656
657     mbbi->insert(mi, NewMI);           // Insert the new inst
658     mbbi->erase(mi);                   // Nuke the old inst.
659     mi = NewMI;
660     DistanceMap.insert(std::make_pair(NewMI, Dist));
661   }
662
663   // Update source register map.
664   unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
665   if (FromRegC) {
666     unsigned RegA = MI->getOperand(0).getReg();
667     SrcRegMap[RegA] = FromRegC;
668   }
669
670   return true;
671 }
672
673 /// isProfitableToConv3Addr - Return true if it is profitable to convert the
674 /// given 2-address instruction to a 3-address one.
675 bool
676 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){
677   // Look for situations like this:
678   // %reg1024<def> = MOV r1
679   // %reg1025<def> = MOV r0
680   // %reg1026<def> = ADD %reg1024, %reg1025
681   // r2            = MOV %reg1026
682   // Turn ADD into a 3-address instruction to avoid a copy.
683   unsigned FromRegB = getMappedReg(RegB, SrcRegMap);
684   if (!FromRegB)
685     return false;
686   unsigned ToRegA = getMappedReg(RegA, DstRegMap);
687   return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
688 }
689
690 /// ConvertInstTo3Addr - Convert the specified two-address instruction into a
691 /// three address one. Return true if this transformation was successful.
692 bool
693 TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
694                                               MachineBasicBlock::iterator &nmi,
695                                               MachineFunction::iterator &mbbi,
696                                               unsigned RegA, unsigned RegB,
697                                               unsigned Dist) {
698   MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
699   if (NewMI) {
700     DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
701     DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI);
702     bool Sunk = false;
703
704     if (NewMI->findRegisterUseOperand(RegB, false, TRI))
705       // FIXME: Temporary workaround. If the new instruction doesn't
706       // uses RegB, convertToThreeAddress must have created more
707       // then one instruction.
708       Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi);
709
710     mbbi->erase(mi); // Nuke the old inst.
711
712     if (!Sunk) {
713       DistanceMap.insert(std::make_pair(NewMI, Dist));
714       mi = NewMI;
715       nmi = llvm::next(mi);
716     }
717
718     // Update source and destination register maps.
719     SrcRegMap.erase(RegA);
720     DstRegMap.erase(RegB);
721     return true;
722   }
723
724   return false;
725 }
726
727 /// ScanUses - Scan forward recursively for only uses, update maps if the use
728 /// is a copy or a two-address instruction.
729 void
730 TwoAddressInstructionPass::ScanUses(unsigned DstReg, MachineBasicBlock *MBB,
731                                     SmallPtrSet<MachineInstr*, 8> &Processed) {
732   SmallVector<unsigned, 4> VirtRegPairs;
733   bool IsDstPhys;
734   bool IsCopy = false;
735   unsigned NewReg = 0;
736   unsigned Reg = DstReg;
737   while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
738                                                       NewReg, IsDstPhys)) {
739     if (IsCopy && !Processed.insert(UseMI))
740       break;
741
742     DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
743     if (DI != DistanceMap.end())
744       // Earlier in the same MBB.Reached via a back edge.
745       break;
746
747     if (IsDstPhys) {
748       VirtRegPairs.push_back(NewReg);
749       break;
750     }
751     bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second;
752     if (!isNew)
753       assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!");
754     VirtRegPairs.push_back(NewReg);
755     Reg = NewReg;
756   }
757
758   if (!VirtRegPairs.empty()) {
759     unsigned ToReg = VirtRegPairs.back();
760     VirtRegPairs.pop_back();
761     while (!VirtRegPairs.empty()) {
762       unsigned FromReg = VirtRegPairs.back();
763       VirtRegPairs.pop_back();
764       bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
765       if (!isNew)
766         assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
767       ToReg = FromReg;
768     }
769     bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
770     if (!isNew)
771       assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
772   }
773 }
774
775 /// ProcessCopy - If the specified instruction is not yet processed, process it
776 /// if it's a copy. For a copy instruction, we find the physical registers the
777 /// source and destination registers might be mapped to. These are kept in
778 /// point-to maps used to determine future optimizations. e.g.
779 /// v1024 = mov r0
780 /// v1025 = mov r1
781 /// v1026 = add v1024, v1025
782 /// r1    = mov r1026
783 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially
784 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
785 /// potentially joined with r1 on the output side. It's worthwhile to commute
786 /// 'add' to eliminate a copy.
787 void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
788                                      MachineBasicBlock *MBB,
789                                      SmallPtrSet<MachineInstr*, 8> &Processed) {
790   if (Processed.count(MI))
791     return;
792
793   bool IsSrcPhys, IsDstPhys;
794   unsigned SrcReg, DstReg;
795   if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
796     return;
797
798   if (IsDstPhys && !IsSrcPhys)
799     DstRegMap.insert(std::make_pair(SrcReg, DstReg));
800   else if (!IsDstPhys && IsSrcPhys) {
801     bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
802     if (!isNew)
803       assert(SrcRegMap[DstReg] == SrcReg &&
804              "Can't map to two src physical registers!");
805
806     ScanUses(DstReg, MBB, Processed);
807   }
808
809   Processed.insert(MI);
810   return;
811 }
812
813 /// isSafeToDelete - If the specified instruction does not produce any side
814 /// effects and all of its defs are dead, then it's safe to delete.
815 static bool isSafeToDelete(MachineInstr *MI,
816                            const TargetInstrInfo *TII,
817                            SmallVector<unsigned, 4> &Kills) {
818   if (MI->mayStore() || MI->isCall())
819     return false;
820   if (MI->isTerminator() || MI->hasUnmodeledSideEffects())
821     return false;
822
823   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
824     MachineOperand &MO = MI->getOperand(i);
825     if (!MO.isReg())
826       continue;
827     if (MO.isDef() && !MO.isDead())
828       return false;
829     if (MO.isUse() && MO.isKill())
830       Kills.push_back(MO.getReg());
831   }
832   return true;
833 }
834
835 /// canUpdateDeletedKills - Check if all the registers listed in Kills are
836 /// killed by instructions in MBB preceding the current instruction at
837 /// position Dist.  If so, return true and record information about the
838 /// preceding kills in NewKills.
839 bool TwoAddressInstructionPass::
840 canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
841                       SmallVector<NewKill, 4> &NewKills,
842                       MachineBasicBlock *MBB, unsigned Dist) {
843   while (!Kills.empty()) {
844     unsigned Kill = Kills.back();
845     Kills.pop_back();
846     if (TargetRegisterInfo::isPhysicalRegister(Kill))
847       return false;
848
849     MachineInstr *LastKill = FindLastUseInMBB(Kill, MBB, Dist);
850     if (!LastKill)
851       return false;
852
853     bool isModRef = LastKill->definesRegister(Kill);
854     NewKills.push_back(std::make_pair(std::make_pair(Kill, isModRef),
855                                       LastKill));
856   }
857   return true;
858 }
859
860 /// DeleteUnusedInstr - If an instruction with a tied register operand can
861 /// be safely deleted, just delete it.
862 bool
863 TwoAddressInstructionPass::DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
864                                              MachineBasicBlock::iterator &nmi,
865                                              MachineFunction::iterator &mbbi,
866                                              unsigned Dist) {
867   // Check if the instruction has no side effects and if all its defs are dead.
868   SmallVector<unsigned, 4> Kills;
869   if (!isSafeToDelete(mi, TII, Kills))
870     return false;
871
872   // If this instruction kills some virtual registers, we need to
873   // update the kill information. If it's not possible to do so,
874   // then bail out.
875   SmallVector<NewKill, 4> NewKills;
876   if (!canUpdateDeletedKills(Kills, NewKills, &*mbbi, Dist))
877     return false;
878
879   if (LV) {
880     while (!NewKills.empty()) {
881       MachineInstr *NewKill = NewKills.back().second;
882       unsigned Kill = NewKills.back().first.first;
883       bool isDead = NewKills.back().first.second;
884       NewKills.pop_back();
885       if (LV->removeVirtualRegisterKilled(Kill, mi)) {
886         if (isDead)
887           LV->addVirtualRegisterDead(Kill, NewKill);
888         else
889           LV->addVirtualRegisterKilled(Kill, NewKill);
890       }
891     }
892   }
893
894   mbbi->erase(mi); // Nuke the old inst.
895   mi = nmi;
896   return true;
897 }
898
899 /// RescheduleMIBelowKill - If there is one more local instruction that reads
900 /// 'Reg' and it kills 'Reg, consider moving the instruction below the kill
901 /// instruction in order to eliminate the need for the copy.
902 bool
903 TwoAddressInstructionPass::RescheduleMIBelowKill(MachineBasicBlock *MBB,
904                                      MachineBasicBlock::iterator &mi,
905                                      MachineBasicBlock::iterator &nmi,
906                                      unsigned Reg) {
907   MachineInstr *MI = &*mi;
908   DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
909   if (DI == DistanceMap.end())
910     // Must be created from unfolded load. Don't waste time trying this.
911     return false;
912
913   MachineInstr *KillMI = findLocalKill(Reg, MBB, mi, MRI, DistanceMap);
914   if (!KillMI || KillMI->isCopy() || KillMI->isCopyLike())
915     // Don't mess with copies, they may be coalesced later.
916     return false;
917
918   if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() ||
919       KillMI->isBranch() || KillMI->isTerminator())
920     // Don't move pass calls, etc.
921     return false;
922
923   unsigned DstReg;
924   if (isTwoAddrUse(*KillMI, Reg, DstReg))
925     return false;
926
927   bool SeenStore = true;
928   if (!MI->isSafeToMove(TII, AA, SeenStore))
929     return false;
930
931   if (TII->getInstrLatency(InstrItins, MI) > 1)
932     // FIXME: Needs more sophisticated heuristics.
933     return false;
934
935   SmallSet<unsigned, 2> Uses;
936   SmallSet<unsigned, 2> Kills;
937   SmallSet<unsigned, 2> Defs;
938   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
939     const MachineOperand &MO = MI->getOperand(i);
940     if (!MO.isReg())
941       continue;
942     unsigned MOReg = MO.getReg();
943     if (!MOReg)
944       continue;
945     if (MO.isDef())
946       Defs.insert(MOReg);
947     else {
948       Uses.insert(MOReg);
949       if (MO.isKill() && MOReg != Reg)
950         Kills.insert(MOReg);
951     }
952   }
953
954   // Move the copies connected to MI down as well.
955   MachineBasicBlock::iterator From = MI;
956   MachineBasicBlock::iterator To = llvm::next(From);
957   while (To->isCopy() && Defs.count(To->getOperand(1).getReg())) {
958     Defs.insert(To->getOperand(0).getReg());
959     ++To;
960   }
961
962   // Check if the reschedule will not break depedencies.
963   unsigned NumVisited = 0;
964   MachineBasicBlock::iterator KillPos = KillMI;
965   ++KillPos;
966   for (MachineBasicBlock::iterator I = To; I != KillPos; ++I) {
967     MachineInstr *OtherMI = I;
968     // DBG_VALUE cannot be counted against the limit.
969     if (OtherMI->isDebugValue())
970       continue;
971     if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
972       return false;
973     ++NumVisited;
974     if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() ||
975         OtherMI->isBranch() || OtherMI->isTerminator())
976       // Don't move pass calls, etc.
977       return false;
978     for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
979       const MachineOperand &MO = OtherMI->getOperand(i);
980       if (!MO.isReg())
981         continue;
982       unsigned MOReg = MO.getReg();
983       if (!MOReg)
984         continue;
985       if (MO.isDef()) {
986         if (Uses.count(MOReg))
987           // Physical register use would be clobbered.
988           return false;
989         if (!MO.isDead() && Defs.count(MOReg))
990           // May clobber a physical register def.
991           // FIXME: This may be too conservative. It's ok if the instruction
992           // is sunken completely below the use.
993           return false;
994       } else {
995         if (Defs.count(MOReg))
996           return false;
997         if (MOReg != Reg &&
998             ((MO.isKill() && Uses.count(MOReg)) || Kills.count(MOReg)))
999           // Don't want to extend other live ranges and update kills.
1000           return false;
1001       }
1002     }
1003   }
1004
1005   // Move debug info as well.
1006   while (From != MBB->begin() && llvm::prior(From)->isDebugValue())
1007     --From;
1008
1009   // Copies following MI may have been moved as well.
1010   nmi = To;
1011   MBB->splice(KillPos, MBB, From, To);
1012   DistanceMap.erase(DI);
1013
1014   if (LV) {
1015     // Update live variables
1016     LV->removeVirtualRegisterKilled(Reg, KillMI);
1017     LV->addVirtualRegisterKilled(Reg, MI);
1018   } else {
1019     for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) {
1020       MachineOperand &MO = KillMI->getOperand(i);
1021       if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
1022         continue;
1023       MO.setIsKill(false);
1024     }
1025     MI->addRegisterKilled(Reg, 0);
1026   }
1027
1028   return true;
1029 }
1030
1031 /// isDefTooClose - Return true if the re-scheduling will put the given
1032 /// instruction too close to the defs of its register dependencies.
1033 bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist,
1034                                               MachineInstr *MI,
1035                                               MachineBasicBlock *MBB) {
1036   for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(Reg),
1037          DE = MRI->def_end(); DI != DE; ++DI) {
1038     MachineInstr *DefMI = &*DI;
1039     if (DefMI->getParent() != MBB || DefMI->isCopy() || DefMI->isCopyLike())
1040       continue;
1041     if (DefMI == MI)
1042       return true; // MI is defining something KillMI uses
1043     DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(DefMI);
1044     if (DDI == DistanceMap.end())
1045       return true;  // Below MI
1046     unsigned DefDist = DDI->second;
1047     assert(Dist > DefDist && "Visited def already?");
1048     if (TII->getInstrLatency(InstrItins, DefMI) > (int)(Dist - DefDist))
1049       return true;
1050   }
1051   return false;
1052 }
1053
1054 /// RescheduleKillAboveMI - If there is one more local instruction that reads
1055 /// 'Reg' and it kills 'Reg, consider moving the kill instruction above the
1056 /// current two-address instruction in order to eliminate the need for the
1057 /// copy.
1058 bool
1059 TwoAddressInstructionPass::RescheduleKillAboveMI(MachineBasicBlock *MBB,
1060                                      MachineBasicBlock::iterator &mi,
1061                                      MachineBasicBlock::iterator &nmi,
1062                                      unsigned Reg) {
1063   MachineInstr *MI = &*mi;
1064   DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
1065   if (DI == DistanceMap.end())
1066     // Must be created from unfolded load. Don't waste time trying this.
1067     return false;
1068
1069   MachineInstr *KillMI = findLocalKill(Reg, MBB, mi, MRI, DistanceMap);
1070   if (!KillMI || KillMI->isCopy() || KillMI->isCopyLike())
1071     // Don't mess with copies, they may be coalesced later.
1072     return false;
1073
1074   unsigned DstReg;
1075   if (isTwoAddrUse(*KillMI, Reg, DstReg))
1076     return false;
1077
1078   bool SeenStore = true;
1079   if (!KillMI->isSafeToMove(TII, AA, SeenStore))
1080     return false;
1081
1082   SmallSet<unsigned, 2> Uses;
1083   SmallSet<unsigned, 2> Kills;
1084   SmallSet<unsigned, 2> Defs;
1085   SmallSet<unsigned, 2> LiveDefs;
1086   for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) {
1087     const MachineOperand &MO = KillMI->getOperand(i);
1088     if (!MO.isReg())
1089       continue;
1090     unsigned MOReg = MO.getReg();
1091     if (MO.isUse()) {
1092       if (!MOReg)
1093         continue;
1094       if (isDefTooClose(MOReg, DI->second, MI, MBB))
1095         return false;
1096       Uses.insert(MOReg);
1097       if (MO.isKill() && MOReg != Reg)
1098         Kills.insert(MOReg);
1099     } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1100       Defs.insert(MOReg);
1101       if (!MO.isDead())
1102         LiveDefs.insert(MOReg);
1103     }
1104   }
1105
1106   // Check if the reschedule will not break depedencies.
1107   unsigned NumVisited = 0;
1108   MachineBasicBlock::iterator KillPos = KillMI;
1109   for (MachineBasicBlock::iterator I = mi; I != KillPos; ++I) {
1110     MachineInstr *OtherMI = I;
1111     // DBG_VALUE cannot be counted against the limit.
1112     if (OtherMI->isDebugValue())
1113       continue;
1114     if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
1115       return false;
1116     ++NumVisited;
1117     if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() ||
1118         OtherMI->isBranch() || OtherMI->isTerminator())
1119       // Don't move pass calls, etc.
1120       return false;
1121     SmallVector<unsigned, 2> OtherDefs;
1122     for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
1123       const MachineOperand &MO = OtherMI->getOperand(i);
1124       if (!MO.isReg())
1125         continue;
1126       unsigned MOReg = MO.getReg();
1127       if (!MOReg)
1128         continue;
1129       if (MO.isUse()) {
1130         if (Defs.count(MOReg))
1131           // Moving KillMI can clobber the physical register if the def has
1132           // not been seen.
1133           return false;
1134         if (Kills.count(MOReg))
1135           // Don't want to extend other live ranges and update kills.
1136           return false;
1137       } else {
1138         OtherDefs.push_back(MOReg);
1139       }
1140     }
1141
1142     for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) {
1143       unsigned MOReg = OtherDefs[i];
1144       if (Uses.count(MOReg))
1145         return false;
1146       if (TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1147           LiveDefs.count(MOReg))
1148         return false;
1149       // Physical register def is seen.
1150       Defs.erase(MOReg);
1151     }
1152   }
1153
1154   // Move the old kill above MI, don't forget to move debug info as well.
1155   MachineBasicBlock::iterator InsertPos = mi;
1156   while (InsertPos != MBB->begin() && llvm::prior(InsertPos)->isDebugValue())
1157     --InsertPos;
1158   MachineBasicBlock::iterator From = KillMI;
1159   MachineBasicBlock::iterator To = llvm::next(From);
1160   while (llvm::prior(From)->isDebugValue())
1161     --From;
1162   MBB->splice(InsertPos, MBB, From, To);
1163
1164   nmi = llvm::prior(InsertPos); // Backtrack so we process the moved instr.
1165   DistanceMap.erase(DI);
1166
1167   if (LV) {
1168     // Update live variables
1169     LV->removeVirtualRegisterKilled(Reg, KillMI);
1170     LV->addVirtualRegisterKilled(Reg, MI);
1171   } else {
1172     for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) {
1173       MachineOperand &MO = KillMI->getOperand(i);
1174       if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
1175         continue;
1176       MO.setIsKill(false);
1177     }
1178     MI->addRegisterKilled(Reg, 0);
1179   }
1180   return true;
1181 }
1182
1183 /// TryInstructionTransform - For the case where an instruction has a single
1184 /// pair of tied register operands, attempt some transformations that may
1185 /// either eliminate the tied operands or improve the opportunities for
1186 /// coalescing away the register copy.  Returns true if the tied operands
1187 /// are eliminated altogether.
1188 bool TwoAddressInstructionPass::
1189 TryInstructionTransform(MachineBasicBlock::iterator &mi,
1190                         MachineBasicBlock::iterator &nmi,
1191                         MachineFunction::iterator &mbbi,
1192                         unsigned SrcIdx, unsigned DstIdx, unsigned Dist,
1193                         SmallPtrSet<MachineInstr*, 8> &Processed) {
1194   if (OptLevel == CodeGenOpt::None)
1195     return false;
1196
1197   MachineInstr &MI = *mi;
1198   unsigned regA = MI.getOperand(DstIdx).getReg();
1199   unsigned regB = MI.getOperand(SrcIdx).getReg();
1200
1201   assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1202          "cannot make instruction into two-address form");
1203
1204   // If regA is dead and the instruction can be deleted, just delete
1205   // it so it doesn't clobber regB.
1206   bool regBKilled = isKilled(MI, regB, MRI, TII);
1207   if (!regBKilled && MI.getOperand(DstIdx).isDead() &&
1208       DeleteUnusedInstr(mi, nmi, mbbi, Dist)) {
1209     ++NumDeletes;
1210     return true; // Done with this instruction.
1211   }
1212
1213   // Check if it is profitable to commute the operands.
1214   unsigned SrcOp1, SrcOp2;
1215   unsigned regC = 0;
1216   unsigned regCIdx = ~0U;
1217   bool TryCommute = false;
1218   bool AggressiveCommute = false;
1219   if (MI.isCommutable() && MI.getNumOperands() >= 3 &&
1220       TII->findCommutedOpIndices(&MI, SrcOp1, SrcOp2)) {
1221     if (SrcIdx == SrcOp1)
1222       regCIdx = SrcOp2;
1223     else if (SrcIdx == SrcOp2)
1224       regCIdx = SrcOp1;
1225
1226     if (regCIdx != ~0U) {
1227       regC = MI.getOperand(regCIdx).getReg();
1228       if (!regBKilled && isKilled(MI, regC, MRI, TII))
1229         // If C dies but B does not, swap the B and C operands.
1230         // This makes the live ranges of A and C joinable.
1231         TryCommute = true;
1232       else if (isProfitableToCommute(regB, regC, &MI, mbbi, Dist)) {
1233         TryCommute = true;
1234         AggressiveCommute = true;
1235       }
1236     }
1237   }
1238
1239   // If it's profitable to commute, try to do so.
1240   if (TryCommute && CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
1241     ++NumCommuted;
1242     if (AggressiveCommute)
1243       ++NumAggrCommuted;
1244     return false;
1245   }
1246
1247   // If there is one more use of regB later in the same MBB, consider
1248   // re-schedule this MI below it.
1249   if (RescheduleMIBelowKill(mbbi, mi, nmi, regB)) {
1250     ++NumReSchedDowns;
1251     return false;
1252   }
1253
1254   if (TargetRegisterInfo::isVirtualRegister(regA))
1255     ScanUses(regA, &*mbbi, Processed);
1256
1257   if (MI.isConvertibleTo3Addr()) {
1258     // This instruction is potentially convertible to a true
1259     // three-address instruction.  Check if it is profitable.
1260     if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
1261       // Try to convert it.
1262       if (ConvertInstTo3Addr(mi, nmi, mbbi, regA, regB, Dist)) {
1263         ++NumConvertedTo3Addr;
1264         return true; // Done with this instruction.
1265       }
1266     }
1267   }
1268
1269   // If there is one more use of regB later in the same MBB, consider
1270   // re-schedule it before this MI if it's legal.
1271   if (RescheduleKillAboveMI(mbbi, mi, nmi, regB)) {
1272     ++NumReSchedUps;
1273     return false;
1274   }
1275
1276   // If this is an instruction with a load folded into it, try unfolding
1277   // the load, e.g. avoid this:
1278   //   movq %rdx, %rcx
1279   //   addq (%rax), %rcx
1280   // in favor of this:
1281   //   movq (%rax), %rcx
1282   //   addq %rdx, %rcx
1283   // because it's preferable to schedule a load than a register copy.
1284   if (MI.mayLoad() && !regBKilled) {
1285     // Determine if a load can be unfolded.
1286     unsigned LoadRegIndex;
1287     unsigned NewOpc =
1288       TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1289                                       /*UnfoldLoad=*/true,
1290                                       /*UnfoldStore=*/false,
1291                                       &LoadRegIndex);
1292     if (NewOpc != 0) {
1293       const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
1294       if (UnfoldMCID.getNumDefs() == 1) {
1295         MachineFunction &MF = *mbbi->getParent();
1296
1297         // Unfold the load.
1298         DEBUG(dbgs() << "2addr:   UNFOLDING: " << MI);
1299         const TargetRegisterClass *RC =
1300           TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI);
1301         unsigned Reg = MRI->createVirtualRegister(RC);
1302         SmallVector<MachineInstr *, 2> NewMIs;
1303         if (!TII->unfoldMemoryOperand(MF, &MI, Reg,
1304                                       /*UnfoldLoad=*/true,/*UnfoldStore=*/false,
1305                                       NewMIs)) {
1306           DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1307           return false;
1308         }
1309         assert(NewMIs.size() == 2 &&
1310                "Unfolded a load into multiple instructions!");
1311         // The load was previously folded, so this is the only use.
1312         NewMIs[1]->addRegisterKilled(Reg, TRI);
1313
1314         // Tentatively insert the instructions into the block so that they
1315         // look "normal" to the transformation logic.
1316         mbbi->insert(mi, NewMIs[0]);
1317         mbbi->insert(mi, NewMIs[1]);
1318
1319         DEBUG(dbgs() << "2addr:    NEW LOAD: " << *NewMIs[0]
1320                      << "2addr:    NEW INST: " << *NewMIs[1]);
1321
1322         // Transform the instruction, now that it no longer has a load.
1323         unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
1324         unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
1325         MachineBasicBlock::iterator NewMI = NewMIs[1];
1326         bool TransformSuccess =
1327           TryInstructionTransform(NewMI, mi, mbbi,
1328                                   NewSrcIdx, NewDstIdx, Dist, Processed);
1329         if (TransformSuccess ||
1330             NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
1331           // Success, or at least we made an improvement. Keep the unfolded
1332           // instructions and discard the original.
1333           if (LV) {
1334             for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1335               MachineOperand &MO = MI.getOperand(i);
1336               if (MO.isReg() &&
1337                   TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
1338                 if (MO.isUse()) {
1339                   if (MO.isKill()) {
1340                     if (NewMIs[0]->killsRegister(MO.getReg()))
1341                       LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[0]);
1342                     else {
1343                       assert(NewMIs[1]->killsRegister(MO.getReg()) &&
1344                              "Kill missing after load unfold!");
1345                       LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[1]);
1346                     }
1347                   }
1348                 } else if (LV->removeVirtualRegisterDead(MO.getReg(), &MI)) {
1349                   if (NewMIs[1]->registerDefIsDead(MO.getReg()))
1350                     LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]);
1351                   else {
1352                     assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
1353                            "Dead flag missing after load unfold!");
1354                     LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]);
1355                   }
1356                 }
1357               }
1358             }
1359             LV->addVirtualRegisterKilled(Reg, NewMIs[1]);
1360           }
1361           MI.eraseFromParent();
1362           mi = NewMIs[1];
1363           if (TransformSuccess)
1364             return true;
1365         } else {
1366           // Transforming didn't eliminate the tie and didn't lead to an
1367           // improvement. Clean up the unfolded instructions and keep the
1368           // original.
1369           DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1370           NewMIs[0]->eraseFromParent();
1371           NewMIs[1]->eraseFromParent();
1372         }
1373       }
1374     }
1375   }
1376
1377   return false;
1378 }
1379
1380 /// runOnMachineFunction - Reduce two-address instructions to two operands.
1381 ///
1382 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
1383   DEBUG(dbgs() << "Machine Function\n");
1384   const TargetMachine &TM = MF.getTarget();
1385   MRI = &MF.getRegInfo();
1386   TII = TM.getInstrInfo();
1387   TRI = TM.getRegisterInfo();
1388   InstrItins = TM.getInstrItineraryData();
1389   LV = getAnalysisIfAvailable<LiveVariables>();
1390   AA = &getAnalysis<AliasAnalysis>();
1391   OptLevel = TM.getOptLevel();
1392
1393   bool MadeChange = false;
1394
1395   DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1396   DEBUG(dbgs() << "********** Function: "
1397         << MF.getFunction()->getName() << '\n');
1398
1399   // This pass takes the function out of SSA form.
1400   MRI->leaveSSA();
1401
1402   // ReMatRegs - Keep track of the registers whose def's are remat'ed.
1403   BitVector ReMatRegs(MRI->getNumVirtRegs());
1404
1405   typedef DenseMap<unsigned, SmallVector<std::pair<unsigned, unsigned>, 4> >
1406     TiedOperandMap;
1407   TiedOperandMap TiedOperands(4);
1408
1409   SmallPtrSet<MachineInstr*, 8> Processed;
1410   for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
1411        mbbi != mbbe; ++mbbi) {
1412     unsigned Dist = 0;
1413     DistanceMap.clear();
1414     SrcRegMap.clear();
1415     DstRegMap.clear();
1416     Processed.clear();
1417     for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
1418          mi != me; ) {
1419       MachineBasicBlock::iterator nmi = llvm::next(mi);
1420       if (mi->isDebugValue()) {
1421         mi = nmi;
1422         continue;
1423       }
1424
1425       // Remember REG_SEQUENCE instructions, we'll deal with them later.
1426       if (mi->isRegSequence())
1427         RegSequences.push_back(&*mi);
1428
1429       const MCInstrDesc &MCID = mi->getDesc();
1430       bool FirstTied = true;
1431
1432       DistanceMap.insert(std::make_pair(mi, ++Dist));
1433
1434       ProcessCopy(&*mi, &*mbbi, Processed);
1435
1436       // First scan through all the tied register uses in this instruction
1437       // and record a list of pairs of tied operands for each register.
1438       unsigned NumOps = mi->isInlineAsm()
1439         ? mi->getNumOperands() : MCID.getNumOperands();
1440       for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
1441         unsigned DstIdx = 0;
1442         if (!mi->isRegTiedToDefOperand(SrcIdx, &DstIdx))
1443           continue;
1444
1445         if (FirstTied) {
1446           FirstTied = false;
1447           ++NumTwoAddressInstrs;
1448           DEBUG(dbgs() << '\t' << *mi);
1449         }
1450
1451         assert(mi->getOperand(SrcIdx).isReg() &&
1452                mi->getOperand(SrcIdx).getReg() &&
1453                mi->getOperand(SrcIdx).isUse() &&
1454                "two address instruction invalid");
1455
1456         unsigned regB = mi->getOperand(SrcIdx).getReg();
1457         TiedOperands[regB].push_back(std::make_pair(SrcIdx, DstIdx));
1458       }
1459
1460       // Now iterate over the information collected above.
1461       for (TiedOperandMap::iterator OI = TiedOperands.begin(),
1462              OE = TiedOperands.end(); OI != OE; ++OI) {
1463         SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs = OI->second;
1464
1465         // If the instruction has a single pair of tied operands, try some
1466         // transformations that may either eliminate the tied operands or
1467         // improve the opportunities for coalescing away the register copy.
1468         if (TiedOperands.size() == 1 && TiedPairs.size() == 1) {
1469           unsigned SrcIdx = TiedPairs[0].first;
1470           unsigned DstIdx = TiedPairs[0].second;
1471
1472           // If the registers are already equal, nothing needs to be done.
1473           if (mi->getOperand(SrcIdx).getReg() ==
1474               mi->getOperand(DstIdx).getReg())
1475             break; // Done with this instruction.
1476
1477           if (TryInstructionTransform(mi, nmi, mbbi, SrcIdx, DstIdx, Dist,
1478                                       Processed))
1479             break; // The tied operands have been eliminated.
1480         }
1481
1482         bool IsEarlyClobber = false;
1483         bool RemovedKillFlag = false;
1484         bool AllUsesCopied = true;
1485         unsigned LastCopiedReg = 0;
1486         unsigned regB = OI->first;
1487         for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1488           unsigned SrcIdx = TiedPairs[tpi].first;
1489           unsigned DstIdx = TiedPairs[tpi].second;
1490
1491           const MachineOperand &DstMO = mi->getOperand(DstIdx);
1492           unsigned regA = DstMO.getReg();
1493           IsEarlyClobber |= DstMO.isEarlyClobber();
1494
1495           // Grab regB from the instruction because it may have changed if the
1496           // instruction was commuted.
1497           regB = mi->getOperand(SrcIdx).getReg();
1498
1499           if (regA == regB) {
1500             // The register is tied to multiple destinations (or else we would
1501             // not have continued this far), but this use of the register
1502             // already matches the tied destination.  Leave it.
1503             AllUsesCopied = false;
1504             continue;
1505           }
1506           LastCopiedReg = regA;
1507
1508           assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1509                  "cannot make instruction into two-address form");
1510
1511 #ifndef NDEBUG
1512           // First, verify that we don't have a use of "a" in the instruction
1513           // (a = b + a for example) because our transformation will not
1514           // work. This should never occur because we are in SSA form.
1515           for (unsigned i = 0; i != mi->getNumOperands(); ++i)
1516             assert(i == DstIdx ||
1517                    !mi->getOperand(i).isReg() ||
1518                    mi->getOperand(i).getReg() != regA);
1519 #endif
1520
1521           // Emit a copy or rematerialize the definition.
1522           const TargetRegisterClass *rc = MRI->getRegClass(regB);
1523           MachineInstr *DefMI = MRI->getVRegDef(regB);
1524           // If it's safe and profitable, remat the definition instead of
1525           // copying it.
1526           if (DefMI &&
1527               DefMI->isAsCheapAsAMove() &&
1528               DefMI->isSafeToReMat(TII, AA, regB) &&
1529               isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
1530             DEBUG(dbgs() << "2addr: REMATTING : " << *DefMI << "\n");
1531             unsigned regASubIdx = mi->getOperand(DstIdx).getSubReg();
1532             TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI, *TRI);
1533             ReMatRegs.set(TargetRegisterInfo::virtReg2Index(regB));
1534             ++NumReMats;
1535           } else {
1536             BuildMI(*mbbi, mi, mi->getDebugLoc(), TII->get(TargetOpcode::COPY),
1537                     regA).addReg(regB);
1538           }
1539
1540           MachineBasicBlock::iterator prevMI = prior(mi);
1541           // Update DistanceMap.
1542           DistanceMap.insert(std::make_pair(prevMI, Dist));
1543           DistanceMap[mi] = ++Dist;
1544
1545           DEBUG(dbgs() << "\t\tprepend:\t" << *prevMI);
1546
1547           MachineOperand &MO = mi->getOperand(SrcIdx);
1548           assert(MO.isReg() && MO.getReg() == regB && MO.isUse() &&
1549                  "inconsistent operand info for 2-reg pass");
1550           if (MO.isKill()) {
1551             MO.setIsKill(false);
1552             RemovedKillFlag = true;
1553           }
1554           MO.setReg(regA);
1555         }
1556
1557         if (AllUsesCopied) {
1558           if (!IsEarlyClobber) {
1559             // Replace other (un-tied) uses of regB with LastCopiedReg.
1560             for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1561               MachineOperand &MO = mi->getOperand(i);
1562               if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1563                 if (MO.isKill()) {
1564                   MO.setIsKill(false);
1565                   RemovedKillFlag = true;
1566                 }
1567                 MO.setReg(LastCopiedReg);
1568               }
1569             }
1570           }
1571
1572           // Update live variables for regB.
1573           if (RemovedKillFlag && LV && LV->getVarInfo(regB).removeKill(mi))
1574             LV->addVirtualRegisterKilled(regB, prior(mi));
1575
1576         } else if (RemovedKillFlag) {
1577           // Some tied uses of regB matched their destination registers, so
1578           // regB is still used in this instruction, but a kill flag was
1579           // removed from a different tied use of regB, so now we need to add
1580           // a kill flag to one of the remaining uses of regB.
1581           for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1582             MachineOperand &MO = mi->getOperand(i);
1583             if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1584               MO.setIsKill(true);
1585               break;
1586             }
1587           }
1588         }
1589
1590         // Schedule the source copy / remat inserted to form two-address
1591         // instruction. FIXME: Does it matter the distance map may not be
1592         // accurate after it's scheduled?
1593         TII->scheduleTwoAddrSource(prior(mi), mi, *TRI);
1594
1595         MadeChange = true;
1596
1597         DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1598       }
1599
1600       // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1601       if (mi->isInsertSubreg()) {
1602         // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1603         // To   %reg:subidx = COPY %subreg
1604         unsigned SubIdx = mi->getOperand(3).getImm();
1605         mi->RemoveOperand(3);
1606         assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1607         mi->getOperand(0).setSubReg(SubIdx);
1608         mi->RemoveOperand(1);
1609         mi->setDesc(TII->get(TargetOpcode::COPY));
1610         DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
1611       }
1612
1613       // Clear TiedOperands here instead of at the top of the loop
1614       // since most instructions do not have tied operands.
1615       TiedOperands.clear();
1616       mi = nmi;
1617     }
1618   }
1619
1620   // Some remat'ed instructions are dead.
1621   for (int i = ReMatRegs.find_first(); i != -1; i = ReMatRegs.find_next(i)) {
1622     unsigned VReg = TargetRegisterInfo::index2VirtReg(i);
1623     if (MRI->use_nodbg_empty(VReg)) {
1624       MachineInstr *DefMI = MRI->getVRegDef(VReg);
1625       DefMI->eraseFromParent();
1626     }
1627   }
1628
1629   // Eliminate REG_SEQUENCE instructions. Their whole purpose was to preseve
1630   // SSA form. It's now safe to de-SSA.
1631   MadeChange |= EliminateRegSequences();
1632
1633   return MadeChange;
1634 }
1635
1636 static void UpdateRegSequenceSrcs(unsigned SrcReg,
1637                                   unsigned DstReg, unsigned SubIdx,
1638                                   MachineRegisterInfo *MRI,
1639                                   const TargetRegisterInfo &TRI) {
1640   for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
1641          RE = MRI->reg_end(); RI != RE; ) {
1642     MachineOperand &MO = RI.getOperand();
1643     ++RI;
1644     MO.substVirtReg(DstReg, SubIdx, TRI);
1645   }
1646 }
1647
1648 // Find the first def of Reg, assuming they are all in the same basic block.
1649 static MachineInstr *findFirstDef(unsigned Reg, MachineRegisterInfo *MRI) {
1650   SmallPtrSet<MachineInstr*, 8> Defs;
1651   MachineInstr *First = 0;
1652   for (MachineRegisterInfo::def_iterator RI = MRI->def_begin(Reg);
1653        MachineInstr *MI = RI.skipInstruction(); Defs.insert(MI))
1654     First = MI;
1655   if (!First)
1656     return 0;
1657
1658   MachineBasicBlock *MBB = First->getParent();
1659   MachineBasicBlock::iterator A = First, B = First;
1660   bool Moving;
1661   do {
1662     Moving = false;
1663     if (A != MBB->begin()) {
1664       Moving = true;
1665       --A;
1666       if (Defs.erase(A)) First = A;
1667     }
1668     if (B != MBB->end()) {
1669       Defs.erase(B);
1670       ++B;
1671       Moving = true;
1672     }
1673   } while (Moving && !Defs.empty());
1674   assert(Defs.empty() && "Instructions outside basic block!");
1675   return First;
1676 }
1677
1678 /// CoalesceExtSubRegs - If a number of sources of the REG_SEQUENCE are
1679 /// EXTRACT_SUBREG from the same register and to the same virtual register
1680 /// with different sub-register indices, attempt to combine the
1681 /// EXTRACT_SUBREGs and pre-coalesce them. e.g.
1682 /// %reg1026<def> = VLDMQ %reg1025<kill>, 260, pred:14, pred:%reg0
1683 /// %reg1029:6<def> = EXTRACT_SUBREG %reg1026, 6
1684 /// %reg1029:5<def> = EXTRACT_SUBREG %reg1026<kill>, 5
1685 /// Since D subregs 5, 6 can combine to a Q register, we can coalesce
1686 /// reg1026 to reg1029.
1687 void
1688 TwoAddressInstructionPass::CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs,
1689                                               unsigned DstReg) {
1690   SmallSet<unsigned, 4> Seen;
1691   for (unsigned i = 0, e = Srcs.size(); i != e; ++i) {
1692     unsigned SrcReg = Srcs[i];
1693     if (!Seen.insert(SrcReg))
1694       continue;
1695
1696     // Check that the instructions are all in the same basic block.
1697     MachineInstr *SrcDefMI = MRI->getVRegDef(SrcReg);
1698     MachineInstr *DstDefMI = MRI->getVRegDef(DstReg);
1699     if (SrcDefMI->getParent() != DstDefMI->getParent())
1700       continue;
1701
1702     // If there are no other uses than copies which feed into
1703     // the reg_sequence, then we might be able to coalesce them.
1704     bool CanCoalesce = true;
1705     SmallVector<unsigned, 4> SrcSubIndices, DstSubIndices;
1706     for (MachineRegisterInfo::use_nodbg_iterator
1707            UI = MRI->use_nodbg_begin(SrcReg),
1708            UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
1709       MachineInstr *UseMI = &*UI;
1710       if (!UseMI->isCopy() || UseMI->getOperand(0).getReg() != DstReg) {
1711         CanCoalesce = false;
1712         break;
1713       }
1714       SrcSubIndices.push_back(UseMI->getOperand(1).getSubReg());
1715       DstSubIndices.push_back(UseMI->getOperand(0).getSubReg());
1716     }
1717
1718     if (!CanCoalesce || SrcSubIndices.size() < 2)
1719       continue;
1720
1721     // Check that the source subregisters can be combined.
1722     std::sort(SrcSubIndices.begin(), SrcSubIndices.end());
1723     unsigned NewSrcSubIdx = 0;
1724     if (!TRI->canCombineSubRegIndices(MRI->getRegClass(SrcReg), SrcSubIndices,
1725                                       NewSrcSubIdx))
1726       continue;
1727
1728     // Check that the destination subregisters can also be combined.
1729     std::sort(DstSubIndices.begin(), DstSubIndices.end());
1730     unsigned NewDstSubIdx = 0;
1731     if (!TRI->canCombineSubRegIndices(MRI->getRegClass(DstReg), DstSubIndices,
1732                                       NewDstSubIdx))
1733       continue;
1734
1735     // If neither source nor destination can be combined to the full register,
1736     // just give up.  This could be improved if it ever matters.
1737     if (NewSrcSubIdx != 0 && NewDstSubIdx != 0)
1738       continue;
1739
1740     // Now that we know that all the uses are extract_subregs and that those
1741     // subregs can somehow be combined, scan all the extract_subregs again to
1742     // make sure the subregs are in the right order and can be composed.
1743     MachineInstr *SomeMI = 0;
1744     CanCoalesce = true;
1745     for (MachineRegisterInfo::use_nodbg_iterator
1746            UI = MRI->use_nodbg_begin(SrcReg),
1747            UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
1748       MachineInstr *UseMI = &*UI;
1749       assert(UseMI->isCopy());
1750       unsigned DstSubIdx = UseMI->getOperand(0).getSubReg();
1751       unsigned SrcSubIdx = UseMI->getOperand(1).getSubReg();
1752       assert(DstSubIdx != 0 && "missing subreg from RegSequence elimination");
1753       if ((NewDstSubIdx == 0 &&
1754            TRI->composeSubRegIndices(NewSrcSubIdx, DstSubIdx) != SrcSubIdx) ||
1755           (NewSrcSubIdx == 0 &&
1756            TRI->composeSubRegIndices(NewDstSubIdx, SrcSubIdx) != DstSubIdx)) {
1757         CanCoalesce = false;
1758         break;
1759       }
1760       // Keep track of one of the uses.  Preferably the first one which has a
1761       // <def,undef> flag.
1762       if (!SomeMI || UseMI->getOperand(0).isUndef())
1763         SomeMI = UseMI;
1764     }
1765     if (!CanCoalesce)
1766       continue;
1767
1768     // Insert a copy to replace the original.
1769     MachineInstr *CopyMI = BuildMI(*SomeMI->getParent(), SomeMI,
1770                                    SomeMI->getDebugLoc(),
1771                                    TII->get(TargetOpcode::COPY))
1772       .addReg(DstReg, RegState::Define |
1773                       getUndefRegState(SomeMI->getOperand(0).isUndef()),
1774               NewDstSubIdx)
1775       .addReg(SrcReg, 0, NewSrcSubIdx);
1776
1777     // Remove all the old extract instructions.
1778     for (MachineRegisterInfo::use_nodbg_iterator
1779            UI = MRI->use_nodbg_begin(SrcReg),
1780            UE = MRI->use_nodbg_end(); UI != UE; ) {
1781       MachineInstr *UseMI = &*UI;
1782       ++UI;
1783       if (UseMI == CopyMI)
1784         continue;
1785       assert(UseMI->isCopy());
1786       // Move any kills to the new copy or extract instruction.
1787       if (UseMI->getOperand(1).isKill()) {
1788         CopyMI->getOperand(1).setIsKill();
1789         if (LV)
1790           // Update live variables
1791           LV->replaceKillInstruction(SrcReg, UseMI, &*CopyMI);
1792       }
1793       UseMI->eraseFromParent();
1794     }
1795   }
1796 }
1797
1798 static bool HasOtherRegSequenceUses(unsigned Reg, MachineInstr *RegSeq,
1799                                     MachineRegisterInfo *MRI) {
1800   for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
1801          UE = MRI->use_end(); UI != UE; ++UI) {
1802     MachineInstr *UseMI = &*UI;
1803     if (UseMI != RegSeq && UseMI->isRegSequence())
1804       return true;
1805   }
1806   return false;
1807 }
1808
1809 /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
1810 /// of the de-ssa process. This replaces sources of REG_SEQUENCE as
1811 /// sub-register references of the register defined by REG_SEQUENCE. e.g.
1812 ///
1813 /// %reg1029<def>, %reg1030<def> = VLD1q16 %reg1024<kill>, ...
1814 /// %reg1031<def> = REG_SEQUENCE %reg1029<kill>, 5, %reg1030<kill>, 6
1815 /// =>
1816 /// %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
1817 bool TwoAddressInstructionPass::EliminateRegSequences() {
1818   if (RegSequences.empty())
1819     return false;
1820
1821   for (unsigned i = 0, e = RegSequences.size(); i != e; ++i) {
1822     MachineInstr *MI = RegSequences[i];
1823     unsigned DstReg = MI->getOperand(0).getReg();
1824     if (MI->getOperand(0).getSubReg() ||
1825         TargetRegisterInfo::isPhysicalRegister(DstReg) ||
1826         !(MI->getNumOperands() & 1)) {
1827       DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1828       llvm_unreachable(0);
1829     }
1830
1831     bool IsImpDef = true;
1832     SmallVector<unsigned, 4> RealSrcs;
1833     SmallSet<unsigned, 4> Seen;
1834     for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1835       unsigned SrcReg = MI->getOperand(i).getReg();
1836       unsigned SubIdx = MI->getOperand(i+1).getImm();
1837       // DefMI of NULL means the value does not have a vreg in this block
1838       // i.e., its a physical register or a subreg.
1839       // In either case we force a copy to be generated.
1840       MachineInstr *DefMI = NULL;
1841       if (!MI->getOperand(i).getSubReg() &&
1842           !TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
1843         DefMI = MRI->getVRegDef(SrcReg);
1844       }
1845
1846       if (DefMI && DefMI->isImplicitDef()) {
1847         DefMI->eraseFromParent();
1848         continue;
1849       }
1850       IsImpDef = false;
1851
1852       // Remember COPY sources. These might be candidate for coalescing.
1853       if (DefMI && DefMI->isCopy() && DefMI->getOperand(1).getSubReg())
1854         RealSrcs.push_back(DefMI->getOperand(1).getReg());
1855
1856       bool isKill = MI->getOperand(i).isKill();
1857       if (!DefMI || !Seen.insert(SrcReg) ||
1858           MI->getParent() != DefMI->getParent() ||
1859           !isKill || HasOtherRegSequenceUses(SrcReg, MI, MRI) ||
1860           !TRI->getMatchingSuperRegClass(MRI->getRegClass(DstReg),
1861                                          MRI->getRegClass(SrcReg), SubIdx)) {
1862         // REG_SEQUENCE cannot have duplicated operands, add a copy.
1863         // Also add an copy if the source is live-in the block. We don't want
1864         // to end up with a partial-redef of a livein, e.g.
1865         // BB0:
1866         // reg1051:10<def> =
1867         // ...
1868         // BB1:
1869         // ... = reg1051:10
1870         // BB2:
1871         // reg1051:9<def> =
1872         // LiveIntervalAnalysis won't like it.
1873         //
1874         // If the REG_SEQUENCE doesn't kill its source, keeping live variables
1875         // correctly up to date becomes very difficult. Insert a copy.
1876
1877         // Defer any kill flag to the last operand using SrcReg. Otherwise, we
1878         // might insert a COPY that uses SrcReg after is was killed.
1879         if (isKill)
1880           for (unsigned j = i + 2; j < e; j += 2)
1881             if (MI->getOperand(j).getReg() == SrcReg) {
1882               MI->getOperand(j).setIsKill();
1883               isKill = false;
1884               break;
1885             }
1886
1887         MachineBasicBlock::iterator InsertLoc = MI;
1888         MachineInstr *CopyMI = BuildMI(*MI->getParent(), InsertLoc,
1889                                 MI->getDebugLoc(), TII->get(TargetOpcode::COPY))
1890             .addReg(DstReg, RegState::Define, SubIdx)
1891             .addReg(SrcReg, getKillRegState(isKill));
1892         MI->getOperand(i).setReg(0);
1893         if (LV && isKill && !TargetRegisterInfo::isPhysicalRegister(SrcReg))
1894           LV->replaceKillInstruction(SrcReg, MI, CopyMI);
1895         DEBUG(dbgs() << "Inserted: " << *CopyMI);
1896       }
1897     }
1898
1899     for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1900       unsigned SrcReg = MI->getOperand(i).getReg();
1901       if (!SrcReg) continue;
1902       unsigned SubIdx = MI->getOperand(i+1).getImm();
1903       UpdateRegSequenceSrcs(SrcReg, DstReg, SubIdx, MRI, *TRI);
1904     }
1905
1906     // Set <def,undef> flags on the first DstReg def in the basic block.
1907     // It marks the beginning of the live range. All the other defs are
1908     // read-modify-write.
1909     if (MachineInstr *Def = findFirstDef(DstReg, MRI)) {
1910       for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
1911         MachineOperand &MO = Def->getOperand(i);
1912         if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg)
1913           MO.setIsUndef();
1914       }
1915       // Make sure there is a full non-subreg imp-def operand on the
1916       // instruction.  This shouldn't be necessary, but it seems that at least
1917       // RAFast requires it.
1918       Def->addRegisterDefined(DstReg, TRI);
1919       DEBUG(dbgs() << "First def: " << *Def);
1920     }
1921
1922     if (IsImpDef) {
1923       DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF");
1924       MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1925       for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j)
1926         MI->RemoveOperand(j);
1927     } else {
1928       DEBUG(dbgs() << "Eliminated: " << *MI);
1929       MI->eraseFromParent();
1930     }
1931
1932     // Try coalescing some EXTRACT_SUBREG instructions. This can create
1933     // INSERT_SUBREG instructions that must have <undef> flags added by
1934     // LiveIntervalAnalysis, so only run it when LiveVariables is available.
1935     if (LV)
1936       CoalesceExtSubRegs(RealSrcs, DstReg);
1937   }
1938
1939   RegSequences.clear();
1940   return true;
1941 }