[BranchFolding] Set correct mem refs
[oota-llvm.git] / lib / CodeGen / TargetLoweringBase.cpp
1 //===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLoweringBase class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Target/TargetLowering.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/CodeGen/Analysis.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
23 #include "llvm/CodeGen/StackMaps.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Mangler.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCContext.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Target/TargetLoweringObjectFile.h"
35 #include "llvm/Target/TargetMachine.h"
36 #include "llvm/Target/TargetRegisterInfo.h"
37 #include "llvm/Target/TargetSubtargetInfo.h"
38 #include <cctype>
39 using namespace llvm;
40
41 static cl::opt<bool> JumpIsExpensiveOverride(
42     "jump-is-expensive", cl::init(false),
43     cl::desc("Do not create extra branches to split comparison logic."),
44     cl::Hidden);
45
46 /// InitLibcallNames - Set default libcall names.
47 ///
48 static void InitLibcallNames(const char **Names, const Triple &TT) {
49   Names[RTLIB::SHL_I16] = "__ashlhi3";
50   Names[RTLIB::SHL_I32] = "__ashlsi3";
51   Names[RTLIB::SHL_I64] = "__ashldi3";
52   Names[RTLIB::SHL_I128] = "__ashlti3";
53   Names[RTLIB::SRL_I16] = "__lshrhi3";
54   Names[RTLIB::SRL_I32] = "__lshrsi3";
55   Names[RTLIB::SRL_I64] = "__lshrdi3";
56   Names[RTLIB::SRL_I128] = "__lshrti3";
57   Names[RTLIB::SRA_I16] = "__ashrhi3";
58   Names[RTLIB::SRA_I32] = "__ashrsi3";
59   Names[RTLIB::SRA_I64] = "__ashrdi3";
60   Names[RTLIB::SRA_I128] = "__ashrti3";
61   Names[RTLIB::MUL_I8] = "__mulqi3";
62   Names[RTLIB::MUL_I16] = "__mulhi3";
63   Names[RTLIB::MUL_I32] = "__mulsi3";
64   Names[RTLIB::MUL_I64] = "__muldi3";
65   Names[RTLIB::MUL_I128] = "__multi3";
66   Names[RTLIB::MULO_I32] = "__mulosi4";
67   Names[RTLIB::MULO_I64] = "__mulodi4";
68   Names[RTLIB::MULO_I128] = "__muloti4";
69   Names[RTLIB::SDIV_I8] = "__divqi3";
70   Names[RTLIB::SDIV_I16] = "__divhi3";
71   Names[RTLIB::SDIV_I32] = "__divsi3";
72   Names[RTLIB::SDIV_I64] = "__divdi3";
73   Names[RTLIB::SDIV_I128] = "__divti3";
74   Names[RTLIB::UDIV_I8] = "__udivqi3";
75   Names[RTLIB::UDIV_I16] = "__udivhi3";
76   Names[RTLIB::UDIV_I32] = "__udivsi3";
77   Names[RTLIB::UDIV_I64] = "__udivdi3";
78   Names[RTLIB::UDIV_I128] = "__udivti3";
79   Names[RTLIB::SREM_I8] = "__modqi3";
80   Names[RTLIB::SREM_I16] = "__modhi3";
81   Names[RTLIB::SREM_I32] = "__modsi3";
82   Names[RTLIB::SREM_I64] = "__moddi3";
83   Names[RTLIB::SREM_I128] = "__modti3";
84   Names[RTLIB::UREM_I8] = "__umodqi3";
85   Names[RTLIB::UREM_I16] = "__umodhi3";
86   Names[RTLIB::UREM_I32] = "__umodsi3";
87   Names[RTLIB::UREM_I64] = "__umoddi3";
88   Names[RTLIB::UREM_I128] = "__umodti3";
89
90   // These are generally not available.
91   Names[RTLIB::SDIVREM_I8] = nullptr;
92   Names[RTLIB::SDIVREM_I16] = nullptr;
93   Names[RTLIB::SDIVREM_I32] = nullptr;
94   Names[RTLIB::SDIVREM_I64] = nullptr;
95   Names[RTLIB::SDIVREM_I128] = nullptr;
96   Names[RTLIB::UDIVREM_I8] = nullptr;
97   Names[RTLIB::UDIVREM_I16] = nullptr;
98   Names[RTLIB::UDIVREM_I32] = nullptr;
99   Names[RTLIB::UDIVREM_I64] = nullptr;
100   Names[RTLIB::UDIVREM_I128] = nullptr;
101
102   Names[RTLIB::NEG_I32] = "__negsi2";
103   Names[RTLIB::NEG_I64] = "__negdi2";
104   Names[RTLIB::ADD_F32] = "__addsf3";
105   Names[RTLIB::ADD_F64] = "__adddf3";
106   Names[RTLIB::ADD_F80] = "__addxf3";
107   Names[RTLIB::ADD_F128] = "__addtf3";
108   Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
109   Names[RTLIB::SUB_F32] = "__subsf3";
110   Names[RTLIB::SUB_F64] = "__subdf3";
111   Names[RTLIB::SUB_F80] = "__subxf3";
112   Names[RTLIB::SUB_F128] = "__subtf3";
113   Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
114   Names[RTLIB::MUL_F32] = "__mulsf3";
115   Names[RTLIB::MUL_F64] = "__muldf3";
116   Names[RTLIB::MUL_F80] = "__mulxf3";
117   Names[RTLIB::MUL_F128] = "__multf3";
118   Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
119   Names[RTLIB::DIV_F32] = "__divsf3";
120   Names[RTLIB::DIV_F64] = "__divdf3";
121   Names[RTLIB::DIV_F80] = "__divxf3";
122   Names[RTLIB::DIV_F128] = "__divtf3";
123   Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
124   Names[RTLIB::REM_F32] = "fmodf";
125   Names[RTLIB::REM_F64] = "fmod";
126   Names[RTLIB::REM_F80] = "fmodl";
127   Names[RTLIB::REM_F128] = "fmodl";
128   Names[RTLIB::REM_PPCF128] = "fmodl";
129   Names[RTLIB::FMA_F32] = "fmaf";
130   Names[RTLIB::FMA_F64] = "fma";
131   Names[RTLIB::FMA_F80] = "fmal";
132   Names[RTLIB::FMA_F128] = "fmal";
133   Names[RTLIB::FMA_PPCF128] = "fmal";
134   Names[RTLIB::POWI_F32] = "__powisf2";
135   Names[RTLIB::POWI_F64] = "__powidf2";
136   Names[RTLIB::POWI_F80] = "__powixf2";
137   Names[RTLIB::POWI_F128] = "__powitf2";
138   Names[RTLIB::POWI_PPCF128] = "__powitf2";
139   Names[RTLIB::SQRT_F32] = "sqrtf";
140   Names[RTLIB::SQRT_F64] = "sqrt";
141   Names[RTLIB::SQRT_F80] = "sqrtl";
142   Names[RTLIB::SQRT_F128] = "sqrtl";
143   Names[RTLIB::SQRT_PPCF128] = "sqrtl";
144   Names[RTLIB::LOG_F32] = "logf";
145   Names[RTLIB::LOG_F64] = "log";
146   Names[RTLIB::LOG_F80] = "logl";
147   Names[RTLIB::LOG_F128] = "logl";
148   Names[RTLIB::LOG_PPCF128] = "logl";
149   Names[RTLIB::LOG2_F32] = "log2f";
150   Names[RTLIB::LOG2_F64] = "log2";
151   Names[RTLIB::LOG2_F80] = "log2l";
152   Names[RTLIB::LOG2_F128] = "log2l";
153   Names[RTLIB::LOG2_PPCF128] = "log2l";
154   Names[RTLIB::LOG10_F32] = "log10f";
155   Names[RTLIB::LOG10_F64] = "log10";
156   Names[RTLIB::LOG10_F80] = "log10l";
157   Names[RTLIB::LOG10_F128] = "log10l";
158   Names[RTLIB::LOG10_PPCF128] = "log10l";
159   Names[RTLIB::EXP_F32] = "expf";
160   Names[RTLIB::EXP_F64] = "exp";
161   Names[RTLIB::EXP_F80] = "expl";
162   Names[RTLIB::EXP_F128] = "expl";
163   Names[RTLIB::EXP_PPCF128] = "expl";
164   Names[RTLIB::EXP2_F32] = "exp2f";
165   Names[RTLIB::EXP2_F64] = "exp2";
166   Names[RTLIB::EXP2_F80] = "exp2l";
167   Names[RTLIB::EXP2_F128] = "exp2l";
168   Names[RTLIB::EXP2_PPCF128] = "exp2l";
169   Names[RTLIB::SIN_F32] = "sinf";
170   Names[RTLIB::SIN_F64] = "sin";
171   Names[RTLIB::SIN_F80] = "sinl";
172   Names[RTLIB::SIN_F128] = "sinl";
173   Names[RTLIB::SIN_PPCF128] = "sinl";
174   Names[RTLIB::COS_F32] = "cosf";
175   Names[RTLIB::COS_F64] = "cos";
176   Names[RTLIB::COS_F80] = "cosl";
177   Names[RTLIB::COS_F128] = "cosl";
178   Names[RTLIB::COS_PPCF128] = "cosl";
179   Names[RTLIB::POW_F32] = "powf";
180   Names[RTLIB::POW_F64] = "pow";
181   Names[RTLIB::POW_F80] = "powl";
182   Names[RTLIB::POW_F128] = "powl";
183   Names[RTLIB::POW_PPCF128] = "powl";
184   Names[RTLIB::CEIL_F32] = "ceilf";
185   Names[RTLIB::CEIL_F64] = "ceil";
186   Names[RTLIB::CEIL_F80] = "ceill";
187   Names[RTLIB::CEIL_F128] = "ceill";
188   Names[RTLIB::CEIL_PPCF128] = "ceill";
189   Names[RTLIB::TRUNC_F32] = "truncf";
190   Names[RTLIB::TRUNC_F64] = "trunc";
191   Names[RTLIB::TRUNC_F80] = "truncl";
192   Names[RTLIB::TRUNC_F128] = "truncl";
193   Names[RTLIB::TRUNC_PPCF128] = "truncl";
194   Names[RTLIB::RINT_F32] = "rintf";
195   Names[RTLIB::RINT_F64] = "rint";
196   Names[RTLIB::RINT_F80] = "rintl";
197   Names[RTLIB::RINT_F128] = "rintl";
198   Names[RTLIB::RINT_PPCF128] = "rintl";
199   Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
200   Names[RTLIB::NEARBYINT_F64] = "nearbyint";
201   Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
202   Names[RTLIB::NEARBYINT_F128] = "nearbyintl";
203   Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
204   Names[RTLIB::ROUND_F32] = "roundf";
205   Names[RTLIB::ROUND_F64] = "round";
206   Names[RTLIB::ROUND_F80] = "roundl";
207   Names[RTLIB::ROUND_F128] = "roundl";
208   Names[RTLIB::ROUND_PPCF128] = "roundl";
209   Names[RTLIB::FLOOR_F32] = "floorf";
210   Names[RTLIB::FLOOR_F64] = "floor";
211   Names[RTLIB::FLOOR_F80] = "floorl";
212   Names[RTLIB::FLOOR_F128] = "floorl";
213   Names[RTLIB::FLOOR_PPCF128] = "floorl";
214   Names[RTLIB::FMIN_F32] = "fminf";
215   Names[RTLIB::FMIN_F64] = "fmin";
216   Names[RTLIB::FMIN_F80] = "fminl";
217   Names[RTLIB::FMIN_F128] = "fminl";
218   Names[RTLIB::FMIN_PPCF128] = "fminl";
219   Names[RTLIB::FMAX_F32] = "fmaxf";
220   Names[RTLIB::FMAX_F64] = "fmax";
221   Names[RTLIB::FMAX_F80] = "fmaxl";
222   Names[RTLIB::FMAX_F128] = "fmaxl";
223   Names[RTLIB::FMAX_PPCF128] = "fmaxl";
224   Names[RTLIB::ROUND_F32] = "roundf";
225   Names[RTLIB::ROUND_F64] = "round";
226   Names[RTLIB::ROUND_F80] = "roundl";
227   Names[RTLIB::ROUND_F128] = "roundl";
228   Names[RTLIB::ROUND_PPCF128] = "roundl";
229   Names[RTLIB::COPYSIGN_F32] = "copysignf";
230   Names[RTLIB::COPYSIGN_F64] = "copysign";
231   Names[RTLIB::COPYSIGN_F80] = "copysignl";
232   Names[RTLIB::COPYSIGN_F128] = "copysignl";
233   Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
234   Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2";
235   Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2";
236   Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
237   Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
238   Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
239   Names[RTLIB::FPROUND_F64_F16] = "__truncdfhf2";
240   Names[RTLIB::FPROUND_F80_F16] = "__truncxfhf2";
241   Names[RTLIB::FPROUND_F128_F16] = "__trunctfhf2";
242   Names[RTLIB::FPROUND_PPCF128_F16] = "__trunctfhf2";
243   Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
244   Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
245   Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2";
246   Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
247   Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
248   Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2";
249   Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
250   Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
251   Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
252   Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
253   Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
254   Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
255   Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
256   Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
257   Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
258   Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
259   Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi";
260   Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi";
261   Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti";
262   Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
263   Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
264   Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
265   Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
266   Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
267   Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
268   Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
269   Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
270   Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
271   Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
272   Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
273   Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
274   Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi";
275   Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi";
276   Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti";
277   Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
278   Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
279   Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
280   Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
281   Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
282   Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
283   Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf";
284   Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
285   Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
286   Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
287   Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
288   Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf";
289   Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
290   Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
291   Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
292   Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
293   Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf";
294   Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
295   Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
296   Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
297   Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
298   Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf";
299   Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
300   Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
301   Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
302   Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
303   Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf";
304   Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
305   Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
306   Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
307   Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
308   Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf";
309   Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
310   Names[RTLIB::OEQ_F32] = "__eqsf2";
311   Names[RTLIB::OEQ_F64] = "__eqdf2";
312   Names[RTLIB::OEQ_F128] = "__eqtf2";
313   Names[RTLIB::UNE_F32] = "__nesf2";
314   Names[RTLIB::UNE_F64] = "__nedf2";
315   Names[RTLIB::UNE_F128] = "__netf2";
316   Names[RTLIB::OGE_F32] = "__gesf2";
317   Names[RTLIB::OGE_F64] = "__gedf2";
318   Names[RTLIB::OGE_F128] = "__getf2";
319   Names[RTLIB::OLT_F32] = "__ltsf2";
320   Names[RTLIB::OLT_F64] = "__ltdf2";
321   Names[RTLIB::OLT_F128] = "__lttf2";
322   Names[RTLIB::OLE_F32] = "__lesf2";
323   Names[RTLIB::OLE_F64] = "__ledf2";
324   Names[RTLIB::OLE_F128] = "__letf2";
325   Names[RTLIB::OGT_F32] = "__gtsf2";
326   Names[RTLIB::OGT_F64] = "__gtdf2";
327   Names[RTLIB::OGT_F128] = "__gttf2";
328   Names[RTLIB::UO_F32] = "__unordsf2";
329   Names[RTLIB::UO_F64] = "__unorddf2";
330   Names[RTLIB::UO_F128] = "__unordtf2";
331   Names[RTLIB::O_F32] = "__unordsf2";
332   Names[RTLIB::O_F64] = "__unorddf2";
333   Names[RTLIB::O_F128] = "__unordtf2";
334   Names[RTLIB::MEMCPY] = "memcpy";
335   Names[RTLIB::MEMMOVE] = "memmove";
336   Names[RTLIB::MEMSET] = "memset";
337   Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
338   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
339   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
340   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
341   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
342   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16] = "__sync_val_compare_and_swap_16";
343   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
344   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
345   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
346   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
347   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_16] = "__sync_lock_test_and_set_16";
348   Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
349   Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
350   Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
351   Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
352   Names[RTLIB::SYNC_FETCH_AND_ADD_16] = "__sync_fetch_and_add_16";
353   Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
354   Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
355   Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
356   Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
357   Names[RTLIB::SYNC_FETCH_AND_SUB_16] = "__sync_fetch_and_sub_16";
358   Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
359   Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
360   Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
361   Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
362   Names[RTLIB::SYNC_FETCH_AND_AND_16] = "__sync_fetch_and_and_16";
363   Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
364   Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
365   Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
366   Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
367   Names[RTLIB::SYNC_FETCH_AND_OR_16] = "__sync_fetch_and_or_16";
368   Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
369   Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
370   Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
371   Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
372   Names[RTLIB::SYNC_FETCH_AND_XOR_16] = "__sync_fetch_and_xor_16";
373   Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
374   Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
375   Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
376   Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
377   Names[RTLIB::SYNC_FETCH_AND_NAND_16] = "__sync_fetch_and_nand_16";
378   Names[RTLIB::SYNC_FETCH_AND_MAX_1] = "__sync_fetch_and_max_1";
379   Names[RTLIB::SYNC_FETCH_AND_MAX_2] = "__sync_fetch_and_max_2";
380   Names[RTLIB::SYNC_FETCH_AND_MAX_4] = "__sync_fetch_and_max_4";
381   Names[RTLIB::SYNC_FETCH_AND_MAX_8] = "__sync_fetch_and_max_8";
382   Names[RTLIB::SYNC_FETCH_AND_MAX_16] = "__sync_fetch_and_max_16";
383   Names[RTLIB::SYNC_FETCH_AND_UMAX_1] = "__sync_fetch_and_umax_1";
384   Names[RTLIB::SYNC_FETCH_AND_UMAX_2] = "__sync_fetch_and_umax_2";
385   Names[RTLIB::SYNC_FETCH_AND_UMAX_4] = "__sync_fetch_and_umax_4";
386   Names[RTLIB::SYNC_FETCH_AND_UMAX_8] = "__sync_fetch_and_umax_8";
387   Names[RTLIB::SYNC_FETCH_AND_UMAX_16] = "__sync_fetch_and_umax_16";
388   Names[RTLIB::SYNC_FETCH_AND_MIN_1] = "__sync_fetch_and_min_1";
389   Names[RTLIB::SYNC_FETCH_AND_MIN_2] = "__sync_fetch_and_min_2";
390   Names[RTLIB::SYNC_FETCH_AND_MIN_4] = "__sync_fetch_and_min_4";
391   Names[RTLIB::SYNC_FETCH_AND_MIN_8] = "__sync_fetch_and_min_8";
392   Names[RTLIB::SYNC_FETCH_AND_MIN_16] = "__sync_fetch_and_min_16";
393   Names[RTLIB::SYNC_FETCH_AND_UMIN_1] = "__sync_fetch_and_umin_1";
394   Names[RTLIB::SYNC_FETCH_AND_UMIN_2] = "__sync_fetch_and_umin_2";
395   Names[RTLIB::SYNC_FETCH_AND_UMIN_4] = "__sync_fetch_and_umin_4";
396   Names[RTLIB::SYNC_FETCH_AND_UMIN_8] = "__sync_fetch_and_umin_8";
397   Names[RTLIB::SYNC_FETCH_AND_UMIN_16] = "__sync_fetch_and_umin_16";
398   
399   if (TT.getEnvironment() == Triple::GNU) {
400     Names[RTLIB::SINCOS_F32] = "sincosf";
401     Names[RTLIB::SINCOS_F64] = "sincos";
402     Names[RTLIB::SINCOS_F80] = "sincosl";
403     Names[RTLIB::SINCOS_F128] = "sincosl";
404     Names[RTLIB::SINCOS_PPCF128] = "sincosl";
405   } else {
406     // These are generally not available.
407     Names[RTLIB::SINCOS_F32] = nullptr;
408     Names[RTLIB::SINCOS_F64] = nullptr;
409     Names[RTLIB::SINCOS_F80] = nullptr;
410     Names[RTLIB::SINCOS_F128] = nullptr;
411     Names[RTLIB::SINCOS_PPCF128] = nullptr;
412   }
413
414   if (!TT.isOSOpenBSD()) {
415     Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = "__stack_chk_fail";
416   } else {
417     // These are generally not available.
418     Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = nullptr;
419   }
420
421   // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
422   // of the gnueabi-style __gnu_*_ieee.
423   // FIXME: What about other targets?
424   if (TT.isOSDarwin()) {
425     Names[RTLIB::FPEXT_F16_F32] = "__extendhfsf2";
426     Names[RTLIB::FPROUND_F32_F16] = "__truncsfhf2";
427   }
428 }
429
430 /// InitLibcallCallingConvs - Set default libcall CallingConvs.
431 ///
432 static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
433   for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
434     CCs[i] = CallingConv::C;
435   }
436 }
437
438 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
439 /// UNKNOWN_LIBCALL if there is none.
440 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
441   if (OpVT == MVT::f16) {
442     if (RetVT == MVT::f32)
443       return FPEXT_F16_F32;
444   } else if (OpVT == MVT::f32) {
445     if (RetVT == MVT::f64)
446       return FPEXT_F32_F64;
447     if (RetVT == MVT::f128)
448       return FPEXT_F32_F128;
449   } else if (OpVT == MVT::f64) {
450     if (RetVT == MVT::f128)
451       return FPEXT_F64_F128;
452   }
453
454   return UNKNOWN_LIBCALL;
455 }
456
457 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
458 /// UNKNOWN_LIBCALL if there is none.
459 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
460   if (RetVT == MVT::f16) {
461     if (OpVT == MVT::f32)
462       return FPROUND_F32_F16;
463     if (OpVT == MVT::f64)
464       return FPROUND_F64_F16;
465     if (OpVT == MVT::f80)
466       return FPROUND_F80_F16;
467     if (OpVT == MVT::f128)
468       return FPROUND_F128_F16;
469     if (OpVT == MVT::ppcf128)
470       return FPROUND_PPCF128_F16;
471   } else if (RetVT == MVT::f32) {
472     if (OpVT == MVT::f64)
473       return FPROUND_F64_F32;
474     if (OpVT == MVT::f80)
475       return FPROUND_F80_F32;
476     if (OpVT == MVT::f128)
477       return FPROUND_F128_F32;
478     if (OpVT == MVT::ppcf128)
479       return FPROUND_PPCF128_F32;
480   } else if (RetVT == MVT::f64) {
481     if (OpVT == MVT::f80)
482       return FPROUND_F80_F64;
483     if (OpVT == MVT::f128)
484       return FPROUND_F128_F64;
485     if (OpVT == MVT::ppcf128)
486       return FPROUND_PPCF128_F64;
487   }
488
489   return UNKNOWN_LIBCALL;
490 }
491
492 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
493 /// UNKNOWN_LIBCALL if there is none.
494 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
495   if (OpVT == MVT::f32) {
496     if (RetVT == MVT::i32)
497       return FPTOSINT_F32_I32;
498     if (RetVT == MVT::i64)
499       return FPTOSINT_F32_I64;
500     if (RetVT == MVT::i128)
501       return FPTOSINT_F32_I128;
502   } else if (OpVT == MVT::f64) {
503     if (RetVT == MVT::i32)
504       return FPTOSINT_F64_I32;
505     if (RetVT == MVT::i64)
506       return FPTOSINT_F64_I64;
507     if (RetVT == MVT::i128)
508       return FPTOSINT_F64_I128;
509   } else if (OpVT == MVT::f80) {
510     if (RetVT == MVT::i32)
511       return FPTOSINT_F80_I32;
512     if (RetVT == MVT::i64)
513       return FPTOSINT_F80_I64;
514     if (RetVT == MVT::i128)
515       return FPTOSINT_F80_I128;
516   } else if (OpVT == MVT::f128) {
517     if (RetVT == MVT::i32)
518       return FPTOSINT_F128_I32;
519     if (RetVT == MVT::i64)
520       return FPTOSINT_F128_I64;
521     if (RetVT == MVT::i128)
522       return FPTOSINT_F128_I128;
523   } else if (OpVT == MVT::ppcf128) {
524     if (RetVT == MVT::i32)
525       return FPTOSINT_PPCF128_I32;
526     if (RetVT == MVT::i64)
527       return FPTOSINT_PPCF128_I64;
528     if (RetVT == MVT::i128)
529       return FPTOSINT_PPCF128_I128;
530   }
531   return UNKNOWN_LIBCALL;
532 }
533
534 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
535 /// UNKNOWN_LIBCALL if there is none.
536 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
537   if (OpVT == MVT::f32) {
538     if (RetVT == MVT::i32)
539       return FPTOUINT_F32_I32;
540     if (RetVT == MVT::i64)
541       return FPTOUINT_F32_I64;
542     if (RetVT == MVT::i128)
543       return FPTOUINT_F32_I128;
544   } else if (OpVT == MVT::f64) {
545     if (RetVT == MVT::i32)
546       return FPTOUINT_F64_I32;
547     if (RetVT == MVT::i64)
548       return FPTOUINT_F64_I64;
549     if (RetVT == MVT::i128)
550       return FPTOUINT_F64_I128;
551   } else if (OpVT == MVT::f80) {
552     if (RetVT == MVT::i32)
553       return FPTOUINT_F80_I32;
554     if (RetVT == MVT::i64)
555       return FPTOUINT_F80_I64;
556     if (RetVT == MVT::i128)
557       return FPTOUINT_F80_I128;
558   } else if (OpVT == MVT::f128) {
559     if (RetVT == MVT::i32)
560       return FPTOUINT_F128_I32;
561     if (RetVT == MVT::i64)
562       return FPTOUINT_F128_I64;
563     if (RetVT == MVT::i128)
564       return FPTOUINT_F128_I128;
565   } else if (OpVT == MVT::ppcf128) {
566     if (RetVT == MVT::i32)
567       return FPTOUINT_PPCF128_I32;
568     if (RetVT == MVT::i64)
569       return FPTOUINT_PPCF128_I64;
570     if (RetVT == MVT::i128)
571       return FPTOUINT_PPCF128_I128;
572   }
573   return UNKNOWN_LIBCALL;
574 }
575
576 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
577 /// UNKNOWN_LIBCALL if there is none.
578 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
579   if (OpVT == MVT::i32) {
580     if (RetVT == MVT::f32)
581       return SINTTOFP_I32_F32;
582     if (RetVT == MVT::f64)
583       return SINTTOFP_I32_F64;
584     if (RetVT == MVT::f80)
585       return SINTTOFP_I32_F80;
586     if (RetVT == MVT::f128)
587       return SINTTOFP_I32_F128;
588     if (RetVT == MVT::ppcf128)
589       return SINTTOFP_I32_PPCF128;
590   } else if (OpVT == MVT::i64) {
591     if (RetVT == MVT::f32)
592       return SINTTOFP_I64_F32;
593     if (RetVT == MVT::f64)
594       return SINTTOFP_I64_F64;
595     if (RetVT == MVT::f80)
596       return SINTTOFP_I64_F80;
597     if (RetVT == MVT::f128)
598       return SINTTOFP_I64_F128;
599     if (RetVT == MVT::ppcf128)
600       return SINTTOFP_I64_PPCF128;
601   } else if (OpVT == MVT::i128) {
602     if (RetVT == MVT::f32)
603       return SINTTOFP_I128_F32;
604     if (RetVT == MVT::f64)
605       return SINTTOFP_I128_F64;
606     if (RetVT == MVT::f80)
607       return SINTTOFP_I128_F80;
608     if (RetVT == MVT::f128)
609       return SINTTOFP_I128_F128;
610     if (RetVT == MVT::ppcf128)
611       return SINTTOFP_I128_PPCF128;
612   }
613   return UNKNOWN_LIBCALL;
614 }
615
616 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
617 /// UNKNOWN_LIBCALL if there is none.
618 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
619   if (OpVT == MVT::i32) {
620     if (RetVT == MVT::f32)
621       return UINTTOFP_I32_F32;
622     if (RetVT == MVT::f64)
623       return UINTTOFP_I32_F64;
624     if (RetVT == MVT::f80)
625       return UINTTOFP_I32_F80;
626     if (RetVT == MVT::f128)
627       return UINTTOFP_I32_F128;
628     if (RetVT == MVT::ppcf128)
629       return UINTTOFP_I32_PPCF128;
630   } else if (OpVT == MVT::i64) {
631     if (RetVT == MVT::f32)
632       return UINTTOFP_I64_F32;
633     if (RetVT == MVT::f64)
634       return UINTTOFP_I64_F64;
635     if (RetVT == MVT::f80)
636       return UINTTOFP_I64_F80;
637     if (RetVT == MVT::f128)
638       return UINTTOFP_I64_F128;
639     if (RetVT == MVT::ppcf128)
640       return UINTTOFP_I64_PPCF128;
641   } else if (OpVT == MVT::i128) {
642     if (RetVT == MVT::f32)
643       return UINTTOFP_I128_F32;
644     if (RetVT == MVT::f64)
645       return UINTTOFP_I128_F64;
646     if (RetVT == MVT::f80)
647       return UINTTOFP_I128_F80;
648     if (RetVT == MVT::f128)
649       return UINTTOFP_I128_F128;
650     if (RetVT == MVT::ppcf128)
651       return UINTTOFP_I128_PPCF128;
652   }
653   return UNKNOWN_LIBCALL;
654 }
655
656 RTLIB::Libcall RTLIB::getATOMIC(unsigned Opc, MVT VT) {
657 #define OP_TO_LIBCALL(Name, Enum)                                              \
658   case Name:                                                                   \
659     switch (VT.SimpleTy) {                                                     \
660     default:                                                                   \
661       return UNKNOWN_LIBCALL;                                                  \
662     case MVT::i8:                                                              \
663       return Enum##_1;                                                         \
664     case MVT::i16:                                                             \
665       return Enum##_2;                                                         \
666     case MVT::i32:                                                             \
667       return Enum##_4;                                                         \
668     case MVT::i64:                                                             \
669       return Enum##_8;                                                         \
670     case MVT::i128:                                                            \
671       return Enum##_16;                                                        \
672     }
673
674   switch (Opc) {
675     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
676     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
677     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
678     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
679     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
680     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
681     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
682     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
683     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
684     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
685     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
686     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
687   }
688
689 #undef OP_TO_LIBCALL
690
691   return UNKNOWN_LIBCALL;
692 }
693
694 /// InitCmpLibcallCCs - Set default comparison libcall CC.
695 ///
696 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
697   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
698   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
699   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
700   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
701   CCs[RTLIB::UNE_F32] = ISD::SETNE;
702   CCs[RTLIB::UNE_F64] = ISD::SETNE;
703   CCs[RTLIB::UNE_F128] = ISD::SETNE;
704   CCs[RTLIB::OGE_F32] = ISD::SETGE;
705   CCs[RTLIB::OGE_F64] = ISD::SETGE;
706   CCs[RTLIB::OGE_F128] = ISD::SETGE;
707   CCs[RTLIB::OLT_F32] = ISD::SETLT;
708   CCs[RTLIB::OLT_F64] = ISD::SETLT;
709   CCs[RTLIB::OLT_F128] = ISD::SETLT;
710   CCs[RTLIB::OLE_F32] = ISD::SETLE;
711   CCs[RTLIB::OLE_F64] = ISD::SETLE;
712   CCs[RTLIB::OLE_F128] = ISD::SETLE;
713   CCs[RTLIB::OGT_F32] = ISD::SETGT;
714   CCs[RTLIB::OGT_F64] = ISD::SETGT;
715   CCs[RTLIB::OGT_F128] = ISD::SETGT;
716   CCs[RTLIB::UO_F32] = ISD::SETNE;
717   CCs[RTLIB::UO_F64] = ISD::SETNE;
718   CCs[RTLIB::UO_F128] = ISD::SETNE;
719   CCs[RTLIB::O_F32] = ISD::SETEQ;
720   CCs[RTLIB::O_F64] = ISD::SETEQ;
721   CCs[RTLIB::O_F128] = ISD::SETEQ;
722 }
723
724 /// NOTE: The TargetMachine owns TLOF.
725 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
726   initActions();
727
728   // Perform these initializations only once.
729   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 8;
730   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize
731     = MaxStoresPerMemmoveOptSize = 4;
732   UseUnderscoreSetJmp = false;
733   UseUnderscoreLongJmp = false;
734   SelectIsExpensive = false;
735   HasMultipleConditionRegisters = false;
736   HasExtractBitsInsn = false;
737   FsqrtIsCheap = false;
738   JumpIsExpensive = JumpIsExpensiveOverride;
739   PredictableSelectIsExpensive = false;
740   MaskAndBranchFoldingIsLegal = false;
741   EnableExtLdPromotion = false;
742   HasFloatingPointExceptions = true;
743   StackPointerRegisterToSaveRestore = 0;
744   BooleanContents = UndefinedBooleanContent;
745   BooleanFloatContents = UndefinedBooleanContent;
746   BooleanVectorContents = UndefinedBooleanContent;
747   SchedPreferenceInfo = Sched::ILP;
748   JumpBufSize = 0;
749   JumpBufAlignment = 0;
750   MinFunctionAlignment = 0;
751   PrefFunctionAlignment = 0;
752   PrefLoopAlignment = 0;
753   GatherAllAliasesMaxDepth = 6;
754   MinStackArgumentAlignment = 1;
755   InsertFencesForAtomic = false;
756   MinimumJumpTableEntries = 4;
757
758   InitLibcallNames(LibcallRoutineNames, TM.getTargetTriple());
759   InitCmpLibcallCCs(CmpLibcallCCs);
760   InitLibcallCallingConvs(LibcallCallingConvs);
761 }
762
763 void TargetLoweringBase::initActions() {
764   // All operations default to being supported.
765   memset(OpActions, 0, sizeof(OpActions));
766   memset(LoadExtActions, 0, sizeof(LoadExtActions));
767   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
768   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
769   memset(CondCodeActions, 0, sizeof(CondCodeActions));
770   memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
771   memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
772
773   // Set default actions for various operations.
774   for (MVT VT : MVT::all_valuetypes()) {
775     // Default all indexed load / store to expand.
776     for (unsigned IM = (unsigned)ISD::PRE_INC;
777          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
778       setIndexedLoadAction(IM, VT, Expand);
779       setIndexedStoreAction(IM, VT, Expand);
780     }
781
782     // Most backends expect to see the node which just returns the value loaded.
783     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
784
785     // These operations default to expand.
786     setOperationAction(ISD::FGETSIGN, VT, Expand);
787     setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
788     setOperationAction(ISD::FMINNUM, VT, Expand);
789     setOperationAction(ISD::FMAXNUM, VT, Expand);
790     setOperationAction(ISD::FMINNAN, VT, Expand);
791     setOperationAction(ISD::FMAXNAN, VT, Expand);
792     setOperationAction(ISD::FMAD, VT, Expand);
793     setOperationAction(ISD::SMIN, VT, Expand);
794     setOperationAction(ISD::SMAX, VT, Expand);
795     setOperationAction(ISD::UMIN, VT, Expand);
796     setOperationAction(ISD::UMAX, VT, Expand);
797
798     // Overflow operations default to expand
799     setOperationAction(ISD::SADDO, VT, Expand);
800     setOperationAction(ISD::SSUBO, VT, Expand);
801     setOperationAction(ISD::UADDO, VT, Expand);
802     setOperationAction(ISD::USUBO, VT, Expand);
803     setOperationAction(ISD::SMULO, VT, Expand);
804     setOperationAction(ISD::UMULO, VT, Expand);
805
806     setOperationAction(ISD::BITREVERSE, VT, Expand);
807     
808     // These library functions default to expand.
809     setOperationAction(ISD::FROUND, VT, Expand);
810
811     // These operations default to expand for vector types.
812     if (VT.isVector()) {
813       setOperationAction(ISD::FCOPYSIGN, VT, Expand);
814       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
815       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
816       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
817     }
818
819     // For most targets @llvm.get.dynamic.area.offest just returns 0.
820     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
821   }
822
823   // Most targets ignore the @llvm.prefetch intrinsic.
824   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
825
826   // Most targets also ignore the @llvm.readcyclecounter intrinsic.
827   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
828
829   // ConstantFP nodes default to expand.  Targets can either change this to
830   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
831   // to optimize expansions for certain constants.
832   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
833   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
834   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
835   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
836   setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
837
838   // These library functions default to expand.
839   for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
840     setOperationAction(ISD::FLOG ,      VT, Expand);
841     setOperationAction(ISD::FLOG2,      VT, Expand);
842     setOperationAction(ISD::FLOG10,     VT, Expand);
843     setOperationAction(ISD::FEXP ,      VT, Expand);
844     setOperationAction(ISD::FEXP2,      VT, Expand);
845     setOperationAction(ISD::FFLOOR,     VT, Expand);
846     setOperationAction(ISD::FMINNUM,    VT, Expand);
847     setOperationAction(ISD::FMAXNUM,    VT, Expand);
848     setOperationAction(ISD::FNEARBYINT, VT, Expand);
849     setOperationAction(ISD::FCEIL,      VT, Expand);
850     setOperationAction(ISD::FRINT,      VT, Expand);
851     setOperationAction(ISD::FTRUNC,     VT, Expand);
852     setOperationAction(ISD::FROUND,     VT, Expand);
853   }
854
855   // Default ISD::TRAP to expand (which turns it into abort).
856   setOperationAction(ISD::TRAP, MVT::Other, Expand);
857
858   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
859   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
860   //
861   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
862 }
863
864 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
865                                                EVT) const {
866   return MVT::getIntegerVT(8 * DL.getPointerSize(0));
867 }
868
869 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy,
870                                          const DataLayout &DL) const {
871   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
872   if (LHSTy.isVector())
873     return LHSTy;
874   return getScalarShiftAmountTy(DL, LHSTy);
875 }
876
877 /// canOpTrap - Returns true if the operation can trap for the value type.
878 /// VT must be a legal type.
879 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
880   assert(isTypeLegal(VT));
881   switch (Op) {
882   default:
883     return false;
884   case ISD::FDIV:
885   case ISD::FREM:
886   case ISD::SDIV:
887   case ISD::UDIV:
888   case ISD::SREM:
889   case ISD::UREM:
890     return true;
891   }
892 }
893
894 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
895   // If the command-line option was specified, ignore this request.
896   if (!JumpIsExpensiveOverride.getNumOccurrences())
897     JumpIsExpensive = isExpensive;
898 }
899
900 TargetLoweringBase::LegalizeKind
901 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
902   // If this is a simple type, use the ComputeRegisterProp mechanism.
903   if (VT.isSimple()) {
904     MVT SVT = VT.getSimpleVT();
905     assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
906     MVT NVT = TransformToType[SVT.SimpleTy];
907     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
908
909     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
910             ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger) &&
911            "Promote may not follow Expand or Promote");
912
913     if (LA == TypeSplitVector)
914       return LegalizeKind(LA,
915                           EVT::getVectorVT(Context, SVT.getVectorElementType(),
916                                            SVT.getVectorNumElements() / 2));
917     if (LA == TypeScalarizeVector)
918       return LegalizeKind(LA, SVT.getVectorElementType());
919     return LegalizeKind(LA, NVT);
920   }
921
922   // Handle Extended Scalar Types.
923   if (!VT.isVector()) {
924     assert(VT.isInteger() && "Float types must be simple");
925     unsigned BitSize = VT.getSizeInBits();
926     // First promote to a power-of-two size, then expand if necessary.
927     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
928       EVT NVT = VT.getRoundIntegerType(Context);
929       assert(NVT != VT && "Unable to round integer VT");
930       LegalizeKind NextStep = getTypeConversion(Context, NVT);
931       // Avoid multi-step promotion.
932       if (NextStep.first == TypePromoteInteger)
933         return NextStep;
934       // Return rounded integer type.
935       return LegalizeKind(TypePromoteInteger, NVT);
936     }
937
938     return LegalizeKind(TypeExpandInteger,
939                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
940   }
941
942   // Handle vector types.
943   unsigned NumElts = VT.getVectorNumElements();
944   EVT EltVT = VT.getVectorElementType();
945
946   // Vectors with only one element are always scalarized.
947   if (NumElts == 1)
948     return LegalizeKind(TypeScalarizeVector, EltVT);
949
950   // Try to widen vector elements until the element type is a power of two and
951   // promote it to a legal type later on, for example:
952   // <3 x i8> -> <4 x i8> -> <4 x i32>
953   if (EltVT.isInteger()) {
954     // Vectors with a number of elements that is not a power of two are always
955     // widened, for example <3 x i8> -> <4 x i8>.
956     if (!VT.isPow2VectorType()) {
957       NumElts = (unsigned)NextPowerOf2(NumElts);
958       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
959       return LegalizeKind(TypeWidenVector, NVT);
960     }
961
962     // Examine the element type.
963     LegalizeKind LK = getTypeConversion(Context, EltVT);
964
965     // If type is to be expanded, split the vector.
966     //  <4 x i140> -> <2 x i140>
967     if (LK.first == TypeExpandInteger)
968       return LegalizeKind(TypeSplitVector,
969                           EVT::getVectorVT(Context, EltVT, NumElts / 2));
970
971     // Promote the integer element types until a legal vector type is found
972     // or until the element integer type is too big. If a legal type was not
973     // found, fallback to the usual mechanism of widening/splitting the
974     // vector.
975     EVT OldEltVT = EltVT;
976     while (1) {
977       // Increase the bitwidth of the element to the next pow-of-two
978       // (which is greater than 8 bits).
979       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
980                   .getRoundIntegerType(Context);
981
982       // Stop trying when getting a non-simple element type.
983       // Note that vector elements may be greater than legal vector element
984       // types. Example: X86 XMM registers hold 64bit element on 32bit
985       // systems.
986       if (!EltVT.isSimple())
987         break;
988
989       // Build a new vector type and check if it is legal.
990       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
991       // Found a legal promoted vector type.
992       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
993         return LegalizeKind(TypePromoteInteger,
994                             EVT::getVectorVT(Context, EltVT, NumElts));
995     }
996
997     // Reset the type to the unexpanded type if we did not find a legal vector
998     // type with a promoted vector element type.
999     EltVT = OldEltVT;
1000   }
1001
1002   // Try to widen the vector until a legal type is found.
1003   // If there is no wider legal type, split the vector.
1004   while (1) {
1005     // Round up to the next power of 2.
1006     NumElts = (unsigned)NextPowerOf2(NumElts);
1007
1008     // If there is no simple vector type with this many elements then there
1009     // cannot be a larger legal vector type.  Note that this assumes that
1010     // there are no skipped intermediate vector types in the simple types.
1011     if (!EltVT.isSimple())
1012       break;
1013     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1014     if (LargerVector == MVT())
1015       break;
1016
1017     // If this type is legal then widen the vector.
1018     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1019       return LegalizeKind(TypeWidenVector, LargerVector);
1020   }
1021
1022   // Widen odd vectors to next power of two.
1023   if (!VT.isPow2VectorType()) {
1024     EVT NVT = VT.getPow2VectorType(Context);
1025     return LegalizeKind(TypeWidenVector, NVT);
1026   }
1027
1028   // Vectors with illegal element types are expanded.
1029   EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
1030   return LegalizeKind(TypeSplitVector, NVT);
1031 }
1032
1033 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
1034                                           unsigned &NumIntermediates,
1035                                           MVT &RegisterVT,
1036                                           TargetLoweringBase *TLI) {
1037   // Figure out the right, legal destination reg to copy into.
1038   unsigned NumElts = VT.getVectorNumElements();
1039   MVT EltTy = VT.getVectorElementType();
1040
1041   unsigned NumVectorRegs = 1;
1042
1043   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
1044   // could break down into LHS/RHS like LegalizeDAG does.
1045   if (!isPowerOf2_32(NumElts)) {
1046     NumVectorRegs = NumElts;
1047     NumElts = 1;
1048   }
1049
1050   // Divide the input until we get to a supported size.  This will always
1051   // end with a scalar if the target doesn't support vectors.
1052   while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
1053     NumElts >>= 1;
1054     NumVectorRegs <<= 1;
1055   }
1056
1057   NumIntermediates = NumVectorRegs;
1058
1059   MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
1060   if (!TLI->isTypeLegal(NewVT))
1061     NewVT = EltTy;
1062   IntermediateVT = NewVT;
1063
1064   unsigned NewVTSize = NewVT.getSizeInBits();
1065
1066   // Convert sizes such as i33 to i64.
1067   if (!isPowerOf2_32(NewVTSize))
1068     NewVTSize = NextPowerOf2(NewVTSize);
1069
1070   MVT DestVT = TLI->getRegisterType(NewVT);
1071   RegisterVT = DestVT;
1072   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
1073     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1074
1075   // Otherwise, promotion or legal types use the same number of registers as
1076   // the vector decimated to the appropriate level.
1077   return NumVectorRegs;
1078 }
1079
1080 /// isLegalRC - Return true if the value types that can be represented by the
1081 /// specified register class are all legal.
1082 bool TargetLoweringBase::isLegalRC(const TargetRegisterClass *RC) const {
1083   for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1084        I != E; ++I) {
1085     if (isTypeLegal(*I))
1086       return true;
1087   }
1088   return false;
1089 }
1090
1091 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
1092 /// sequence of memory operands that is recognized by PrologEpilogInserter.
1093 MachineBasicBlock*
1094 TargetLoweringBase::emitPatchPoint(MachineInstr *MI,
1095                                    MachineBasicBlock *MBB) const {
1096   MachineFunction &MF = *MI->getParent()->getParent();
1097   MachineFrameInfo &MFI = *MF.getFrameInfo();
1098
1099   // We're handling multiple types of operands here:
1100   // PATCHPOINT MetaArgs - live-in, read only, direct
1101   // STATEPOINT Deopt Spill - live-through, read only, indirect
1102   // STATEPOINT Deopt Alloca - live-through, read only, direct
1103   // (We're currently conservative and mark the deopt slots read/write in
1104   // practice.) 
1105   // STATEPOINT GC Spill - live-through, read/write, indirect
1106   // STATEPOINT GC Alloca - live-through, read/write, direct
1107   // The live-in vs live-through is handled already (the live through ones are
1108   // all stack slots), but we need to handle the different type of stackmap
1109   // operands and memory effects here.
1110
1111   // MI changes inside this loop as we grow operands.
1112   for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
1113     MachineOperand &MO = MI->getOperand(OperIdx);
1114     if (!MO.isFI())
1115       continue;
1116
1117     // foldMemoryOperand builds a new MI after replacing a single FI operand
1118     // with the canonical set of five x86 addressing-mode operands.
1119     int FI = MO.getIndex();
1120     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1121
1122     // Copy operands before the frame-index.
1123     for (unsigned i = 0; i < OperIdx; ++i)
1124       MIB.addOperand(MI->getOperand(i));
1125     // Add frame index operands recognized by stackmaps.cpp
1126     if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1127       // indirect-mem-ref tag, size, #FI, offset.
1128       // Used for spills inserted by StatepointLowering.  This codepath is not
1129       // used for patchpoints/stackmaps at all, for these spilling is done via
1130       // foldMemoryOperand callback only.
1131       assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1132       MIB.addImm(StackMaps::IndirectMemRefOp);
1133       MIB.addImm(MFI.getObjectSize(FI));
1134       MIB.addOperand(MI->getOperand(OperIdx));
1135       MIB.addImm(0);
1136     } else {
1137       // direct-mem-ref tag, #FI, offset.
1138       // Used by patchpoint, and direct alloca arguments to statepoints
1139       MIB.addImm(StackMaps::DirectMemRefOp);
1140       MIB.addOperand(MI->getOperand(OperIdx));
1141       MIB.addImm(0);
1142     }
1143     // Copy the operands after the frame index.
1144     for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
1145       MIB.addOperand(MI->getOperand(i));
1146
1147     // Inherit previous memory operands.
1148     MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
1149     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1150
1151     // Add a new memory operand for this FI.
1152     assert(MFI.getObjectOffset(FI) != -1);
1153
1154     unsigned Flags = MachineMemOperand::MOLoad;
1155     if (MI->getOpcode() == TargetOpcode::STATEPOINT) {
1156       Flags |= MachineMemOperand::MOStore;
1157       Flags |= MachineMemOperand::MOVolatile;
1158     }
1159     MachineMemOperand *MMO = MF.getMachineMemOperand(
1160         MachinePointerInfo::getFixedStack(MF, FI), Flags,
1161         MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI));
1162     MIB->addMemOperand(MF, MMO);
1163
1164     // Replace the instruction and update the operand index.
1165     MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1166     OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
1167     MI->eraseFromParent();
1168     MI = MIB;
1169   }
1170   return MBB;
1171 }
1172
1173 /// findRepresentativeClass - Return the largest legal super-reg register class
1174 /// of the register class for the specified type and its associated "cost".
1175 // This function is in TargetLowering because it uses RegClassForVT which would
1176 // need to be moved to TargetRegisterInfo and would necessitate moving
1177 // isTypeLegal over as well - a massive change that would just require
1178 // TargetLowering having a TargetRegisterInfo class member that it would use.
1179 std::pair<const TargetRegisterClass *, uint8_t>
1180 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1181                                             MVT VT) const {
1182   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1183   if (!RC)
1184     return std::make_pair(RC, 0);
1185
1186   // Compute the set of all super-register classes.
1187   BitVector SuperRegRC(TRI->getNumRegClasses());
1188   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1189     SuperRegRC.setBitsInMask(RCI.getMask());
1190
1191   // Find the first legal register class with the largest spill size.
1192   const TargetRegisterClass *BestRC = RC;
1193   for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) {
1194     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1195     // We want the largest possible spill size.
1196     if (SuperRC->getSize() <= BestRC->getSize())
1197       continue;
1198     if (!isLegalRC(SuperRC))
1199       continue;
1200     BestRC = SuperRC;
1201   }
1202   return std::make_pair(BestRC, 1);
1203 }
1204
1205 /// computeRegisterProperties - Once all of the register classes are added,
1206 /// this allows us to compute derived properties we expose.
1207 void TargetLoweringBase::computeRegisterProperties(
1208     const TargetRegisterInfo *TRI) {
1209   static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
1210                 "Too many value types for ValueTypeActions to hold!");
1211
1212   // Everything defaults to needing one register.
1213   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1214     NumRegistersForVT[i] = 1;
1215     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1216   }
1217   // ...except isVoid, which doesn't need any registers.
1218   NumRegistersForVT[MVT::isVoid] = 0;
1219
1220   // Find the largest integer register class.
1221   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1222   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1223     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1224
1225   // Every integer value type larger than this largest register takes twice as
1226   // many registers to represent as the previous ValueType.
1227   for (unsigned ExpandedReg = LargestIntReg + 1;
1228        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1229     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1230     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1231     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1232     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1233                                    TypeExpandInteger);
1234   }
1235
1236   // Inspect all of the ValueType's smaller than the largest integer
1237   // register to see which ones need promotion.
1238   unsigned LegalIntReg = LargestIntReg;
1239   for (unsigned IntReg = LargestIntReg - 1;
1240        IntReg >= (unsigned)MVT::i1; --IntReg) {
1241     MVT IVT = (MVT::SimpleValueType)IntReg;
1242     if (isTypeLegal(IVT)) {
1243       LegalIntReg = IntReg;
1244     } else {
1245       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1246         (const MVT::SimpleValueType)LegalIntReg;
1247       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1248     }
1249   }
1250
1251   // ppcf128 type is really two f64's.
1252   if (!isTypeLegal(MVT::ppcf128)) {
1253     NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1254     RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1255     TransformToType[MVT::ppcf128] = MVT::f64;
1256     ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1257   }
1258
1259   // Decide how to handle f128. If the target does not have native f128 support,
1260   // expand it to i128 and we will be generating soft float library calls.
1261   if (!isTypeLegal(MVT::f128)) {
1262     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1263     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1264     TransformToType[MVT::f128] = MVT::i128;
1265     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1266   }
1267
1268   // Decide how to handle f64. If the target does not have native f64 support,
1269   // expand it to i64 and we will be generating soft float library calls.
1270   if (!isTypeLegal(MVT::f64)) {
1271     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1272     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1273     TransformToType[MVT::f64] = MVT::i64;
1274     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1275   }
1276
1277   // Decide how to handle f32. If the target does not have native f32 support,
1278   // expand it to i32 and we will be generating soft float library calls.
1279   if (!isTypeLegal(MVT::f32)) {
1280     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1281     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1282     TransformToType[MVT::f32] = MVT::i32;
1283     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1284   }
1285
1286   // Decide how to handle f16. If the target does not have native f16 support,
1287   // promote it to f32, because there are no f16 library calls (except for
1288   // conversions).
1289   if (!isTypeLegal(MVT::f16)) {
1290     NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1291     RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1292     TransformToType[MVT::f16] = MVT::f32;
1293     ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1294   }
1295
1296   // Loop over all of the vector value types to see which need transformations.
1297   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1298        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1299     MVT VT = (MVT::SimpleValueType) i;
1300     if (isTypeLegal(VT))
1301       continue;
1302
1303     MVT EltVT = VT.getVectorElementType();
1304     unsigned NElts = VT.getVectorNumElements();
1305     bool IsLegalWiderType = false;
1306     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1307     switch (PreferredAction) {
1308     case TypePromoteInteger: {
1309       // Try to promote the elements of integer vectors. If no legal
1310       // promotion was found, fall through to the widen-vector method.
1311       for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1312         MVT SVT = (MVT::SimpleValueType) nVT;
1313         // Promote vectors of integers to vectors with the same number
1314         // of elements, with a wider element type.
1315         if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
1316             && SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)
1317             && SVT.getScalarType().isInteger()) {
1318           TransformToType[i] = SVT;
1319           RegisterTypeForVT[i] = SVT;
1320           NumRegistersForVT[i] = 1;
1321           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1322           IsLegalWiderType = true;
1323           break;
1324         }
1325       }
1326       if (IsLegalWiderType)
1327         break;
1328     }
1329     case TypeWidenVector: {
1330       // Try to widen the vector.
1331       for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1332         MVT SVT = (MVT::SimpleValueType) nVT;
1333         if (SVT.getVectorElementType() == EltVT
1334             && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) {
1335           TransformToType[i] = SVT;
1336           RegisterTypeForVT[i] = SVT;
1337           NumRegistersForVT[i] = 1;
1338           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1339           IsLegalWiderType = true;
1340           break;
1341         }
1342       }
1343       if (IsLegalWiderType)
1344         break;
1345     }
1346     case TypeSplitVector:
1347     case TypeScalarizeVector: {
1348       MVT IntermediateVT;
1349       MVT RegisterVT;
1350       unsigned NumIntermediates;
1351       NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1352           NumIntermediates, RegisterVT, this);
1353       RegisterTypeForVT[i] = RegisterVT;
1354
1355       MVT NVT = VT.getPow2VectorType();
1356       if (NVT == VT) {
1357         // Type is already a power of 2.  The default action is to split.
1358         TransformToType[i] = MVT::Other;
1359         if (PreferredAction == TypeScalarizeVector)
1360           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1361         else if (PreferredAction == TypeSplitVector)
1362           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1363         else
1364           // Set type action according to the number of elements.
1365           ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector
1366                                                         : TypeSplitVector);
1367       } else {
1368         TransformToType[i] = NVT;
1369         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1370       }
1371       break;
1372     }
1373     default:
1374       llvm_unreachable("Unknown vector legalization action!");
1375     }
1376   }
1377
1378   // Determine the 'representative' register class for each value type.
1379   // An representative register class is the largest (meaning one which is
1380   // not a sub-register class / subreg register class) legal register class for
1381   // a group of value types. For example, on i386, i8, i16, and i32
1382   // representative would be GR32; while on x86_64 it's GR64.
1383   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1384     const TargetRegisterClass* RRC;
1385     uint8_t Cost;
1386     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1387     RepRegClassForVT[i] = RRC;
1388     RepRegClassCostForVT[i] = Cost;
1389   }
1390 }
1391
1392 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1393                                            EVT VT) const {
1394   assert(!VT.isVector() && "No default SetCC type for vectors!");
1395   return getPointerTy(DL).SimpleTy;
1396 }
1397
1398 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1399   return MVT::i32; // return the default value
1400 }
1401
1402 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1403 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1404 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1405 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1406 ///
1407 /// This method returns the number of registers needed, and the VT for each
1408 /// register.  It also returns the VT and quantity of the intermediate values
1409 /// before they are promoted/expanded.
1410 ///
1411 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1412                                                 EVT &IntermediateVT,
1413                                                 unsigned &NumIntermediates,
1414                                                 MVT &RegisterVT) const {
1415   unsigned NumElts = VT.getVectorNumElements();
1416
1417   // If there is a wider vector type with the same element type as this one,
1418   // or a promoted vector type that has the same number of elements which
1419   // are wider, then we should convert to that legal vector type.
1420   // This handles things like <2 x float> -> <4 x float> and
1421   // <4 x i1> -> <4 x i32>.
1422   LegalizeTypeAction TA = getTypeAction(Context, VT);
1423   if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1424     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1425     if (isTypeLegal(RegisterEVT)) {
1426       IntermediateVT = RegisterEVT;
1427       RegisterVT = RegisterEVT.getSimpleVT();
1428       NumIntermediates = 1;
1429       return 1;
1430     }
1431   }
1432
1433   // Figure out the right, legal destination reg to copy into.
1434   EVT EltTy = VT.getVectorElementType();
1435
1436   unsigned NumVectorRegs = 1;
1437
1438   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
1439   // could break down into LHS/RHS like LegalizeDAG does.
1440   if (!isPowerOf2_32(NumElts)) {
1441     NumVectorRegs = NumElts;
1442     NumElts = 1;
1443   }
1444
1445   // Divide the input until we get to a supported size.  This will always
1446   // end with a scalar if the target doesn't support vectors.
1447   while (NumElts > 1 && !isTypeLegal(
1448                                    EVT::getVectorVT(Context, EltTy, NumElts))) {
1449     NumElts >>= 1;
1450     NumVectorRegs <<= 1;
1451   }
1452
1453   NumIntermediates = NumVectorRegs;
1454
1455   EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
1456   if (!isTypeLegal(NewVT))
1457     NewVT = EltTy;
1458   IntermediateVT = NewVT;
1459
1460   MVT DestVT = getRegisterType(Context, NewVT);
1461   RegisterVT = DestVT;
1462   unsigned NewVTSize = NewVT.getSizeInBits();
1463
1464   // Convert sizes such as i33 to i64.
1465   if (!isPowerOf2_32(NewVTSize))
1466     NewVTSize = NextPowerOf2(NewVTSize);
1467
1468   if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
1469     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1470
1471   // Otherwise, promotion or legal types use the same number of registers as
1472   // the vector decimated to the appropriate level.
1473   return NumVectorRegs;
1474 }
1475
1476 /// Get the EVTs and ArgFlags collections that represent the legalized return
1477 /// type of the given function.  This does not require a DAG or a return value,
1478 /// and is suitable for use before any DAGs for the function are constructed.
1479 /// TODO: Move this out of TargetLowering.cpp.
1480 void llvm::GetReturnInfo(Type *ReturnType, AttributeSet attr,
1481                          SmallVectorImpl<ISD::OutputArg> &Outs,
1482                          const TargetLowering &TLI, const DataLayout &DL) {
1483   SmallVector<EVT, 4> ValueVTs;
1484   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1485   unsigned NumValues = ValueVTs.size();
1486   if (NumValues == 0) return;
1487
1488   for (unsigned j = 0, f = NumValues; j != f; ++j) {
1489     EVT VT = ValueVTs[j];
1490     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1491
1492     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
1493       ExtendKind = ISD::SIGN_EXTEND;
1494     else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
1495       ExtendKind = ISD::ZERO_EXTEND;
1496
1497     // FIXME: C calling convention requires the return type to be promoted to
1498     // at least 32-bit. But this is not necessary for non-C calling
1499     // conventions. The frontend should mark functions whose return values
1500     // require promoting with signext or zeroext attributes.
1501     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1502       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1503       if (VT.bitsLT(MinVT))
1504         VT = MinVT;
1505     }
1506
1507     unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
1508     MVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
1509
1510     // 'inreg' on function refers to return value
1511     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1512     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::InReg))
1513       Flags.setInReg();
1514
1515     // Propagate extension type if any
1516     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
1517       Flags.setSExt();
1518     else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
1519       Flags.setZExt();
1520
1521     for (unsigned i = 0; i < NumParts; ++i)
1522       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0));
1523   }
1524 }
1525
1526 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1527 /// function arguments in the caller parameter area.  This is the actual
1528 /// alignment, not its logarithm.
1529 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1530                                                    const DataLayout &DL) const {
1531   return DL.getABITypeAlignment(Ty);
1532 }
1533
1534 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1535                                             const DataLayout &DL, EVT VT,
1536                                             unsigned AddrSpace,
1537                                             unsigned Alignment,
1538                                             bool *Fast) const {
1539   // Check if the specified alignment is sufficient based on the data layout.
1540   // TODO: While using the data layout works in practice, a better solution
1541   // would be to implement this check directly (make this a virtual function).
1542   // For example, the ABI alignment may change based on software platform while
1543   // this function should only be affected by hardware implementation.
1544   Type *Ty = VT.getTypeForEVT(Context);
1545   if (Alignment >= DL.getABITypeAlignment(Ty)) {
1546     // Assume that an access that meets the ABI-specified alignment is fast.
1547     if (Fast != nullptr)
1548       *Fast = true;
1549     return true;
1550   }
1551   
1552   // This is a misaligned access.
1553   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Fast);
1554 }
1555
1556
1557 //===----------------------------------------------------------------------===//
1558 //  TargetTransformInfo Helpers
1559 //===----------------------------------------------------------------------===//
1560
1561 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1562   enum InstructionOpcodes {
1563 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1564 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1565 #include "llvm/IR/Instruction.def"
1566   };
1567   switch (static_cast<InstructionOpcodes>(Opcode)) {
1568   case Ret:            return 0;
1569   case Br:             return 0;
1570   case Switch:         return 0;
1571   case IndirectBr:     return 0;
1572   case Invoke:         return 0;
1573   case Resume:         return 0;
1574   case Unreachable:    return 0;
1575   case CleanupRet:     return 0;
1576   case CatchRet:       return 0;
1577   case CatchPad:       return 0;
1578   case CatchSwitch:    return 0;
1579   case CleanupPad:     return 0;
1580   case Add:            return ISD::ADD;
1581   case FAdd:           return ISD::FADD;
1582   case Sub:            return ISD::SUB;
1583   case FSub:           return ISD::FSUB;
1584   case Mul:            return ISD::MUL;
1585   case FMul:           return ISD::FMUL;
1586   case UDiv:           return ISD::UDIV;
1587   case SDiv:           return ISD::SDIV;
1588   case FDiv:           return ISD::FDIV;
1589   case URem:           return ISD::UREM;
1590   case SRem:           return ISD::SREM;
1591   case FRem:           return ISD::FREM;
1592   case Shl:            return ISD::SHL;
1593   case LShr:           return ISD::SRL;
1594   case AShr:           return ISD::SRA;
1595   case And:            return ISD::AND;
1596   case Or:             return ISD::OR;
1597   case Xor:            return ISD::XOR;
1598   case Alloca:         return 0;
1599   case Load:           return ISD::LOAD;
1600   case Store:          return ISD::STORE;
1601   case GetElementPtr:  return 0;
1602   case Fence:          return 0;
1603   case AtomicCmpXchg:  return 0;
1604   case AtomicRMW:      return 0;
1605   case Trunc:          return ISD::TRUNCATE;
1606   case ZExt:           return ISD::ZERO_EXTEND;
1607   case SExt:           return ISD::SIGN_EXTEND;
1608   case FPToUI:         return ISD::FP_TO_UINT;
1609   case FPToSI:         return ISD::FP_TO_SINT;
1610   case UIToFP:         return ISD::UINT_TO_FP;
1611   case SIToFP:         return ISD::SINT_TO_FP;
1612   case FPTrunc:        return ISD::FP_ROUND;
1613   case FPExt:          return ISD::FP_EXTEND;
1614   case PtrToInt:       return ISD::BITCAST;
1615   case IntToPtr:       return ISD::BITCAST;
1616   case BitCast:        return ISD::BITCAST;
1617   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1618   case ICmp:           return ISD::SETCC;
1619   case FCmp:           return ISD::SETCC;
1620   case PHI:            return 0;
1621   case Call:           return 0;
1622   case Select:         return ISD::SELECT;
1623   case UserOp1:        return 0;
1624   case UserOp2:        return 0;
1625   case VAArg:          return 0;
1626   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1627   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1628   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1629   case ExtractValue:   return ISD::MERGE_VALUES;
1630   case InsertValue:    return ISD::MERGE_VALUES;
1631   case LandingPad:     return 0;
1632   }
1633
1634   llvm_unreachable("Unknown instruction type encountered!");
1635 }
1636
1637 std::pair<int, MVT>
1638 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
1639                                             Type *Ty) const {
1640   LLVMContext &C = Ty->getContext();
1641   EVT MTy = getValueType(DL, Ty);
1642
1643   int Cost = 1;
1644   // We keep legalizing the type until we find a legal kind. We assume that
1645   // the only operation that costs anything is the split. After splitting
1646   // we need to handle two types.
1647   while (true) {
1648     LegalizeKind LK = getTypeConversion(C, MTy);
1649
1650     if (LK.first == TypeLegal)
1651       return std::make_pair(Cost, MTy.getSimpleVT());
1652
1653     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1654       Cost *= 2;
1655
1656     // Do not loop with f128 type.
1657     if (MTy == LK.second)
1658       return std::make_pair(Cost, MTy.getSimpleVT());
1659
1660     // Keep legalizing the type.
1661     MTy = LK.second;
1662   }
1663 }
1664
1665 Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
1666   if (!TM.getTargetTriple().isAndroid())
1667     return nullptr;
1668
1669   // Android provides a libc function to retrieve the address of the current
1670   // thread's unsafe stack pointer.
1671   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1672   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1673   Value *Fn = M->getOrInsertFunction("__safestack_pointer_address",
1674                                      StackPtrTy->getPointerTo(0), nullptr);
1675   return IRB.CreateCall(Fn);
1676 }
1677
1678 //===----------------------------------------------------------------------===//
1679 //  Loop Strength Reduction hooks
1680 //===----------------------------------------------------------------------===//
1681
1682 /// isLegalAddressingMode - Return true if the addressing mode represented
1683 /// by AM is legal for this target, for a load/store of the specified type.
1684 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1685                                                const AddrMode &AM, Type *Ty,
1686                                                unsigned AS) const {
1687   // The default implementation of this implements a conservative RISCy, r+r and
1688   // r+i addr mode.
1689
1690   // Allows a sign-extended 16-bit immediate field.
1691   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1692     return false;
1693
1694   // No global is ever allowed as a base.
1695   if (AM.BaseGV)
1696     return false;
1697
1698   // Only support r+r,
1699   switch (AM.Scale) {
1700   case 0:  // "r+i" or just "i", depending on HasBaseReg.
1701     break;
1702   case 1:
1703     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1704       return false;
1705     // Otherwise we have r+r or r+i.
1706     break;
1707   case 2:
1708     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1709       return false;
1710     // Allow 2*r as r+r.
1711     break;
1712   default: // Don't allow n * r
1713     return false;
1714   }
1715
1716   return true;
1717 }