[ShrinkWrap] Teach ShrinkWrap to handle targets requiring a register scavenger.
[oota-llvm.git] / lib / CodeGen / ShrinkWrap.cpp
1 //===-- ShrinkWrap.cpp - Compute safe point for prolog/epilog insertion ---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass looks for safe point where the prologue and epilogue can be
11 // inserted.
12 // The safe point for the prologue (resp. epilogue) is called Save
13 // (resp. Restore).
14 // A point is safe for prologue (resp. epilogue) if and only if
15 // it 1) dominates (resp. post-dominates) all the frame related operations and
16 // between 2) two executions of the Save (resp. Restore) point there is an
17 // execution of the Restore (resp. Save) point.
18 //
19 // For instance, the following points are safe:
20 // for (int i = 0; i < 10; ++i) {
21 //   Save
22 //   ...
23 //   Restore
24 // }
25 // Indeed, the execution looks like Save -> Restore -> Save -> Restore ...
26 // And the following points are not:
27 // for (int i = 0; i < 10; ++i) {
28 //   Save
29 //   ...
30 // }
31 // for (int i = 0; i < 10; ++i) {
32 //   ...
33 //   Restore
34 // }
35 // Indeed, the execution looks like Save -> Save -> ... -> Restore -> Restore.
36 //
37 // This pass also ensures that the safe points are 3) cheaper than the regular
38 // entry and exits blocks.
39 //
40 // Property #1 is ensured via the use of MachineDominatorTree and
41 // MachinePostDominatorTree.
42 // Property #2 is ensured via property #1 and MachineLoopInfo, i.e., both
43 // points must be in the same loop.
44 // Property #3 is ensured via the MachineBlockFrequencyInfo.
45 //
46 // If this pass found points matching all these properties, then
47 // MachineFrameInfo is updated this that information.
48 //===----------------------------------------------------------------------===//
49 #include "llvm/ADT/BitVector.h"
50 #include "llvm/ADT/SetVector.h"
51 #include "llvm/ADT/Statistic.h"
52 // To check for profitability.
53 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
54 // For property #1 for Save.
55 #include "llvm/CodeGen/MachineDominators.h"
56 #include "llvm/CodeGen/MachineFunctionPass.h"
57 // To record the result of the analysis.
58 #include "llvm/CodeGen/MachineFrameInfo.h"
59 // For property #2.
60 #include "llvm/CodeGen/MachineLoopInfo.h"
61 // For property #1 for Restore.
62 #include "llvm/CodeGen/MachinePostDominators.h"
63 #include "llvm/CodeGen/Passes.h"
64 // To know about callee-saved.
65 #include "llvm/CodeGen/RegisterClassInfo.h"
66 #include "llvm/CodeGen/RegisterScavenging.h"
67 #include "llvm/MC/MCAsmInfo.h"
68 #include "llvm/Support/Debug.h"
69 // To query the target about frame lowering.
70 #include "llvm/Target/TargetFrameLowering.h"
71 // To know about frame setup operation.
72 #include "llvm/Target/TargetInstrInfo.h"
73 #include "llvm/Target/TargetMachine.h"
74 // To access TargetInstrInfo.
75 #include "llvm/Target/TargetSubtargetInfo.h"
76
77 #define DEBUG_TYPE "shrink-wrap"
78
79 using namespace llvm;
80
81 STATISTIC(NumFunc, "Number of functions");
82 STATISTIC(NumCandidates, "Number of shrink-wrapping candidates");
83 STATISTIC(NumCandidatesDropped,
84           "Number of shrink-wrapping candidates dropped because of frequency");
85
86 static cl::opt<cl::boolOrDefault>
87     EnableShrinkWrapOpt("enable-shrink-wrap", cl::Hidden,
88                         cl::desc("enable the shrink-wrapping pass"));
89
90 namespace {
91 /// \brief Class to determine where the safe point to insert the
92 /// prologue and epilogue are.
93 /// Unlike the paper from Fred C. Chow, PLDI'88, that introduces the
94 /// shrink-wrapping term for prologue/epilogue placement, this pass
95 /// does not rely on expensive data-flow analysis. Instead we use the
96 /// dominance properties and loop information to decide which point
97 /// are safe for such insertion.
98 class ShrinkWrap : public MachineFunctionPass {
99   /// Hold callee-saved information.
100   RegisterClassInfo RCI;
101   MachineDominatorTree *MDT;
102   MachinePostDominatorTree *MPDT;
103   /// Current safe point found for the prologue.
104   /// The prologue will be inserted before the first instruction
105   /// in this basic block.
106   MachineBasicBlock *Save;
107   /// Current safe point found for the epilogue.
108   /// The epilogue will be inserted before the first terminator instruction
109   /// in this basic block.
110   MachineBasicBlock *Restore;
111   /// Hold the information of the basic block frequency.
112   /// Use to check the profitability of the new points.
113   MachineBlockFrequencyInfo *MBFI;
114   /// Hold the loop information. Used to determine if Save and Restore
115   /// are in the same loop.
116   MachineLoopInfo *MLI;
117   /// Frequency of the Entry block.
118   uint64_t EntryFreq;
119   /// Current opcode for frame setup.
120   unsigned FrameSetupOpcode;
121   /// Current opcode for frame destroy.
122   unsigned FrameDestroyOpcode;
123   /// Entry block.
124   const MachineBasicBlock *Entry;
125   typedef SmallSetVector<unsigned, 16> SetOfRegs;
126   /// Registers that need to be saved for the current function.
127   mutable SetOfRegs CurrentCSRs;
128   /// Current MachineFunction.
129   MachineFunction *MachineFunc;
130
131   /// \brief Check if \p MI uses or defines a callee-saved register or
132   /// a frame index. If this is the case, this means \p MI must happen
133   /// after Save and before Restore.
134   bool useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS) const;
135
136   const SetOfRegs &getCurrentCSRs(RegScavenger *RS) const {
137     if (CurrentCSRs.empty()) {
138       BitVector SavedRegs;
139       const TargetFrameLowering *TFI =
140           MachineFunc->getSubtarget().getFrameLowering();
141
142       TFI->determineCalleeSaves(*MachineFunc, SavedRegs, RS);
143
144       for (int Reg = SavedRegs.find_first(); Reg != -1;
145            Reg = SavedRegs.find_next(Reg))
146         CurrentCSRs.insert((unsigned)Reg);
147     }
148     return CurrentCSRs;
149   }
150
151   /// \brief Update the Save and Restore points such that \p MBB is in
152   /// the region that is dominated by Save and post-dominated by Restore
153   /// and Save and Restore still match the safe point definition.
154   /// Such point may not exist and Save and/or Restore may be null after
155   /// this call.
156   void updateSaveRestorePoints(MachineBasicBlock &MBB, RegScavenger *RS);
157
158   /// \brief Initialize the pass for \p MF.
159   void init(MachineFunction &MF) {
160     RCI.runOnMachineFunction(MF);
161     MDT = &getAnalysis<MachineDominatorTree>();
162     MPDT = &getAnalysis<MachinePostDominatorTree>();
163     Save = nullptr;
164     Restore = nullptr;
165     MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
166     MLI = &getAnalysis<MachineLoopInfo>();
167     EntryFreq = MBFI->getEntryFreq();
168     const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
169     FrameSetupOpcode = TII.getCallFrameSetupOpcode();
170     FrameDestroyOpcode = TII.getCallFrameDestroyOpcode();
171     Entry = &MF.front();
172     CurrentCSRs.clear();
173     MachineFunc = &MF;
174
175     ++NumFunc;
176   }
177
178   /// Check whether or not Save and Restore points are still interesting for
179   /// shrink-wrapping.
180   bool ArePointsInteresting() const { return Save != Entry && Save && Restore; }
181
182   /// \brief Check if shrink wrapping is enabled for this target and function.
183   static bool isShrinkWrapEnabled(const MachineFunction &MF);
184
185 public:
186   static char ID;
187
188   ShrinkWrap() : MachineFunctionPass(ID) {
189     initializeShrinkWrapPass(*PassRegistry::getPassRegistry());
190   }
191
192   void getAnalysisUsage(AnalysisUsage &AU) const override {
193     AU.setPreservesAll();
194     AU.addRequired<MachineBlockFrequencyInfo>();
195     AU.addRequired<MachineDominatorTree>();
196     AU.addRequired<MachinePostDominatorTree>();
197     AU.addRequired<MachineLoopInfo>();
198     MachineFunctionPass::getAnalysisUsage(AU);
199   }
200
201   const char *getPassName() const override {
202     return "Shrink Wrapping analysis";
203   }
204
205   /// \brief Perform the shrink-wrapping analysis and update
206   /// the MachineFrameInfo attached to \p MF with the results.
207   bool runOnMachineFunction(MachineFunction &MF) override;
208 };
209 } // End anonymous namespace.
210
211 char ShrinkWrap::ID = 0;
212 char &llvm::ShrinkWrapID = ShrinkWrap::ID;
213
214 INITIALIZE_PASS_BEGIN(ShrinkWrap, "shrink-wrap", "Shrink Wrap Pass", false,
215                       false)
216 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
217 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
218 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
219 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
220 INITIALIZE_PASS_END(ShrinkWrap, "shrink-wrap", "Shrink Wrap Pass", false, false)
221
222 bool ShrinkWrap::useOrDefCSROrFI(const MachineInstr &MI,
223                                  RegScavenger *RS) const {
224   if (MI.getOpcode() == FrameSetupOpcode ||
225       MI.getOpcode() == FrameDestroyOpcode) {
226     DEBUG(dbgs() << "Frame instruction: " << MI << '\n');
227     return true;
228   }
229   for (const MachineOperand &MO : MI.operands()) {
230     bool UseOrDefCSR = false;
231     if (MO.isReg()) {
232       unsigned PhysReg = MO.getReg();
233       if (!PhysReg)
234         continue;
235       assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
236              "Unallocated register?!");
237       UseOrDefCSR = RCI.getLastCalleeSavedAlias(PhysReg);
238     } else if (MO.isRegMask()) {
239       // Check if this regmask clobbers any of the CSRs.
240       for (unsigned Reg : getCurrentCSRs(RS)) {
241         if (MO.clobbersPhysReg(Reg)) {
242           UseOrDefCSR = true;
243           break;
244         }
245       }
246     }
247     if (UseOrDefCSR || MO.isFI()) {
248       DEBUG(dbgs() << "Use or define CSR(" << UseOrDefCSR << ") or FI("
249                    << MO.isFI() << "): " << MI << '\n');
250       return true;
251     }
252   }
253   return false;
254 }
255
256 /// \brief Helper function to find the immediate (post) dominator.
257 template <typename ListOfBBs, typename DominanceAnalysis>
258 MachineBasicBlock *FindIDom(MachineBasicBlock &Block, ListOfBBs BBs,
259                             DominanceAnalysis &Dom) {
260   MachineBasicBlock *IDom = &Block;
261   for (MachineBasicBlock *BB : BBs) {
262     IDom = Dom.findNearestCommonDominator(IDom, BB);
263     if (!IDom)
264       break;
265   }
266   return IDom;
267 }
268
269 void ShrinkWrap::updateSaveRestorePoints(MachineBasicBlock &MBB,
270                                          RegScavenger *RS) {
271   // Get rid of the easy cases first.
272   if (!Save)
273     Save = &MBB;
274   else
275     Save = MDT->findNearestCommonDominator(Save, &MBB);
276
277   if (!Save) {
278     DEBUG(dbgs() << "Found a block that is not reachable from Entry\n");
279     return;
280   }
281
282   if (!Restore)
283     Restore = &MBB;
284   else
285     Restore = MPDT->findNearestCommonDominator(Restore, &MBB);
286
287   // Make sure we would be able to insert the restore code before the
288   // terminator.
289   if (Restore == &MBB) {
290     for (const MachineInstr &Terminator : MBB.terminators()) {
291       if (!useOrDefCSROrFI(Terminator, RS))
292         continue;
293       // One of the terminator needs to happen before the restore point.
294       if (MBB.succ_empty()) {
295         Restore = nullptr;
296         break;
297       }
298       // Look for a restore point that post-dominates all the successors.
299       // The immediate post-dominator is what we are looking for.
300       Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
301       break;
302     }
303   }
304
305   if (!Restore) {
306     DEBUG(dbgs() << "Restore point needs to be spanned on several blocks\n");
307     return;
308   }
309
310   // Make sure Save and Restore are suitable for shrink-wrapping:
311   // 1. all path from Save needs to lead to Restore before exiting.
312   // 2. all path to Restore needs to go through Save from Entry.
313   // We achieve that by making sure that:
314   // A. Save dominates Restore.
315   // B. Restore post-dominates Save.
316   // C. Save and Restore are in the same loop.
317   bool SaveDominatesRestore = false;
318   bool RestorePostDominatesSave = false;
319   while (Save && Restore &&
320          (!(SaveDominatesRestore = MDT->dominates(Save, Restore)) ||
321           !(RestorePostDominatesSave = MPDT->dominates(Restore, Save)) ||
322           MLI->getLoopFor(Save) != MLI->getLoopFor(Restore))) {
323     // Fix (A).
324     if (!SaveDominatesRestore) {
325       Save = MDT->findNearestCommonDominator(Save, Restore);
326       continue;
327     }
328     // Fix (B).
329     if (!RestorePostDominatesSave)
330       Restore = MPDT->findNearestCommonDominator(Restore, Save);
331
332     // Fix (C).
333     if (Save && Restore && Save != Restore &&
334         MLI->getLoopFor(Save) != MLI->getLoopFor(Restore)) {
335       if (MLI->getLoopDepth(Save) > MLI->getLoopDepth(Restore)) {
336         // Push Save outside of this loop if immediate dominator is different
337         // from save block. If immediate dominator is not different, bail out.
338         MachineBasicBlock *IDom = FindIDom<>(*Save, Save->predecessors(), *MDT);
339         if (IDom != Save)
340           Save = IDom;
341         else {
342           Save = nullptr;
343           break;
344         }
345       }
346       else {
347         // If the loop does not exit, there is no point in looking
348         // for a post-dominator outside the loop.
349         SmallVector<MachineBasicBlock*, 4> ExitBlocks;
350         MLI->getLoopFor(Restore)->getExitingBlocks(ExitBlocks);
351         // Push Restore outside of this loop.
352         // Look for the immediate post-dominator of the loop exits.
353         MachineBasicBlock *IPdom = Restore;
354         for (MachineBasicBlock *LoopExitBB: ExitBlocks) {
355           IPdom = FindIDom<>(*IPdom, LoopExitBB->successors(), *MPDT);
356           if (!IPdom)
357             break;
358         }
359         // If the immediate post-dominator is not in a less nested loop,
360         // then we are stuck in a program with an infinite loop.
361         // In that case, we will not find a safe point, hence, bail out.
362         if (IPdom && MLI->getLoopDepth(IPdom) < MLI->getLoopDepth(Restore))
363           Restore = IPdom;
364         else {
365           Restore = nullptr;
366           break;
367         }
368       }
369     }
370   }
371 }
372
373 bool ShrinkWrap::runOnMachineFunction(MachineFunction &MF) {
374   if (MF.empty() || !isShrinkWrapEnabled(MF))
375     return false;
376
377   DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n');
378
379   init(MF);
380
381   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
382   std::unique_ptr<RegScavenger> RS(
383       TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr);
384
385   for (MachineBasicBlock &MBB : MF) {
386     DEBUG(dbgs() << "Look into: " << MBB.getNumber() << ' ' << MBB.getName()
387                  << '\n');
388
389     if (MBB.isEHFuncletEntry()) {
390       DEBUG(dbgs() << "EH Funclets are not supported yet.\n");
391       return false;
392     }
393
394     for (const MachineInstr &MI : MBB) {
395       if (!useOrDefCSROrFI(MI, RS.get()))
396         continue;
397       // Save (resp. restore) point must dominate (resp. post dominate)
398       // MI. Look for the proper basic block for those.
399       updateSaveRestorePoints(MBB, RS.get());
400       // If we are at a point where we cannot improve the placement of
401       // save/restore instructions, just give up.
402       if (!ArePointsInteresting()) {
403         DEBUG(dbgs() << "No Shrink wrap candidate found\n");
404         return false;
405       }
406       // No need to look for other instructions, this basic block
407       // will already be part of the handled region.
408       break;
409     }
410   }
411   if (!ArePointsInteresting()) {
412     // If the points are not interesting at this point, then they must be null
413     // because it means we did not encounter any frame/CSR related code.
414     // Otherwise, we would have returned from the previous loop.
415     assert(!Save && !Restore && "We miss a shrink-wrap opportunity?!");
416     DEBUG(dbgs() << "Nothing to shrink-wrap\n");
417     return false;
418   }
419
420   DEBUG(dbgs() << "\n ** Results **\nFrequency of the Entry: " << EntryFreq
421                << '\n');
422
423   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
424   do {
425     DEBUG(dbgs() << "Shrink wrap candidates (#, Name, Freq):\nSave: "
426                  << Save->getNumber() << ' ' << Save->getName() << ' '
427                  << MBFI->getBlockFreq(Save).getFrequency() << "\nRestore: "
428                  << Restore->getNumber() << ' ' << Restore->getName() << ' '
429                  << MBFI->getBlockFreq(Restore).getFrequency() << '\n');
430
431     bool IsSaveCheap, TargetCanUseSaveAsPrologue = false;
432     if (((IsSaveCheap = EntryFreq >= MBFI->getBlockFreq(Save).getFrequency()) &&
433          EntryFreq >= MBFI->getBlockFreq(Restore).getFrequency()) &&
434         ((TargetCanUseSaveAsPrologue = TFI->canUseAsPrologue(*Save)) &&
435          TFI->canUseAsEpilogue(*Restore)))
436       break;
437     DEBUG(dbgs() << "New points are too expensive or invalid for the target\n");
438     MachineBasicBlock *NewBB;
439     if (!IsSaveCheap || !TargetCanUseSaveAsPrologue) {
440       Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
441       if (!Save)
442         break;
443       NewBB = Save;
444     } else {
445       // Restore is expensive.
446       Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
447       if (!Restore)
448         break;
449       NewBB = Restore;
450     }
451     updateSaveRestorePoints(*NewBB, RS.get());
452   } while (Save && Restore);
453
454   if (!ArePointsInteresting()) {
455     ++NumCandidatesDropped;
456     return false;
457   }
458
459   DEBUG(dbgs() << "Final shrink wrap candidates:\nSave: " << Save->getNumber()
460                << ' ' << Save->getName() << "\nRestore: "
461                << Restore->getNumber() << ' ' << Restore->getName() << '\n');
462
463   MachineFrameInfo *MFI = MF.getFrameInfo();
464   MFI->setSavePoint(Save);
465   MFI->setRestorePoint(Restore);
466   ++NumCandidates;
467   return false;
468 }
469
470 bool ShrinkWrap::isShrinkWrapEnabled(const MachineFunction &MF) {
471   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
472
473   switch (EnableShrinkWrapOpt) {
474   case cl::BOU_UNSET:
475     return TFI->enableShrinkWrapping(MF) &&
476       // Windows with CFI has some limitations that make it impossible
477       // to use shrink-wrapping.
478       !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
479       // Sanitizers look at the value of the stack at the location
480       // of the crash. Since a crash can happen anywhere, the
481       // frame must be lowered before anything else happen for the
482       // sanitizers to be able to get a correct stack frame.
483       !(MF.getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
484         MF.getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
485         MF.getFunction()->hasFnAttribute(Attribute::SanitizeMemory));
486   // If EnableShrinkWrap is set, it takes precedence on whatever the
487   // target sets. The rational is that we assume we want to test
488   // something related to shrink-wrapping.
489   case cl::BOU_TRUE:
490     return true;
491   case cl::BOU_FALSE:
492     return false;
493   }
494   llvm_unreachable("Invalid shrink-wrapping state");
495 }