Allow memory intrinsics to be tail calls
[oota-llvm.git] / lib / CodeGen / SelectionDAG / SelectionDAGBuilder.h
1 //===-- SelectionDAGBuilder.h - Selection-DAG building --------*- C++ -*---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H
15 #define LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H
16
17 #include "StatepointLowering.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/SelectionDAGNodes.h"
22 #include "llvm/IR/CallSite.h"
23 #include "llvm/IR/Statepoint.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Target/TargetLowering.h"
27 #include <vector>
28
29 namespace llvm {
30
31 class AddrSpaceCastInst;
32 class AliasAnalysis;
33 class AllocaInst;
34 class BasicBlock;
35 class BitCastInst;
36 class BranchInst;
37 class CallInst;
38 class DbgValueInst;
39 class ExtractElementInst;
40 class ExtractValueInst;
41 class FCmpInst;
42 class FPExtInst;
43 class FPToSIInst;
44 class FPToUIInst;
45 class FPTruncInst;
46 class Function;
47 class FunctionLoweringInfo;
48 class GetElementPtrInst;
49 class GCFunctionInfo;
50 class ICmpInst;
51 class IntToPtrInst;
52 class IndirectBrInst;
53 class InvokeInst;
54 class InsertElementInst;
55 class InsertValueInst;
56 class Instruction;
57 class LoadInst;
58 class MachineBasicBlock;
59 class MachineInstr;
60 class MachineRegisterInfo;
61 class MDNode;
62 class MVT;
63 class PHINode;
64 class PtrToIntInst;
65 class ReturnInst;
66 class SDDbgValue;
67 class SExtInst;
68 class SelectInst;
69 class ShuffleVectorInst;
70 class SIToFPInst;
71 class StoreInst;
72 class SwitchInst;
73 class DataLayout;
74 class TargetLibraryInfo;
75 class TargetLowering;
76 class TruncInst;
77 class UIToFPInst;
78 class UnreachableInst;
79 class VAArgInst;
80 class ZExtInst;
81
82 //===----------------------------------------------------------------------===//
83 /// SelectionDAGBuilder - This is the common target-independent lowering
84 /// implementation that is parameterized by a TargetLowering object.
85 ///
86 class SelectionDAGBuilder {
87   /// CurInst - The current instruction being visited
88   const Instruction *CurInst;
89
90   DenseMap<const Value*, SDValue> NodeMap;
91
92   /// UnusedArgNodeMap - Maps argument value for unused arguments. This is used
93   /// to preserve debug information for incoming arguments.
94   DenseMap<const Value*, SDValue> UnusedArgNodeMap;
95
96   /// DanglingDebugInfo - Helper type for DanglingDebugInfoMap.
97   class DanglingDebugInfo {
98     const DbgValueInst* DI;
99     DebugLoc dl;
100     unsigned SDNodeOrder;
101   public:
102     DanglingDebugInfo() : DI(nullptr), dl(DebugLoc()), SDNodeOrder(0) { }
103     DanglingDebugInfo(const DbgValueInst *di, DebugLoc DL, unsigned SDNO) :
104       DI(di), dl(DL), SDNodeOrder(SDNO) { }
105     const DbgValueInst* getDI() { return DI; }
106     DebugLoc getdl() { return dl; }
107     unsigned getSDNodeOrder() { return SDNodeOrder; }
108   };
109
110   /// DanglingDebugInfoMap - Keeps track of dbg_values for which we have not
111   /// yet seen the referent.  We defer handling these until we do see it.
112   DenseMap<const Value*, DanglingDebugInfo> DanglingDebugInfoMap;
113
114 public:
115   /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
116   /// them up and then emit token factor nodes when possible.  This allows us to
117   /// get simple disambiguation between loads without worrying about alias
118   /// analysis.
119   SmallVector<SDValue, 8> PendingLoads;
120
121   /// State used while lowering a statepoint sequence (gc_statepoint,
122   /// gc_relocate, and gc_result).  See StatepointLowering.hpp/cpp for details.
123   StatepointLoweringState StatepointLowering;
124 private:
125
126   /// PendingExports - CopyToReg nodes that copy values to virtual registers
127   /// for export to other blocks need to be emitted before any terminator
128   /// instruction, but they have no other ordering requirements. We bunch them
129   /// up and the emit a single tokenfactor for them just before terminator
130   /// instructions.
131   SmallVector<SDValue, 8> PendingExports;
132
133   /// SDNodeOrder - A unique monotonically increasing number used to order the
134   /// SDNodes we create.
135   unsigned SDNodeOrder;
136
137   /// Case - A struct to record the Value for a switch case, and the
138   /// case's target basic block.
139   struct Case {
140     const ConstantInt *Low;
141     const ConstantInt *High;
142     MachineBasicBlock* BB;
143     uint32_t ExtraWeight;
144
145     Case() : Low(nullptr), High(nullptr), BB(nullptr), ExtraWeight(0) { }
146     Case(const ConstantInt *low, const ConstantInt *high, MachineBasicBlock *bb,
147          uint32_t extraweight) : Low(low), High(high), BB(bb),
148          ExtraWeight(extraweight) { }
149
150     APInt size() const {
151       const APInt &rHigh = High->getValue();
152       const APInt &rLow  = Low->getValue();
153       return (rHigh - rLow + 1ULL);
154     }
155   };
156
157   struct CaseBits {
158     uint64_t Mask;
159     MachineBasicBlock* BB;
160     unsigned Bits;
161     uint32_t ExtraWeight;
162
163     CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits,
164              uint32_t Weight):
165       Mask(mask), BB(bb), Bits(bits), ExtraWeight(Weight) { }
166   };
167
168   typedef std::vector<Case>           CaseVector;
169   typedef std::vector<CaseBits>       CaseBitsVector;
170   typedef CaseVector::iterator        CaseItr;
171   typedef std::pair<CaseItr, CaseItr> CaseRange;
172
173   /// CaseRec - A struct with ctor used in lowering switches to a binary tree
174   /// of conditional branches.
175   struct CaseRec {
176     CaseRec(MachineBasicBlock *bb, const ConstantInt *lt, const ConstantInt *ge,
177             CaseRange r) :
178     CaseBB(bb), LT(lt), GE(ge), Range(r) {}
179
180     /// CaseBB - The MBB in which to emit the compare and branch
181     MachineBasicBlock *CaseBB;
182     /// LT, GE - If nonzero, we know the current case value must be less-than or
183     /// greater-than-or-equal-to these Constants.
184     const ConstantInt *LT;
185     const ConstantInt *GE;
186     /// Range - A pair of iterators representing the range of case values to be
187     /// processed at this point in the binary search tree.
188     CaseRange Range;
189   };
190
191   typedef std::vector<CaseRec> CaseRecVector;
192
193   struct CaseBitsCmp {
194     bool operator()(const CaseBits &C1, const CaseBits &C2) {
195       return C1.Bits > C2.Bits;
196     }
197   };
198
199   /// Populate Cases with the cases in SI, clustering adjacent cases with the
200   /// same destination together.
201   void Clusterify(CaseVector &Cases, const SwitchInst *SI);
202
203   /// CaseBlock - This structure is used to communicate between
204   /// SelectionDAGBuilder and SDISel for the code generation of additional basic
205   /// blocks needed by multi-case switch statements.
206   struct CaseBlock {
207     CaseBlock(ISD::CondCode cc, const Value *cmplhs, const Value *cmprhs,
208               const Value *cmpmiddle,
209               MachineBasicBlock *truebb, MachineBasicBlock *falsebb,
210               MachineBasicBlock *me,
211               uint32_t trueweight = 0, uint32_t falseweight = 0)
212       : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs),
213         TrueBB(truebb), FalseBB(falsebb), ThisBB(me),
214         TrueWeight(trueweight), FalseWeight(falseweight) { }
215
216     // CC - the condition code to use for the case block's setcc node
217     ISD::CondCode CC;
218
219     // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit.
220     // Emit by default LHS op RHS. MHS is used for range comparisons:
221     // If MHS is not null: (LHS <= MHS) and (MHS <= RHS).
222     const Value *CmpLHS, *CmpMHS, *CmpRHS;
223
224     // TrueBB/FalseBB - the block to branch to if the setcc is true/false.
225     MachineBasicBlock *TrueBB, *FalseBB;
226
227     // ThisBB - the block into which to emit the code for the setcc and branches
228     MachineBasicBlock *ThisBB;
229
230     // TrueWeight/FalseWeight - branch weights.
231     uint32_t TrueWeight, FalseWeight;
232   };
233
234   struct JumpTable {
235     JumpTable(unsigned R, unsigned J, MachineBasicBlock *M,
236               MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {}
237
238     /// Reg - the virtual register containing the index of the jump table entry
239     //. to jump to.
240     unsigned Reg;
241     /// JTI - the JumpTableIndex for this jump table in the function.
242     unsigned JTI;
243     /// MBB - the MBB into which to emit the code for the indirect jump.
244     MachineBasicBlock *MBB;
245     /// Default - the MBB of the default bb, which is a successor of the range
246     /// check MBB.  This is when updating PHI nodes in successors.
247     MachineBasicBlock *Default;
248   };
249   struct JumpTableHeader {
250     JumpTableHeader(APInt F, APInt L, const Value *SV, MachineBasicBlock *H,
251                     bool E = false):
252       First(F), Last(L), SValue(SV), HeaderBB(H), Emitted(E) {}
253     APInt First;
254     APInt Last;
255     const Value *SValue;
256     MachineBasicBlock *HeaderBB;
257     bool Emitted;
258   };
259   typedef std::pair<JumpTableHeader, JumpTable> JumpTableBlock;
260
261   struct BitTestCase {
262     BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr,
263                 uint32_t Weight):
264       Mask(M), ThisBB(T), TargetBB(Tr), ExtraWeight(Weight) { }
265     uint64_t Mask;
266     MachineBasicBlock *ThisBB;
267     MachineBasicBlock *TargetBB;
268     uint32_t ExtraWeight;
269   };
270
271   typedef SmallVector<BitTestCase, 3> BitTestInfo;
272
273   struct BitTestBlock {
274     BitTestBlock(APInt F, APInt R, const Value* SV,
275                  unsigned Rg, MVT RgVT, bool E,
276                  MachineBasicBlock* P, MachineBasicBlock* D,
277                  BitTestInfo C):
278       First(F), Range(R), SValue(SV), Reg(Rg), RegVT(RgVT), Emitted(E),
279       Parent(P), Default(D), Cases(std::move(C)) { }
280     APInt First;
281     APInt Range;
282     const Value *SValue;
283     unsigned Reg;
284     MVT RegVT;
285     bool Emitted;
286     MachineBasicBlock *Parent;
287     MachineBasicBlock *Default;
288     BitTestInfo Cases;
289   };
290
291   /// A class which encapsulates all of the information needed to generate a
292   /// stack protector check and signals to isel via its state being initialized
293   /// that a stack protector needs to be generated.
294   ///
295   /// *NOTE* The following is a high level documentation of SelectionDAG Stack
296   /// Protector Generation. The reason that it is placed here is for a lack of
297   /// other good places to stick it.
298   ///
299   /// High Level Overview of SelectionDAG Stack Protector Generation:
300   ///
301   /// Previously, generation of stack protectors was done exclusively in the
302   /// pre-SelectionDAG Codegen LLVM IR Pass "Stack Protector". This necessitated
303   /// splitting basic blocks at the IR level to create the success/failure basic
304   /// blocks in the tail of the basic block in question. As a result of this,
305   /// calls that would have qualified for the sibling call optimization were no
306   /// longer eligible for optimization since said calls were no longer right in
307   /// the "tail position" (i.e. the immediate predecessor of a ReturnInst
308   /// instruction).
309   ///
310   /// Then it was noticed that since the sibling call optimization causes the
311   /// callee to reuse the caller's stack, if we could delay the generation of
312   /// the stack protector check until later in CodeGen after the sibling call
313   /// decision was made, we get both the tail call optimization and the stack
314   /// protector check!
315   ///
316   /// A few goals in solving this problem were:
317   ///
318   ///   1. Preserve the architecture independence of stack protector generation.
319   ///
320   ///   2. Preserve the normal IR level stack protector check for platforms like
321   ///      OpenBSD for which we support platform-specific stack protector
322   ///      generation.
323   ///
324   /// The main problem that guided the present solution is that one can not
325   /// solve this problem in an architecture independent manner at the IR level
326   /// only. This is because:
327   ///
328   ///   1. The decision on whether or not to perform a sibling call on certain
329   ///      platforms (for instance i386) requires lower level information
330   ///      related to available registers that can not be known at the IR level.
331   ///
332   ///   2. Even if the previous point were not true, the decision on whether to
333   ///      perform a tail call is done in LowerCallTo in SelectionDAG which
334   ///      occurs after the Stack Protector Pass. As a result, one would need to
335   ///      put the relevant callinst into the stack protector check success
336   ///      basic block (where the return inst is placed) and then move it back
337   ///      later at SelectionDAG/MI time before the stack protector check if the
338   ///      tail call optimization failed. The MI level option was nixed
339   ///      immediately since it would require platform-specific pattern
340   ///      matching. The SelectionDAG level option was nixed because
341   ///      SelectionDAG only processes one IR level basic block at a time
342   ///      implying one could not create a DAG Combine to move the callinst.
343   ///
344   /// To get around this problem a few things were realized:
345   ///
346   ///   1. While one can not handle multiple IR level basic blocks at the
347   ///      SelectionDAG Level, one can generate multiple machine basic blocks
348   ///      for one IR level basic block. This is how we handle bit tests and
349   ///      switches.
350   ///
351   ///   2. At the MI level, tail calls are represented via a special return
352   ///      MIInst called "tcreturn". Thus if we know the basic block in which we
353   ///      wish to insert the stack protector check, we get the correct behavior
354   ///      by always inserting the stack protector check right before the return
355   ///      statement. This is a "magical transformation" since no matter where
356   ///      the stack protector check intrinsic is, we always insert the stack
357   ///      protector check code at the end of the BB.
358   ///
359   /// Given the aforementioned constraints, the following solution was devised:
360   ///
361   ///   1. On platforms that do not support SelectionDAG stack protector check
362   ///      generation, allow for the normal IR level stack protector check
363   ///      generation to continue.
364   ///
365   ///   2. On platforms that do support SelectionDAG stack protector check
366   ///      generation:
367   ///
368   ///     a. Use the IR level stack protector pass to decide if a stack
369   ///        protector is required/which BB we insert the stack protector check
370   ///        in by reusing the logic already therein. If we wish to generate a
371   ///        stack protector check in a basic block, we place a special IR
372   ///        intrinsic called llvm.stackprotectorcheck right before the BB's
373   ///        returninst or if there is a callinst that could potentially be
374   ///        sibling call optimized, before the call inst.
375   ///
376   ///     b. Then when a BB with said intrinsic is processed, we codegen the BB
377   ///        normally via SelectBasicBlock. In said process, when we visit the
378   ///        stack protector check, we do not actually emit anything into the
379   ///        BB. Instead, we just initialize the stack protector descriptor
380   ///        class (which involves stashing information/creating the success
381   ///        mbbb and the failure mbb if we have not created one for this
382   ///        function yet) and export the guard variable that we are going to
383   ///        compare.
384   ///
385   ///     c. After we finish selecting the basic block, in FinishBasicBlock if
386   ///        the StackProtectorDescriptor attached to the SelectionDAGBuilder is
387   ///        initialized, we first find a splice point in the parent basic block
388   ///        before the terminator and then splice the terminator of said basic
389   ///        block into the success basic block. Then we code-gen a new tail for
390   ///        the parent basic block consisting of the two loads, the comparison,
391   ///        and finally two branches to the success/failure basic blocks. We
392   ///        conclude by code-gening the failure basic block if we have not
393   ///        code-gened it already (all stack protector checks we generate in
394   ///        the same function, use the same failure basic block).
395   class StackProtectorDescriptor {
396   public:
397     StackProtectorDescriptor() : ParentMBB(nullptr), SuccessMBB(nullptr),
398                                  FailureMBB(nullptr), Guard(nullptr),
399                                  GuardReg(0) { }
400
401     /// Returns true if all fields of the stack protector descriptor are
402     /// initialized implying that we should/are ready to emit a stack protector.
403     bool shouldEmitStackProtector() const {
404       return ParentMBB && SuccessMBB && FailureMBB && Guard;
405     }
406
407     /// Initialize the stack protector descriptor structure for a new basic
408     /// block.
409     void initialize(const BasicBlock *BB,
410                     MachineBasicBlock *MBB,
411                     const CallInst &StackProtCheckCall) {
412       // Make sure we are not initialized yet.
413       assert(!shouldEmitStackProtector() && "Stack Protector Descriptor is "
414              "already initialized!");
415       ParentMBB = MBB;
416       SuccessMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ true);
417       FailureMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ false, FailureMBB);
418       if (!Guard)
419         Guard = StackProtCheckCall.getArgOperand(0);
420     }
421
422     /// Reset state that changes when we handle different basic blocks.
423     ///
424     /// This currently includes:
425     ///
426     /// 1. The specific basic block we are generating a
427     /// stack protector for (ParentMBB).
428     ///
429     /// 2. The successor machine basic block that will contain the tail of
430     /// parent mbb after we create the stack protector check (SuccessMBB). This
431     /// BB is visited only on stack protector check success.
432     void resetPerBBState() {
433       ParentMBB = nullptr;
434       SuccessMBB = nullptr;
435     }
436
437     /// Reset state that only changes when we switch functions.
438     ///
439     /// This currently includes:
440     ///
441     /// 1. FailureMBB since we reuse the failure code path for all stack
442     /// protector checks created in an individual function.
443     ///
444     /// 2.The guard variable since the guard variable we are checking against is
445     /// always the same.
446     void resetPerFunctionState() {
447       FailureMBB = nullptr;
448       Guard = nullptr;
449     }
450
451     MachineBasicBlock *getParentMBB() { return ParentMBB; }
452     MachineBasicBlock *getSuccessMBB() { return SuccessMBB; }
453     MachineBasicBlock *getFailureMBB() { return FailureMBB; }
454     const Value *getGuard() { return Guard; }
455
456     unsigned getGuardReg() const { return GuardReg; }
457     void setGuardReg(unsigned R) { GuardReg = R; }
458
459   private:
460     /// The basic block for which we are generating the stack protector.
461     ///
462     /// As a result of stack protector generation, we will splice the
463     /// terminators of this basic block into the successor mbb SuccessMBB and
464     /// replace it with a compare/branch to the successor mbbs
465     /// SuccessMBB/FailureMBB depending on whether or not the stack protector
466     /// was violated.
467     MachineBasicBlock *ParentMBB;
468
469     /// A basic block visited on stack protector check success that contains the
470     /// terminators of ParentMBB.
471     MachineBasicBlock *SuccessMBB;
472
473     /// This basic block visited on stack protector check failure that will
474     /// contain a call to __stack_chk_fail().
475     MachineBasicBlock *FailureMBB;
476
477     /// The guard variable which we will compare against the stored value in the
478     /// stack protector stack slot.
479     const Value *Guard;
480
481     /// The virtual register holding the stack guard value.
482     unsigned GuardReg;
483
484     /// Add a successor machine basic block to ParentMBB. If the successor mbb
485     /// has not been created yet (i.e. if SuccMBB = 0), then the machine basic
486     /// block will be created. Assign a large weight if IsLikely is true.
487     MachineBasicBlock *AddSuccessorMBB(const BasicBlock *BB,
488                                        MachineBasicBlock *ParentMBB,
489                                        bool IsLikely,
490                                        MachineBasicBlock *SuccMBB = nullptr);
491   };
492
493 private:
494   const TargetMachine &TM;
495 public:
496   /// Lowest valid SDNodeOrder. The special case 0 is reserved for scheduling
497   /// nodes without a corresponding SDNode.
498   static const unsigned LowestSDNodeOrder = 1;
499
500   SelectionDAG &DAG;
501   const DataLayout *DL;
502   AliasAnalysis *AA;
503   const TargetLibraryInfo *LibInfo;
504
505   /// SwitchCases - Vector of CaseBlock structures used to communicate
506   /// SwitchInst code generation information.
507   std::vector<CaseBlock> SwitchCases;
508   /// JTCases - Vector of JumpTable structures used to communicate
509   /// SwitchInst code generation information.
510   std::vector<JumpTableBlock> JTCases;
511   /// BitTestCases - Vector of BitTestBlock structures used to communicate
512   /// SwitchInst code generation information.
513   std::vector<BitTestBlock> BitTestCases;
514   /// A StackProtectorDescriptor structure used to communicate stack protector
515   /// information in between SelectBasicBlock and FinishBasicBlock.
516   StackProtectorDescriptor SPDescriptor;
517
518   // Emit PHI-node-operand constants only once even if used by multiple
519   // PHI nodes.
520   DenseMap<const Constant *, unsigned> ConstantsOut;
521
522   /// FuncInfo - Information about the function as a whole.
523   ///
524   FunctionLoweringInfo &FuncInfo;
525
526   /// OptLevel - What optimization level we're generating code for.
527   ///
528   CodeGenOpt::Level OptLevel;
529
530   /// GFI - Garbage collection metadata for the function.
531   GCFunctionInfo *GFI;
532
533   /// LPadToCallSiteMap - Map a landing pad to the call site indexes.
534   DenseMap<MachineBasicBlock*, SmallVector<unsigned, 4> > LPadToCallSiteMap;
535
536   /// HasTailCall - This is set to true if a call in the current
537   /// block has been translated as a tail call. In this case,
538   /// no subsequent DAG nodes should be created.
539   ///
540   bool HasTailCall;
541
542   LLVMContext *Context;
543
544   SelectionDAGBuilder(SelectionDAG &dag, FunctionLoweringInfo &funcinfo,
545                       CodeGenOpt::Level ol)
546     : CurInst(nullptr), SDNodeOrder(LowestSDNodeOrder), TM(dag.getTarget()),
547       DAG(dag), FuncInfo(funcinfo), OptLevel(ol),
548       HasTailCall(false) {
549   }
550
551   void init(GCFunctionInfo *gfi, AliasAnalysis &aa,
552             const TargetLibraryInfo *li);
553
554   /// clear - Clear out the current SelectionDAG and the associated
555   /// state and prepare this SelectionDAGBuilder object to be used
556   /// for a new block. This doesn't clear out information about
557   /// additional blocks that are needed to complete switch lowering
558   /// or PHI node updating; that information is cleared out as it is
559   /// consumed.
560   void clear();
561
562   /// clearDanglingDebugInfo - Clear the dangling debug information
563   /// map. This function is separated from the clear so that debug
564   /// information that is dangling in a basic block can be properly
565   /// resolved in a different basic block. This allows the
566   /// SelectionDAG to resolve dangling debug information attached
567   /// to PHI nodes.
568   void clearDanglingDebugInfo();
569
570   /// getRoot - Return the current virtual root of the Selection DAG,
571   /// flushing any PendingLoad items. This must be done before emitting
572   /// a store or any other node that may need to be ordered after any
573   /// prior load instructions.
574   ///
575   SDValue getRoot();
576
577   /// getControlRoot - Similar to getRoot, but instead of flushing all the
578   /// PendingLoad items, flush all the PendingExports items. It is necessary
579   /// to do this before emitting a terminator instruction.
580   ///
581   SDValue getControlRoot();
582
583   SDLoc getCurSDLoc() const {
584     return SDLoc(CurInst, SDNodeOrder);
585   }
586
587   DebugLoc getCurDebugLoc() const {
588     return CurInst ? CurInst->getDebugLoc() : DebugLoc();
589   }
590
591   unsigned getSDNodeOrder() const { return SDNodeOrder; }
592
593   void CopyValueToVirtualRegister(const Value *V, unsigned Reg);
594
595   void visit(const Instruction &I);
596
597   void visit(unsigned Opcode, const User &I);
598
599   /// getCopyFromRegs - If there was virtual register allocated for the value V
600   /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
601   SDValue getCopyFromRegs(const Value *V, Type *Ty);
602
603   // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
604   // generate the debug data structures now that we've seen its definition.
605   void resolveDanglingDebugInfo(const Value *V, SDValue Val);
606   SDValue getValue(const Value *V);
607   SDValue getNonRegisterValue(const Value *V);
608   SDValue getValueImpl(const Value *V);
609
610   void setValue(const Value *V, SDValue NewN) {
611     SDValue &N = NodeMap[V];
612     assert(!N.getNode() && "Already set a value for this node!");
613     N = NewN;
614   }
615
616   void removeValue(const Value *V) {
617     // This is to support hack in lowerCallFromStatepoint
618     // Should be removed when hack is resolved
619     NodeMap.erase(V);
620   }
621
622   void setUnusedArgValue(const Value *V, SDValue NewN) {
623     SDValue &N = UnusedArgNodeMap[V];
624     assert(!N.getNode() && "Already set a value for this node!");
625     N = NewN;
626   }
627
628   void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB,
629                             MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
630                             MachineBasicBlock *SwitchBB, unsigned Opc,
631                             uint32_t TW, uint32_t FW);
632   void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB,
633                                     MachineBasicBlock *FBB,
634                                     MachineBasicBlock *CurBB,
635                                     MachineBasicBlock *SwitchBB,
636                                     uint32_t TW, uint32_t FW);
637   bool ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases);
638   bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB);
639   void CopyToExportRegsIfNeeded(const Value *V);
640   void ExportFromCurrentBlock(const Value *V);
641   void LowerCallTo(ImmutableCallSite CS, SDValue Callee, bool IsTailCall,
642                    MachineBasicBlock *LandingPad = nullptr);
643
644   std::pair<SDValue, SDValue> lowerCallOperands(
645           ImmutableCallSite CS,
646           unsigned ArgIdx,
647           unsigned NumArgs,
648           SDValue Callee,
649           bool UseVoidTy = false,
650           MachineBasicBlock *LandingPad = nullptr,
651           bool IsPatchPoint = false);
652
653   /// UpdateSplitBlock - When an MBB was split during scheduling, update the
654   /// references that need to refer to the last resulting block.
655   void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last);
656
657   // This function is responsible for the whole statepoint lowering process.
658   // It uniformly handles invoke and call statepoints.
659   void LowerStatepoint(ImmutableStatepoint Statepoint,
660                        MachineBasicBlock *LandingPad = nullptr);
661 private:
662   std::pair<SDValue, SDValue> lowerInvokable(
663           TargetLowering::CallLoweringInfo &CLI,
664           MachineBasicBlock *LandingPad);
665
666   // Terminator instructions.
667   void visitRet(const ReturnInst &I);
668   void visitBr(const BranchInst &I);
669   void visitSwitch(const SwitchInst &I);
670   void visitIndirectBr(const IndirectBrInst &I);
671   void visitUnreachable(const UnreachableInst &I);
672
673   // Helpers for visitSwitch
674   bool handleSmallSwitchRange(CaseRec& CR,
675                               CaseRecVector& WorkList,
676                               const Value* SV,
677                               MachineBasicBlock* Default,
678                               MachineBasicBlock *SwitchBB);
679   bool handleJTSwitchCase(CaseRec& CR,
680                           CaseRecVector& WorkList,
681                           const Value* SV,
682                           MachineBasicBlock* Default,
683                           MachineBasicBlock *SwitchBB);
684   bool handleBTSplitSwitchCase(CaseRec& CR,
685                                CaseRecVector& WorkList,
686                                const Value* SV,
687                                MachineBasicBlock *SwitchBB);
688   void splitSwitchCase(CaseRec &CR, CaseItr Pivot, CaseRecVector &WorkList,
689                        const Value *SV, MachineBasicBlock *SwitchBB);
690   bool handleBitTestsSwitchCase(CaseRec& CR,
691                                 CaseRecVector& WorkList,
692                                 const Value* SV,
693                                 MachineBasicBlock* Default,
694                                 MachineBasicBlock *SwitchBB);
695
696   uint32_t getEdgeWeight(const MachineBasicBlock *Src,
697                          const MachineBasicBlock *Dst) const;
698   void addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
699                               uint32_t Weight = 0);
700 public:
701   void visitSwitchCase(CaseBlock &CB,
702                        MachineBasicBlock *SwitchBB);
703   void visitSPDescriptorParent(StackProtectorDescriptor &SPD,
704                                MachineBasicBlock *ParentBB);
705   void visitSPDescriptorFailure(StackProtectorDescriptor &SPD);
706   void visitBitTestHeader(BitTestBlock &B, MachineBasicBlock *SwitchBB);
707   void visitBitTestCase(BitTestBlock &BB,
708                         MachineBasicBlock* NextMBB,
709                         uint32_t BranchWeightToNext,
710                         unsigned Reg,
711                         BitTestCase &B,
712                         MachineBasicBlock *SwitchBB);
713   void visitJumpTable(JumpTable &JT);
714   void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH,
715                             MachineBasicBlock *SwitchBB);
716   unsigned visitLandingPadClauseBB(GlobalValue *ClauseGV,
717                                    MachineBasicBlock *LPadMBB);
718
719 private:
720   // These all get lowered before this pass.
721   void visitInvoke(const InvokeInst &I);
722   void visitResume(const ResumeInst &I);
723
724   void visitBinary(const User &I, unsigned OpCode);
725   void visitShift(const User &I, unsigned Opcode);
726   void visitAdd(const User &I)  { visitBinary(I, ISD::ADD); }
727   void visitFAdd(const User &I) { visitBinary(I, ISD::FADD); }
728   void visitSub(const User &I)  { visitBinary(I, ISD::SUB); }
729   void visitFSub(const User &I);
730   void visitMul(const User &I)  { visitBinary(I, ISD::MUL); }
731   void visitFMul(const User &I) { visitBinary(I, ISD::FMUL); }
732   void visitURem(const User &I) { visitBinary(I, ISD::UREM); }
733   void visitSRem(const User &I) { visitBinary(I, ISD::SREM); }
734   void visitFRem(const User &I) { visitBinary(I, ISD::FREM); }
735   void visitUDiv(const User &I) { visitBinary(I, ISD::UDIV); }
736   void visitSDiv(const User &I);
737   void visitFDiv(const User &I) { visitBinary(I, ISD::FDIV); }
738   void visitAnd (const User &I) { visitBinary(I, ISD::AND); }
739   void visitOr  (const User &I) { visitBinary(I, ISD::OR); }
740   void visitXor (const User &I) { visitBinary(I, ISD::XOR); }
741   void visitShl (const User &I) { visitShift(I, ISD::SHL); }
742   void visitLShr(const User &I) { visitShift(I, ISD::SRL); }
743   void visitAShr(const User &I) { visitShift(I, ISD::SRA); }
744   void visitICmp(const User &I);
745   void visitFCmp(const User &I);
746   // Visit the conversion instructions
747   void visitTrunc(const User &I);
748   void visitZExt(const User &I);
749   void visitSExt(const User &I);
750   void visitFPTrunc(const User &I);
751   void visitFPExt(const User &I);
752   void visitFPToUI(const User &I);
753   void visitFPToSI(const User &I);
754   void visitUIToFP(const User &I);
755   void visitSIToFP(const User &I);
756   void visitPtrToInt(const User &I);
757   void visitIntToPtr(const User &I);
758   void visitBitCast(const User &I);
759   void visitAddrSpaceCast(const User &I);
760
761   void visitExtractElement(const User &I);
762   void visitInsertElement(const User &I);
763   void visitShuffleVector(const User &I);
764
765   void visitExtractValue(const ExtractValueInst &I);
766   void visitInsertValue(const InsertValueInst &I);
767   void visitLandingPad(const LandingPadInst &I);
768
769   void visitGetElementPtr(const User &I);
770   void visitSelect(const User &I);
771
772   void visitAlloca(const AllocaInst &I);
773   void visitLoad(const LoadInst &I);
774   void visitStore(const StoreInst &I);
775   void visitMaskedLoad(const CallInst &I);
776   void visitMaskedStore(const CallInst &I);
777   void visitAtomicCmpXchg(const AtomicCmpXchgInst &I);
778   void visitAtomicRMW(const AtomicRMWInst &I);
779   void visitFence(const FenceInst &I);
780   void visitPHI(const PHINode &I);
781   void visitCall(const CallInst &I);
782   bool visitMemCmpCall(const CallInst &I);
783   bool visitMemChrCall(const CallInst &I);
784   bool visitStrCpyCall(const CallInst &I, bool isStpcpy);
785   bool visitStrCmpCall(const CallInst &I);
786   bool visitStrLenCall(const CallInst &I);
787   bool visitStrNLenCall(const CallInst &I);
788   bool visitUnaryFloatCall(const CallInst &I, unsigned Opcode);
789   bool visitBinaryFloatCall(const CallInst &I, unsigned Opcode);
790   void visitAtomicLoad(const LoadInst &I);
791   void visitAtomicStore(const StoreInst &I);
792
793   void visitInlineAsm(ImmutableCallSite CS);
794   const char *visitIntrinsicCall(const CallInst &I, unsigned Intrinsic);
795   void visitTargetIntrinsic(const CallInst &I, unsigned Intrinsic);
796
797   void visitVAStart(const CallInst &I);
798   void visitVAArg(const VAArgInst &I);
799   void visitVAEnd(const CallInst &I);
800   void visitVACopy(const CallInst &I);
801   void visitStackmap(const CallInst &I);
802   void visitPatchpoint(ImmutableCallSite CS,
803                        MachineBasicBlock *LandingPad = nullptr);
804
805   // These three are implemented in StatepointLowering.cpp
806   void visitStatepoint(const CallInst &I);
807   void visitGCRelocate(const CallInst &I);
808   void visitGCResult(const CallInst &I);
809
810   void visitUserOp1(const Instruction &I) {
811     llvm_unreachable("UserOp1 should not exist at instruction selection time!");
812   }
813   void visitUserOp2(const Instruction &I) {
814     llvm_unreachable("UserOp2 should not exist at instruction selection time!");
815   }
816
817   void processIntegerCallValue(const Instruction &I,
818                                SDValue Value, bool IsSigned);
819
820   void HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
821
822   /// EmitFuncArgumentDbgValue - If V is an function argument then create
823   /// corresponding DBG_VALUE machine instruction for it now. At the end of
824   /// instruction selection, they will be inserted to the entry BB.
825   bool EmitFuncArgumentDbgValue(const Value *V, MDLocalVariable *Variable,
826                                 MDExpression *Expr, MDLocation *DL,
827                                 int64_t Offset, bool IsIndirect,
828                                 const SDValue &N);
829
830   /// Return the next block after MBB, or nullptr if there is none.
831   MachineBasicBlock *NextBlock(MachineBasicBlock *MBB);
832
833   /// Update the DAG and DAG builder with the relevant information after
834   /// a new root node has been created which could be a tail call.
835   void updateDAGForMaybeTailCall(SDValue MaybeTC);
836 };
837
838 } // end namespace llvm
839
840 #endif