[WinEH] Don't sink allocas into child handlers
[oota-llvm.git] / lib / CodeGen / SelectionDAG / SelectionDAGBuilder.cpp
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/CodeGen/Analysis.h"
26 #include "llvm/CodeGen/FastISel.h"
27 #include "llvm/CodeGen/FunctionLoweringInfo.h"
28 #include "llvm/CodeGen/GCMetadata.h"
29 #include "llvm/CodeGen/GCStrategy.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineJumpTableInfo.h"
34 #include "llvm/CodeGen/MachineModuleInfo.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/SelectionDAG.h"
37 #include "llvm/CodeGen/StackMaps.h"
38 #include "llvm/CodeGen/WinEHFuncInfo.h"
39 #include "llvm/IR/CallingConv.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugInfo.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/Statepoint.h"
53 #include "llvm/MC/MCSymbol.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Target/TargetFrameLowering.h"
60 #include "llvm/Target/TargetInstrInfo.h"
61 #include "llvm/Target/TargetIntrinsicInfo.h"
62 #include "llvm/Target/TargetLowering.h"
63 #include "llvm/Target/TargetOptions.h"
64 #include "llvm/Target/TargetSelectionDAGInfo.h"
65 #include "llvm/Target/TargetSubtargetInfo.h"
66 #include <algorithm>
67 using namespace llvm;
68
69 #define DEBUG_TYPE "isel"
70
71 /// LimitFloatPrecision - Generate low-precision inline sequences for
72 /// some float libcalls (6, 8 or 12 bits).
73 static unsigned LimitFloatPrecision;
74
75 static cl::opt<unsigned, true>
76 LimitFPPrecision("limit-float-precision",
77                  cl::desc("Generate low-precision inline sequences "
78                           "for some float libcalls"),
79                  cl::location(LimitFloatPrecision),
80                  cl::init(0));
81
82 // Limit the width of DAG chains. This is important in general to prevent
83 // prevent DAG-based analysis from blowing up. For example, alias analysis and
84 // load clustering may not complete in reasonable time. It is difficult to
85 // recognize and avoid this situation within each individual analysis, and
86 // future analyses are likely to have the same behavior. Limiting DAG width is
87 // the safe approach, and will be especially important with global DAGs.
88 //
89 // MaxParallelChains default is arbitrarily high to avoid affecting
90 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
91 // sequence over this should have been converted to llvm.memcpy by the
92 // frontend. It easy to induce this behavior with .ll code such as:
93 // %buffer = alloca [4096 x i8]
94 // %data = load [4096 x i8]* %argPtr
95 // store [4096 x i8] %data, [4096 x i8]* %buffer
96 static const unsigned MaxParallelChains = 64;
97
98 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
99                                       const SDValue *Parts, unsigned NumParts,
100                                       MVT PartVT, EVT ValueVT, const Value *V);
101
102 /// getCopyFromParts - Create a value that contains the specified legal parts
103 /// combined into the value they represent.  If the parts combine to a type
104 /// larger then ValueVT then AssertOp can be used to specify whether the extra
105 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
106 /// (ISD::AssertSext).
107 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
108                                 const SDValue *Parts,
109                                 unsigned NumParts, MVT PartVT, EVT ValueVT,
110                                 const Value *V,
111                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
112   if (ValueVT.isVector())
113     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
114                                   PartVT, ValueVT, V);
115
116   assert(NumParts > 0 && "No parts to assemble!");
117   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
118   SDValue Val = Parts[0];
119
120   if (NumParts > 1) {
121     // Assemble the value from multiple parts.
122     if (ValueVT.isInteger()) {
123       unsigned PartBits = PartVT.getSizeInBits();
124       unsigned ValueBits = ValueVT.getSizeInBits();
125
126       // Assemble the power of 2 part.
127       unsigned RoundParts = NumParts & (NumParts - 1) ?
128         1 << Log2_32(NumParts) : NumParts;
129       unsigned RoundBits = PartBits * RoundParts;
130       EVT RoundVT = RoundBits == ValueBits ?
131         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
132       SDValue Lo, Hi;
133
134       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
135
136       if (RoundParts > 2) {
137         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
138                               PartVT, HalfVT, V);
139         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
140                               RoundParts / 2, PartVT, HalfVT, V);
141       } else {
142         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
143         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
144       }
145
146       if (TLI.isBigEndian())
147         std::swap(Lo, Hi);
148
149       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
150
151       if (RoundParts < NumParts) {
152         // Assemble the trailing non-power-of-2 part.
153         unsigned OddParts = NumParts - RoundParts;
154         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
155         Hi = getCopyFromParts(DAG, DL,
156                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
157
158         // Combine the round and odd parts.
159         Lo = Val;
160         if (TLI.isBigEndian())
161           std::swap(Lo, Hi);
162         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
163         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
164         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
165                          DAG.getConstant(Lo.getValueType().getSizeInBits(),
166                                          TLI.getPointerTy()));
167         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
168         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
169       }
170     } else if (PartVT.isFloatingPoint()) {
171       // FP split into multiple FP parts (for ppcf128)
172       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
173              "Unexpected split");
174       SDValue Lo, Hi;
175       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
176       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
177       if (TLI.hasBigEndianPartOrdering(ValueVT))
178         std::swap(Lo, Hi);
179       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
180     } else {
181       // FP split into integer parts (soft fp)
182       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
183              !PartVT.isVector() && "Unexpected split");
184       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
185       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
186     }
187   }
188
189   // There is now one part, held in Val.  Correct it to match ValueVT.
190   EVT PartEVT = Val.getValueType();
191
192   if (PartEVT == ValueVT)
193     return Val;
194
195   if (PartEVT.isInteger() && ValueVT.isInteger()) {
196     if (ValueVT.bitsLT(PartEVT)) {
197       // For a truncate, see if we have any information to
198       // indicate whether the truncated bits will always be
199       // zero or sign-extension.
200       if (AssertOp != ISD::DELETED_NODE)
201         Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
202                           DAG.getValueType(ValueVT));
203       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
204     }
205     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
206   }
207
208   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
209     // FP_ROUND's are always exact here.
210     if (ValueVT.bitsLT(Val.getValueType()))
211       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
212                          DAG.getTargetConstant(1, TLI.getPointerTy()));
213
214     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
215   }
216
217   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
218     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
219
220   llvm_unreachable("Unknown mismatch!");
221 }
222
223 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
224                                               const Twine &ErrMsg) {
225   const Instruction *I = dyn_cast_or_null<Instruction>(V);
226   if (!V)
227     return Ctx.emitError(ErrMsg);
228
229   const char *AsmError = ", possible invalid constraint for vector type";
230   if (const CallInst *CI = dyn_cast<CallInst>(I))
231     if (isa<InlineAsm>(CI->getCalledValue()))
232       return Ctx.emitError(I, ErrMsg + AsmError);
233
234   return Ctx.emitError(I, ErrMsg);
235 }
236
237 /// getCopyFromPartsVector - Create a value that contains the specified legal
238 /// parts combined into the value they represent.  If the parts combine to a
239 /// type larger then ValueVT then AssertOp can be used to specify whether the
240 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
241 /// ValueVT (ISD::AssertSext).
242 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
243                                       const SDValue *Parts, unsigned NumParts,
244                                       MVT PartVT, EVT ValueVT, const Value *V) {
245   assert(ValueVT.isVector() && "Not a vector value");
246   assert(NumParts > 0 && "No parts to assemble!");
247   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
248   SDValue Val = Parts[0];
249
250   // Handle a multi-element vector.
251   if (NumParts > 1) {
252     EVT IntermediateVT;
253     MVT RegisterVT;
254     unsigned NumIntermediates;
255     unsigned NumRegs =
256     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
257                                NumIntermediates, RegisterVT);
258     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
259     NumParts = NumRegs; // Silence a compiler warning.
260     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
261     assert(RegisterVT == Parts[0].getSimpleValueType() &&
262            "Part type doesn't match part!");
263
264     // Assemble the parts into intermediate operands.
265     SmallVector<SDValue, 8> Ops(NumIntermediates);
266     if (NumIntermediates == NumParts) {
267       // If the register was not expanded, truncate or copy the value,
268       // as appropriate.
269       for (unsigned i = 0; i != NumParts; ++i)
270         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
271                                   PartVT, IntermediateVT, V);
272     } else if (NumParts > 0) {
273       // If the intermediate type was expanded, build the intermediate
274       // operands from the parts.
275       assert(NumParts % NumIntermediates == 0 &&
276              "Must expand into a divisible number of parts!");
277       unsigned Factor = NumParts / NumIntermediates;
278       for (unsigned i = 0; i != NumIntermediates; ++i)
279         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
280                                   PartVT, IntermediateVT, V);
281     }
282
283     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
284     // intermediate operands.
285     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
286                                                 : ISD::BUILD_VECTOR,
287                       DL, ValueVT, Ops);
288   }
289
290   // There is now one part, held in Val.  Correct it to match ValueVT.
291   EVT PartEVT = Val.getValueType();
292
293   if (PartEVT == ValueVT)
294     return Val;
295
296   if (PartEVT.isVector()) {
297     // If the element type of the source/dest vectors are the same, but the
298     // parts vector has more elements than the value vector, then we have a
299     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
300     // elements we want.
301     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
302       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
303              "Cannot narrow, it would be a lossy transformation");
304       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
305                          DAG.getConstant(0, TLI.getVectorIdxTy()));
306     }
307
308     // Vector/Vector bitcast.
309     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
310       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
311
312     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
313       "Cannot handle this kind of promotion");
314     // Promoted vector extract
315     bool Smaller = ValueVT.bitsLE(PartEVT);
316     return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
317                        DL, ValueVT, Val);
318
319   }
320
321   // Trivial bitcast if the types are the same size and the destination
322   // vector type is legal.
323   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
324       TLI.isTypeLegal(ValueVT))
325     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
326
327   // Handle cases such as i8 -> <1 x i1>
328   if (ValueVT.getVectorNumElements() != 1) {
329     diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
330                                       "non-trivial scalar-to-vector conversion");
331     return DAG.getUNDEF(ValueVT);
332   }
333
334   if (ValueVT.getVectorNumElements() == 1 &&
335       ValueVT.getVectorElementType() != PartEVT) {
336     bool Smaller = ValueVT.bitsLE(PartEVT);
337     Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
338                        DL, ValueVT.getScalarType(), Val);
339   }
340
341   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
342 }
343
344 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
345                                  SDValue Val, SDValue *Parts, unsigned NumParts,
346                                  MVT PartVT, const Value *V);
347
348 /// getCopyToParts - Create a series of nodes that contain the specified value
349 /// split into legal parts.  If the parts contain more bits than Val, then, for
350 /// integers, ExtendKind can be used to specify how to generate the extra bits.
351 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
352                            SDValue Val, SDValue *Parts, unsigned NumParts,
353                            MVT PartVT, const Value *V,
354                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
355   EVT ValueVT = Val.getValueType();
356
357   // Handle the vector case separately.
358   if (ValueVT.isVector())
359     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
360
361   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
362   unsigned PartBits = PartVT.getSizeInBits();
363   unsigned OrigNumParts = NumParts;
364   assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
365
366   if (NumParts == 0)
367     return;
368
369   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
370   EVT PartEVT = PartVT;
371   if (PartEVT == ValueVT) {
372     assert(NumParts == 1 && "No-op copy with multiple parts!");
373     Parts[0] = Val;
374     return;
375   }
376
377   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
378     // If the parts cover more bits than the value has, promote the value.
379     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
380       assert(NumParts == 1 && "Do not know what to promote to!");
381       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
382     } else {
383       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
384              ValueVT.isInteger() &&
385              "Unknown mismatch!");
386       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
387       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
388       if (PartVT == MVT::x86mmx)
389         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
390     }
391   } else if (PartBits == ValueVT.getSizeInBits()) {
392     // Different types of the same size.
393     assert(NumParts == 1 && PartEVT != ValueVT);
394     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
395   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
396     // If the parts cover less bits than value has, truncate the value.
397     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
398            ValueVT.isInteger() &&
399            "Unknown mismatch!");
400     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
401     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
402     if (PartVT == MVT::x86mmx)
403       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
404   }
405
406   // The value may have changed - recompute ValueVT.
407   ValueVT = Val.getValueType();
408   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
409          "Failed to tile the value with PartVT!");
410
411   if (NumParts == 1) {
412     if (PartEVT != ValueVT)
413       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
414                                         "scalar-to-vector conversion failed");
415
416     Parts[0] = Val;
417     return;
418   }
419
420   // Expand the value into multiple parts.
421   if (NumParts & (NumParts - 1)) {
422     // The number of parts is not a power of 2.  Split off and copy the tail.
423     assert(PartVT.isInteger() && ValueVT.isInteger() &&
424            "Do not know what to expand to!");
425     unsigned RoundParts = 1 << Log2_32(NumParts);
426     unsigned RoundBits = RoundParts * PartBits;
427     unsigned OddParts = NumParts - RoundParts;
428     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
429                                  DAG.getIntPtrConstant(RoundBits));
430     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
431
432     if (TLI.isBigEndian())
433       // The odd parts were reversed by getCopyToParts - unreverse them.
434       std::reverse(Parts + RoundParts, Parts + NumParts);
435
436     NumParts = RoundParts;
437     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
438     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
439   }
440
441   // The number of parts is a power of 2.  Repeatedly bisect the value using
442   // EXTRACT_ELEMENT.
443   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
444                          EVT::getIntegerVT(*DAG.getContext(),
445                                            ValueVT.getSizeInBits()),
446                          Val);
447
448   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
449     for (unsigned i = 0; i < NumParts; i += StepSize) {
450       unsigned ThisBits = StepSize * PartBits / 2;
451       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
452       SDValue &Part0 = Parts[i];
453       SDValue &Part1 = Parts[i+StepSize/2];
454
455       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
456                           ThisVT, Part0, DAG.getIntPtrConstant(1));
457       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
458                           ThisVT, Part0, DAG.getIntPtrConstant(0));
459
460       if (ThisBits == PartBits && ThisVT != PartVT) {
461         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
462         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
463       }
464     }
465   }
466
467   if (TLI.isBigEndian())
468     std::reverse(Parts, Parts + OrigNumParts);
469 }
470
471
472 /// getCopyToPartsVector - Create a series of nodes that contain the specified
473 /// value split into legal parts.
474 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
475                                  SDValue Val, SDValue *Parts, unsigned NumParts,
476                                  MVT PartVT, const Value *V) {
477   EVT ValueVT = Val.getValueType();
478   assert(ValueVT.isVector() && "Not a vector");
479   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
480
481   if (NumParts == 1) {
482     EVT PartEVT = PartVT;
483     if (PartEVT == ValueVT) {
484       // Nothing to do.
485     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
486       // Bitconvert vector->vector case.
487       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
488     } else if (PartVT.isVector() &&
489                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
490                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
491       EVT ElementVT = PartVT.getVectorElementType();
492       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
493       // undef elements.
494       SmallVector<SDValue, 16> Ops;
495       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
496         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
497                                   ElementVT, Val, DAG.getConstant(i,
498                                                   TLI.getVectorIdxTy())));
499
500       for (unsigned i = ValueVT.getVectorNumElements(),
501            e = PartVT.getVectorNumElements(); i != e; ++i)
502         Ops.push_back(DAG.getUNDEF(ElementVT));
503
504       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
505
506       // FIXME: Use CONCAT for 2x -> 4x.
507
508       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
509       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
510     } else if (PartVT.isVector() &&
511                PartEVT.getVectorElementType().bitsGE(
512                  ValueVT.getVectorElementType()) &&
513                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
514
515       // Promoted vector extract
516       bool Smaller = PartEVT.bitsLE(ValueVT);
517       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
518                         DL, PartVT, Val);
519     } else{
520       // Vector -> scalar conversion.
521       assert(ValueVT.getVectorNumElements() == 1 &&
522              "Only trivial vector-to-scalar conversions should get here!");
523       Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
524                         PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy()));
525
526       bool Smaller = ValueVT.bitsLE(PartVT);
527       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
528                          DL, PartVT, Val);
529     }
530
531     Parts[0] = Val;
532     return;
533   }
534
535   // Handle a multi-element vector.
536   EVT IntermediateVT;
537   MVT RegisterVT;
538   unsigned NumIntermediates;
539   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
540                                                 IntermediateVT,
541                                                 NumIntermediates, RegisterVT);
542   unsigned NumElements = ValueVT.getVectorNumElements();
543
544   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
545   NumParts = NumRegs; // Silence a compiler warning.
546   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
547
548   // Split the vector into intermediate operands.
549   SmallVector<SDValue, 8> Ops(NumIntermediates);
550   for (unsigned i = 0; i != NumIntermediates; ++i) {
551     if (IntermediateVT.isVector())
552       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
553                            IntermediateVT, Val,
554                    DAG.getConstant(i * (NumElements / NumIntermediates),
555                                    TLI.getVectorIdxTy()));
556     else
557       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
558                            IntermediateVT, Val,
559                            DAG.getConstant(i, TLI.getVectorIdxTy()));
560   }
561
562   // Split the intermediate operands into legal parts.
563   if (NumParts == NumIntermediates) {
564     // If the register was not expanded, promote or copy the value,
565     // as appropriate.
566     for (unsigned i = 0; i != NumParts; ++i)
567       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
568   } else if (NumParts > 0) {
569     // If the intermediate type was expanded, split each the value into
570     // legal parts.
571     assert(NumIntermediates != 0 && "division by zero");
572     assert(NumParts % NumIntermediates == 0 &&
573            "Must expand into a divisible number of parts!");
574     unsigned Factor = NumParts / NumIntermediates;
575     for (unsigned i = 0; i != NumIntermediates; ++i)
576       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
577   }
578 }
579
580 namespace {
581   /// RegsForValue - This struct represents the registers (physical or virtual)
582   /// that a particular set of values is assigned, and the type information
583   /// about the value. The most common situation is to represent one value at a
584   /// time, but struct or array values are handled element-wise as multiple
585   /// values.  The splitting of aggregates is performed recursively, so that we
586   /// never have aggregate-typed registers. The values at this point do not
587   /// necessarily have legal types, so each value may require one or more
588   /// registers of some legal type.
589   ///
590   struct RegsForValue {
591     /// ValueVTs - The value types of the values, which may not be legal, and
592     /// may need be promoted or synthesized from one or more registers.
593     ///
594     SmallVector<EVT, 4> ValueVTs;
595
596     /// RegVTs - The value types of the registers. This is the same size as
597     /// ValueVTs and it records, for each value, what the type of the assigned
598     /// register or registers are. (Individual values are never synthesized
599     /// from more than one type of register.)
600     ///
601     /// With virtual registers, the contents of RegVTs is redundant with TLI's
602     /// getRegisterType member function, however when with physical registers
603     /// it is necessary to have a separate record of the types.
604     ///
605     SmallVector<MVT, 4> RegVTs;
606
607     /// Regs - This list holds the registers assigned to the values.
608     /// Each legal or promoted value requires one register, and each
609     /// expanded value requires multiple registers.
610     ///
611     SmallVector<unsigned, 4> Regs;
612
613     RegsForValue() {}
614
615     RegsForValue(const SmallVector<unsigned, 4> &regs,
616                  MVT regvt, EVT valuevt)
617       : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
618
619     RegsForValue(LLVMContext &Context, const TargetLowering &tli,
620                  unsigned Reg, Type *Ty) {
621       ComputeValueVTs(tli, Ty, ValueVTs);
622
623       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
624         EVT ValueVT = ValueVTs[Value];
625         unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
626         MVT RegisterVT = tli.getRegisterType(Context, ValueVT);
627         for (unsigned i = 0; i != NumRegs; ++i)
628           Regs.push_back(Reg + i);
629         RegVTs.push_back(RegisterVT);
630         Reg += NumRegs;
631       }
632     }
633
634     /// append - Add the specified values to this one.
635     void append(const RegsForValue &RHS) {
636       ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
637       RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
638       Regs.append(RHS.Regs.begin(), RHS.Regs.end());
639     }
640
641     /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
642     /// this value and returns the result as a ValueVTs value.  This uses
643     /// Chain/Flag as the input and updates them for the output Chain/Flag.
644     /// If the Flag pointer is NULL, no flag is used.
645     SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
646                             SDLoc dl,
647                             SDValue &Chain, SDValue *Flag,
648                             const Value *V = nullptr) const;
649
650     /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
651     /// specified value into the registers specified by this object.  This uses
652     /// Chain/Flag as the input and updates them for the output Chain/Flag.
653     /// If the Flag pointer is NULL, no flag is used.
654     void
655     getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, SDValue &Chain,
656                   SDValue *Flag, const Value *V,
657                   ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const;
658
659     /// AddInlineAsmOperands - Add this value to the specified inlineasm node
660     /// operand list.  This adds the code marker, matching input operand index
661     /// (if applicable), and includes the number of values added into it.
662     void AddInlineAsmOperands(unsigned Kind,
663                               bool HasMatching, unsigned MatchingIdx,
664                               SelectionDAG &DAG,
665                               std::vector<SDValue> &Ops) const;
666   };
667 }
668
669 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
670 /// this value and returns the result as a ValueVT value.  This uses
671 /// Chain/Flag as the input and updates them for the output Chain/Flag.
672 /// If the Flag pointer is NULL, no flag is used.
673 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
674                                       FunctionLoweringInfo &FuncInfo,
675                                       SDLoc dl,
676                                       SDValue &Chain, SDValue *Flag,
677                                       const Value *V) const {
678   // A Value with type {} or [0 x %t] needs no registers.
679   if (ValueVTs.empty())
680     return SDValue();
681
682   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
683
684   // Assemble the legal parts into the final values.
685   SmallVector<SDValue, 4> Values(ValueVTs.size());
686   SmallVector<SDValue, 8> Parts;
687   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
688     // Copy the legal parts from the registers.
689     EVT ValueVT = ValueVTs[Value];
690     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
691     MVT RegisterVT = RegVTs[Value];
692
693     Parts.resize(NumRegs);
694     for (unsigned i = 0; i != NumRegs; ++i) {
695       SDValue P;
696       if (!Flag) {
697         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
698       } else {
699         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
700         *Flag = P.getValue(2);
701       }
702
703       Chain = P.getValue(1);
704       Parts[i] = P;
705
706       // If the source register was virtual and if we know something about it,
707       // add an assert node.
708       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
709           !RegisterVT.isInteger() || RegisterVT.isVector())
710         continue;
711
712       const FunctionLoweringInfo::LiveOutInfo *LOI =
713         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
714       if (!LOI)
715         continue;
716
717       unsigned RegSize = RegisterVT.getSizeInBits();
718       unsigned NumSignBits = LOI->NumSignBits;
719       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
720
721       if (NumZeroBits == RegSize) {
722         // The current value is a zero.
723         // Explicitly express that as it would be easier for
724         // optimizations to kick in.
725         Parts[i] = DAG.getConstant(0, RegisterVT);
726         continue;
727       }
728
729       // FIXME: We capture more information than the dag can represent.  For
730       // now, just use the tightest assertzext/assertsext possible.
731       bool isSExt = true;
732       EVT FromVT(MVT::Other);
733       if (NumSignBits == RegSize)
734         isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
735       else if (NumZeroBits >= RegSize-1)
736         isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
737       else if (NumSignBits > RegSize-8)
738         isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
739       else if (NumZeroBits >= RegSize-8)
740         isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
741       else if (NumSignBits > RegSize-16)
742         isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
743       else if (NumZeroBits >= RegSize-16)
744         isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
745       else if (NumSignBits > RegSize-32)
746         isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
747       else if (NumZeroBits >= RegSize-32)
748         isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
749       else
750         continue;
751
752       // Add an assertion node.
753       assert(FromVT != MVT::Other);
754       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
755                              RegisterVT, P, DAG.getValueType(FromVT));
756     }
757
758     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
759                                      NumRegs, RegisterVT, ValueVT, V);
760     Part += NumRegs;
761     Parts.clear();
762   }
763
764   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
765 }
766
767 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
768 /// specified value into the registers specified by this object.  This uses
769 /// Chain/Flag as the input and updates them for the output Chain/Flag.
770 /// If the Flag pointer is NULL, no flag is used.
771 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
772                                  SDValue &Chain, SDValue *Flag, const Value *V,
773                                  ISD::NodeType PreferredExtendType) const {
774   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
775   ISD::NodeType ExtendKind = PreferredExtendType;
776
777   // Get the list of the values's legal parts.
778   unsigned NumRegs = Regs.size();
779   SmallVector<SDValue, 8> Parts(NumRegs);
780   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
781     EVT ValueVT = ValueVTs[Value];
782     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
783     MVT RegisterVT = RegVTs[Value];
784
785     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
786       ExtendKind = ISD::ZERO_EXTEND;
787
788     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
789                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
790     Part += NumParts;
791   }
792
793   // Copy the parts into the registers.
794   SmallVector<SDValue, 8> Chains(NumRegs);
795   for (unsigned i = 0; i != NumRegs; ++i) {
796     SDValue Part;
797     if (!Flag) {
798       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
799     } else {
800       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
801       *Flag = Part.getValue(1);
802     }
803
804     Chains[i] = Part.getValue(0);
805   }
806
807   if (NumRegs == 1 || Flag)
808     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
809     // flagged to it. That is the CopyToReg nodes and the user are considered
810     // a single scheduling unit. If we create a TokenFactor and return it as
811     // chain, then the TokenFactor is both a predecessor (operand) of the
812     // user as well as a successor (the TF operands are flagged to the user).
813     // c1, f1 = CopyToReg
814     // c2, f2 = CopyToReg
815     // c3     = TokenFactor c1, c2
816     // ...
817     //        = op c3, ..., f2
818     Chain = Chains[NumRegs-1];
819   else
820     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
821 }
822
823 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
824 /// operand list.  This adds the code marker and includes the number of
825 /// values added into it.
826 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
827                                         unsigned MatchingIdx,
828                                         SelectionDAG &DAG,
829                                         std::vector<SDValue> &Ops) const {
830   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
831
832   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
833   if (HasMatching)
834     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
835   else if (!Regs.empty() &&
836            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
837     // Put the register class of the virtual registers in the flag word.  That
838     // way, later passes can recompute register class constraints for inline
839     // assembly as well as normal instructions.
840     // Don't do this for tied operands that can use the regclass information
841     // from the def.
842     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
843     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
844     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
845   }
846
847   SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
848   Ops.push_back(Res);
849
850   unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
851   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
852     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
853     MVT RegisterVT = RegVTs[Value];
854     for (unsigned i = 0; i != NumRegs; ++i) {
855       assert(Reg < Regs.size() && "Mismatch in # registers expected");
856       unsigned TheReg = Regs[Reg++];
857       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
858
859       if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
860         // If we clobbered the stack pointer, MFI should know about it.
861         assert(DAG.getMachineFunction().getFrameInfo()->
862             hasInlineAsmWithSPAdjust());
863       }
864     }
865   }
866 }
867
868 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
869                                const TargetLibraryInfo *li) {
870   AA = &aa;
871   GFI = gfi;
872   LibInfo = li;
873   DL = DAG.getTarget().getDataLayout();
874   Context = DAG.getContext();
875   LPadToCallSiteMap.clear();
876 }
877
878 /// clear - Clear out the current SelectionDAG and the associated
879 /// state and prepare this SelectionDAGBuilder object to be used
880 /// for a new block. This doesn't clear out information about
881 /// additional blocks that are needed to complete switch lowering
882 /// or PHI node updating; that information is cleared out as it is
883 /// consumed.
884 void SelectionDAGBuilder::clear() {
885   NodeMap.clear();
886   UnusedArgNodeMap.clear();
887   PendingLoads.clear();
888   PendingExports.clear();
889   CurInst = nullptr;
890   HasTailCall = false;
891   SDNodeOrder = LowestSDNodeOrder;
892   StatepointLowering.clear();
893 }
894
895 /// clearDanglingDebugInfo - Clear the dangling debug information
896 /// map. This function is separated from the clear so that debug
897 /// information that is dangling in a basic block can be properly
898 /// resolved in a different basic block. This allows the
899 /// SelectionDAG to resolve dangling debug information attached
900 /// to PHI nodes.
901 void SelectionDAGBuilder::clearDanglingDebugInfo() {
902   DanglingDebugInfoMap.clear();
903 }
904
905 /// getRoot - Return the current virtual root of the Selection DAG,
906 /// flushing any PendingLoad items. This must be done before emitting
907 /// a store or any other node that may need to be ordered after any
908 /// prior load instructions.
909 ///
910 SDValue SelectionDAGBuilder::getRoot() {
911   if (PendingLoads.empty())
912     return DAG.getRoot();
913
914   if (PendingLoads.size() == 1) {
915     SDValue Root = PendingLoads[0];
916     DAG.setRoot(Root);
917     PendingLoads.clear();
918     return Root;
919   }
920
921   // Otherwise, we have to make a token factor node.
922   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
923                              PendingLoads);
924   PendingLoads.clear();
925   DAG.setRoot(Root);
926   return Root;
927 }
928
929 /// getControlRoot - Similar to getRoot, but instead of flushing all the
930 /// PendingLoad items, flush all the PendingExports items. It is necessary
931 /// to do this before emitting a terminator instruction.
932 ///
933 SDValue SelectionDAGBuilder::getControlRoot() {
934   SDValue Root = DAG.getRoot();
935
936   if (PendingExports.empty())
937     return Root;
938
939   // Turn all of the CopyToReg chains into one factored node.
940   if (Root.getOpcode() != ISD::EntryToken) {
941     unsigned i = 0, e = PendingExports.size();
942     for (; i != e; ++i) {
943       assert(PendingExports[i].getNode()->getNumOperands() > 1);
944       if (PendingExports[i].getNode()->getOperand(0) == Root)
945         break;  // Don't add the root if we already indirectly depend on it.
946     }
947
948     if (i == e)
949       PendingExports.push_back(Root);
950   }
951
952   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
953                      PendingExports);
954   PendingExports.clear();
955   DAG.setRoot(Root);
956   return Root;
957 }
958
959 void SelectionDAGBuilder::visit(const Instruction &I) {
960   // Set up outgoing PHI node register values before emitting the terminator.
961   if (isa<TerminatorInst>(&I))
962     HandlePHINodesInSuccessorBlocks(I.getParent());
963
964   ++SDNodeOrder;
965
966   CurInst = &I;
967
968   visit(I.getOpcode(), I);
969
970   if (!isa<TerminatorInst>(&I) && !HasTailCall)
971     CopyToExportRegsIfNeeded(&I);
972
973   CurInst = nullptr;
974 }
975
976 void SelectionDAGBuilder::visitPHI(const PHINode &) {
977   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
978 }
979
980 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
981   // Note: this doesn't use InstVisitor, because it has to work with
982   // ConstantExpr's in addition to instructions.
983   switch (Opcode) {
984   default: llvm_unreachable("Unknown instruction type encountered!");
985     // Build the switch statement using the Instruction.def file.
986 #define HANDLE_INST(NUM, OPCODE, CLASS) \
987     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
988 #include "llvm/IR/Instruction.def"
989   }
990 }
991
992 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
993 // generate the debug data structures now that we've seen its definition.
994 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
995                                                    SDValue Val) {
996   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
997   if (DDI.getDI()) {
998     const DbgValueInst *DI = DDI.getDI();
999     DebugLoc dl = DDI.getdl();
1000     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1001     MDLocalVariable *Variable = DI->getVariable();
1002     MDExpression *Expr = DI->getExpression();
1003     assert(Variable->isValidLocationForIntrinsic(dl) &&
1004            "Expected inlined-at fields to agree");
1005     uint64_t Offset = DI->getOffset();
1006     // A dbg.value for an alloca is always indirect.
1007     bool IsIndirect = isa<AllocaInst>(V) || Offset != 0;
1008     SDDbgValue *SDV;
1009     if (Val.getNode()) {
1010       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect,
1011                                     Val)) {
1012         SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(),
1013                               IsIndirect, Offset, dl, DbgSDNodeOrder);
1014         DAG.AddDbgValue(SDV, Val.getNode(), false);
1015       }
1016     } else
1017       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1018     DanglingDebugInfoMap[V] = DanglingDebugInfo();
1019   }
1020 }
1021
1022 /// getCopyFromRegs - If there was virtual register allocated for the value V
1023 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1024 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1025   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1026   SDValue res;
1027
1028   if (It != FuncInfo.ValueMap.end()) {
1029     unsigned InReg = It->second;
1030     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg,
1031                      Ty);
1032     SDValue Chain = DAG.getEntryNode();
1033     res = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1034     resolveDanglingDebugInfo(V, res);
1035   }
1036
1037   return res;
1038 }
1039
1040 /// getValue - Return an SDValue for the given Value.
1041 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1042   // If we already have an SDValue for this value, use it. It's important
1043   // to do this first, so that we don't create a CopyFromReg if we already
1044   // have a regular SDValue.
1045   SDValue &N = NodeMap[V];
1046   if (N.getNode()) return N;
1047
1048   // If there's a virtual register allocated and initialized for this
1049   // value, use it.
1050   SDValue copyFromReg = getCopyFromRegs(V, V->getType());
1051   if (copyFromReg.getNode()) {
1052     return copyFromReg;
1053   }
1054
1055   // Otherwise create a new SDValue and remember it.
1056   SDValue Val = getValueImpl(V);
1057   NodeMap[V] = Val;
1058   resolveDanglingDebugInfo(V, Val);
1059   return Val;
1060 }
1061
1062 /// getNonRegisterValue - Return an SDValue for the given Value, but
1063 /// don't look in FuncInfo.ValueMap for a virtual register.
1064 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1065   // If we already have an SDValue for this value, use it.
1066   SDValue &N = NodeMap[V];
1067   if (N.getNode()) return N;
1068
1069   // Otherwise create a new SDValue and remember it.
1070   SDValue Val = getValueImpl(V);
1071   NodeMap[V] = Val;
1072   resolveDanglingDebugInfo(V, Val);
1073   return Val;
1074 }
1075
1076 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1077 /// Create an SDValue for the given value.
1078 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1079   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1080
1081   if (const Constant *C = dyn_cast<Constant>(V)) {
1082     EVT VT = TLI.getValueType(V->getType(), true);
1083
1084     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1085       return DAG.getConstant(*CI, VT);
1086
1087     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1088       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1089
1090     if (isa<ConstantPointerNull>(C)) {
1091       unsigned AS = V->getType()->getPointerAddressSpace();
1092       return DAG.getConstant(0, TLI.getPointerTy(AS));
1093     }
1094
1095     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1096       return DAG.getConstantFP(*CFP, VT);
1097
1098     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1099       return DAG.getUNDEF(VT);
1100
1101     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1102       visit(CE->getOpcode(), *CE);
1103       SDValue N1 = NodeMap[V];
1104       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1105       return N1;
1106     }
1107
1108     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1109       SmallVector<SDValue, 4> Constants;
1110       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1111            OI != OE; ++OI) {
1112         SDNode *Val = getValue(*OI).getNode();
1113         // If the operand is an empty aggregate, there are no values.
1114         if (!Val) continue;
1115         // Add each leaf value from the operand to the Constants list
1116         // to form a flattened list of all the values.
1117         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1118           Constants.push_back(SDValue(Val, i));
1119       }
1120
1121       return DAG.getMergeValues(Constants, getCurSDLoc());
1122     }
1123
1124     if (const ConstantDataSequential *CDS =
1125           dyn_cast<ConstantDataSequential>(C)) {
1126       SmallVector<SDValue, 4> Ops;
1127       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1128         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1129         // Add each leaf value from the operand to the Constants list
1130         // to form a flattened list of all the values.
1131         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1132           Ops.push_back(SDValue(Val, i));
1133       }
1134
1135       if (isa<ArrayType>(CDS->getType()))
1136         return DAG.getMergeValues(Ops, getCurSDLoc());
1137       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1138                                       VT, Ops);
1139     }
1140
1141     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1142       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1143              "Unknown struct or array constant!");
1144
1145       SmallVector<EVT, 4> ValueVTs;
1146       ComputeValueVTs(TLI, C->getType(), ValueVTs);
1147       unsigned NumElts = ValueVTs.size();
1148       if (NumElts == 0)
1149         return SDValue(); // empty struct
1150       SmallVector<SDValue, 4> Constants(NumElts);
1151       for (unsigned i = 0; i != NumElts; ++i) {
1152         EVT EltVT = ValueVTs[i];
1153         if (isa<UndefValue>(C))
1154           Constants[i] = DAG.getUNDEF(EltVT);
1155         else if (EltVT.isFloatingPoint())
1156           Constants[i] = DAG.getConstantFP(0, EltVT);
1157         else
1158           Constants[i] = DAG.getConstant(0, EltVT);
1159       }
1160
1161       return DAG.getMergeValues(Constants, getCurSDLoc());
1162     }
1163
1164     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1165       return DAG.getBlockAddress(BA, VT);
1166
1167     VectorType *VecTy = cast<VectorType>(V->getType());
1168     unsigned NumElements = VecTy->getNumElements();
1169
1170     // Now that we know the number and type of the elements, get that number of
1171     // elements into the Ops array based on what kind of constant it is.
1172     SmallVector<SDValue, 16> Ops;
1173     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1174       for (unsigned i = 0; i != NumElements; ++i)
1175         Ops.push_back(getValue(CV->getOperand(i)));
1176     } else {
1177       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1178       EVT EltVT = TLI.getValueType(VecTy->getElementType());
1179
1180       SDValue Op;
1181       if (EltVT.isFloatingPoint())
1182         Op = DAG.getConstantFP(0, EltVT);
1183       else
1184         Op = DAG.getConstant(0, EltVT);
1185       Ops.assign(NumElements, Op);
1186     }
1187
1188     // Create a BUILD_VECTOR node.
1189     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
1190   }
1191
1192   // If this is a static alloca, generate it as the frameindex instead of
1193   // computation.
1194   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1195     DenseMap<const AllocaInst*, int>::iterator SI =
1196       FuncInfo.StaticAllocaMap.find(AI);
1197     if (SI != FuncInfo.StaticAllocaMap.end())
1198       return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1199   }
1200
1201   // If this is an instruction which fast-isel has deferred, select it now.
1202   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1203     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1204     RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1205     SDValue Chain = DAG.getEntryNode();
1206     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1207   }
1208
1209   llvm_unreachable("Can't get register for value!");
1210 }
1211
1212 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1213   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1214   SDValue Chain = getControlRoot();
1215   SmallVector<ISD::OutputArg, 8> Outs;
1216   SmallVector<SDValue, 8> OutVals;
1217
1218   if (!FuncInfo.CanLowerReturn) {
1219     unsigned DemoteReg = FuncInfo.DemoteRegister;
1220     const Function *F = I.getParent()->getParent();
1221
1222     // Emit a store of the return value through the virtual register.
1223     // Leave Outs empty so that LowerReturn won't try to load return
1224     // registers the usual way.
1225     SmallVector<EVT, 1> PtrValueVTs;
1226     ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1227                     PtrValueVTs);
1228
1229     SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1230     SDValue RetOp = getValue(I.getOperand(0));
1231
1232     SmallVector<EVT, 4> ValueVTs;
1233     SmallVector<uint64_t, 4> Offsets;
1234     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1235     unsigned NumValues = ValueVTs.size();
1236
1237     SmallVector<SDValue, 4> Chains(NumValues);
1238     for (unsigned i = 0; i != NumValues; ++i) {
1239       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1240                                 RetPtr.getValueType(), RetPtr,
1241                                 DAG.getIntPtrConstant(Offsets[i]));
1242       Chains[i] =
1243         DAG.getStore(Chain, getCurSDLoc(),
1244                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1245                      // FIXME: better loc info would be nice.
1246                      Add, MachinePointerInfo(), false, false, 0);
1247     }
1248
1249     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1250                         MVT::Other, Chains);
1251   } else if (I.getNumOperands() != 0) {
1252     SmallVector<EVT, 4> ValueVTs;
1253     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1254     unsigned NumValues = ValueVTs.size();
1255     if (NumValues) {
1256       SDValue RetOp = getValue(I.getOperand(0));
1257
1258       const Function *F = I.getParent()->getParent();
1259
1260       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1261       if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1262                                           Attribute::SExt))
1263         ExtendKind = ISD::SIGN_EXTEND;
1264       else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1265                                                Attribute::ZExt))
1266         ExtendKind = ISD::ZERO_EXTEND;
1267
1268       LLVMContext &Context = F->getContext();
1269       bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1270                                                       Attribute::InReg);
1271
1272       for (unsigned j = 0; j != NumValues; ++j) {
1273         EVT VT = ValueVTs[j];
1274
1275         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1276           VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind);
1277
1278         unsigned NumParts = TLI.getNumRegisters(Context, VT);
1279         MVT PartVT = TLI.getRegisterType(Context, VT);
1280         SmallVector<SDValue, 4> Parts(NumParts);
1281         getCopyToParts(DAG, getCurSDLoc(),
1282                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1283                        &Parts[0], NumParts, PartVT, &I, ExtendKind);
1284
1285         // 'inreg' on function refers to return value
1286         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1287         if (RetInReg)
1288           Flags.setInReg();
1289
1290         // Propagate extension type if any
1291         if (ExtendKind == ISD::SIGN_EXTEND)
1292           Flags.setSExt();
1293         else if (ExtendKind == ISD::ZERO_EXTEND)
1294           Flags.setZExt();
1295
1296         for (unsigned i = 0; i < NumParts; ++i) {
1297           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1298                                         VT, /*isfixed=*/true, 0, 0));
1299           OutVals.push_back(Parts[i]);
1300         }
1301       }
1302     }
1303   }
1304
1305   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1306   CallingConv::ID CallConv =
1307     DAG.getMachineFunction().getFunction()->getCallingConv();
1308   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1309       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1310
1311   // Verify that the target's LowerReturn behaved as expected.
1312   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1313          "LowerReturn didn't return a valid chain!");
1314
1315   // Update the DAG with the new chain value resulting from return lowering.
1316   DAG.setRoot(Chain);
1317 }
1318
1319 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1320 /// created for it, emit nodes to copy the value into the virtual
1321 /// registers.
1322 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1323   // Skip empty types
1324   if (V->getType()->isEmptyTy())
1325     return;
1326
1327   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1328   if (VMI != FuncInfo.ValueMap.end()) {
1329     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1330     CopyValueToVirtualRegister(V, VMI->second);
1331   }
1332 }
1333
1334 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1335 /// the current basic block, add it to ValueMap now so that we'll get a
1336 /// CopyTo/FromReg.
1337 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1338   // No need to export constants.
1339   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1340
1341   // Already exported?
1342   if (FuncInfo.isExportedInst(V)) return;
1343
1344   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1345   CopyValueToVirtualRegister(V, Reg);
1346 }
1347
1348 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1349                                                      const BasicBlock *FromBB) {
1350   // The operands of the setcc have to be in this block.  We don't know
1351   // how to export them from some other block.
1352   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1353     // Can export from current BB.
1354     if (VI->getParent() == FromBB)
1355       return true;
1356
1357     // Is already exported, noop.
1358     return FuncInfo.isExportedInst(V);
1359   }
1360
1361   // If this is an argument, we can export it if the BB is the entry block or
1362   // if it is already exported.
1363   if (isa<Argument>(V)) {
1364     if (FromBB == &FromBB->getParent()->getEntryBlock())
1365       return true;
1366
1367     // Otherwise, can only export this if it is already exported.
1368     return FuncInfo.isExportedInst(V);
1369   }
1370
1371   // Otherwise, constants can always be exported.
1372   return true;
1373 }
1374
1375 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1376 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1377                                             const MachineBasicBlock *Dst) const {
1378   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1379   if (!BPI)
1380     return 0;
1381   const BasicBlock *SrcBB = Src->getBasicBlock();
1382   const BasicBlock *DstBB = Dst->getBasicBlock();
1383   return BPI->getEdgeWeight(SrcBB, DstBB);
1384 }
1385
1386 void SelectionDAGBuilder::
1387 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1388                        uint32_t Weight /* = 0 */) {
1389   if (!Weight)
1390     Weight = getEdgeWeight(Src, Dst);
1391   Src->addSuccessor(Dst, Weight);
1392 }
1393
1394
1395 static bool InBlock(const Value *V, const BasicBlock *BB) {
1396   if (const Instruction *I = dyn_cast<Instruction>(V))
1397     return I->getParent() == BB;
1398   return true;
1399 }
1400
1401 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1402 /// This function emits a branch and is used at the leaves of an OR or an
1403 /// AND operator tree.
1404 ///
1405 void
1406 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1407                                                   MachineBasicBlock *TBB,
1408                                                   MachineBasicBlock *FBB,
1409                                                   MachineBasicBlock *CurBB,
1410                                                   MachineBasicBlock *SwitchBB,
1411                                                   uint32_t TWeight,
1412                                                   uint32_t FWeight) {
1413   const BasicBlock *BB = CurBB->getBasicBlock();
1414
1415   // If the leaf of the tree is a comparison, merge the condition into
1416   // the caseblock.
1417   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1418     // The operands of the cmp have to be in this block.  We don't know
1419     // how to export them from some other block.  If this is the first block
1420     // of the sequence, no exporting is needed.
1421     if (CurBB == SwitchBB ||
1422         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1423          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1424       ISD::CondCode Condition;
1425       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1426         Condition = getICmpCondCode(IC->getPredicate());
1427       } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1428         Condition = getFCmpCondCode(FC->getPredicate());
1429         if (TM.Options.NoNaNsFPMath)
1430           Condition = getFCmpCodeWithoutNaN(Condition);
1431       } else {
1432         (void)Condition; // silence warning.
1433         llvm_unreachable("Unknown compare instruction");
1434       }
1435
1436       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1437                    TBB, FBB, CurBB, TWeight, FWeight);
1438       SwitchCases.push_back(CB);
1439       return;
1440     }
1441   }
1442
1443   // Create a CaseBlock record representing this branch.
1444   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1445                nullptr, TBB, FBB, CurBB, TWeight, FWeight);
1446   SwitchCases.push_back(CB);
1447 }
1448
1449 /// Scale down both weights to fit into uint32_t.
1450 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
1451   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
1452   uint32_t Scale = (NewMax / UINT32_MAX) + 1;
1453   NewTrue = NewTrue / Scale;
1454   NewFalse = NewFalse / Scale;
1455 }
1456
1457 /// FindMergedConditions - If Cond is an expression like
1458 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1459                                                MachineBasicBlock *TBB,
1460                                                MachineBasicBlock *FBB,
1461                                                MachineBasicBlock *CurBB,
1462                                                MachineBasicBlock *SwitchBB,
1463                                                unsigned Opc, uint32_t TWeight,
1464                                                uint32_t FWeight) {
1465   // If this node is not part of the or/and tree, emit it as a branch.
1466   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1467   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1468       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1469       BOp->getParent() != CurBB->getBasicBlock() ||
1470       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1471       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1472     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1473                                  TWeight, FWeight);
1474     return;
1475   }
1476
1477   //  Create TmpBB after CurBB.
1478   MachineFunction::iterator BBI = CurBB;
1479   MachineFunction &MF = DAG.getMachineFunction();
1480   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1481   CurBB->getParent()->insert(++BBI, TmpBB);
1482
1483   if (Opc == Instruction::Or) {
1484     // Codegen X | Y as:
1485     // BB1:
1486     //   jmp_if_X TBB
1487     //   jmp TmpBB
1488     // TmpBB:
1489     //   jmp_if_Y TBB
1490     //   jmp FBB
1491     //
1492
1493     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1494     // The requirement is that
1495     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1496     //     = TrueProb for orignal BB.
1497     // Assuming the orignal weights are A and B, one choice is to set BB1's
1498     // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
1499     // assumes that
1500     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1501     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1502     // TmpBB, but the math is more complicated.
1503
1504     uint64_t NewTrueWeight = TWeight;
1505     uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight;
1506     ScaleWeights(NewTrueWeight, NewFalseWeight);
1507     // Emit the LHS condition.
1508     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1509                          NewTrueWeight, NewFalseWeight);
1510
1511     NewTrueWeight = TWeight;
1512     NewFalseWeight = 2 * (uint64_t)FWeight;
1513     ScaleWeights(NewTrueWeight, NewFalseWeight);
1514     // Emit the RHS condition into TmpBB.
1515     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1516                          NewTrueWeight, NewFalseWeight);
1517   } else {
1518     assert(Opc == Instruction::And && "Unknown merge op!");
1519     // Codegen X & Y as:
1520     // BB1:
1521     //   jmp_if_X TmpBB
1522     //   jmp FBB
1523     // TmpBB:
1524     //   jmp_if_Y TBB
1525     //   jmp FBB
1526     //
1527     //  This requires creation of TmpBB after CurBB.
1528
1529     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1530     // The requirement is that
1531     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1532     //     = FalseProb for orignal BB.
1533     // Assuming the orignal weights are A and B, one choice is to set BB1's
1534     // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
1535     // assumes that
1536     //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
1537
1538     uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight;
1539     uint64_t NewFalseWeight = FWeight;
1540     ScaleWeights(NewTrueWeight, NewFalseWeight);
1541     // Emit the LHS condition.
1542     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1543                          NewTrueWeight, NewFalseWeight);
1544
1545     NewTrueWeight = 2 * (uint64_t)TWeight;
1546     NewFalseWeight = FWeight;
1547     ScaleWeights(NewTrueWeight, NewFalseWeight);
1548     // Emit the RHS condition into TmpBB.
1549     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1550                          NewTrueWeight, NewFalseWeight);
1551   }
1552 }
1553
1554 /// If the set of cases should be emitted as a series of branches, return true.
1555 /// If we should emit this as a bunch of and/or'd together conditions, return
1556 /// false.
1557 bool
1558 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1559   if (Cases.size() != 2) return true;
1560
1561   // If this is two comparisons of the same values or'd or and'd together, they
1562   // will get folded into a single comparison, so don't emit two blocks.
1563   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1564        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1565       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1566        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1567     return false;
1568   }
1569
1570   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1571   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1572   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1573       Cases[0].CC == Cases[1].CC &&
1574       isa<Constant>(Cases[0].CmpRHS) &&
1575       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1576     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1577       return false;
1578     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1579       return false;
1580   }
1581
1582   return true;
1583 }
1584
1585 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1586   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1587
1588   // Update machine-CFG edges.
1589   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1590
1591   if (I.isUnconditional()) {
1592     // Update machine-CFG edges.
1593     BrMBB->addSuccessor(Succ0MBB);
1594
1595     // If this is not a fall-through branch or optimizations are switched off,
1596     // emit the branch.
1597     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1598       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1599                               MVT::Other, getControlRoot(),
1600                               DAG.getBasicBlock(Succ0MBB)));
1601
1602     return;
1603   }
1604
1605   // If this condition is one of the special cases we handle, do special stuff
1606   // now.
1607   const Value *CondVal = I.getCondition();
1608   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1609
1610   // If this is a series of conditions that are or'd or and'd together, emit
1611   // this as a sequence of branches instead of setcc's with and/or operations.
1612   // As long as jumps are not expensive, this should improve performance.
1613   // For example, instead of something like:
1614   //     cmp A, B
1615   //     C = seteq
1616   //     cmp D, E
1617   //     F = setle
1618   //     or C, F
1619   //     jnz foo
1620   // Emit:
1621   //     cmp A, B
1622   //     je foo
1623   //     cmp D, E
1624   //     jle foo
1625   //
1626   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1627     if (!DAG.getTargetLoweringInfo().isJumpExpensive() &&
1628         BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And ||
1629                              BOp->getOpcode() == Instruction::Or)) {
1630       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1631                            BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB),
1632                            getEdgeWeight(BrMBB, Succ1MBB));
1633       // If the compares in later blocks need to use values not currently
1634       // exported from this block, export them now.  This block should always
1635       // be the first entry.
1636       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1637
1638       // Allow some cases to be rejected.
1639       if (ShouldEmitAsBranches(SwitchCases)) {
1640         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1641           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1642           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1643         }
1644
1645         // Emit the branch for this block.
1646         visitSwitchCase(SwitchCases[0], BrMBB);
1647         SwitchCases.erase(SwitchCases.begin());
1648         return;
1649       }
1650
1651       // Okay, we decided not to do this, remove any inserted MBB's and clear
1652       // SwitchCases.
1653       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1654         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1655
1656       SwitchCases.clear();
1657     }
1658   }
1659
1660   // Create a CaseBlock record representing this branch.
1661   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1662                nullptr, Succ0MBB, Succ1MBB, BrMBB);
1663
1664   // Use visitSwitchCase to actually insert the fast branch sequence for this
1665   // cond branch.
1666   visitSwitchCase(CB, BrMBB);
1667 }
1668
1669 /// visitSwitchCase - Emits the necessary code to represent a single node in
1670 /// the binary search tree resulting from lowering a switch instruction.
1671 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1672                                           MachineBasicBlock *SwitchBB) {
1673   SDValue Cond;
1674   SDValue CondLHS = getValue(CB.CmpLHS);
1675   SDLoc dl = getCurSDLoc();
1676
1677   // Build the setcc now.
1678   if (!CB.CmpMHS) {
1679     // Fold "(X == true)" to X and "(X == false)" to !X to
1680     // handle common cases produced by branch lowering.
1681     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1682         CB.CC == ISD::SETEQ)
1683       Cond = CondLHS;
1684     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1685              CB.CC == ISD::SETEQ) {
1686       SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1687       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1688     } else
1689       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1690   } else {
1691     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1692
1693     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1694     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1695
1696     SDValue CmpOp = getValue(CB.CmpMHS);
1697     EVT VT = CmpOp.getValueType();
1698
1699     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1700       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1701                           ISD::SETLE);
1702     } else {
1703       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1704                                 VT, CmpOp, DAG.getConstant(Low, VT));
1705       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1706                           DAG.getConstant(High-Low, VT), ISD::SETULE);
1707     }
1708   }
1709
1710   // Update successor info
1711   addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1712   // TrueBB and FalseBB are always different unless the incoming IR is
1713   // degenerate. This only happens when running llc on weird IR.
1714   if (CB.TrueBB != CB.FalseBB)
1715     addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1716
1717   // If the lhs block is the next block, invert the condition so that we can
1718   // fall through to the lhs instead of the rhs block.
1719   if (CB.TrueBB == NextBlock(SwitchBB)) {
1720     std::swap(CB.TrueBB, CB.FalseBB);
1721     SDValue True = DAG.getConstant(1, Cond.getValueType());
1722     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1723   }
1724
1725   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1726                                MVT::Other, getControlRoot(), Cond,
1727                                DAG.getBasicBlock(CB.TrueBB));
1728
1729   // Insert the false branch. Do this even if it's a fall through branch,
1730   // this makes it easier to do DAG optimizations which require inverting
1731   // the branch condition.
1732   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1733                        DAG.getBasicBlock(CB.FalseBB));
1734
1735   DAG.setRoot(BrCond);
1736 }
1737
1738 /// visitJumpTable - Emit JumpTable node in the current MBB
1739 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1740   // Emit the code for the jump table
1741   assert(JT.Reg != -1U && "Should lower JT Header first!");
1742   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy();
1743   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1744                                      JT.Reg, PTy);
1745   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1746   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1747                                     MVT::Other, Index.getValue(1),
1748                                     Table, Index);
1749   DAG.setRoot(BrJumpTable);
1750 }
1751
1752 /// visitJumpTableHeader - This function emits necessary code to produce index
1753 /// in the JumpTable from switch case.
1754 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1755                                                JumpTableHeader &JTH,
1756                                                MachineBasicBlock *SwitchBB) {
1757   // Subtract the lowest switch case value from the value being switched on and
1758   // conditional branch to default mbb if the result is greater than the
1759   // difference between smallest and largest cases.
1760   SDValue SwitchOp = getValue(JTH.SValue);
1761   EVT VT = SwitchOp.getValueType();
1762   SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1763                             DAG.getConstant(JTH.First, VT));
1764
1765   // The SDNode we just created, which holds the value being switched on minus
1766   // the smallest case value, needs to be copied to a virtual register so it
1767   // can be used as an index into the jump table in a subsequent basic block.
1768   // This value may be smaller or larger than the target's pointer type, and
1769   // therefore require extension or truncating.
1770   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1771   SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI.getPointerTy());
1772
1773   unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1774   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1775                                     JumpTableReg, SwitchOp);
1776   JT.Reg = JumpTableReg;
1777
1778   // Emit the range check for the jump table, and branch to the default block
1779   // for the switch statement if the value being switched on exceeds the largest
1780   // case in the switch.
1781   SDValue CMP =
1782       DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(),
1783                                                          Sub.getValueType()),
1784                    Sub, DAG.getConstant(JTH.Last - JTH.First, VT), ISD::SETUGT);
1785
1786   SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1787                                MVT::Other, CopyTo, CMP,
1788                                DAG.getBasicBlock(JT.Default));
1789
1790   // Avoid emitting unnecessary branches to the next block.
1791   if (JT.MBB != NextBlock(SwitchBB))
1792     BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond,
1793                          DAG.getBasicBlock(JT.MBB));
1794
1795   DAG.setRoot(BrCond);
1796 }
1797
1798 /// Codegen a new tail for a stack protector check ParentMBB which has had its
1799 /// tail spliced into a stack protector check success bb.
1800 ///
1801 /// For a high level explanation of how this fits into the stack protector
1802 /// generation see the comment on the declaration of class
1803 /// StackProtectorDescriptor.
1804 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
1805                                                   MachineBasicBlock *ParentBB) {
1806
1807   // First create the loads to the guard/stack slot for the comparison.
1808   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1809   EVT PtrTy = TLI.getPointerTy();
1810
1811   MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
1812   int FI = MFI->getStackProtectorIndex();
1813
1814   const Value *IRGuard = SPD.getGuard();
1815   SDValue GuardPtr = getValue(IRGuard);
1816   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
1817
1818   unsigned Align =
1819     TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType());
1820
1821   SDValue Guard;
1822
1823   // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the
1824   // guard value from the virtual register holding the value. Otherwise, emit a
1825   // volatile load to retrieve the stack guard value.
1826   unsigned GuardReg = SPD.getGuardReg();
1827
1828   if (GuardReg && TLI.useLoadStackGuardNode())
1829     Guard = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), GuardReg,
1830                                PtrTy);
1831   else
1832     Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
1833                         GuardPtr, MachinePointerInfo(IRGuard, 0),
1834                         true, false, false, Align);
1835
1836   SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
1837                                   StackSlotPtr,
1838                                   MachinePointerInfo::getFixedStack(FI),
1839                                   true, false, false, Align);
1840
1841   // Perform the comparison via a subtract/getsetcc.
1842   EVT VT = Guard.getValueType();
1843   SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot);
1844
1845   SDValue Cmp =
1846       DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(),
1847                                                          Sub.getValueType()),
1848                    Sub, DAG.getConstant(0, VT), ISD::SETNE);
1849
1850   // If the sub is not 0, then we know the guard/stackslot do not equal, so
1851   // branch to failure MBB.
1852   SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1853                                MVT::Other, StackSlot.getOperand(0),
1854                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
1855   // Otherwise branch to success MBB.
1856   SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(),
1857                            MVT::Other, BrCond,
1858                            DAG.getBasicBlock(SPD.getSuccessMBB()));
1859
1860   DAG.setRoot(Br);
1861 }
1862
1863 /// Codegen the failure basic block for a stack protector check.
1864 ///
1865 /// A failure stack protector machine basic block consists simply of a call to
1866 /// __stack_chk_fail().
1867 ///
1868 /// For a high level explanation of how this fits into the stack protector
1869 /// generation see the comment on the declaration of class
1870 /// StackProtectorDescriptor.
1871 void
1872 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
1873   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1874   SDValue Chain =
1875       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
1876                       nullptr, 0, false, getCurSDLoc(), false, false).second;
1877   DAG.setRoot(Chain);
1878 }
1879
1880 /// visitBitTestHeader - This function emits necessary code to produce value
1881 /// suitable for "bit tests"
1882 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1883                                              MachineBasicBlock *SwitchBB) {
1884   // Subtract the minimum value
1885   SDValue SwitchOp = getValue(B.SValue);
1886   EVT VT = SwitchOp.getValueType();
1887   SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1888                             DAG.getConstant(B.First, VT));
1889
1890   // Check range
1891   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1892   SDValue RangeCmp =
1893       DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(),
1894                                                          Sub.getValueType()),
1895                    Sub, DAG.getConstant(B.Range, VT), ISD::SETUGT);
1896
1897   // Determine the type of the test operands.
1898   bool UsePtrType = false;
1899   if (!TLI.isTypeLegal(VT))
1900     UsePtrType = true;
1901   else {
1902     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1903       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1904         // Switch table case range are encoded into series of masks.
1905         // Just use pointer type, it's guaranteed to fit.
1906         UsePtrType = true;
1907         break;
1908       }
1909   }
1910   if (UsePtrType) {
1911     VT = TLI.getPointerTy();
1912     Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT);
1913   }
1914
1915   B.RegVT = VT.getSimpleVT();
1916   B.Reg = FuncInfo.CreateReg(B.RegVT);
1917   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1918                                     B.Reg, Sub);
1919
1920   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1921
1922   addSuccessorWithWeight(SwitchBB, B.Default);
1923   addSuccessorWithWeight(SwitchBB, MBB);
1924
1925   SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1926                                 MVT::Other, CopyTo, RangeCmp,
1927                                 DAG.getBasicBlock(B.Default));
1928
1929   // Avoid emitting unnecessary branches to the next block.
1930   if (MBB != NextBlock(SwitchBB))
1931     BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo,
1932                           DAG.getBasicBlock(MBB));
1933
1934   DAG.setRoot(BrRange);
1935 }
1936
1937 /// visitBitTestCase - this function produces one "bit test"
1938 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1939                                            MachineBasicBlock* NextMBB,
1940                                            uint32_t BranchWeightToNext,
1941                                            unsigned Reg,
1942                                            BitTestCase &B,
1943                                            MachineBasicBlock *SwitchBB) {
1944   MVT VT = BB.RegVT;
1945   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1946                                        Reg, VT);
1947   SDValue Cmp;
1948   unsigned PopCount = countPopulation(B.Mask);
1949   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1950   if (PopCount == 1) {
1951     // Testing for a single bit; just compare the shift count with what it
1952     // would need to be to shift a 1 bit in that position.
1953     Cmp = DAG.getSetCC(
1954         getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp,
1955         DAG.getConstant(countTrailingZeros(B.Mask), VT), ISD::SETEQ);
1956   } else if (PopCount == BB.Range) {
1957     // There is only one zero bit in the range, test for it directly.
1958     Cmp = DAG.getSetCC(
1959         getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp,
1960         DAG.getConstant(countTrailingOnes(B.Mask), VT), ISD::SETNE);
1961   } else {
1962     // Make desired shift
1963     SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT,
1964                                     DAG.getConstant(1, VT), ShiftOp);
1965
1966     // Emit bit tests and jumps
1967     SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(),
1968                                 VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1969     Cmp = DAG.getSetCC(getCurSDLoc(),
1970                        TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp,
1971                        DAG.getConstant(0, VT), ISD::SETNE);
1972   }
1973
1974   // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
1975   addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
1976   // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
1977   addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
1978
1979   SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1980                               MVT::Other, getControlRoot(),
1981                               Cmp, DAG.getBasicBlock(B.TargetBB));
1982
1983   // Avoid emitting unnecessary branches to the next block.
1984   if (NextMBB != NextBlock(SwitchBB))
1985     BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd,
1986                         DAG.getBasicBlock(NextMBB));
1987
1988   DAG.setRoot(BrAnd);
1989 }
1990
1991 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1992   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1993
1994   // Retrieve successors.
1995   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1996   MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1997
1998   const Value *Callee(I.getCalledValue());
1999   const Function *Fn = dyn_cast<Function>(Callee);
2000   if (isa<InlineAsm>(Callee))
2001     visitInlineAsm(&I);
2002   else if (Fn && Fn->isIntrinsic()) {
2003     switch (Fn->getIntrinsicID()) {
2004     default:
2005       llvm_unreachable("Cannot invoke this intrinsic");
2006     case Intrinsic::donothing:
2007       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2008       break;
2009     case Intrinsic::experimental_patchpoint_void:
2010     case Intrinsic::experimental_patchpoint_i64:
2011       visitPatchpoint(&I, LandingPad);
2012       break;
2013     case Intrinsic::experimental_gc_statepoint:
2014       LowerStatepoint(ImmutableStatepoint(&I), LandingPad);
2015       break;
2016     }
2017   } else
2018     LowerCallTo(&I, getValue(Callee), false, LandingPad);
2019
2020   // If the value of the invoke is used outside of its defining block, make it
2021   // available as a virtual register.
2022   // We already took care of the exported value for the statepoint instruction
2023   // during call to the LowerStatepoint.
2024   if (!isStatepoint(I)) {
2025     CopyToExportRegsIfNeeded(&I);
2026   }
2027
2028   // Update successor info
2029   addSuccessorWithWeight(InvokeMBB, Return);
2030   addSuccessorWithWeight(InvokeMBB, LandingPad);
2031
2032   // Drop into normal successor.
2033   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2034                           MVT::Other, getControlRoot(),
2035                           DAG.getBasicBlock(Return)));
2036 }
2037
2038 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2039   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2040 }
2041
2042 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2043   assert(FuncInfo.MBB->isLandingPad() &&
2044          "Call to landingpad not in landing pad!");
2045
2046   MachineBasicBlock *MBB = FuncInfo.MBB;
2047   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
2048   AddLandingPadInfo(LP, MMI, MBB);
2049
2050   // If there aren't registers to copy the values into (e.g., during SjLj
2051   // exceptions), then don't bother to create these DAG nodes.
2052   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2053   if (TLI.getExceptionPointerRegister() == 0 &&
2054       TLI.getExceptionSelectorRegister() == 0)
2055     return;
2056
2057   SmallVector<EVT, 2> ValueVTs;
2058   ComputeValueVTs(TLI, LP.getType(), ValueVTs);
2059   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2060
2061   // Get the two live-in registers as SDValues. The physregs have already been
2062   // copied into virtual registers.
2063   SDValue Ops[2];
2064   if (FuncInfo.ExceptionPointerVirtReg) {
2065     Ops[0] = DAG.getZExtOrTrunc(
2066         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
2067                            FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()),
2068         getCurSDLoc(), ValueVTs[0]);
2069   } else {
2070     Ops[0] = DAG.getConstant(0, TLI.getPointerTy());
2071   }
2072   Ops[1] = DAG.getZExtOrTrunc(
2073       DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
2074                          FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()),
2075       getCurSDLoc(), ValueVTs[1]);
2076
2077   // Merge into one.
2078   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2079                             DAG.getVTList(ValueVTs), Ops);
2080   setValue(&LP, Res);
2081 }
2082
2083 unsigned
2084 SelectionDAGBuilder::visitLandingPadClauseBB(GlobalValue *ClauseGV,
2085                                              MachineBasicBlock *LPadBB) {
2086   SDValue Chain = getControlRoot();
2087
2088   // Get the typeid that we will dispatch on later.
2089   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2090   const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy());
2091   unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
2092   unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(ClauseGV);
2093   SDValue Sel = DAG.getConstant(TypeID, TLI.getPointerTy());
2094   Chain = DAG.getCopyToReg(Chain, getCurSDLoc(), VReg, Sel);
2095
2096   // Branch to the main landing pad block.
2097   MachineBasicBlock *ClauseMBB = FuncInfo.MBB;
2098   ClauseMBB->addSuccessor(LPadBB);
2099   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, Chain,
2100                           DAG.getBasicBlock(LPadBB)));
2101   return VReg;
2102 }
2103
2104 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
2105 /// small case ranges).
2106 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
2107                                                  CaseRecVector& WorkList,
2108                                                  const Value* SV,
2109                                                  MachineBasicBlock *Default,
2110                                                  MachineBasicBlock *SwitchBB) {
2111   // Size is the number of Cases represented by this range.
2112   size_t Size = CR.Range.second - CR.Range.first;
2113   if (Size > 3)
2114     return false;
2115
2116   // Get the MachineFunction which holds the current MBB.  This is used when
2117   // inserting any additional MBBs necessary to represent the switch.
2118   MachineFunction *CurMF = FuncInfo.MF;
2119
2120   // Figure out which block is immediately after the current one.
2121   MachineBasicBlock *NextMBB = nullptr;
2122   MachineFunction::iterator BBI = CR.CaseBB;
2123   if (++BBI != FuncInfo.MF->end())
2124     NextMBB = BBI;
2125
2126   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2127   // If any two of the cases has the same destination, and if one value
2128   // is the same as the other, but has one bit unset that the other has set,
2129   // use bit manipulation to do two compares at once.  For example:
2130   // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
2131   // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
2132   // TODO: Handle cases where CR.CaseBB != SwitchBB.
2133   if (Size == 2 && CR.CaseBB == SwitchBB) {
2134     Case &Small = *CR.Range.first;
2135     Case &Big = *(CR.Range.second-1);
2136
2137     if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
2138       const APInt& SmallValue = Small.Low->getValue();
2139       const APInt& BigValue = Big.Low->getValue();
2140
2141       // Check that there is only one bit different.
2142       if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
2143           (SmallValue | BigValue) == BigValue) {
2144         // Isolate the common bit.
2145         APInt CommonBit = BigValue & ~SmallValue;
2146         assert((SmallValue | CommonBit) == BigValue &&
2147                CommonBit.countPopulation() == 1 && "Not a common bit?");
2148
2149         SDValue CondLHS = getValue(SV);
2150         EVT VT = CondLHS.getValueType();
2151         SDLoc DL = getCurSDLoc();
2152
2153         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
2154                                  DAG.getConstant(CommonBit, VT));
2155         SDValue Cond = DAG.getSetCC(DL, MVT::i1,
2156                                     Or, DAG.getConstant(BigValue, VT),
2157                                     ISD::SETEQ);
2158
2159         // Update successor info.
2160         // Both Small and Big will jump to Small.BB, so we sum up the weights.
2161         addSuccessorWithWeight(SwitchBB, Small.BB,
2162                                Small.ExtraWeight + Big.ExtraWeight);
2163         addSuccessorWithWeight(SwitchBB, Default,
2164           // The default destination is the first successor in IR.
2165           BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
2166
2167         // Insert the true branch.
2168         SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
2169                                      getControlRoot(), Cond,
2170                                      DAG.getBasicBlock(Small.BB));
2171
2172         // Insert the false branch.
2173         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
2174                              DAG.getBasicBlock(Default));
2175
2176         DAG.setRoot(BrCond);
2177         return true;
2178       }
2179     }
2180   }
2181
2182   // Order cases by weight so the most likely case will be checked first.
2183   uint32_t UnhandledWeights = 0;
2184   if (BPI) {
2185     for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
2186       uint32_t IWeight = I->ExtraWeight;
2187       UnhandledWeights += IWeight;
2188       for (CaseItr J = CR.Range.first; J < I; ++J) {
2189         uint32_t JWeight = J->ExtraWeight;
2190         if (IWeight > JWeight)
2191           std::swap(*I, *J);
2192       }
2193     }
2194   }
2195   // Rearrange the case blocks so that the last one falls through if possible.
2196   Case &BackCase = *(CR.Range.second-1);
2197   if (Size > 1 && NextMBB && Default != NextMBB && BackCase.BB != NextMBB) {
2198     // The last case block won't fall through into 'NextMBB' if we emit the
2199     // branches in this order.  See if rearranging a case value would help.
2200     // We start at the bottom as it's the case with the least weight.
2201     for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I)
2202       if (I->BB == NextMBB) {
2203         std::swap(*I, BackCase);
2204         break;
2205       }
2206   }
2207
2208   // Create a CaseBlock record representing a conditional branch to
2209   // the Case's target mbb if the value being switched on SV is equal
2210   // to C.
2211   MachineBasicBlock *CurBlock = CR.CaseBB;
2212   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2213     MachineBasicBlock *FallThrough;
2214     if (I != E-1) {
2215       FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2216       CurMF->insert(BBI, FallThrough);
2217
2218       // Put SV in a virtual register to make it available from the new blocks.
2219       ExportFromCurrentBlock(SV);
2220     } else {
2221       // If the last case doesn't match, go to the default block.
2222       FallThrough = Default;
2223     }
2224
2225     const Value *RHS, *LHS, *MHS;
2226     ISD::CondCode CC;
2227     if (I->High == I->Low) {
2228       // This is just small small case range :) containing exactly 1 case
2229       CC = ISD::SETEQ;
2230       LHS = SV; RHS = I->High; MHS = nullptr;
2231     } else {
2232       CC = ISD::SETLE;
2233       LHS = I->Low; MHS = SV; RHS = I->High;
2234     }
2235
2236     // The false weight should be sum of all un-handled cases.
2237     UnhandledWeights -= I->ExtraWeight;
2238     CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2239                  /* me */ CurBlock,
2240                  /* trueweight */ I->ExtraWeight,
2241                  /* falseweight */ UnhandledWeights);
2242
2243     // If emitting the first comparison, just call visitSwitchCase to emit the
2244     // code into the current block.  Otherwise, push the CaseBlock onto the
2245     // vector to be later processed by SDISel, and insert the node's MBB
2246     // before the next MBB.
2247     if (CurBlock == SwitchBB)
2248       visitSwitchCase(CB, SwitchBB);
2249     else
2250       SwitchCases.push_back(CB);
2251
2252     CurBlock = FallThrough;
2253   }
2254
2255   return true;
2256 }
2257
2258 static inline bool areJTsAllowed(const TargetLowering &TLI) {
2259   return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2260          TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
2261 }
2262
2263 static APInt ComputeRange(const APInt &First, const APInt &Last) {
2264   uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2265   APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
2266   return (LastExt - FirstExt + 1ULL);
2267 }
2268
2269 /// handleJTSwitchCase - Emit jumptable for current switch case range
2270 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2271                                              CaseRecVector &WorkList,
2272                                              const Value *SV,
2273                                              MachineBasicBlock *Default,
2274                                              MachineBasicBlock *SwitchBB) {
2275   Case& FrontCase = *CR.Range.first;
2276   Case& BackCase  = *(CR.Range.second-1);
2277
2278   const APInt &First = FrontCase.Low->getValue();
2279   const APInt &Last  = BackCase.High->getValue();
2280
2281   APInt TSize(First.getBitWidth(), 0);
2282   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2283     TSize += I->size();
2284
2285   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2286   if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries()))
2287     return false;
2288
2289   APInt Range = ComputeRange(First, Last);
2290   // The density is TSize / Range. Require at least 40%.
2291   // It should not be possible for IntTSize to saturate for sane code, but make
2292   // sure we handle Range saturation correctly.
2293   uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2294   uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2295   if (IntTSize * 10 < IntRange * 4)
2296     return false;
2297
2298   DEBUG(dbgs() << "Lowering jump table\n"
2299                << "First entry: " << First << ". Last entry: " << Last << '\n'
2300                << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2301
2302   // Get the MachineFunction which holds the current MBB.  This is used when
2303   // inserting any additional MBBs necessary to represent the switch.
2304   MachineFunction *CurMF = FuncInfo.MF;
2305
2306   // Figure out which block is immediately after the current one.
2307   MachineFunction::iterator BBI = CR.CaseBB;
2308   ++BBI;
2309
2310   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2311
2312   // Create a new basic block to hold the code for loading the address
2313   // of the jump table, and jumping to it.  Update successor information;
2314   // we will either branch to the default case for the switch, or the jump
2315   // table.
2316   MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2317   CurMF->insert(BBI, JumpTableBB);
2318
2319   addSuccessorWithWeight(CR.CaseBB, Default);
2320   addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2321
2322   // Build a vector of destination BBs, corresponding to each target
2323   // of the jump table. If the value of the jump table slot corresponds to
2324   // a case statement, push the case's BB onto the vector, otherwise, push
2325   // the default BB.
2326   std::vector<MachineBasicBlock*> DestBBs;
2327   APInt TEI = First;
2328   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2329     const APInt &Low = I->Low->getValue();
2330     const APInt &High = I->High->getValue();
2331
2332     if (Low.sle(TEI) && TEI.sle(High)) {
2333       DestBBs.push_back(I->BB);
2334       if (TEI==High)
2335         ++I;
2336     } else {
2337       DestBBs.push_back(Default);
2338     }
2339   }
2340
2341   // Calculate weight for each unique destination in CR.
2342   DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
2343   if (FuncInfo.BPI) {
2344     for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2345       DestWeights[I->BB] += I->ExtraWeight;
2346   }
2347
2348   // Update successor info. Add one edge to each unique successor.
2349   BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2350   for (MachineBasicBlock *DestBB : DestBBs) {
2351     if (!SuccsHandled[DestBB->getNumber()]) {
2352       SuccsHandled[DestBB->getNumber()] = true;
2353       auto I = DestWeights.find(DestBB);
2354       addSuccessorWithWeight(JumpTableBB, DestBB,
2355                              I != DestWeights.end() ? I->second : 0);
2356     }
2357   }
2358
2359   // Create a jump table index for this jump table.
2360   unsigned JTEncoding = TLI.getJumpTableEncoding();
2361   unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2362                        ->createJumpTableIndex(DestBBs);
2363
2364   // Set the jump table information so that we can codegen it as a second
2365   // MachineBasicBlock
2366   JumpTable JT(-1U, JTI, JumpTableBB, Default);
2367   JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2368   if (CR.CaseBB == SwitchBB)
2369     visitJumpTableHeader(JT, JTH, SwitchBB);
2370
2371   JTCases.push_back(JumpTableBlock(JTH, JT));
2372   return true;
2373 }
2374
2375 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2376 /// 2 subtrees.
2377 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2378                                                   CaseRecVector& WorkList,
2379                                                   const Value* SV,
2380                                                   MachineBasicBlock* SwitchBB) {
2381   Case& FrontCase = *CR.Range.first;
2382   Case& BackCase  = *(CR.Range.second-1);
2383
2384   // Size is the number of Cases represented by this range.
2385   unsigned Size = CR.Range.second - CR.Range.first;
2386
2387   const APInt &First = FrontCase.Low->getValue();
2388   const APInt &Last  = BackCase.High->getValue();
2389   double FMetric = 0;
2390   CaseItr Pivot = CR.Range.first + Size/2;
2391
2392   // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2393   // (heuristically) allow us to emit JumpTable's later.
2394   APInt TSize(First.getBitWidth(), 0);
2395   for (CaseItr I = CR.Range.first, E = CR.Range.second;
2396        I!=E; ++I)
2397     TSize += I->size();
2398
2399   APInt LSize = FrontCase.size();
2400   APInt RSize = TSize-LSize;
2401   DEBUG(dbgs() << "Selecting best pivot: \n"
2402                << "First: " << First << ", Last: " << Last <<'\n'
2403                << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2404   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2405   for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2406        J!=E; ++I, ++J) {
2407     const APInt &LEnd = I->High->getValue();
2408     const APInt &RBegin = J->Low->getValue();
2409     APInt Range = ComputeRange(LEnd, RBegin);
2410     assert((Range - 2ULL).isNonNegative() &&
2411            "Invalid case distance");
2412     // Use volatile double here to avoid excess precision issues on some hosts,
2413     // e.g. that use 80-bit X87 registers.
2414     // Only consider the density of sub-ranges that actually have sufficient
2415     // entries to be lowered as a jump table.
2416     volatile double LDensity =
2417         LSize.ult(TLI.getMinimumJumpTableEntries())
2418             ? 0.0
2419             : LSize.roundToDouble() / (LEnd - First + 1ULL).roundToDouble();
2420     volatile double RDensity =
2421         RSize.ult(TLI.getMinimumJumpTableEntries())
2422             ? 0.0
2423             : RSize.roundToDouble() / (Last - RBegin + 1ULL).roundToDouble();
2424     volatile double Metric = Range.logBase2() * (LDensity + RDensity);
2425     // Should always split in some non-trivial place
2426     DEBUG(dbgs() <<"=>Step\n"
2427                  << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2428                  << "LDensity: " << LDensity
2429                  << ", RDensity: " << RDensity << '\n'
2430                  << "Metric: " << Metric << '\n');
2431     if (FMetric < Metric) {
2432       Pivot = J;
2433       FMetric = Metric;
2434       DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2435     }
2436
2437     LSize += J->size();
2438     RSize -= J->size();
2439   }
2440
2441   if (FMetric == 0 || !areJTsAllowed(TLI))
2442     Pivot = CR.Range.first + Size/2;
2443   splitSwitchCase(CR, Pivot, WorkList, SV, SwitchBB);
2444   return true;
2445 }
2446
2447 void SelectionDAGBuilder::splitSwitchCase(CaseRec &CR, CaseItr Pivot,
2448                                           CaseRecVector &WorkList,
2449                                           const Value *SV,
2450                                           MachineBasicBlock *SwitchBB) {
2451   // Get the MachineFunction which holds the current MBB.  This is used when
2452   // inserting any additional MBBs necessary to represent the switch.
2453   MachineFunction *CurMF = FuncInfo.MF;
2454
2455   // Figure out which block is immediately after the current one.
2456   MachineFunction::iterator BBI = CR.CaseBB;
2457   ++BBI;
2458
2459   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2460
2461   CaseRange LHSR(CR.Range.first, Pivot);
2462   CaseRange RHSR(Pivot, CR.Range.second);
2463   const ConstantInt *C = Pivot->Low;
2464   MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr;
2465
2466   // We know that we branch to the LHS if the Value being switched on is
2467   // less than the Pivot value, C.  We use this to optimize our binary
2468   // tree a bit, by recognizing that if SV is greater than or equal to the
2469   // LHS's Case Value, and that Case Value is exactly one less than the
2470   // Pivot's Value, then we can branch directly to the LHS's Target,
2471   // rather than creating a leaf node for it.
2472   if ((LHSR.second - LHSR.first) == 1 && LHSR.first->High == CR.GE &&
2473       C->getValue() == (CR.GE->getValue() + 1LL)) {
2474     TrueBB = LHSR.first->BB;
2475   } else {
2476     TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2477     CurMF->insert(BBI, TrueBB);
2478     WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2479
2480     // Put SV in a virtual register to make it available from the new blocks.
2481     ExportFromCurrentBlock(SV);
2482   }
2483
2484   // Similar to the optimization above, if the Value being switched on is
2485   // known to be less than the Constant CR.LT, and the current Case Value
2486   // is CR.LT - 1, then we can branch directly to the target block for
2487   // the current Case Value, rather than emitting a RHS leaf node for it.
2488   if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2489       RHSR.first->Low->getValue() == (CR.LT->getValue() - 1LL)) {
2490     FalseBB = RHSR.first->BB;
2491   } else {
2492     FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2493     CurMF->insert(BBI, FalseBB);
2494     WorkList.push_back(CaseRec(FalseBB, CR.LT, C, RHSR));
2495
2496     // Put SV in a virtual register to make it available from the new blocks.
2497     ExportFromCurrentBlock(SV);
2498   }
2499
2500   // Create a CaseBlock record representing a conditional branch to
2501   // the LHS node if the value being switched on SV is less than C.
2502   // Otherwise, branch to LHS.
2503   CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB);
2504
2505   if (CR.CaseBB == SwitchBB)
2506     visitSwitchCase(CB, SwitchBB);
2507   else
2508     SwitchCases.push_back(CB);
2509 }
2510
2511 /// handleBitTestsSwitchCase - if current case range has few destination and
2512 /// range span less, than machine word bitwidth, encode case range into series
2513 /// of masks and emit bit tests with these masks.
2514 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2515                                                    CaseRecVector& WorkList,
2516                                                    const Value* SV,
2517                                                    MachineBasicBlock* Default,
2518                                                    MachineBasicBlock* SwitchBB) {
2519   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2520   EVT PTy = TLI.getPointerTy();
2521   unsigned IntPtrBits = PTy.getSizeInBits();
2522
2523   Case& FrontCase = *CR.Range.first;
2524   Case& BackCase  = *(CR.Range.second-1);
2525
2526   // Get the MachineFunction which holds the current MBB.  This is used when
2527   // inserting any additional MBBs necessary to represent the switch.
2528   MachineFunction *CurMF = FuncInfo.MF;
2529
2530   // If target does not have legal shift left, do not emit bit tests at all.
2531   if (!TLI.isOperationLegal(ISD::SHL, PTy))
2532     return false;
2533
2534   size_t numCmps = 0;
2535   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2536     // Single case counts one, case range - two.
2537     numCmps += (I->Low == I->High ? 1 : 2);
2538   }
2539
2540   // Count unique destinations
2541   SmallSet<MachineBasicBlock*, 4> Dests;
2542   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2543     Dests.insert(I->BB);
2544     if (Dests.size() > 3)
2545       // Don't bother the code below, if there are too much unique destinations
2546       return false;
2547   }
2548   DEBUG(dbgs() << "Total number of unique destinations: "
2549         << Dests.size() << '\n'
2550         << "Total number of comparisons: " << numCmps << '\n');
2551
2552   // Compute span of values.
2553   const APInt& minValue = FrontCase.Low->getValue();
2554   const APInt& maxValue = BackCase.High->getValue();
2555   APInt cmpRange = maxValue - minValue;
2556
2557   DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2558                << "Low bound: " << minValue << '\n'
2559                << "High bound: " << maxValue << '\n');
2560
2561   if (cmpRange.uge(IntPtrBits) ||
2562       (!(Dests.size() == 1 && numCmps >= 3) &&
2563        !(Dests.size() == 2 && numCmps >= 5) &&
2564        !(Dests.size() >= 3 && numCmps >= 6)))
2565     return false;
2566
2567   DEBUG(dbgs() << "Emitting bit tests\n");
2568   APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2569
2570   // Optimize the case where all the case values fit in a
2571   // word without having to subtract minValue. In this case,
2572   // we can optimize away the subtraction.
2573   if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2574     cmpRange = maxValue;
2575   } else {
2576     lowBound = minValue;
2577   }
2578
2579   CaseBitsVector CasesBits;
2580   unsigned i, count = 0;
2581
2582   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2583     MachineBasicBlock* Dest = I->BB;
2584     for (i = 0; i < count; ++i)
2585       if (Dest == CasesBits[i].BB)
2586         break;
2587
2588     if (i == count) {
2589       assert((count < 3) && "Too much destinations to test!");
2590       CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
2591       count++;
2592     }
2593
2594     const APInt& lowValue = I->Low->getValue();
2595     const APInt& highValue = I->High->getValue();
2596
2597     uint64_t lo = (lowValue - lowBound).getZExtValue();
2598     uint64_t hi = (highValue - lowBound).getZExtValue();
2599     CasesBits[i].ExtraWeight += I->ExtraWeight;
2600
2601     for (uint64_t j = lo; j <= hi; j++) {
2602       CasesBits[i].Mask |=  1ULL << j;
2603       CasesBits[i].Bits++;
2604     }
2605
2606   }
2607   std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2608
2609   BitTestInfo BTC;
2610
2611   // Figure out which block is immediately after the current one.
2612   MachineFunction::iterator BBI = CR.CaseBB;
2613   ++BBI;
2614
2615   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2616
2617   DEBUG(dbgs() << "Cases:\n");
2618   for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2619     DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2620                  << ", Bits: " << CasesBits[i].Bits
2621                  << ", BB: " << CasesBits[i].BB << '\n');
2622
2623     MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2624     CurMF->insert(BBI, CaseBB);
2625     BTC.push_back(BitTestCase(CasesBits[i].Mask,
2626                               CaseBB,
2627                               CasesBits[i].BB, CasesBits[i].ExtraWeight));
2628
2629     // Put SV in a virtual register to make it available from the new blocks.
2630     ExportFromCurrentBlock(SV);
2631   }
2632
2633   BitTestBlock BTB(lowBound, cmpRange, SV,
2634                    -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2635                    CR.CaseBB, Default, std::move(BTC));
2636
2637   if (CR.CaseBB == SwitchBB)
2638     visitBitTestHeader(BTB, SwitchBB);
2639
2640   BitTestCases.push_back(std::move(BTB));
2641
2642   return true;
2643 }
2644
2645 void SelectionDAGBuilder::Clusterify(CaseVector &Cases, const SwitchInst *SI) {
2646   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2647
2648   // Extract cases from the switch and sort them.
2649   typedef std::pair<const ConstantInt*, unsigned> CasePair;
2650   std::vector<CasePair> Sorted;
2651   Sorted.reserve(SI->getNumCases());
2652   for (auto I : SI->cases())
2653     Sorted.push_back(std::make_pair(I.getCaseValue(), I.getSuccessorIndex()));
2654   std::sort(Sorted.begin(), Sorted.end(), [](CasePair a, CasePair b) {
2655     return a.first->getValue().slt(b.first->getValue());
2656   });
2657
2658   // Merge adjacent cases with the same destination, build Cases vector.
2659   assert(Cases.empty() && "Cases should be empty before Clusterify;");
2660   Cases.reserve(SI->getNumCases());
2661   MachineBasicBlock *PreviousSucc = nullptr;
2662   for (CasePair &CP : Sorted) {
2663     const ConstantInt *CaseVal = CP.first;
2664     unsigned SuccIndex = CP.second;
2665     MachineBasicBlock *Succ = FuncInfo.MBBMap[SI->getSuccessor(SuccIndex)];
2666     uint32_t Weight = BPI ? BPI->getEdgeWeight(SI->getParent(), SuccIndex) : 0;
2667
2668     if (PreviousSucc == Succ &&
2669         (CaseVal->getValue() - Cases.back().High->getValue()) == 1) {
2670       // If this case has the same successor and is a neighbour, merge it into
2671       // the previous cluster.
2672       Cases.back().High = CaseVal;
2673       Cases.back().ExtraWeight += Weight;
2674     } else {
2675       Cases.push_back(Case(CaseVal, CaseVal, Succ, Weight));
2676     }
2677
2678     PreviousSucc = Succ;
2679   }
2680
2681   DEBUG({
2682       size_t numCmps = 0;
2683       for (auto &I : Cases)
2684         // A range counts double, since it requires two compares.
2685         numCmps += I.Low != I.High ? 2 : 1;
2686
2687       dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2688              << ". Total compares: " << numCmps << '\n';
2689     });
2690 }
2691
2692 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2693                                            MachineBasicBlock *Last) {
2694   // Update JTCases.
2695   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2696     if (JTCases[i].first.HeaderBB == First)
2697       JTCases[i].first.HeaderBB = Last;
2698
2699   // Update BitTestCases.
2700   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2701     if (BitTestCases[i].Parent == First)
2702       BitTestCases[i].Parent = Last;
2703 }
2704
2705 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2706   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2707
2708   // Create a vector of Cases, sorted so that we can efficiently create a binary
2709   // search tree from them.
2710   CaseVector Cases;
2711   Clusterify(Cases, &SI);
2712
2713   // Get the default destination MBB.
2714   MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2715
2716   if (isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()) &&
2717       !Cases.empty()) {
2718     // Replace an unreachable default destination with the most popular case
2719     // destination.
2720     DenseMap<const BasicBlock *, unsigned> Popularity;
2721     unsigned MaxPop = 0;
2722     const BasicBlock *MaxBB = nullptr;
2723     for (auto I : SI.cases()) {
2724       const BasicBlock *BB = I.getCaseSuccessor();
2725       if (++Popularity[BB] > MaxPop) {
2726         MaxPop = Popularity[BB];
2727         MaxBB = BB;
2728       }
2729     }
2730
2731     // Set new default.
2732     assert(MaxPop > 0);
2733     assert(MaxBB);
2734     Default = FuncInfo.MBBMap[MaxBB];
2735
2736     // Remove cases that were pointing to the destination that is now the default.
2737     Cases.erase(std::remove_if(Cases.begin(), Cases.end(),
2738                                [&](const Case &C) { return C.BB == Default; }),
2739                 Cases.end());
2740   }
2741
2742   // If there is only the default destination, go there directly.
2743   if (Cases.empty()) {
2744     // Update machine-CFG edges.
2745     SwitchMBB->addSuccessor(Default);
2746
2747     // If this is not a fall-through branch, emit the branch.
2748     if (Default != NextBlock(SwitchMBB)) {
2749       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2750                               getControlRoot(), DAG.getBasicBlock(Default)));
2751     }
2752     return;
2753   }
2754
2755   // Get the Value to be switched on.
2756   const Value *SV = SI.getCondition();
2757
2758   // Push the initial CaseRec onto the worklist
2759   CaseRecVector WorkList;
2760   WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr,
2761                              CaseRange(Cases.begin(),Cases.end())));
2762
2763   while (!WorkList.empty()) {
2764     // Grab a record representing a case range to process off the worklist
2765     CaseRec CR = WorkList.back();
2766     WorkList.pop_back();
2767
2768     if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2769       continue;
2770
2771     // If the range has few cases (two or less) emit a series of specific
2772     // tests.
2773     if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2774       continue;
2775
2776     // If the switch has more than N blocks, and is at least 40% dense, and the
2777     // target supports indirect branches, then emit a jump table rather than
2778     // lowering the switch to a binary tree of conditional branches.
2779     // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
2780     if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2781       continue;
2782
2783     // Emit binary tree. We need to pick a pivot, and push left and right ranges
2784     // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2785     handleBTSplitSwitchCase(CR, WorkList, SV, SwitchMBB);
2786   }
2787 }
2788
2789 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2790   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2791
2792   // Update machine-CFG edges with unique successors.
2793   SmallSet<BasicBlock*, 32> Done;
2794   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2795     BasicBlock *BB = I.getSuccessor(i);
2796     bool Inserted = Done.insert(BB).second;
2797     if (!Inserted)
2798         continue;
2799
2800     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2801     addSuccessorWithWeight(IndirectBrMBB, Succ);
2802   }
2803
2804   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2805                           MVT::Other, getControlRoot(),
2806                           getValue(I.getAddress())));
2807 }
2808
2809 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2810   if (DAG.getTarget().Options.TrapUnreachable)
2811     DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2812 }
2813
2814 void SelectionDAGBuilder::visitFSub(const User &I) {
2815   // -0.0 - X --> fneg
2816   Type *Ty = I.getType();
2817   if (isa<Constant>(I.getOperand(0)) &&
2818       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2819     SDValue Op2 = getValue(I.getOperand(1));
2820     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2821                              Op2.getValueType(), Op2));
2822     return;
2823   }
2824
2825   visitBinary(I, ISD::FSUB);
2826 }
2827
2828 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2829   SDValue Op1 = getValue(I.getOperand(0));
2830   SDValue Op2 = getValue(I.getOperand(1));
2831
2832   bool nuw = false;
2833   bool nsw = false;
2834   bool exact = false;
2835   if (const OverflowingBinaryOperator *OFBinOp =
2836           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2837     nuw = OFBinOp->hasNoUnsignedWrap();
2838     nsw = OFBinOp->hasNoSignedWrap();
2839   }
2840   if (const PossiblyExactOperator *ExactOp =
2841           dyn_cast<const PossiblyExactOperator>(&I))
2842     exact = ExactOp->isExact();
2843
2844   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2845                                      Op1, Op2, nuw, nsw, exact);
2846   setValue(&I, BinNodeValue);
2847 }
2848
2849 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2850   SDValue Op1 = getValue(I.getOperand(0));
2851   SDValue Op2 = getValue(I.getOperand(1));
2852
2853   EVT ShiftTy =
2854       DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType());
2855
2856   // Coerce the shift amount to the right type if we can.
2857   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2858     unsigned ShiftSize = ShiftTy.getSizeInBits();
2859     unsigned Op2Size = Op2.getValueType().getSizeInBits();
2860     SDLoc DL = getCurSDLoc();
2861
2862     // If the operand is smaller than the shift count type, promote it.
2863     if (ShiftSize > Op2Size)
2864       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2865
2866     // If the operand is larger than the shift count type but the shift
2867     // count type has enough bits to represent any shift value, truncate
2868     // it now. This is a common case and it exposes the truncate to
2869     // optimization early.
2870     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2871       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2872     // Otherwise we'll need to temporarily settle for some other convenient
2873     // type.  Type legalization will make adjustments once the shiftee is split.
2874     else
2875       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2876   }
2877
2878   bool nuw = false;
2879   bool nsw = false;
2880   bool exact = false;
2881
2882   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2883
2884     if (const OverflowingBinaryOperator *OFBinOp =
2885             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2886       nuw = OFBinOp->hasNoUnsignedWrap();
2887       nsw = OFBinOp->hasNoSignedWrap();
2888     }
2889     if (const PossiblyExactOperator *ExactOp =
2890             dyn_cast<const PossiblyExactOperator>(&I))
2891       exact = ExactOp->isExact();
2892   }
2893
2894   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2895                             nuw, nsw, exact);
2896   setValue(&I, Res);
2897 }
2898
2899 void SelectionDAGBuilder::visitSDiv(const User &I) {
2900   SDValue Op1 = getValue(I.getOperand(0));
2901   SDValue Op2 = getValue(I.getOperand(1));
2902
2903   // Turn exact SDivs into multiplications.
2904   // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2905   // exact bit.
2906   if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2907       !isa<ConstantSDNode>(Op1) &&
2908       isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2909     setValue(&I, DAG.getTargetLoweringInfo()
2910                      .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG));
2911   else
2912     setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(),
2913                              Op1, Op2));
2914 }
2915
2916 void SelectionDAGBuilder::visitICmp(const User &I) {
2917   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2918   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2919     predicate = IC->getPredicate();
2920   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2921     predicate = ICmpInst::Predicate(IC->getPredicate());
2922   SDValue Op1 = getValue(I.getOperand(0));
2923   SDValue Op2 = getValue(I.getOperand(1));
2924   ISD::CondCode Opcode = getICmpCondCode(predicate);
2925
2926   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2927   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2928 }
2929
2930 void SelectionDAGBuilder::visitFCmp(const User &I) {
2931   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2932   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2933     predicate = FC->getPredicate();
2934   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2935     predicate = FCmpInst::Predicate(FC->getPredicate());
2936   SDValue Op1 = getValue(I.getOperand(0));
2937   SDValue Op2 = getValue(I.getOperand(1));
2938   ISD::CondCode Condition = getFCmpCondCode(predicate);
2939   if (TM.Options.NoNaNsFPMath)
2940     Condition = getFCmpCodeWithoutNaN(Condition);
2941   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2942   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2943 }
2944
2945 void SelectionDAGBuilder::visitSelect(const User &I) {
2946   SmallVector<EVT, 4> ValueVTs;
2947   ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs);
2948   unsigned NumValues = ValueVTs.size();
2949   if (NumValues == 0) return;
2950
2951   SmallVector<SDValue, 4> Values(NumValues);
2952   SDValue Cond     = getValue(I.getOperand(0));
2953   SDValue TrueVal  = getValue(I.getOperand(1));
2954   SDValue FalseVal = getValue(I.getOperand(2));
2955   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2956     ISD::VSELECT : ISD::SELECT;
2957
2958   for (unsigned i = 0; i != NumValues; ++i)
2959     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2960                             TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2961                             Cond,
2962                             SDValue(TrueVal.getNode(),
2963                                     TrueVal.getResNo() + i),
2964                             SDValue(FalseVal.getNode(),
2965                                     FalseVal.getResNo() + i));
2966
2967   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2968                            DAG.getVTList(ValueVTs), Values));
2969 }
2970
2971 void SelectionDAGBuilder::visitTrunc(const User &I) {
2972   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2973   SDValue N = getValue(I.getOperand(0));
2974   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2975   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2976 }
2977
2978 void SelectionDAGBuilder::visitZExt(const User &I) {
2979   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2980   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2981   SDValue N = getValue(I.getOperand(0));
2982   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2983   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2984 }
2985
2986 void SelectionDAGBuilder::visitSExt(const User &I) {
2987   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2988   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2989   SDValue N = getValue(I.getOperand(0));
2990   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2991   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2992 }
2993
2994 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2995   // FPTrunc is never a no-op cast, no need to check
2996   SDValue N = getValue(I.getOperand(0));
2997   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2998   EVT DestVT = TLI.getValueType(I.getType());
2999   setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), DestVT, N,
3000                            DAG.getTargetConstant(0, TLI.getPointerTy())));
3001 }
3002
3003 void SelectionDAGBuilder::visitFPExt(const User &I) {
3004   // FPExt is never a no-op cast, no need to check
3005   SDValue N = getValue(I.getOperand(0));
3006   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3007   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3008 }
3009
3010 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3011   // FPToUI is never a no-op cast, no need to check
3012   SDValue N = getValue(I.getOperand(0));
3013   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3014   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3015 }
3016
3017 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3018   // FPToSI is never a no-op cast, no need to check
3019   SDValue N = getValue(I.getOperand(0));
3020   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3021   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3022 }
3023
3024 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3025   // UIToFP is never a no-op cast, no need to check
3026   SDValue N = getValue(I.getOperand(0));
3027   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3028   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3029 }
3030
3031 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3032   // SIToFP is never a no-op cast, no need to check
3033   SDValue N = getValue(I.getOperand(0));
3034   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3035   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3036 }
3037
3038 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3039   // What to do depends on the size of the integer and the size of the pointer.
3040   // We can either truncate, zero extend, or no-op, accordingly.
3041   SDValue N = getValue(I.getOperand(0));
3042   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3043   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3044 }
3045
3046 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3047   // What to do depends on the size of the integer and the size of the pointer.
3048   // We can either truncate, zero extend, or no-op, accordingly.
3049   SDValue N = getValue(I.getOperand(0));
3050   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3051   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3052 }
3053
3054 void SelectionDAGBuilder::visitBitCast(const User &I) {
3055   SDValue N = getValue(I.getOperand(0));
3056   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3057
3058   // BitCast assures us that source and destination are the same size so this is
3059   // either a BITCAST or a no-op.
3060   if (DestVT != N.getValueType())
3061     setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(),
3062                              DestVT, N)); // convert types.
3063   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3064   // might fold any kind of constant expression to an integer constant and that
3065   // is not what we are looking for. Only regcognize a bitcast of a genuine
3066   // constant integer as an opaque constant.
3067   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3068     setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false,
3069                                  /*isOpaque*/true));
3070   else
3071     setValue(&I, N);            // noop cast.
3072 }
3073
3074 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3075   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3076   const Value *SV = I.getOperand(0);
3077   SDValue N = getValue(SV);
3078   EVT DestVT = TLI.getValueType(I.getType());
3079
3080   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3081   unsigned DestAS = I.getType()->getPointerAddressSpace();
3082
3083   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3084     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3085
3086   setValue(&I, N);
3087 }
3088
3089 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3090   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3091   SDValue InVec = getValue(I.getOperand(0));
3092   SDValue InVal = getValue(I.getOperand(1));
3093   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)),
3094                                      getCurSDLoc(), TLI.getVectorIdxTy());
3095   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3096                            TLI.getValueType(I.getType()), InVec, InVal, InIdx));
3097 }
3098
3099 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3100   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3101   SDValue InVec = getValue(I.getOperand(0));
3102   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)),
3103                                      getCurSDLoc(), TLI.getVectorIdxTy());
3104   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3105                            TLI.getValueType(I.getType()), InVec, InIdx));
3106 }
3107
3108 // Utility for visitShuffleVector - Return true if every element in Mask,
3109 // beginning from position Pos and ending in Pos+Size, falls within the
3110 // specified sequential range [L, L+Pos). or is undef.
3111 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
3112                                 unsigned Pos, unsigned Size, int Low) {
3113   for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3114     if (Mask[i] >= 0 && Mask[i] != Low)
3115       return false;
3116   return true;
3117 }
3118
3119 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3120   SDValue Src1 = getValue(I.getOperand(0));
3121   SDValue Src2 = getValue(I.getOperand(1));
3122
3123   SmallVector<int, 8> Mask;
3124   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3125   unsigned MaskNumElts = Mask.size();
3126
3127   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3128   EVT VT = TLI.getValueType(I.getType());
3129   EVT SrcVT = Src1.getValueType();
3130   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3131
3132   if (SrcNumElts == MaskNumElts) {
3133     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3134                                       &Mask[0]));
3135     return;
3136   }
3137
3138   // Normalize the shuffle vector since mask and vector length don't match.
3139   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
3140     // Mask is longer than the source vectors and is a multiple of the source
3141     // vectors.  We can use concatenate vector to make the mask and vectors
3142     // lengths match.
3143     if (SrcNumElts*2 == MaskNumElts) {
3144       // First check for Src1 in low and Src2 in high
3145       if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
3146           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
3147         // The shuffle is concatenating two vectors together.
3148         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3149                                  VT, Src1, Src2));
3150         return;
3151       }
3152       // Then check for Src2 in low and Src1 in high
3153       if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
3154           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
3155         // The shuffle is concatenating two vectors together.
3156         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3157                                  VT, Src2, Src1));
3158         return;
3159       }
3160     }
3161
3162     // Pad both vectors with undefs to make them the same length as the mask.
3163     unsigned NumConcat = MaskNumElts / SrcNumElts;
3164     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
3165     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
3166     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3167
3168     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3169     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3170     MOps1[0] = Src1;
3171     MOps2[0] = Src2;
3172
3173     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3174                                                   getCurSDLoc(), VT, MOps1);
3175     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3176                                                   getCurSDLoc(), VT, MOps2);
3177
3178     // Readjust mask for new input vector length.
3179     SmallVector<int, 8> MappedOps;
3180     for (unsigned i = 0; i != MaskNumElts; ++i) {
3181       int Idx = Mask[i];
3182       if (Idx >= (int)SrcNumElts)
3183         Idx -= SrcNumElts - MaskNumElts;
3184       MappedOps.push_back(Idx);
3185     }
3186
3187     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3188                                       &MappedOps[0]));
3189     return;
3190   }
3191
3192   if (SrcNumElts > MaskNumElts) {
3193     // Analyze the access pattern of the vector to see if we can extract
3194     // two subvectors and do the shuffle. The analysis is done by calculating
3195     // the range of elements the mask access on both vectors.
3196     int MinRange[2] = { static_cast<int>(SrcNumElts),
3197                         static_cast<int>(SrcNumElts)};
3198     int MaxRange[2] = {-1, -1};
3199
3200     for (unsigned i = 0; i != MaskNumElts; ++i) {
3201       int Idx = Mask[i];
3202       unsigned Input = 0;
3203       if (Idx < 0)
3204         continue;
3205
3206       if (Idx >= (int)SrcNumElts) {
3207         Input = 1;
3208         Idx -= SrcNumElts;
3209       }
3210       if (Idx > MaxRange[Input])
3211         MaxRange[Input] = Idx;
3212       if (Idx < MinRange[Input])
3213         MinRange[Input] = Idx;
3214     }
3215
3216     // Check if the access is smaller than the vector size and can we find
3217     // a reasonable extract index.
3218     int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
3219                                    // Extract.
3220     int StartIdx[2];  // StartIdx to extract from
3221     for (unsigned Input = 0; Input < 2; ++Input) {
3222       if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
3223         RangeUse[Input] = 0; // Unused
3224         StartIdx[Input] = 0;
3225         continue;
3226       }
3227
3228       // Find a good start index that is a multiple of the mask length. Then
3229       // see if the rest of the elements are in range.
3230       StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
3231       if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
3232           StartIdx[Input] + MaskNumElts <= SrcNumElts)
3233         RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3234     }
3235
3236     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3237       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3238       return;
3239     }
3240     if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3241       // Extract appropriate subvector and generate a vector shuffle
3242       for (unsigned Input = 0; Input < 2; ++Input) {
3243         SDValue &Src = Input == 0 ? Src1 : Src2;
3244         if (RangeUse[Input] == 0)
3245           Src = DAG.getUNDEF(VT);
3246         else
3247           Src = DAG.getNode(
3248               ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, Src,
3249               DAG.getConstant(StartIdx[Input], TLI.getVectorIdxTy()));
3250       }
3251
3252       // Calculate new mask.
3253       SmallVector<int, 8> MappedOps;
3254       for (unsigned i = 0; i != MaskNumElts; ++i) {
3255         int Idx = Mask[i];
3256         if (Idx >= 0) {
3257           if (Idx < (int)SrcNumElts)
3258             Idx -= StartIdx[0];
3259           else
3260             Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3261         }
3262         MappedOps.push_back(Idx);
3263       }
3264
3265       setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3266                                         &MappedOps[0]));
3267       return;
3268     }
3269   }
3270
3271   // We can't use either concat vectors or extract subvectors so fall back to
3272   // replacing the shuffle with extract and build vector.
3273   // to insert and build vector.
3274   EVT EltVT = VT.getVectorElementType();
3275   EVT IdxVT = TLI.getVectorIdxTy();
3276   SmallVector<SDValue,8> Ops;
3277   for (unsigned i = 0; i != MaskNumElts; ++i) {
3278     int Idx = Mask[i];
3279     SDValue Res;
3280
3281     if (Idx < 0) {
3282       Res = DAG.getUNDEF(EltVT);
3283     } else {
3284       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3285       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3286
3287       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3288                         EltVT, Src, DAG.getConstant(Idx, IdxVT));
3289     }
3290
3291     Ops.push_back(Res);
3292   }
3293
3294   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops));
3295 }
3296
3297 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3298   const Value *Op0 = I.getOperand(0);
3299   const Value *Op1 = I.getOperand(1);
3300   Type *AggTy = I.getType();
3301   Type *ValTy = Op1->getType();
3302   bool IntoUndef = isa<UndefValue>(Op0);
3303   bool FromUndef = isa<UndefValue>(Op1);
3304
3305   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3306
3307   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3308   SmallVector<EVT, 4> AggValueVTs;
3309   ComputeValueVTs(TLI, AggTy, AggValueVTs);
3310   SmallVector<EVT, 4> ValValueVTs;
3311   ComputeValueVTs(TLI, ValTy, ValValueVTs);
3312
3313   unsigned NumAggValues = AggValueVTs.size();
3314   unsigned NumValValues = ValValueVTs.size();
3315   SmallVector<SDValue, 4> Values(NumAggValues);
3316
3317   // Ignore an insertvalue that produces an empty object
3318   if (!NumAggValues) {
3319     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3320     return;
3321   }
3322
3323   SDValue Agg = getValue(Op0);
3324   unsigned i = 0;
3325   // Copy the beginning value(s) from the original aggregate.
3326   for (; i != LinearIndex; ++i)
3327     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3328                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3329   // Copy values from the inserted value(s).
3330   if (NumValValues) {
3331     SDValue Val = getValue(Op1);
3332     for (; i != LinearIndex + NumValValues; ++i)
3333       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3334                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3335   }
3336   // Copy remaining value(s) from the original aggregate.
3337   for (; i != NumAggValues; ++i)
3338     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3339                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3340
3341   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3342                            DAG.getVTList(AggValueVTs), Values));
3343 }
3344
3345 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3346   const Value *Op0 = I.getOperand(0);
3347   Type *AggTy = Op0->getType();
3348   Type *ValTy = I.getType();
3349   bool OutOfUndef = isa<UndefValue>(Op0);
3350
3351   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3352
3353   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3354   SmallVector<EVT, 4> ValValueVTs;
3355   ComputeValueVTs(TLI, ValTy, ValValueVTs);
3356
3357   unsigned NumValValues = ValValueVTs.size();
3358
3359   // Ignore a extractvalue that produces an empty object
3360   if (!NumValValues) {
3361     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3362     return;
3363   }
3364
3365   SmallVector<SDValue, 4> Values(NumValValues);
3366
3367   SDValue Agg = getValue(Op0);
3368   // Copy out the selected value(s).
3369   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3370     Values[i - LinearIndex] =
3371       OutOfUndef ?
3372         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3373         SDValue(Agg.getNode(), Agg.getResNo() + i);
3374
3375   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3376                            DAG.getVTList(ValValueVTs), Values));
3377 }
3378
3379 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3380   Value *Op0 = I.getOperand(0);
3381   // Note that the pointer operand may be a vector of pointers. Take the scalar
3382   // element which holds a pointer.
3383   Type *Ty = Op0->getType()->getScalarType();
3384   unsigned AS = Ty->getPointerAddressSpace();
3385   SDValue N = getValue(Op0);
3386
3387   for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3388        OI != E; ++OI) {
3389     const Value *Idx = *OI;
3390     if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3391       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3392       if (Field) {
3393         // N = N + Offset
3394         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3395         N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3396                         DAG.getConstant(Offset, N.getValueType()));
3397       }
3398
3399       Ty = StTy->getElementType(Field);
3400     } else {
3401       Ty = cast<SequentialType>(Ty)->getElementType();
3402       MVT PtrTy = DAG.getTargetLoweringInfo().getPointerTy(AS);
3403       unsigned PtrSize = PtrTy.getSizeInBits();
3404       APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty));
3405
3406       // If this is a constant subscript, handle it quickly.
3407       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
3408         if (CI->isZero())
3409           continue;
3410         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
3411         SDValue OffsVal = DAG.getConstant(Offs, PtrTy);
3412         N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, OffsVal);
3413         continue;
3414       }
3415
3416       // N = N + Idx * ElementSize;
3417       SDValue IdxN = getValue(Idx);
3418
3419       // If the index is smaller or larger than intptr_t, truncate or extend
3420       // it.
3421       IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType());
3422
3423       // If this is a multiply by a power of two, turn it into a shl
3424       // immediately.  This is a very common case.
3425       if (ElementSize != 1) {
3426         if (ElementSize.isPowerOf2()) {
3427           unsigned Amt = ElementSize.logBase2();
3428           IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(),
3429                              N.getValueType(), IdxN,
3430                              DAG.getConstant(Amt, IdxN.getValueType()));
3431         } else {
3432           SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType());
3433           IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(),
3434                              N.getValueType(), IdxN, Scale);
3435         }
3436       }
3437
3438       N = DAG.getNode(ISD::ADD, getCurSDLoc(),
3439                       N.getValueType(), N, IdxN);
3440     }
3441   }
3442
3443   setValue(&I, N);
3444 }
3445
3446 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3447   // If this is a fixed sized alloca in the entry block of the function,
3448   // allocate it statically on the stack.
3449   if (FuncInfo.StaticAllocaMap.count(&I))
3450     return;   // getValue will auto-populate this.
3451
3452   Type *Ty = I.getAllocatedType();
3453   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3454   uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
3455   unsigned Align =
3456       std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty),
3457                I.getAlignment());
3458
3459   SDValue AllocSize = getValue(I.getArraySize());
3460
3461   EVT IntPtr = TLI.getPointerTy();
3462   if (AllocSize.getValueType() != IntPtr)
3463     AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr);
3464
3465   AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr,
3466                           AllocSize,
3467                           DAG.getConstant(TySize, IntPtr));
3468
3469   // Handle alignment.  If the requested alignment is less than or equal to
3470   // the stack alignment, ignore it.  If the size is greater than or equal to
3471   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3472   unsigned StackAlign =
3473       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3474   if (Align <= StackAlign)
3475     Align = 0;
3476
3477   // Round the size of the allocation up to the stack alignment size
3478   // by add SA-1 to the size.
3479   AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(),
3480                           AllocSize.getValueType(), AllocSize,
3481                           DAG.getIntPtrConstant(StackAlign-1));
3482
3483   // Mask out the low bits for alignment purposes.
3484   AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(),
3485                           AllocSize.getValueType(), AllocSize,
3486                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3487
3488   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3489   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3490   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops);
3491   setValue(&I, DSA);
3492   DAG.setRoot(DSA.getValue(1));
3493
3494   assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects());
3495 }
3496
3497 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3498   if (I.isAtomic())
3499     return visitAtomicLoad(I);
3500
3501   const Value *SV = I.getOperand(0);
3502   SDValue Ptr = getValue(SV);
3503
3504   Type *Ty = I.getType();
3505
3506   bool isVolatile = I.isVolatile();
3507   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3508   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3509   unsigned Alignment = I.getAlignment();
3510
3511   AAMDNodes AAInfo;
3512   I.getAAMetadata(AAInfo);
3513   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3514
3515   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3516   SmallVector<EVT, 4> ValueVTs;
3517   SmallVector<uint64_t, 4> Offsets;
3518   ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3519   unsigned NumValues = ValueVTs.size();
3520   if (NumValues == 0)
3521     return;
3522
3523   SDValue Root;
3524   bool ConstantMemory = false;
3525   if (isVolatile || NumValues > MaxParallelChains)
3526     // Serialize volatile loads with other side effects.
3527     Root = getRoot();
3528   else if (AA->pointsToConstantMemory(
3529              AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) {
3530     // Do not serialize (non-volatile) loads of constant memory with anything.
3531     Root = DAG.getEntryNode();
3532     ConstantMemory = true;
3533   } else {
3534     // Do not serialize non-volatile loads against each other.
3535     Root = DAG.getRoot();
3536   }
3537
3538   if (isVolatile)
3539     Root = TLI.prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG);
3540
3541   SmallVector<SDValue, 4> Values(NumValues);
3542   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3543                                           NumValues));
3544   EVT PtrVT = Ptr.getValueType();
3545   unsigned ChainI = 0;
3546   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3547     // Serializing loads here may result in excessive register pressure, and
3548     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3549     // could recover a bit by hoisting nodes upward in the chain by recognizing
3550     // they are side-effect free or do not alias. The optimizer should really
3551     // avoid this case by converting large object/array copies to llvm.memcpy
3552     // (MaxParallelChains should always remain as failsafe).
3553     if (ChainI == MaxParallelChains) {
3554       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3555       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
3556                                   makeArrayRef(Chains.data(), ChainI));
3557       Root = Chain;
3558       ChainI = 0;
3559     }
3560     SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(),
3561                             PtrVT, Ptr,
3562                             DAG.getConstant(Offsets[i], PtrVT));
3563     SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root,
3564                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3565                             isNonTemporal, isInvariant, Alignment, AAInfo,
3566                             Ranges);
3567
3568     Values[i] = L;
3569     Chains[ChainI] = L.getValue(1);
3570   }
3571
3572   if (!ConstantMemory) {
3573     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
3574                                 makeArrayRef(Chains.data(), ChainI));
3575     if (isVolatile)
3576       DAG.setRoot(Chain);
3577     else
3578       PendingLoads.push_back(Chain);
3579   }
3580
3581   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3582                            DAG.getVTList(ValueVTs), Values));
3583 }
3584
3585 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3586   if (I.isAtomic())
3587     return visitAtomicStore(I);
3588
3589   const Value *SrcV = I.getOperand(0);
3590   const Value *PtrV = I.getOperand(1);
3591
3592   SmallVector<EVT, 4> ValueVTs;
3593   SmallVector<uint64_t, 4> Offsets;
3594   ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(),
3595                   ValueVTs, &Offsets);
3596   unsigned NumValues = ValueVTs.size();
3597   if (NumValues == 0)
3598     return;
3599
3600   // Get the lowered operands. Note that we do this after
3601   // checking if NumResults is zero, because with zero results
3602   // the operands won't have values in the map.
3603   SDValue Src = getValue(SrcV);
3604   SDValue Ptr = getValue(PtrV);
3605
3606   SDValue Root = getRoot();
3607   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3608                                           NumValues));
3609   EVT PtrVT = Ptr.getValueType();
3610   bool isVolatile = I.isVolatile();
3611   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3612   unsigned Alignment = I.getAlignment();
3613
3614   AAMDNodes AAInfo;
3615   I.getAAMetadata(AAInfo);
3616
3617   unsigned ChainI = 0;
3618   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3619     // See visitLoad comments.
3620     if (ChainI == MaxParallelChains) {
3621       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
3622                                   makeArrayRef(Chains.data(), ChainI));
3623       Root = Chain;
3624       ChainI = 0;
3625     }
3626     SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr,
3627                               DAG.getConstant(Offsets[i], PtrVT));
3628     SDValue St = DAG.getStore(Root, getCurSDLoc(),
3629                               SDValue(Src.getNode(), Src.getResNo() + i),
3630                               Add, MachinePointerInfo(PtrV, Offsets[i]),
3631                               isVolatile, isNonTemporal, Alignment, AAInfo);
3632     Chains[ChainI] = St;
3633   }
3634
3635   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
3636                                   makeArrayRef(Chains.data(), ChainI));
3637   DAG.setRoot(StoreNode);
3638 }
3639
3640 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) {
3641   SDLoc sdl = getCurSDLoc();
3642
3643   // llvm.masked.store.*(Src0, Ptr, alignemt, Mask)
3644   Value  *PtrOperand = I.getArgOperand(1);
3645   SDValue Ptr = getValue(PtrOperand);
3646   SDValue Src0 = getValue(I.getArgOperand(0));
3647   SDValue Mask = getValue(I.getArgOperand(3));
3648   EVT VT = Src0.getValueType();
3649   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3650   if (!Alignment)
3651     Alignment = DAG.getEVTAlignment(VT);
3652
3653   AAMDNodes AAInfo;
3654   I.getAAMetadata(AAInfo);
3655
3656   MachineMemOperand *MMO =
3657     DAG.getMachineFunction().
3658     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3659                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3660                           Alignment, AAInfo);
3661   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3662                                          MMO, false);
3663   DAG.setRoot(StoreNode);
3664   setValue(&I, StoreNode);
3665 }
3666
3667 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) {
3668   SDLoc sdl = getCurSDLoc();
3669
3670   // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3671   Value  *PtrOperand = I.getArgOperand(0);
3672   SDValue Ptr = getValue(PtrOperand);
3673   SDValue Src0 = getValue(I.getArgOperand(3));
3674   SDValue Mask = getValue(I.getArgOperand(2));
3675
3676   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3677   EVT VT = TLI.getValueType(I.getType());
3678   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3679   if (!Alignment)
3680     Alignment = DAG.getEVTAlignment(VT);
3681
3682   AAMDNodes AAInfo;
3683   I.getAAMetadata(AAInfo);
3684   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3685
3686   SDValue InChain = DAG.getRoot();
3687   if (AA->pointsToConstantMemory(
3688       AliasAnalysis::Location(PtrOperand,
3689                               AA->getTypeStoreSize(I.getType()),
3690                               AAInfo))) {
3691     // Do not serialize (non-volatile) loads of constant memory with anything.
3692     InChain = DAG.getEntryNode();
3693   }
3694
3695   MachineMemOperand *MMO =
3696     DAG.getMachineFunction().
3697     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3698                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
3699                           Alignment, AAInfo, Ranges);
3700
3701   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
3702                                    ISD::NON_EXTLOAD);
3703   SDValue OutChain = Load.getValue(1);
3704   DAG.setRoot(OutChain);
3705   setValue(&I, Load);
3706 }
3707
3708 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3709   SDLoc dl = getCurSDLoc();
3710   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3711   AtomicOrdering FailureOrder = I.getFailureOrdering();
3712   SynchronizationScope Scope = I.getSynchScope();
3713
3714   SDValue InChain = getRoot();
3715
3716   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
3717   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
3718   SDValue L = DAG.getAtomicCmpSwap(
3719       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
3720       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
3721       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
3722       /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
3723
3724   SDValue OutChain = L.getValue(2);
3725
3726   setValue(&I, L);
3727   DAG.setRoot(OutChain);
3728 }
3729
3730 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3731   SDLoc dl = getCurSDLoc();
3732   ISD::NodeType NT;
3733   switch (I.getOperation()) {
3734   default: llvm_unreachable("Unknown atomicrmw operation");
3735   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3736   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3737   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3738   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3739   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3740   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3741   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3742   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3743   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3744   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3745   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3746   }
3747   AtomicOrdering Order = I.getOrdering();
3748   SynchronizationScope Scope = I.getSynchScope();
3749
3750   SDValue InChain = getRoot();
3751
3752   SDValue L =
3753     DAG.getAtomic(NT, dl,
3754                   getValue(I.getValOperand()).getSimpleValueType(),
3755                   InChain,
3756                   getValue(I.getPointerOperand()),
3757                   getValue(I.getValOperand()),
3758                   I.getPointerOperand(),
3759                   /* Alignment=*/ 0, Order, Scope);
3760
3761   SDValue OutChain = L.getValue(1);
3762
3763   setValue(&I, L);
3764   DAG.setRoot(OutChain);
3765 }
3766
3767 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3768   SDLoc dl = getCurSDLoc();
3769   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3770   SDValue Ops[3];
3771   Ops[0] = getRoot();
3772   Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3773   Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3774   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
3775 }
3776
3777 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3778   SDLoc dl = getCurSDLoc();
3779   AtomicOrdering Order = I.getOrdering();
3780   SynchronizationScope Scope = I.getSynchScope();
3781
3782   SDValue InChain = getRoot();
3783
3784   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3785   EVT VT = TLI.getValueType(I.getType());
3786
3787   if (I.getAlignment() < VT.getSizeInBits() / 8)
3788     report_fatal_error("Cannot generate unaligned atomic load");
3789
3790   MachineMemOperand *MMO =
3791       DAG.getMachineFunction().
3792       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
3793                            MachineMemOperand::MOVolatile |
3794                            MachineMemOperand::MOLoad,
3795                            VT.getStoreSize(),
3796                            I.getAlignment() ? I.getAlignment() :
3797                                               DAG.getEVTAlignment(VT));
3798
3799   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
3800   SDValue L =
3801       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3802                     getValue(I.getPointerOperand()), MMO,
3803                     Order, Scope);
3804
3805   SDValue OutChain = L.getValue(1);
3806
3807   setValue(&I, L);
3808   DAG.setRoot(OutChain);
3809 }
3810
3811 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3812   SDLoc dl = getCurSDLoc();
3813
3814   AtomicOrdering Order = I.getOrdering();
3815   SynchronizationScope Scope = I.getSynchScope();
3816
3817   SDValue InChain = getRoot();
3818
3819   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3820   EVT VT = TLI.getValueType(I.getValueOperand()->getType());
3821
3822   if (I.getAlignment() < VT.getSizeInBits() / 8)
3823     report_fatal_error("Cannot generate unaligned atomic store");
3824
3825   SDValue OutChain =
3826     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3827                   InChain,
3828                   getValue(I.getPointerOperand()),
3829                   getValue(I.getValueOperand()),
3830                   I.getPointerOperand(), I.getAlignment(),
3831                   Order, Scope);
3832
3833   DAG.setRoot(OutChain);
3834 }
3835
3836 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3837 /// node.
3838 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3839                                                unsigned Intrinsic) {
3840   bool HasChain = !I.doesNotAccessMemory();
3841   bool OnlyLoad = HasChain && I.onlyReadsMemory();
3842
3843   // Build the operand list.
3844   SmallVector<SDValue, 8> Ops;
3845   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3846     if (OnlyLoad) {
3847       // We don't need to serialize loads against other loads.
3848       Ops.push_back(DAG.getRoot());
3849     } else {
3850       Ops.push_back(getRoot());
3851     }
3852   }
3853
3854   // Info is set by getTgtMemInstrinsic
3855   TargetLowering::IntrinsicInfo Info;
3856   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3857   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3858
3859   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3860   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3861       Info.opc == ISD::INTRINSIC_W_CHAIN)
3862     Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy()));
3863
3864   // Add all operands of the call to the operand list.
3865   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3866     SDValue Op = getValue(I.getArgOperand(i));
3867     Ops.push_back(Op);
3868   }
3869
3870   SmallVector<EVT, 4> ValueVTs;
3871   ComputeValueVTs(TLI, I.getType(), ValueVTs);
3872
3873   if (HasChain)
3874     ValueVTs.push_back(MVT::Other);
3875
3876   SDVTList VTs = DAG.getVTList(ValueVTs);
3877
3878   // Create the node.
3879   SDValue Result;
3880   if (IsTgtIntrinsic) {
3881     // This is target intrinsic that touches memory
3882     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
3883                                      VTs, Ops, Info.memVT,
3884                                    MachinePointerInfo(Info.ptrVal, Info.offset),
3885                                      Info.align, Info.vol,
3886                                      Info.readMem, Info.writeMem, Info.size);
3887   } else if (!HasChain) {
3888     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
3889   } else if (!I.getType()->isVoidTy()) {
3890     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
3891   } else {
3892     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
3893   }
3894
3895   if (HasChain) {
3896     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3897     if (OnlyLoad)
3898       PendingLoads.push_back(Chain);
3899     else
3900       DAG.setRoot(Chain);
3901   }
3902
3903   if (!I.getType()->isVoidTy()) {
3904     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3905       EVT VT = TLI.getValueType(PTy);
3906       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
3907     }
3908
3909     setValue(&I, Result);
3910   }
3911 }
3912
3913 /// GetSignificand - Get the significand and build it into a floating-point
3914 /// number with exponent of 1:
3915 ///
3916 ///   Op = (Op & 0x007fffff) | 0x3f800000;
3917 ///
3918 /// where Op is the hexadecimal representation of floating point value.
3919 static SDValue
3920 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
3921   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3922                            DAG.getConstant(0x007fffff, MVT::i32));
3923   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3924                            DAG.getConstant(0x3f800000, MVT::i32));
3925   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3926 }
3927
3928 /// GetExponent - Get the exponent:
3929 ///
3930 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3931 ///
3932 /// where Op is the hexadecimal representation of floating point value.
3933 static SDValue
3934 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3935             SDLoc dl) {
3936   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3937                            DAG.getConstant(0x7f800000, MVT::i32));
3938   SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3939                            DAG.getConstant(23, TLI.getPointerTy()));
3940   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3941                            DAG.getConstant(127, MVT::i32));
3942   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3943 }
3944
3945 /// getF32Constant - Get 32-bit floating point constant.
3946 static SDValue
3947 getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3948   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)),
3949                            MVT::f32);
3950 }
3951
3952 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl,
3953                                        SelectionDAG &DAG) {
3954   //   IntegerPartOfX = ((int32_t)(t0);
3955   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3956
3957   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
3958   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3959   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3960
3961   //   IntegerPartOfX <<= 23;
3962   IntegerPartOfX = DAG.getNode(
3963       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3964       DAG.getConstant(23, DAG.getTargetLoweringInfo().getPointerTy()));
3965
3966   SDValue TwoToFractionalPartOfX;
3967   if (LimitFloatPrecision <= 6) {
3968     // For floating-point precision of 6:
3969     //
3970     //   TwoToFractionalPartOfX =
3971     //     0.997535578f +
3972     //       (0.735607626f + 0.252464424f * x) * x;
3973     //
3974     // error 0.0144103317, which is 6 bits
3975     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3976                              getF32Constant(DAG, 0x3e814304));
3977     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3978                              getF32Constant(DAG, 0x3f3c50c8));
3979     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3980     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3981                                          getF32Constant(DAG, 0x3f7f5e7e));
3982   } else if (LimitFloatPrecision <= 12) {
3983     // For floating-point precision of 12:
3984     //
3985     //   TwoToFractionalPartOfX =
3986     //     0.999892986f +
3987     //       (0.696457318f +
3988     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3989     //
3990     // error 0.000107046256, which is 13 to 14 bits
3991     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3992                              getF32Constant(DAG, 0x3da235e3));
3993     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3994                              getF32Constant(DAG, 0x3e65b8f3));
3995     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3996     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3997                              getF32Constant(DAG, 0x3f324b07));
3998     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3999     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4000                                          getF32Constant(DAG, 0x3f7ff8fd));
4001   } else { // LimitFloatPrecision <= 18
4002     // For floating-point precision of 18:
4003     //
4004     //   TwoToFractionalPartOfX =
4005     //     0.999999982f +
4006     //       (0.693148872f +
4007     //         (0.240227044f +
4008     //           (0.554906021e-1f +
4009     //             (0.961591928e-2f +
4010     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4011     // error 2.47208000*10^(-7), which is better than 18 bits
4012     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4013                              getF32Constant(DAG, 0x3924b03e));
4014     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4015                              getF32Constant(DAG, 0x3ab24b87));
4016     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4017     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4018                              getF32Constant(DAG, 0x3c1d8c17));
4019     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4020     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4021                              getF32Constant(DAG, 0x3d634a1d));
4022     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4023     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4024                              getF32Constant(DAG, 0x3e75fe14));
4025     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4026     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4027                               getF32Constant(DAG, 0x3f317234));
4028     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4029     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4030                                          getF32Constant(DAG, 0x3f800000));
4031   }
4032
4033   // Add the exponent into the result in integer domain.
4034   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4035   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4036                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4037 }
4038
4039 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4040 /// limited-precision mode.
4041 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4042                          const TargetLowering &TLI) {
4043   if (Op.getValueType() == MVT::f32 &&
4044       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4045
4046     // Put the exponent in the right bit position for later addition to the
4047     // final result:
4048     //
4049     //   #define LOG2OFe 1.4426950f
4050     //   t0 = Op * LOG2OFe
4051     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4052                              getF32Constant(DAG, 0x3fb8aa3b));
4053     return getLimitedPrecisionExp2(t0, dl, DAG);
4054   }
4055
4056   // No special expansion.
4057   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4058 }
4059
4060 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4061 /// limited-precision mode.
4062 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4063                          const TargetLowering &TLI) {
4064   if (Op.getValueType() == MVT::f32 &&
4065       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4066     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4067
4068     // Scale the exponent by log(2) [0.69314718f].
4069     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4070     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4071                                         getF32Constant(DAG, 0x3f317218));
4072
4073     // Get the significand and build it into a floating-point number with
4074     // exponent of 1.
4075     SDValue X = GetSignificand(DAG, Op1, dl);
4076
4077     SDValue LogOfMantissa;
4078     if (LimitFloatPrecision <= 6) {
4079       // For floating-point precision of 6:
4080       //
4081       //   LogofMantissa =
4082       //     -1.1609546f +
4083       //       (1.4034025f - 0.23903021f * x) * x;
4084       //
4085       // error 0.0034276066, which is better than 8 bits
4086       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4087                                getF32Constant(DAG, 0xbe74c456));
4088       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4089                                getF32Constant(DAG, 0x3fb3a2b1));
4090       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4091       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4092                                   getF32Constant(DAG, 0x3f949a29));
4093     } else if (LimitFloatPrecision <= 12) {
4094       // For floating-point precision of 12:
4095       //
4096       //   LogOfMantissa =
4097       //     -1.7417939f +
4098       //       (2.8212026f +
4099       //         (-1.4699568f +
4100       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4101       //
4102       // error 0.000061011436, which is 14 bits
4103       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4104                                getF32Constant(DAG, 0xbd67b6d6));
4105       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4106                                getF32Constant(DAG, 0x3ee4f4b8));
4107       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4108       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4109                                getF32Constant(DAG, 0x3fbc278b));
4110       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4111       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4112                                getF32Constant(DAG, 0x40348e95));
4113       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4114       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4115                                   getF32Constant(DAG, 0x3fdef31a));
4116     } else { // LimitFloatPrecision <= 18
4117       // For floating-point precision of 18:
4118       //
4119       //   LogOfMantissa =
4120       //     -2.1072184f +
4121       //       (4.2372794f +
4122       //         (-3.7029485f +
4123       //           (2.2781945f +
4124       //             (-0.87823314f +
4125       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4126       //
4127       // error 0.0000023660568, which is better than 18 bits
4128       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4129                                getF32Constant(DAG, 0xbc91e5ac));
4130       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4131                                getF32Constant(DAG, 0x3e4350aa));
4132       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4133       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4134                                getF32Constant(DAG, 0x3f60d3e3));
4135       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4136       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4137                                getF32Constant(DAG, 0x4011cdf0));
4138       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4139       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4140                                getF32Constant(DAG, 0x406cfd1c));
4141       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4142       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4143                                getF32Constant(DAG, 0x408797cb));
4144       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4145       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4146                                   getF32Constant(DAG, 0x4006dcab));
4147     }
4148
4149     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4150   }
4151
4152   // No special expansion.
4153   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4154 }
4155
4156 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4157 /// limited-precision mode.
4158 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4159                           const TargetLowering &TLI) {
4160   if (Op.getValueType() == MVT::f32 &&
4161       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4162     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4163
4164     // Get the exponent.
4165     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4166
4167     // Get the significand and build it into a floating-point number with
4168     // exponent of 1.
4169     SDValue X = GetSignificand(DAG, Op1, dl);
4170
4171     // Different possible minimax approximations of significand in
4172     // floating-point for various degrees of accuracy over [1,2].
4173     SDValue Log2ofMantissa;
4174     if (LimitFloatPrecision <= 6) {
4175       // For floating-point precision of 6:
4176       //
4177       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4178       //
4179       // error 0.0049451742, which is more than 7 bits
4180       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4181                                getF32Constant(DAG, 0xbeb08fe0));
4182       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4183                                getF32Constant(DAG, 0x40019463));
4184       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4185       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4186                                    getF32Constant(DAG, 0x3fd6633d));
4187     } else if (LimitFloatPrecision <= 12) {
4188       // For floating-point precision of 12:
4189       //
4190       //   Log2ofMantissa =
4191       //     -2.51285454f +
4192       //       (4.07009056f +
4193       //         (-2.12067489f +
4194       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4195       //
4196       // error 0.0000876136000, which is better than 13 bits
4197       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4198                                getF32Constant(DAG, 0xbda7262e));
4199       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4200                                getF32Constant(DAG, 0x3f25280b));
4201       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4202       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4203                                getF32Constant(DAG, 0x4007b923));
4204       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4205       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4206                                getF32Constant(DAG, 0x40823e2f));
4207       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4208       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4209                                    getF32Constant(DAG, 0x4020d29c));
4210     } else { // LimitFloatPrecision <= 18
4211       // For floating-point precision of 18:
4212       //
4213       //   Log2ofMantissa =
4214       //     -3.0400495f +
4215       //       (6.1129976f +
4216       //         (-5.3420409f +
4217       //           (3.2865683f +
4218       //             (-1.2669343f +
4219       //               (0.27515199f -
4220       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4221       //
4222       // error 0.0000018516, which is better than 18 bits
4223       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4224                                getF32Constant(DAG, 0xbcd2769e));
4225       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4226                                getF32Constant(DAG, 0x3e8ce0b9));
4227       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4228       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4229                                getF32Constant(DAG, 0x3fa22ae7));
4230       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4231       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4232                                getF32Constant(DAG, 0x40525723));
4233       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4234       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4235                                getF32Constant(DAG, 0x40aaf200));
4236       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4237       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4238                                getF32Constant(DAG, 0x40c39dad));
4239       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4240       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4241                                    getF32Constant(DAG, 0x4042902c));
4242     }
4243
4244     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4245   }
4246
4247   // No special expansion.
4248   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4249 }
4250
4251 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4252 /// limited-precision mode.
4253 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4254                            const TargetLowering &TLI) {
4255   if (Op.getValueType() == MVT::f32 &&
4256       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4257     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4258
4259     // Scale the exponent by log10(2) [0.30102999f].
4260     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4261     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4262                                         getF32Constant(DAG, 0x3e9a209a));
4263
4264     // Get the significand and build it into a floating-point number with
4265     // exponent of 1.
4266     SDValue X = GetSignificand(DAG, Op1, dl);
4267
4268     SDValue Log10ofMantissa;
4269     if (LimitFloatPrecision <= 6) {
4270       // For floating-point precision of 6:
4271       //
4272       //   Log10ofMantissa =
4273       //     -0.50419619f +
4274       //       (0.60948995f - 0.10380950f * x) * x;
4275       //
4276       // error 0.0014886165, which is 6 bits
4277       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4278                                getF32Constant(DAG, 0xbdd49a13));
4279       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4280                                getF32Constant(DAG, 0x3f1c0789));
4281       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4282       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4283                                     getF32Constant(DAG, 0x3f011300));
4284     } else if (LimitFloatPrecision <= 12) {
4285       // For floating-point precision of 12:
4286       //
4287       //   Log10ofMantissa =
4288       //     -0.64831180f +
4289       //       (0.91751397f +
4290       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4291       //
4292       // error 0.00019228036, which is better than 12 bits
4293       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4294                                getF32Constant(DAG, 0x3d431f31));
4295       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4296                                getF32Constant(DAG, 0x3ea21fb2));
4297       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4298       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4299                                getF32Constant(DAG, 0x3f6ae232));
4300       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4301       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4302                                     getF32Constant(DAG, 0x3f25f7c3));
4303     } else { // LimitFloatPrecision <= 18
4304       // For floating-point precision of 18:
4305       //
4306       //   Log10ofMantissa =
4307       //     -0.84299375f +
4308       //       (1.5327582f +
4309       //         (-1.0688956f +
4310       //           (0.49102474f +
4311       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4312       //
4313       // error 0.0000037995730, which is better than 18 bits
4314       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4315                                getF32Constant(DAG, 0x3c5d51ce));
4316       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4317                                getF32Constant(DAG, 0x3e00685a));
4318       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4319       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4320                                getF32Constant(DAG, 0x3efb6798));
4321       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4322       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4323                                getF32Constant(DAG, 0x3f88d192));
4324       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4325       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4326                                getF32Constant(DAG, 0x3fc4316c));
4327       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4328       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4329                                     getF32Constant(DAG, 0x3f57ce70));
4330     }
4331
4332     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4333   }
4334
4335   // No special expansion.
4336   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4337 }
4338
4339 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4340 /// limited-precision mode.
4341 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4342                           const TargetLowering &TLI) {
4343   if (Op.getValueType() == MVT::f32 &&
4344       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4345     return getLimitedPrecisionExp2(Op, dl, DAG);
4346
4347   // No special expansion.
4348   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4349 }
4350
4351 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4352 /// limited-precision mode with x == 10.0f.
4353 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
4354                          SelectionDAG &DAG, const TargetLowering &TLI) {
4355   bool IsExp10 = false;
4356   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4357       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4358     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4359       APFloat Ten(10.0f);
4360       IsExp10 = LHSC->isExactlyValue(Ten);
4361     }
4362   }
4363
4364   if (IsExp10) {
4365     // Put the exponent in the right bit position for later addition to the
4366     // final result:
4367     //
4368     //   #define LOG2OF10 3.3219281f
4369     //   t0 = Op * LOG2OF10;
4370     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4371                              getF32Constant(DAG, 0x40549a78));
4372     return getLimitedPrecisionExp2(t0, dl, DAG);
4373   }
4374
4375   // No special expansion.
4376   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4377 }
4378
4379
4380 /// ExpandPowI - Expand a llvm.powi intrinsic.
4381 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
4382                           SelectionDAG &DAG) {
4383   // If RHS is a constant, we can expand this out to a multiplication tree,
4384   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4385   // optimizing for size, we only want to do this if the expansion would produce
4386   // a small number of multiplies, otherwise we do the full expansion.
4387   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4388     // Get the exponent as a positive value.
4389     unsigned Val = RHSC->getSExtValue();
4390     if ((int)Val < 0) Val = -Val;
4391
4392     // powi(x, 0) -> 1.0
4393     if (Val == 0)
4394       return DAG.getConstantFP(1.0, LHS.getValueType());
4395
4396     const Function *F = DAG.getMachineFunction().getFunction();
4397     if (!F->hasFnAttribute(Attribute::OptimizeForSize) ||
4398         // If optimizing for size, don't insert too many multiplies.  This
4399         // inserts up to 5 multiplies.
4400         countPopulation(Val) + Log2_32(Val) < 7) {
4401       // We use the simple binary decomposition method to generate the multiply
4402       // sequence.  There are more optimal ways to do this (for example,
4403       // powi(x,15) generates one more multiply than it should), but this has
4404       // the benefit of being both really simple and much better than a libcall.
4405       SDValue Res;  // Logically starts equal to 1.0
4406       SDValue CurSquare = LHS;
4407       while (Val) {
4408         if (Val & 1) {
4409           if (Res.getNode())
4410             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4411           else
4412             Res = CurSquare;  // 1.0*CurSquare.
4413         }
4414
4415         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4416                                 CurSquare, CurSquare);
4417         Val >>= 1;
4418       }
4419
4420       // If the original was negative, invert the result, producing 1/(x*x*x).
4421       if (RHSC->getSExtValue() < 0)
4422         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4423                           DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4424       return Res;
4425     }
4426   }
4427
4428   // Otherwise, expand to a libcall.
4429   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4430 }
4431
4432 // getTruncatedArgReg - Find underlying register used for an truncated
4433 // argument.
4434 static unsigned getTruncatedArgReg(const SDValue &N) {
4435   if (N.getOpcode() != ISD::TRUNCATE)
4436     return 0;
4437
4438   const SDValue &Ext = N.getOperand(0);
4439   if (Ext.getOpcode() == ISD::AssertZext ||
4440       Ext.getOpcode() == ISD::AssertSext) {
4441     const SDValue &CFR = Ext.getOperand(0);
4442     if (CFR.getOpcode() == ISD::CopyFromReg)
4443       return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4444     if (CFR.getOpcode() == ISD::TRUNCATE)
4445       return getTruncatedArgReg(CFR);
4446   }
4447   return 0;
4448 }
4449
4450 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4451 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4452 /// At the end of instruction selection, they will be inserted to the entry BB.
4453 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4454     const Value *V, MDLocalVariable *Variable, MDExpression *Expr,
4455     MDLocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) {
4456   const Argument *Arg = dyn_cast<Argument>(V);
4457   if (!Arg)
4458     return false;
4459
4460   MachineFunction &MF = DAG.getMachineFunction();
4461   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4462
4463   // Ignore inlined function arguments here.
4464   DIVariable DV(Variable);
4465   if (DV.isInlinedFnArgument(MF.getFunction()))
4466     return false;
4467
4468   Optional<MachineOperand> Op;
4469   // Some arguments' frame index is recorded during argument lowering.
4470   if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4471     Op = MachineOperand::CreateFI(FI);
4472
4473   if (!Op && N.getNode()) {
4474     unsigned Reg;
4475     if (N.getOpcode() == ISD::CopyFromReg)
4476       Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4477     else
4478       Reg = getTruncatedArgReg(N);
4479     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4480       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4481       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4482       if (PR)
4483         Reg = PR;
4484     }
4485     if (Reg)
4486       Op = MachineOperand::CreateReg(Reg, false);
4487   }
4488
4489   if (!Op) {
4490     // Check if ValueMap has reg number.
4491     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4492     if (VMI != FuncInfo.ValueMap.end())
4493       Op = MachineOperand::CreateReg(VMI->second, false);
4494   }
4495
4496   if (!Op && N.getNode())
4497     // Check if frame index is available.
4498     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4499       if (FrameIndexSDNode *FINode =
4500           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4501         Op = MachineOperand::CreateFI(FINode->getIndex());
4502
4503   if (!Op)
4504     return false;
4505
4506   assert(Variable->isValidLocationForIntrinsic(DL) &&
4507          "Expected inlined-at fields to agree");
4508   if (Op->isReg())
4509     FuncInfo.ArgDbgValues.push_back(
4510         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4511                 Op->getReg(), Offset, Variable, Expr));
4512   else
4513     FuncInfo.ArgDbgValues.push_back(
4514         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4515             .addOperand(*Op)
4516             .addImm(Offset)
4517             .addMetadata(Variable)
4518             .addMetadata(Expr));
4519
4520   return true;
4521 }
4522
4523 // VisualStudio defines setjmp as _setjmp
4524 #if defined(_MSC_VER) && defined(setjmp) && \
4525                          !defined(setjmp_undefined_for_msvc)
4526 #  pragma push_macro("setjmp")
4527 #  undef setjmp
4528 #  define setjmp_undefined_for_msvc
4529 #endif
4530
4531 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4532 /// we want to emit this as a call to a named external function, return the name
4533 /// otherwise lower it and return null.
4534 const char *
4535 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4536   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4537   SDLoc sdl = getCurSDLoc();
4538   DebugLoc dl = getCurDebugLoc();
4539   SDValue Res;
4540
4541   switch (Intrinsic) {
4542   default:
4543     // By default, turn this into a target intrinsic node.
4544     visitTargetIntrinsic(I, Intrinsic);
4545     return nullptr;
4546   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4547   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4548   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4549   case Intrinsic::returnaddress:
4550     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(),
4551                              getValue(I.getArgOperand(0))));
4552     return nullptr;
4553   case Intrinsic::frameaddress:
4554     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(),
4555                              getValue(I.getArgOperand(0))));
4556     return nullptr;
4557   case Intrinsic::read_register: {
4558     Value *Reg = I.getArgOperand(0);
4559     SDValue RegName =
4560         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4561     EVT VT = TLI.getValueType(I.getType());
4562     setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName));
4563     return nullptr;
4564   }
4565   case Intrinsic::write_register: {
4566     Value *Reg = I.getArgOperand(0);
4567     Value *RegValue = I.getArgOperand(1);
4568     SDValue Chain = getValue(RegValue).getOperand(0);
4569     SDValue RegName =
4570         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4571     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4572                             RegName, getValue(RegValue)));
4573     return nullptr;
4574   }
4575   case Intrinsic::setjmp:
4576     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4577   case Intrinsic::longjmp:
4578     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4579   case Intrinsic::memcpy: {
4580     // FIXME: this definition of "user defined address space" is x86-specific
4581     // Assert for address < 256 since we support only user defined address
4582     // spaces.
4583     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4584            < 256 &&
4585            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4586            < 256 &&
4587            "Unknown address space");
4588     SDValue Op1 = getValue(I.getArgOperand(0));
4589     SDValue Op2 = getValue(I.getArgOperand(1));
4590     SDValue Op3 = getValue(I.getArgOperand(2));
4591     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4592     if (!Align)
4593       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4594     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4595     DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false,
4596                               MachinePointerInfo(I.getArgOperand(0)),
4597                               MachinePointerInfo(I.getArgOperand(1))));
4598     return nullptr;
4599   }
4600   case Intrinsic::memset: {
4601     // FIXME: this definition of "user defined address space" is x86-specific
4602     // Assert for address < 256 since we support only user defined address
4603     // spaces.
4604     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4605            < 256 &&
4606            "Unknown address space");
4607     SDValue Op1 = getValue(I.getArgOperand(0));
4608     SDValue Op2 = getValue(I.getArgOperand(1));
4609     SDValue Op3 = getValue(I.getArgOperand(2));
4610     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4611     if (!Align)
4612       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4613     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4614     DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4615                               MachinePointerInfo(I.getArgOperand(0))));
4616     return nullptr;
4617   }
4618   case Intrinsic::memmove: {
4619     // FIXME: this definition of "user defined address space" is x86-specific
4620     // Assert for address < 256 since we support only user defined address
4621     // spaces.
4622     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4623            < 256 &&
4624            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4625            < 256 &&
4626            "Unknown address space");
4627     SDValue Op1 = getValue(I.getArgOperand(0));
4628     SDValue Op2 = getValue(I.getArgOperand(1));
4629     SDValue Op3 = getValue(I.getArgOperand(2));
4630     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4631     if (!Align)
4632       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4633     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4634     DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4635                                MachinePointerInfo(I.getArgOperand(0)),
4636                                MachinePointerInfo(I.getArgOperand(1))));
4637     return nullptr;
4638   }
4639   case Intrinsic::dbg_declare: {
4640     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4641     MDLocalVariable *Variable = DI.getVariable();
4642     MDExpression *Expression = DI.getExpression();
4643     const Value *Address = DI.getAddress();
4644     DIVariable DIVar(Variable);
4645     assert((!DIVar || DIVar.isVariable()) &&
4646       "Variable in DbgDeclareInst should be either null or a DIVariable.");
4647     if (!Address || !DIVar) {
4648       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4649       return nullptr;
4650     }
4651
4652     // Check if address has undef value.
4653     if (isa<UndefValue>(Address) ||
4654         (Address->use_empty() && !isa<Argument>(Address))) {
4655       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4656       return nullptr;
4657     }
4658
4659     SDValue &N = NodeMap[Address];
4660     if (!N.getNode() && isa<Argument>(Address))
4661       // Check unused arguments map.
4662       N = UnusedArgNodeMap[Address];
4663     SDDbgValue *SDV;
4664     if (N.getNode()) {
4665       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4666         Address = BCI->getOperand(0);
4667       // Parameters are handled specially.
4668       bool isParameter =
4669         (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4670          isa<Argument>(Address));
4671
4672       const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4673
4674       if (isParameter && !AI) {
4675         FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4676         if (FINode)
4677           // Byval parameter.  We have a frame index at this point.
4678           SDV = DAG.getFrameIndexDbgValue(
4679               Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder);
4680         else {
4681           // Address is an argument, so try to emit its dbg value using
4682           // virtual register info from the FuncInfo.ValueMap.
4683           EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4684                                    N);
4685           return nullptr;
4686         }
4687       } else if (AI)
4688         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4689                               true, 0, dl, SDNodeOrder);
4690       else {
4691         // Can't do anything with other non-AI cases yet.
4692         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4693         DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4694         DEBUG(Address->dump());
4695         return nullptr;
4696       }
4697       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4698     } else {
4699       // If Address is an argument then try to emit its dbg value using
4700       // virtual register info from the FuncInfo.ValueMap.
4701       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4702                                     N)) {
4703         // If variable is pinned by a alloca in dominating bb then
4704         // use StaticAllocaMap.
4705         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4706           if (AI->getParent() != DI.getParent()) {
4707             DenseMap<const AllocaInst*, int>::iterator SI =
4708               FuncInfo.StaticAllocaMap.find(AI);
4709             if (SI != FuncInfo.StaticAllocaMap.end()) {
4710               SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
4711                                               0, dl, SDNodeOrder);
4712               DAG.AddDbgValue(SDV, nullptr, false);
4713               return nullptr;
4714             }
4715           }
4716         }
4717         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4718       }
4719     }
4720     return nullptr;
4721   }
4722   case Intrinsic::dbg_value: {
4723     const DbgValueInst &DI = cast<DbgValueInst>(I);
4724     DIVariable DIVar(DI.getVariable());
4725     assert((!DIVar || DIVar.isVariable()) &&
4726       "Variable in DbgValueInst should be either null or a DIVariable.");
4727     if (!DIVar)
4728       return nullptr;
4729
4730     MDLocalVariable *Variable = DI.getVariable();
4731     MDExpression *Expression = DI.getExpression();
4732     uint64_t Offset = DI.getOffset();
4733     const Value *V = DI.getValue();
4734     if (!V)
4735       return nullptr;
4736
4737     SDDbgValue *SDV;
4738     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4739       SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
4740                                     SDNodeOrder);
4741       DAG.AddDbgValue(SDV, nullptr, false);
4742     } else {
4743       // Do not use getValue() in here; we don't want to generate code at
4744       // this point if it hasn't been done yet.
4745       SDValue N = NodeMap[V];
4746       if (!N.getNode() && isa<Argument>(V))
4747         // Check unused arguments map.
4748         N = UnusedArgNodeMap[V];
4749       if (N.getNode()) {
4750         // A dbg.value for an alloca is always indirect.
4751         bool IsIndirect = isa<AllocaInst>(V) || Offset != 0;
4752         if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset,
4753                                       IsIndirect, N)) {
4754           SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4755                                 IsIndirect, Offset, dl, SDNodeOrder);
4756           DAG.AddDbgValue(SDV, N.getNode(), false);
4757         }
4758       } else if (!V->use_empty() ) {
4759         // Do not call getValue(V) yet, as we don't want to generate code.
4760         // Remember it for later.
4761         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4762         DanglingDebugInfoMap[V] = DDI;
4763       } else {
4764         // We may expand this to cover more cases.  One case where we have no
4765         // data available is an unreferenced parameter.
4766         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4767       }
4768     }
4769
4770     // Build a debug info table entry.
4771     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4772       V = BCI->getOperand(0);
4773     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4774     // Don't handle byval struct arguments or VLAs, for example.
4775     if (!AI) {
4776       DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4777       DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4778       return nullptr;
4779     }
4780     DenseMap<const AllocaInst*, int>::iterator SI =
4781       FuncInfo.StaticAllocaMap.find(AI);
4782     if (SI == FuncInfo.StaticAllocaMap.end())
4783       return nullptr; // VLAs.
4784     return nullptr;
4785   }
4786
4787   case Intrinsic::eh_typeid_for: {
4788     // Find the type id for the given typeinfo.
4789     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
4790     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4791     Res = DAG.getConstant(TypeID, MVT::i32);
4792     setValue(&I, Res);
4793     return nullptr;
4794   }
4795
4796   case Intrinsic::eh_return_i32:
4797   case Intrinsic::eh_return_i64:
4798     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4799     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4800                             MVT::Other,
4801                             getControlRoot(),
4802                             getValue(I.getArgOperand(0)),
4803                             getValue(I.getArgOperand(1))));
4804     return nullptr;
4805   case Intrinsic::eh_unwind_init:
4806     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4807     return nullptr;
4808   case Intrinsic::eh_dwarf_cfa: {
4809     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4810                                         TLI.getPointerTy());
4811     SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4812                                  CfaArg.getValueType(),
4813                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4814                                              CfaArg.getValueType()),
4815                                  CfaArg);
4816     SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(),
4817                              DAG.getConstant(0, TLI.getPointerTy()));
4818     setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
4819                              FA, Offset));
4820     return nullptr;
4821   }
4822   case Intrinsic::eh_sjlj_callsite: {
4823     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4824     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4825     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4826     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4827
4828     MMI.setCurrentCallSite(CI->getZExtValue());
4829     return nullptr;
4830   }
4831   case Intrinsic::eh_sjlj_functioncontext: {
4832     // Get and store the index of the function context.
4833     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4834     AllocaInst *FnCtx =
4835       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4836     int FI = FuncInfo.StaticAllocaMap[FnCtx];
4837     MFI->setFunctionContextIndex(FI);
4838     return nullptr;
4839   }
4840   case Intrinsic::eh_sjlj_setjmp: {
4841     SDValue Ops[2];
4842     Ops[0] = getRoot();
4843     Ops[1] = getValue(I.getArgOperand(0));
4844     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
4845                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
4846     setValue(&I, Op.getValue(0));
4847     DAG.setRoot(Op.getValue(1));
4848     return nullptr;
4849   }
4850   case Intrinsic::eh_sjlj_longjmp: {
4851     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
4852                             getRoot(), getValue(I.getArgOperand(0))));
4853     return nullptr;
4854   }
4855
4856   case Intrinsic::masked_load:
4857     visitMaskedLoad(I);
4858     return nullptr;
4859   case Intrinsic::masked_store:
4860     visitMaskedStore(I);
4861     return nullptr;
4862   case Intrinsic::x86_mmx_pslli_w:
4863   case Intrinsic::x86_mmx_pslli_d:
4864   case Intrinsic::x86_mmx_pslli_q:
4865   case Intrinsic::x86_mmx_psrli_w:
4866   case Intrinsic::x86_mmx_psrli_d:
4867   case Intrinsic::x86_mmx_psrli_q:
4868   case Intrinsic::x86_mmx_psrai_w:
4869   case Intrinsic::x86_mmx_psrai_d: {
4870     SDValue ShAmt = getValue(I.getArgOperand(1));
4871     if (isa<ConstantSDNode>(ShAmt)) {
4872       visitTargetIntrinsic(I, Intrinsic);
4873       return nullptr;
4874     }
4875     unsigned NewIntrinsic = 0;
4876     EVT ShAmtVT = MVT::v2i32;
4877     switch (Intrinsic) {
4878     case Intrinsic::x86_mmx_pslli_w:
4879       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4880       break;
4881     case Intrinsic::x86_mmx_pslli_d:
4882       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4883       break;
4884     case Intrinsic::x86_mmx_pslli_q:
4885       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4886       break;
4887     case Intrinsic::x86_mmx_psrli_w:
4888       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4889       break;
4890     case Intrinsic::x86_mmx_psrli_d:
4891       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4892       break;
4893     case Intrinsic::x86_mmx_psrli_q:
4894       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4895       break;
4896     case Intrinsic::x86_mmx_psrai_w:
4897       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4898       break;
4899     case Intrinsic::x86_mmx_psrai_d:
4900       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4901       break;
4902     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4903     }
4904
4905     // The vector shift intrinsics with scalars uses 32b shift amounts but
4906     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4907     // to be zero.
4908     // We must do this early because v2i32 is not a legal type.
4909     SDValue ShOps[2];
4910     ShOps[0] = ShAmt;
4911     ShOps[1] = DAG.getConstant(0, MVT::i32);
4912     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
4913     EVT DestVT = TLI.getValueType(I.getType());
4914     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
4915     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
4916                        DAG.getConstant(NewIntrinsic, MVT::i32),
4917                        getValue(I.getArgOperand(0)), ShAmt);
4918     setValue(&I, Res);
4919     return nullptr;
4920   }
4921   case Intrinsic::convertff:
4922   case Intrinsic::convertfsi:
4923   case Intrinsic::convertfui:
4924   case Intrinsic::convertsif:
4925   case Intrinsic::convertuif:
4926   case Intrinsic::convertss:
4927   case Intrinsic::convertsu:
4928   case Intrinsic::convertus:
4929   case Intrinsic::convertuu: {
4930     ISD::CvtCode Code = ISD::CVT_INVALID;
4931     switch (Intrinsic) {
4932     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4933     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4934     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4935     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4936     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4937     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4938     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4939     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4940     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4941     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4942     }
4943     EVT DestVT = TLI.getValueType(I.getType());
4944     const Value *Op1 = I.getArgOperand(0);
4945     Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
4946                                DAG.getValueType(DestVT),
4947                                DAG.getValueType(getValue(Op1).getValueType()),
4948                                getValue(I.getArgOperand(1)),
4949                                getValue(I.getArgOperand(2)),
4950                                Code);
4951     setValue(&I, Res);
4952     return nullptr;
4953   }
4954   case Intrinsic::powi:
4955     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
4956                             getValue(I.getArgOperand(1)), DAG));
4957     return nullptr;
4958   case Intrinsic::log:
4959     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4960     return nullptr;
4961   case Intrinsic::log2:
4962     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4963     return nullptr;
4964   case Intrinsic::log10:
4965     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4966     return nullptr;
4967   case Intrinsic::exp:
4968     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4969     return nullptr;
4970   case Intrinsic::exp2:
4971     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4972     return nullptr;
4973   case Intrinsic::pow:
4974     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
4975                            getValue(I.getArgOperand(1)), DAG, TLI));
4976     return nullptr;
4977   case Intrinsic::sqrt:
4978   case Intrinsic::fabs:
4979   case Intrinsic::sin:
4980   case Intrinsic::cos:
4981   case Intrinsic::floor:
4982   case Intrinsic::ceil:
4983   case Intrinsic::trunc:
4984   case Intrinsic::rint:
4985   case Intrinsic::nearbyint:
4986   case Intrinsic::round: {
4987     unsigned Opcode;
4988     switch (Intrinsic) {
4989     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4990     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
4991     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
4992     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
4993     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
4994     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
4995     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
4996     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
4997     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
4998     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
4999     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5000     }
5001
5002     setValue(&I, DAG.getNode(Opcode, sdl,
5003                              getValue(I.getArgOperand(0)).getValueType(),
5004                              getValue(I.getArgOperand(0))));
5005     return nullptr;
5006   }
5007   case Intrinsic::minnum:
5008     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
5009                              getValue(I.getArgOperand(0)).getValueType(),
5010                              getValue(I.getArgOperand(0)),
5011                              getValue(I.getArgOperand(1))));
5012     return nullptr;
5013   case Intrinsic::maxnum:
5014     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
5015                              getValue(I.getArgOperand(0)).getValueType(),
5016                              getValue(I.getArgOperand(0)),
5017                              getValue(I.getArgOperand(1))));
5018     return nullptr;
5019   case Intrinsic::copysign:
5020     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5021                              getValue(I.getArgOperand(0)).getValueType(),
5022                              getValue(I.getArgOperand(0)),
5023                              getValue(I.getArgOperand(1))));
5024     return nullptr;
5025   case Intrinsic::fma:
5026     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5027                              getValue(I.getArgOperand(0)).getValueType(),
5028                              getValue(I.getArgOperand(0)),
5029                              getValue(I.getArgOperand(1)),
5030                              getValue(I.getArgOperand(2))));
5031     return nullptr;
5032   case Intrinsic::fmuladd: {
5033     EVT VT = TLI.getValueType(I.getType());
5034     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5035         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5036       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5037                                getValue(I.getArgOperand(0)).getValueType(),
5038                                getValue(I.getArgOperand(0)),
5039                                getValue(I.getArgOperand(1)),
5040                                getValue(I.getArgOperand(2))));
5041     } else {
5042       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5043                                 getValue(I.getArgOperand(0)).getValueType(),
5044                                 getValue(I.getArgOperand(0)),
5045                                 getValue(I.getArgOperand(1)));
5046       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5047                                 getValue(I.getArgOperand(0)).getValueType(),
5048                                 Mul,
5049                                 getValue(I.getArgOperand(2)));
5050       setValue(&I, Add);
5051     }
5052     return nullptr;
5053   }
5054   case Intrinsic::convert_to_fp16:
5055     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5056                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5057                                          getValue(I.getArgOperand(0)),
5058                                          DAG.getTargetConstant(0, MVT::i32))));
5059     return nullptr;
5060   case Intrinsic::convert_from_fp16:
5061     setValue(&I,
5062              DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()),
5063                          DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5064                                      getValue(I.getArgOperand(0)))));
5065     return nullptr;
5066   case Intrinsic::pcmarker: {
5067     SDValue Tmp = getValue(I.getArgOperand(0));
5068     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5069     return nullptr;
5070   }
5071   case Intrinsic::readcyclecounter: {
5072     SDValue Op = getRoot();
5073     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5074                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5075     setValue(&I, Res);
5076     DAG.setRoot(Res.getValue(1));
5077     return nullptr;
5078   }
5079   case Intrinsic::bswap:
5080     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5081                              getValue(I.getArgOperand(0)).getValueType(),
5082                              getValue(I.getArgOperand(0))));
5083     return nullptr;
5084   case Intrinsic::cttz: {
5085     SDValue Arg = getValue(I.getArgOperand(0));
5086     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5087     EVT Ty = Arg.getValueType();
5088     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5089                              sdl, Ty, Arg));
5090     return nullptr;
5091   }
5092   case Intrinsic::ctlz: {
5093     SDValue Arg = getValue(I.getArgOperand(0));
5094     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5095     EVT Ty = Arg.getValueType();
5096     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5097                              sdl, Ty, Arg));
5098     return nullptr;
5099   }
5100   case Intrinsic::ctpop: {
5101     SDValue Arg = getValue(I.getArgOperand(0));
5102     EVT Ty = Arg.getValueType();
5103     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5104     return nullptr;
5105   }
5106   case Intrinsic::stacksave: {
5107     SDValue Op = getRoot();
5108     Res = DAG.getNode(ISD::STACKSAVE, sdl,
5109                       DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op);
5110     setValue(&I, Res);
5111     DAG.setRoot(Res.getValue(1));
5112     return nullptr;
5113   }
5114   case Intrinsic::stackrestore: {
5115     Res = getValue(I.getArgOperand(0));
5116     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5117     return nullptr;
5118   }
5119   case Intrinsic::stackprotector: {
5120     // Emit code into the DAG to store the stack guard onto the stack.
5121     MachineFunction &MF = DAG.getMachineFunction();
5122     MachineFrameInfo *MFI = MF.getFrameInfo();
5123     EVT PtrTy = TLI.getPointerTy();
5124     SDValue Src, Chain = getRoot();
5125     const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand();
5126     const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr);
5127
5128     // See if Ptr is a bitcast. If it is, look through it and see if we can get
5129     // global variable __stack_chk_guard.
5130     if (!GV)
5131       if (const Operator *BC = dyn_cast<Operator>(Ptr))
5132         if (BC->getOpcode() == Instruction::BitCast)
5133           GV = dyn_cast<GlobalVariable>(BC->getOperand(0));
5134
5135     if (GV && TLI.useLoadStackGuardNode()) {
5136       // Emit a LOAD_STACK_GUARD node.
5137       MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD,
5138                                                sdl, PtrTy, Chain);
5139       MachinePointerInfo MPInfo(GV);
5140       MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
5141       unsigned Flags = MachineMemOperand::MOLoad |
5142                        MachineMemOperand::MOInvariant;
5143       *MemRefs = MF.getMachineMemOperand(MPInfo, Flags,
5144                                          PtrTy.getSizeInBits() / 8,
5145                                          DAG.getEVTAlignment(PtrTy));
5146       Node->setMemRefs(MemRefs, MemRefs + 1);
5147
5148       // Copy the guard value to a virtual register so that it can be
5149       // retrieved in the epilogue.
5150       Src = SDValue(Node, 0);
5151       const TargetRegisterClass *RC =
5152           TLI.getRegClassFor(Src.getSimpleValueType());
5153       unsigned Reg = MF.getRegInfo().createVirtualRegister(RC);
5154
5155       SPDescriptor.setGuardReg(Reg);
5156       Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src);
5157     } else {
5158       Src = getValue(I.getArgOperand(0));   // The guard's value.
5159     }
5160
5161     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5162
5163     int FI = FuncInfo.StaticAllocaMap[Slot];
5164     MFI->setStackProtectorIndex(FI);
5165
5166     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5167
5168     // Store the stack protector onto the stack.
5169     Res = DAG.getStore(Chain, sdl, Src, FIN,
5170                        MachinePointerInfo::getFixedStack(FI),
5171                        true, false, 0);
5172     setValue(&I, Res);
5173     DAG.setRoot(Res);
5174     return nullptr;
5175   }
5176   case Intrinsic::objectsize: {
5177     // If we don't know by now, we're never going to know.
5178     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5179
5180     assert(CI && "Non-constant type in __builtin_object_size?");
5181
5182     SDValue Arg = getValue(I.getCalledValue());
5183     EVT Ty = Arg.getValueType();
5184
5185     if (CI->isZero())
5186       Res = DAG.getConstant(-1ULL, Ty);
5187     else
5188       Res = DAG.getConstant(0, Ty);
5189
5190     setValue(&I, Res);
5191     return nullptr;
5192   }
5193   case Intrinsic::annotation:
5194   case Intrinsic::ptr_annotation:
5195     // Drop the intrinsic, but forward the value
5196     setValue(&I, getValue(I.getOperand(0)));
5197     return nullptr;
5198   case Intrinsic::assume:
5199   case Intrinsic::var_annotation:
5200     // Discard annotate attributes and assumptions
5201     return nullptr;
5202
5203   case Intrinsic::init_trampoline: {
5204     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5205
5206     SDValue Ops[6];
5207     Ops[0] = getRoot();
5208     Ops[1] = getValue(I.getArgOperand(0));
5209     Ops[2] = getValue(I.getArgOperand(1));
5210     Ops[3] = getValue(I.getArgOperand(2));
5211     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5212     Ops[5] = DAG.getSrcValue(F);
5213
5214     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5215
5216     DAG.setRoot(Res);
5217     return nullptr;
5218   }
5219   case Intrinsic::adjust_trampoline: {
5220     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5221                              TLI.getPointerTy(),
5222                              getValue(I.getArgOperand(0))));
5223     return nullptr;
5224   }
5225   case Intrinsic::gcroot:
5226     if (GFI) {
5227       const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5228       const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5229
5230       FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5231       GFI->addStackRoot(FI->getIndex(), TypeMap);
5232     }
5233     return nullptr;
5234   case Intrinsic::gcread:
5235   case Intrinsic::gcwrite:
5236     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5237   case Intrinsic::flt_rounds:
5238     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5239     return nullptr;
5240
5241   case Intrinsic::expect: {
5242     // Just replace __builtin_expect(exp, c) with EXP.
5243     setValue(&I, getValue(I.getArgOperand(0)));
5244     return nullptr;
5245   }
5246
5247   case Intrinsic::debugtrap:
5248   case Intrinsic::trap: {
5249     StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5250     if (TrapFuncName.empty()) {
5251       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5252         ISD::TRAP : ISD::DEBUGTRAP;
5253       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5254       return nullptr;
5255     }
5256     TargetLowering::ArgListTy Args;
5257
5258     TargetLowering::CallLoweringInfo CLI(DAG);
5259     CLI.setDebugLoc(sdl).setChain(getRoot())
5260       .setCallee(CallingConv::C, I.getType(),
5261                  DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5262                  std::move(Args), 0);
5263
5264     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5265     DAG.setRoot(Result.second);
5266     return nullptr;
5267   }
5268
5269   case Intrinsic::uadd_with_overflow:
5270   case Intrinsic::sadd_with_overflow:
5271   case Intrinsic::usub_with_overflow:
5272   case Intrinsic::ssub_with_overflow:
5273   case Intrinsic::umul_with_overflow:
5274   case Intrinsic::smul_with_overflow: {
5275     ISD::NodeType Op;
5276     switch (Intrinsic) {
5277     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5278     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5279     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5280     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5281     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5282     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5283     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5284     }
5285     SDValue Op1 = getValue(I.getArgOperand(0));
5286     SDValue Op2 = getValue(I.getArgOperand(1));
5287
5288     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5289     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5290     return nullptr;
5291   }
5292   case Intrinsic::prefetch: {
5293     SDValue Ops[5];
5294     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5295     Ops[0] = getRoot();
5296     Ops[1] = getValue(I.getArgOperand(0));
5297     Ops[2] = getValue(I.getArgOperand(1));
5298     Ops[3] = getValue(I.getArgOperand(2));
5299     Ops[4] = getValue(I.getArgOperand(3));
5300     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5301                                         DAG.getVTList(MVT::Other), Ops,
5302                                         EVT::getIntegerVT(*Context, 8),
5303                                         MachinePointerInfo(I.getArgOperand(0)),
5304                                         0, /* align */
5305                                         false, /* volatile */
5306                                         rw==0, /* read */
5307                                         rw==1)); /* write */
5308     return nullptr;
5309   }
5310   case Intrinsic::lifetime_start:
5311   case Intrinsic::lifetime_end: {
5312     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5313     // Stack coloring is not enabled in O0, discard region information.
5314     if (TM.getOptLevel() == CodeGenOpt::None)
5315       return nullptr;
5316
5317     SmallVector<Value *, 4> Allocas;
5318     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5319
5320     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5321            E = Allocas.end(); Object != E; ++Object) {
5322       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5323
5324       // Could not find an Alloca.
5325       if (!LifetimeObject)
5326         continue;
5327
5328       // First check that the Alloca is static, otherwise it won't have a
5329       // valid frame index.
5330       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5331       if (SI == FuncInfo.StaticAllocaMap.end())
5332         return nullptr;
5333
5334       int FI = SI->second;
5335
5336       SDValue Ops[2];
5337       Ops[0] = getRoot();
5338       Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true);
5339       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5340
5341       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5342       DAG.setRoot(Res);
5343     }
5344     return nullptr;
5345   }
5346   case Intrinsic::invariant_start:
5347     // Discard region information.
5348     setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5349     return nullptr;
5350   case Intrinsic::invariant_end:
5351     // Discard region information.
5352     return nullptr;
5353   case Intrinsic::stackprotectorcheck: {
5354     // Do not actually emit anything for this basic block. Instead we initialize
5355     // the stack protector descriptor and export the guard variable so we can
5356     // access it in FinishBasicBlock.
5357     const BasicBlock *BB = I.getParent();
5358     SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I);
5359     ExportFromCurrentBlock(SPDescriptor.getGuard());
5360
5361     // Flush our exports since we are going to process a terminator.
5362     (void)getControlRoot();
5363     return nullptr;
5364   }
5365   case Intrinsic::clear_cache:
5366     return TLI.getClearCacheBuiltinName();
5367   case Intrinsic::eh_actions:
5368     setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5369     return nullptr;
5370   case Intrinsic::donothing:
5371     // ignore
5372     return nullptr;
5373   case Intrinsic::experimental_stackmap: {
5374     visitStackmap(I);
5375     return nullptr;
5376   }
5377   case Intrinsic::experimental_patchpoint_void:
5378   case Intrinsic::experimental_patchpoint_i64: {
5379     visitPatchpoint(&I);
5380     return nullptr;
5381   }
5382   case Intrinsic::experimental_gc_statepoint: {
5383     visitStatepoint(I);
5384     return nullptr;
5385   }
5386   case Intrinsic::experimental_gc_result_int:
5387   case Intrinsic::experimental_gc_result_float:
5388   case Intrinsic::experimental_gc_result_ptr:
5389   case Intrinsic::experimental_gc_result: {
5390     visitGCResult(I);
5391     return nullptr;
5392   }
5393   case Intrinsic::experimental_gc_relocate: {
5394     visitGCRelocate(I);
5395     return nullptr;
5396   }
5397   case Intrinsic::instrprof_increment:
5398     llvm_unreachable("instrprof failed to lower an increment");
5399
5400   case Intrinsic::frameescape: {
5401     MachineFunction &MF = DAG.getMachineFunction();
5402     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5403
5404     // Directly emit some FRAME_ALLOC machine instrs. Label assignment emission
5405     // is the same on all targets.
5406     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5407       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5408       if (isa<ConstantPointerNull>(Arg))
5409         continue; // Skip null pointers. They represent a hole in index space.
5410       AllocaInst *Slot = cast<AllocaInst>(Arg);
5411       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5412              "can only escape static allocas");
5413       int FI = FuncInfo.StaticAllocaMap[Slot];
5414       MCSymbol *FrameAllocSym =
5415           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5416               GlobalValue::getRealLinkageName(MF.getName()), Idx);
5417       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5418               TII->get(TargetOpcode::FRAME_ALLOC))
5419           .addSym(FrameAllocSym)
5420           .addFrameIndex(FI);
5421     }
5422
5423     return nullptr;
5424   }
5425
5426   case Intrinsic::framerecover: {
5427     // i8* @llvm.framerecover(i8* %fn, i8* %fp, i32 %idx)
5428     MachineFunction &MF = DAG.getMachineFunction();
5429     MVT PtrVT = TLI.getPointerTy(0);
5430
5431     // Get the symbol that defines the frame offset.
5432     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5433     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5434     unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX));
5435     MCSymbol *FrameAllocSym =
5436         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5437             GlobalValue::getRealLinkageName(Fn->getName()), IdxVal);
5438
5439     // Create a TargetExternalSymbol for the label to avoid any target lowering
5440     // that would make this PC relative.
5441     StringRef Name = FrameAllocSym->getName();
5442     assert(Name.data()[Name.size()] == '\0' && "not null terminated");
5443     SDValue OffsetSym = DAG.getTargetExternalSymbol(Name.data(), PtrVT);
5444     SDValue OffsetVal =
5445         DAG.getNode(ISD::FRAME_ALLOC_RECOVER, sdl, PtrVT, OffsetSym);
5446
5447     // Add the offset to the FP.
5448     Value *FP = I.getArgOperand(1);
5449     SDValue FPVal = getValue(FP);
5450     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5451     setValue(&I, Add);
5452
5453     return nullptr;
5454   }
5455   case Intrinsic::eh_begincatch:
5456   case Intrinsic::eh_endcatch:
5457     llvm_unreachable("begin/end catch intrinsics not lowered in codegen");
5458   }
5459 }
5460
5461 std::pair<SDValue, SDValue>
5462 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
5463                                     MachineBasicBlock *LandingPad) {
5464   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5465   MCSymbol *BeginLabel = nullptr;
5466
5467   if (LandingPad) {
5468     // Insert a label before the invoke call to mark the try range.  This can be
5469     // used to detect deletion of the invoke via the MachineModuleInfo.
5470     BeginLabel = MMI.getContext().CreateTempSymbol();
5471
5472     // For SjLj, keep track of which landing pads go with which invokes
5473     // so as to maintain the ordering of pads in the LSDA.
5474     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5475     if (CallSiteIndex) {
5476       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5477       LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5478
5479       // Now that the call site is handled, stop tracking it.
5480       MMI.setCurrentCallSite(0);
5481     }
5482
5483     // Both PendingLoads and PendingExports must be flushed here;
5484     // this call might not return.
5485     (void)getRoot();
5486     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5487
5488     CLI.setChain(getRoot());
5489   }
5490   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5491   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5492
5493   assert((CLI.IsTailCall || Result.second.getNode()) &&
5494          "Non-null chain expected with non-tail call!");
5495   assert((Result.second.getNode() || !Result.first.getNode()) &&
5496          "Null value expected with tail call!");
5497
5498   if (!Result.second.getNode()) {
5499     // As a special case, a null chain means that a tail call has been emitted
5500     // and the DAG root is already updated.
5501     HasTailCall = true;
5502
5503     // Since there's no actual continuation from this block, nothing can be
5504     // relying on us setting vregs for them.
5505     PendingExports.clear();
5506   } else {
5507     DAG.setRoot(Result.second);
5508   }
5509
5510   if (LandingPad) {
5511     // Insert a label at the end of the invoke call to mark the try range.  This
5512     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5513     MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5514     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5515
5516     // Inform MachineModuleInfo of range.
5517     MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5518   }
5519
5520   return Result;
5521 }
5522
5523 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5524                                       bool isTailCall,
5525                                       MachineBasicBlock *LandingPad) {
5526   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5527   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5528   Type *RetTy = FTy->getReturnType();
5529
5530   TargetLowering::ArgListTy Args;
5531   TargetLowering::ArgListEntry Entry;
5532   Args.reserve(CS.arg_size());
5533
5534   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5535        i != e; ++i) {
5536     const Value *V = *i;
5537
5538     // Skip empty types
5539     if (V->getType()->isEmptyTy())
5540       continue;
5541
5542     SDValue ArgNode = getValue(V);
5543     Entry.Node = ArgNode; Entry.Ty = V->getType();
5544
5545     // Skip the first return-type Attribute to get to params.
5546     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5547     Args.push_back(Entry);
5548
5549     // If we have an explicit sret argument that is an Instruction, (i.e., it
5550     // might point to function-local memory), we can't meaningfully tail-call.
5551     if (Entry.isSRet && isa<Instruction>(V))
5552       isTailCall = false;
5553   }
5554
5555   // Check if target-independent constraints permit a tail call here.
5556   // Target-dependent constraints are checked within TLI->LowerCallTo.
5557   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
5558     isTailCall = false;
5559
5560   TargetLowering::CallLoweringInfo CLI(DAG);
5561   CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
5562     .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
5563     .setTailCall(isTailCall);
5564   std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad);
5565
5566   if (Result.first.getNode())
5567     setValue(CS.getInstruction(), Result.first);
5568 }
5569
5570 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5571 /// value is equal or not-equal to zero.
5572 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5573   for (const User *U : V->users()) {
5574     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
5575       if (IC->isEquality())
5576         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5577           if (C->isNullValue())
5578             continue;
5579     // Unknown instruction.
5580     return false;
5581   }
5582   return true;
5583 }
5584
5585 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5586                              Type *LoadTy,
5587                              SelectionDAGBuilder &Builder) {
5588
5589   // Check to see if this load can be trivially constant folded, e.g. if the
5590   // input is from a string literal.
5591   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5592     // Cast pointer to the type we really want to load.
5593     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5594                                          PointerType::getUnqual(LoadTy));
5595
5596     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
5597             const_cast<Constant *>(LoadInput), *Builder.DL))
5598       return Builder.getValue(LoadCst);
5599   }
5600
5601   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5602   // still constant memory, the input chain can be the entry node.
5603   SDValue Root;
5604   bool ConstantMemory = false;
5605
5606   // Do not serialize (non-volatile) loads of constant memory with anything.
5607   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5608     Root = Builder.DAG.getEntryNode();
5609     ConstantMemory = true;
5610   } else {
5611     // Do not serialize non-volatile loads against each other.
5612     Root = Builder.DAG.getRoot();
5613   }
5614
5615   SDValue Ptr = Builder.getValue(PtrVal);
5616   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5617                                         Ptr, MachinePointerInfo(PtrVal),
5618                                         false /*volatile*/,
5619                                         false /*nontemporal*/,
5620                                         false /*isinvariant*/, 1 /* align=1 */);
5621
5622   if (!ConstantMemory)
5623     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5624   return LoadVal;
5625 }
5626
5627 /// processIntegerCallValue - Record the value for an instruction that
5628 /// produces an integer result, converting the type where necessary.
5629 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5630                                                   SDValue Value,
5631                                                   bool IsSigned) {
5632   EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true);
5633   if (IsSigned)
5634     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5635   else
5636     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5637   setValue(&I, Value);
5638 }
5639
5640 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5641 /// If so, return true and lower it, otherwise return false and it will be
5642 /// lowered like a normal call.
5643 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5644   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5645   if (I.getNumArgOperands() != 3)
5646     return false;
5647
5648   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5649   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5650       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5651       !I.getType()->isIntegerTy())
5652     return false;
5653
5654   const Value *Size = I.getArgOperand(2);
5655   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5656   if (CSize && CSize->getZExtValue() == 0) {
5657     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true);
5658     setValue(&I, DAG.getConstant(0, CallVT));
5659     return true;
5660   }
5661
5662   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5663   std::pair<SDValue, SDValue> Res =
5664     TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5665                                 getValue(LHS), getValue(RHS), getValue(Size),
5666                                 MachinePointerInfo(LHS),
5667                                 MachinePointerInfo(RHS));
5668   if (Res.first.getNode()) {
5669     processIntegerCallValue(I, Res.first, true);
5670     PendingLoads.push_back(Res.second);
5671     return true;
5672   }
5673
5674   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5675   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5676   if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
5677     bool ActuallyDoIt = true;
5678     MVT LoadVT;
5679     Type *LoadTy;
5680     switch (CSize->getZExtValue()) {
5681     default:
5682       LoadVT = MVT::Other;
5683       LoadTy = nullptr;
5684       ActuallyDoIt = false;
5685       break;
5686     case 2:
5687       LoadVT = MVT::i16;
5688       LoadTy = Type::getInt16Ty(CSize->getContext());
5689       break;
5690     case 4:
5691       LoadVT = MVT::i32;
5692       LoadTy = Type::getInt32Ty(CSize->getContext());
5693       break;
5694     case 8:
5695       LoadVT = MVT::i64;
5696       LoadTy = Type::getInt64Ty(CSize->getContext());
5697       break;
5698         /*
5699     case 16:
5700       LoadVT = MVT::v4i32;
5701       LoadTy = Type::getInt32Ty(CSize->getContext());
5702       LoadTy = VectorType::get(LoadTy, 4);
5703       break;
5704          */
5705     }
5706
5707     // This turns into unaligned loads.  We only do this if the target natively
5708     // supports the MVT we'll be loading or if it is small enough (<= 4) that
5709     // we'll only produce a small number of byte loads.
5710
5711     // Require that we can find a legal MVT, and only do this if the target
5712     // supports unaligned loads of that type.  Expanding into byte loads would
5713     // bloat the code.
5714     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5715     if (ActuallyDoIt && CSize->getZExtValue() > 4) {
5716       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
5717       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
5718       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5719       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5720       // TODO: Check alignment of src and dest ptrs.
5721       if (!TLI.isTypeLegal(LoadVT) ||
5722           !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) ||
5723           !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS))
5724         ActuallyDoIt = false;
5725     }
5726
5727     if (ActuallyDoIt) {
5728       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5729       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5730
5731       SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5732                                  ISD::SETNE);
5733       processIntegerCallValue(I, Res, false);
5734       return true;
5735     }
5736   }
5737
5738
5739   return false;
5740 }
5741
5742 /// visitMemChrCall -- See if we can lower a memchr call into an optimized
5743 /// form.  If so, return true and lower it, otherwise return false and it
5744 /// will be lowered like a normal call.
5745 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
5746   // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
5747   if (I.getNumArgOperands() != 3)
5748     return false;
5749
5750   const Value *Src = I.getArgOperand(0);
5751   const Value *Char = I.getArgOperand(1);
5752   const Value *Length = I.getArgOperand(2);
5753   if (!Src->getType()->isPointerTy() ||
5754       !Char->getType()->isIntegerTy() ||
5755       !Length->getType()->isIntegerTy() ||
5756       !I.getType()->isPointerTy())
5757     return false;
5758
5759   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5760   std::pair<SDValue, SDValue> Res =
5761     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
5762                                 getValue(Src), getValue(Char), getValue(Length),
5763                                 MachinePointerInfo(Src));
5764   if (Res.first.getNode()) {
5765     setValue(&I, Res.first);
5766     PendingLoads.push_back(Res.second);
5767     return true;
5768   }
5769
5770   return false;
5771 }
5772
5773 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
5774 /// optimized form.  If so, return true and lower it, otherwise return false
5775 /// and it will be lowered like a normal call.
5776 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
5777   // Verify that the prototype makes sense.  char *strcpy(char *, char *)
5778   if (I.getNumArgOperands() != 2)
5779     return false;
5780
5781   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5782   if (!Arg0->getType()->isPointerTy() ||
5783       !Arg1->getType()->isPointerTy() ||
5784       !I.getType()->isPointerTy())
5785     return false;
5786
5787   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5788   std::pair<SDValue, SDValue> Res =
5789     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
5790                                 getValue(Arg0), getValue(Arg1),
5791                                 MachinePointerInfo(Arg0),
5792                                 MachinePointerInfo(Arg1), isStpcpy);
5793   if (Res.first.getNode()) {
5794     setValue(&I, Res.first);
5795     DAG.setRoot(Res.second);
5796     return true;
5797   }
5798
5799   return false;
5800 }
5801
5802 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
5803 /// If so, return true and lower it, otherwise return false and it will be
5804 /// lowered like a normal call.
5805 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
5806   // Verify that the prototype makes sense.  int strcmp(void*,void*)
5807   if (I.getNumArgOperands() != 2)
5808     return false;
5809
5810   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5811   if (!Arg0->getType()->isPointerTy() ||
5812       !Arg1->getType()->isPointerTy() ||
5813       !I.getType()->isIntegerTy())
5814     return false;
5815
5816   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5817   std::pair<SDValue, SDValue> Res =
5818     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5819                                 getValue(Arg0), getValue(Arg1),
5820                                 MachinePointerInfo(Arg0),
5821                                 MachinePointerInfo(Arg1));
5822   if (Res.first.getNode()) {
5823     processIntegerCallValue(I, Res.first, true);
5824     PendingLoads.push_back(Res.second);
5825     return true;
5826   }
5827
5828   return false;
5829 }
5830
5831 /// visitStrLenCall -- See if we can lower a strlen call into an optimized
5832 /// form.  If so, return true and lower it, otherwise return false and it
5833 /// will be lowered like a normal call.
5834 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
5835   // Verify that the prototype makes sense.  size_t strlen(char *)
5836   if (I.getNumArgOperands() != 1)
5837     return false;
5838
5839   const Value *Arg0 = I.getArgOperand(0);
5840   if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
5841     return false;
5842
5843   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5844   std::pair<SDValue, SDValue> Res =
5845     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
5846                                 getValue(Arg0), MachinePointerInfo(Arg0));
5847   if (Res.first.getNode()) {
5848     processIntegerCallValue(I, Res.first, false);
5849     PendingLoads.push_back(Res.second);
5850     return true;
5851   }
5852
5853   return false;
5854 }
5855
5856 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
5857 /// form.  If so, return true and lower it, otherwise return false and it
5858 /// will be lowered like a normal call.
5859 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
5860   // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
5861   if (I.getNumArgOperands() != 2)
5862     return false;
5863
5864   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5865   if (!Arg0->getType()->isPointerTy() ||
5866       !Arg1->getType()->isIntegerTy() ||
5867       !I.getType()->isIntegerTy())
5868     return false;
5869
5870   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5871   std::pair<SDValue, SDValue> Res =
5872     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
5873                                  getValue(Arg0), getValue(Arg1),
5874                                  MachinePointerInfo(Arg0));
5875   if (Res.first.getNode()) {
5876     processIntegerCallValue(I, Res.first, false);
5877     PendingLoads.push_back(Res.second);
5878     return true;
5879   }
5880
5881   return false;
5882 }
5883
5884 /// visitUnaryFloatCall - If a call instruction is a unary floating-point
5885 /// operation (as expected), translate it to an SDNode with the specified opcode
5886 /// and return true.
5887 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5888                                               unsigned Opcode) {
5889   // Sanity check that it really is a unary floating-point call.
5890   if (I.getNumArgOperands() != 1 ||
5891       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5892       I.getType() != I.getArgOperand(0)->getType() ||
5893       !I.onlyReadsMemory())
5894     return false;
5895
5896   SDValue Tmp = getValue(I.getArgOperand(0));
5897   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
5898   return true;
5899 }
5900
5901 /// visitBinaryFloatCall - If a call instruction is a binary floating-point
5902 /// operation (as expected), translate it to an SDNode with the specified opcode
5903 /// and return true.
5904 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
5905                                                unsigned Opcode) {
5906   // Sanity check that it really is a binary floating-point call.
5907   if (I.getNumArgOperands() != 2 ||
5908       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5909       I.getType() != I.getArgOperand(0)->getType() ||
5910       I.getType() != I.getArgOperand(1)->getType() ||
5911       !I.onlyReadsMemory())
5912     return false;
5913
5914   SDValue Tmp0 = getValue(I.getArgOperand(0));
5915   SDValue Tmp1 = getValue(I.getArgOperand(1));
5916   EVT VT = Tmp0.getValueType();
5917   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
5918   return true;
5919 }
5920
5921 void SelectionDAGBuilder::visitCall(const CallInst &I) {
5922   // Handle inline assembly differently.
5923   if (isa<InlineAsm>(I.getCalledValue())) {
5924     visitInlineAsm(&I);
5925     return;
5926   }
5927
5928   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5929   ComputeUsesVAFloatArgument(I, &MMI);
5930
5931   const char *RenameFn = nullptr;
5932   if (Function *F = I.getCalledFunction()) {
5933     if (F->isDeclaration()) {
5934       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5935         if (unsigned IID = II->getIntrinsicID(F)) {
5936           RenameFn = visitIntrinsicCall(I, IID);
5937           if (!RenameFn)
5938             return;
5939         }
5940       }
5941       if (unsigned IID = F->getIntrinsicID()) {
5942         RenameFn = visitIntrinsicCall(I, IID);
5943         if (!RenameFn)
5944           return;
5945       }
5946     }
5947
5948     // Check for well-known libc/libm calls.  If the function is internal, it
5949     // can't be a library call.
5950     LibFunc::Func Func;
5951     if (!F->hasLocalLinkage() && F->hasName() &&
5952         LibInfo->getLibFunc(F->getName(), Func) &&
5953         LibInfo->hasOptimizedCodeGen(Func)) {
5954       switch (Func) {
5955       default: break;
5956       case LibFunc::copysign:
5957       case LibFunc::copysignf:
5958       case LibFunc::copysignl:
5959         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5960             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5961             I.getType() == I.getArgOperand(0)->getType() &&
5962             I.getType() == I.getArgOperand(1)->getType() &&
5963             I.onlyReadsMemory()) {
5964           SDValue LHS = getValue(I.getArgOperand(0));
5965           SDValue RHS = getValue(I.getArgOperand(1));
5966           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
5967                                    LHS.getValueType(), LHS, RHS));
5968           return;
5969         }
5970         break;
5971       case LibFunc::fabs:
5972       case LibFunc::fabsf:
5973       case LibFunc::fabsl:
5974         if (visitUnaryFloatCall(I, ISD::FABS))
5975           return;
5976         break;
5977       case LibFunc::fmin:
5978       case LibFunc::fminf:
5979       case LibFunc::fminl:
5980         if (visitBinaryFloatCall(I, ISD::FMINNUM))
5981           return;
5982         break;
5983       case LibFunc::fmax:
5984       case LibFunc::fmaxf:
5985       case LibFunc::fmaxl:
5986         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
5987           return;
5988         break;
5989       case LibFunc::sin:
5990       case LibFunc::sinf:
5991       case LibFunc::sinl:
5992         if (visitUnaryFloatCall(I, ISD::FSIN))
5993           return;
5994         break;
5995       case LibFunc::cos:
5996       case LibFunc::cosf:
5997       case LibFunc::cosl:
5998         if (visitUnaryFloatCall(I, ISD::FCOS))
5999           return;
6000         break;
6001       case LibFunc::sqrt:
6002       case LibFunc::sqrtf:
6003       case LibFunc::sqrtl:
6004       case LibFunc::sqrt_finite:
6005       case LibFunc::sqrtf_finite:
6006       case LibFunc::sqrtl_finite:
6007         if (visitUnaryFloatCall(I, ISD::FSQRT))
6008           return;
6009         break;
6010       case LibFunc::floor:
6011       case LibFunc::floorf:
6012       case LibFunc::floorl:
6013         if (visitUnaryFloatCall(I, ISD::FFLOOR))
6014           return;
6015         break;
6016       case LibFunc::nearbyint:
6017       case LibFunc::nearbyintf:
6018       case LibFunc::nearbyintl:
6019         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6020           return;
6021         break;
6022       case LibFunc::ceil:
6023       case LibFunc::ceilf:
6024       case LibFunc::ceill:
6025         if (visitUnaryFloatCall(I, ISD::FCEIL))
6026           return;
6027         break;
6028       case LibFunc::rint:
6029       case LibFunc::rintf:
6030       case LibFunc::rintl:
6031         if (visitUnaryFloatCall(I, ISD::FRINT))
6032           return;
6033         break;
6034       case LibFunc::round:
6035       case LibFunc::roundf:
6036       case LibFunc::roundl:
6037         if (visitUnaryFloatCall(I, ISD::FROUND))
6038           return;
6039         break;
6040       case LibFunc::trunc:
6041       case LibFunc::truncf:
6042       case LibFunc::truncl:
6043         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6044           return;
6045         break;
6046       case LibFunc::log2:
6047       case LibFunc::log2f:
6048       case LibFunc::log2l:
6049         if (visitUnaryFloatCall(I, ISD::FLOG2))
6050           return;
6051         break;
6052       case LibFunc::exp2:
6053       case LibFunc::exp2f:
6054       case LibFunc::exp2l:
6055         if (visitUnaryFloatCall(I, ISD::FEXP2))
6056           return;
6057         break;
6058       case LibFunc::memcmp:
6059         if (visitMemCmpCall(I))
6060           return;
6061         break;
6062       case LibFunc::memchr:
6063         if (visitMemChrCall(I))
6064           return;
6065         break;
6066       case LibFunc::strcpy:
6067         if (visitStrCpyCall(I, false))
6068           return;
6069         break;
6070       case LibFunc::stpcpy:
6071         if (visitStrCpyCall(I, true))
6072           return;
6073         break;
6074       case LibFunc::strcmp:
6075         if (visitStrCmpCall(I))
6076           return;
6077         break;
6078       case LibFunc::strlen:
6079         if (visitStrLenCall(I))
6080           return;
6081         break;
6082       case LibFunc::strnlen:
6083         if (visitStrNLenCall(I))
6084           return;
6085         break;
6086       }
6087     }
6088   }
6089
6090   SDValue Callee;
6091   if (!RenameFn)
6092     Callee = getValue(I.getCalledValue());
6093   else
6094     Callee = DAG.getExternalSymbol(RenameFn,
6095                                    DAG.getTargetLoweringInfo().getPointerTy());
6096
6097   // Check if we can potentially perform a tail call. More detailed checking is
6098   // be done within LowerCallTo, after more information about the call is known.
6099   LowerCallTo(&I, Callee, I.isTailCall());
6100 }
6101
6102 namespace {
6103
6104 /// AsmOperandInfo - This contains information for each constraint that we are
6105 /// lowering.
6106 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6107 public:
6108   /// CallOperand - If this is the result output operand or a clobber
6109   /// this is null, otherwise it is the incoming operand to the CallInst.
6110   /// This gets modified as the asm is processed.
6111   SDValue CallOperand;
6112
6113   /// AssignedRegs - If this is a register or register class operand, this
6114   /// contains the set of register corresponding to the operand.
6115   RegsForValue AssignedRegs;
6116
6117   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6118     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
6119   }
6120
6121   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6122   /// corresponds to.  If there is no Value* for this operand, it returns
6123   /// MVT::Other.
6124   EVT getCallOperandValEVT(LLVMContext &Context,
6125                            const TargetLowering &TLI,
6126                            const DataLayout *DL) const {
6127     if (!CallOperandVal) return MVT::Other;
6128
6129     if (isa<BasicBlock>(CallOperandVal))
6130       return TLI.getPointerTy();
6131
6132     llvm::Type *OpTy = CallOperandVal->getType();
6133
6134     // FIXME: code duplicated from TargetLowering::ParseConstraints().
6135     // If this is an indirect operand, the operand is a pointer to the
6136     // accessed type.
6137     if (isIndirect) {
6138       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6139       if (!PtrTy)
6140         report_fatal_error("Indirect operand for inline asm not a pointer!");
6141       OpTy = PtrTy->getElementType();
6142     }
6143
6144     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6145     if (StructType *STy = dyn_cast<StructType>(OpTy))
6146       if (STy->getNumElements() == 1)
6147         OpTy = STy->getElementType(0);
6148
6149     // If OpTy is not a single value, it may be a struct/union that we
6150     // can tile with integers.
6151     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6152       unsigned BitSize = DL->getTypeSizeInBits(OpTy);
6153       switch (BitSize) {
6154       default: break;
6155       case 1:
6156       case 8:
6157       case 16:
6158       case 32:
6159       case 64:
6160       case 128:
6161         OpTy = IntegerType::get(Context, BitSize);
6162         break;
6163       }
6164     }
6165
6166     return TLI.getValueType(OpTy, true);
6167   }
6168 };
6169
6170 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6171
6172 } // end anonymous namespace
6173
6174 /// GetRegistersForValue - Assign registers (virtual or physical) for the
6175 /// specified operand.  We prefer to assign virtual registers, to allow the
6176 /// register allocator to handle the assignment process.  However, if the asm
6177 /// uses features that we can't model on machineinstrs, we have SDISel do the
6178 /// allocation.  This produces generally horrible, but correct, code.
6179 ///
6180 ///   OpInfo describes the operand.
6181 ///
6182 static void GetRegistersForValue(SelectionDAG &DAG,
6183                                  const TargetLowering &TLI,
6184                                  SDLoc DL,
6185                                  SDISelAsmOperandInfo &OpInfo) {
6186   LLVMContext &Context = *DAG.getContext();
6187
6188   MachineFunction &MF = DAG.getMachineFunction();
6189   SmallVector<unsigned, 4> Regs;
6190
6191   // If this is a constraint for a single physreg, or a constraint for a
6192   // register class, find it.
6193   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
6194       TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(),
6195                                        OpInfo.ConstraintCode,
6196                                        OpInfo.ConstraintVT);
6197
6198   unsigned NumRegs = 1;
6199   if (OpInfo.ConstraintVT != MVT::Other) {
6200     // If this is a FP input in an integer register (or visa versa) insert a bit
6201     // cast of the input value.  More generally, handle any case where the input
6202     // value disagrees with the register class we plan to stick this in.
6203     if (OpInfo.Type == InlineAsm::isInput &&
6204         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6205       // Try to convert to the first EVT that the reg class contains.  If the
6206       // types are identical size, use a bitcast to convert (e.g. two differing
6207       // vector types).
6208       MVT RegVT = *PhysReg.second->vt_begin();
6209       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6210         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6211                                          RegVT, OpInfo.CallOperand);
6212         OpInfo.ConstraintVT = RegVT;
6213       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6214         // If the input is a FP value and we want it in FP registers, do a
6215         // bitcast to the corresponding integer type.  This turns an f64 value
6216         // into i64, which can be passed with two i32 values on a 32-bit
6217         // machine.
6218         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6219         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6220                                          RegVT, OpInfo.CallOperand);
6221         OpInfo.ConstraintVT = RegVT;
6222       }
6223     }
6224
6225     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6226   }
6227
6228   MVT RegVT;
6229   EVT ValueVT = OpInfo.ConstraintVT;
6230
6231   // If this is a constraint for a specific physical register, like {r17},
6232   // assign it now.
6233   if (unsigned AssignedReg = PhysReg.first) {
6234     const TargetRegisterClass *RC = PhysReg.second;
6235     if (OpInfo.ConstraintVT == MVT::Other)
6236       ValueVT = *RC->vt_begin();
6237
6238     // Get the actual register value type.  This is important, because the user
6239     // may have asked for (e.g.) the AX register in i32 type.  We need to
6240     // remember that AX is actually i16 to get the right extension.
6241     RegVT = *RC->vt_begin();
6242
6243     // This is a explicit reference to a physical register.
6244     Regs.push_back(AssignedReg);
6245
6246     // If this is an expanded reference, add the rest of the regs to Regs.
6247     if (NumRegs != 1) {
6248       TargetRegisterClass::iterator I = RC->begin();
6249       for (; *I != AssignedReg; ++I)
6250         assert(I != RC->end() && "Didn't find reg!");
6251
6252       // Already added the first reg.
6253       --NumRegs; ++I;
6254       for (; NumRegs; --NumRegs, ++I) {
6255         assert(I != RC->end() && "Ran out of registers to allocate!");
6256         Regs.push_back(*I);
6257       }
6258     }
6259
6260     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6261     return;
6262   }
6263
6264   // Otherwise, if this was a reference to an LLVM register class, create vregs
6265   // for this reference.
6266   if (const TargetRegisterClass *RC = PhysReg.second) {
6267     RegVT = *RC->vt_begin();
6268     if (OpInfo.ConstraintVT == MVT::Other)
6269       ValueVT = RegVT;
6270
6271     // Create the appropriate number of virtual registers.
6272     MachineRegisterInfo &RegInfo = MF.getRegInfo();
6273     for (; NumRegs; --NumRegs)
6274       Regs.push_back(RegInfo.createVirtualRegister(RC));
6275
6276     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6277     return;
6278   }
6279
6280   // Otherwise, we couldn't allocate enough registers for this.
6281 }
6282
6283 /// visitInlineAsm - Handle a call to an InlineAsm object.
6284 ///
6285 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6286   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6287
6288   /// ConstraintOperands - Information about all of the constraints.
6289   SDISelAsmOperandInfoVector ConstraintOperands;
6290
6291   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6292   TargetLowering::AsmOperandInfoVector TargetConstraints =
6293       TLI.ParseConstraints(DAG.getSubtarget().getRegisterInfo(), CS);
6294
6295   bool hasMemory = false;
6296
6297   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6298   unsigned ResNo = 0;   // ResNo - The result number of the next output.
6299   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6300     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6301     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6302
6303     MVT OpVT = MVT::Other;
6304
6305     // Compute the value type for each operand.
6306     switch (OpInfo.Type) {
6307     case InlineAsm::isOutput:
6308       // Indirect outputs just consume an argument.
6309       if (OpInfo.isIndirect) {
6310         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6311         break;
6312       }
6313
6314       // The return value of the call is this value.  As such, there is no
6315       // corresponding argument.
6316       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6317       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6318         OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo));
6319       } else {
6320         assert(ResNo == 0 && "Asm only has one result!");
6321         OpVT = TLI.getSimpleValueType(CS.getType());
6322       }
6323       ++ResNo;
6324       break;
6325     case InlineAsm::isInput:
6326       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6327       break;
6328     case InlineAsm::isClobber:
6329       // Nothing to do.
6330       break;
6331     }
6332
6333     // If this is an input or an indirect output, process the call argument.
6334     // BasicBlocks are labels, currently appearing only in asm's.
6335     if (OpInfo.CallOperandVal) {
6336       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6337         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6338       } else {
6339         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6340       }
6341
6342       OpVT =
6343           OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT();
6344     }
6345
6346     OpInfo.ConstraintVT = OpVT;
6347
6348     // Indirect operand accesses access memory.
6349     if (OpInfo.isIndirect)
6350       hasMemory = true;
6351     else {
6352       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
6353         TargetLowering::ConstraintType
6354           CType = TLI.getConstraintType(OpInfo.Codes[j]);
6355         if (CType == TargetLowering::C_Memory) {
6356           hasMemory = true;
6357           break;
6358         }
6359       }
6360     }
6361   }
6362
6363   SDValue Chain, Flag;
6364
6365   // We won't need to flush pending loads if this asm doesn't touch
6366   // memory and is nonvolatile.
6367   if (hasMemory || IA->hasSideEffects())
6368     Chain = getRoot();
6369   else
6370     Chain = DAG.getRoot();
6371
6372   // Second pass over the constraints: compute which constraint option to use
6373   // and assign registers to constraints that want a specific physreg.
6374   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6375     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6376
6377     // If this is an output operand with a matching input operand, look up the
6378     // matching input. If their types mismatch, e.g. one is an integer, the
6379     // other is floating point, or their sizes are different, flag it as an
6380     // error.
6381     if (OpInfo.hasMatchingInput()) {
6382       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6383
6384       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6385         const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
6386         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6387             TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6388                                              OpInfo.ConstraintVT);
6389         std::pair<unsigned, const TargetRegisterClass *> InputRC =
6390             TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
6391                                              Input.ConstraintVT);
6392         if ((OpInfo.ConstraintVT.isInteger() !=
6393              Input.ConstraintVT.isInteger()) ||
6394             (MatchRC.second != InputRC.second)) {
6395           report_fatal_error("Unsupported asm: input constraint"
6396                              " with a matching output constraint of"
6397                              " incompatible type!");
6398         }
6399         Input.ConstraintVT = OpInfo.ConstraintVT;
6400       }
6401     }
6402
6403     // Compute the constraint code and ConstraintType to use.
6404     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6405
6406     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6407         OpInfo.Type == InlineAsm::isClobber)
6408       continue;
6409
6410     // If this is a memory input, and if the operand is not indirect, do what we
6411     // need to to provide an address for the memory input.
6412     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6413         !OpInfo.isIndirect) {
6414       assert((OpInfo.isMultipleAlternative ||
6415               (OpInfo.Type == InlineAsm::isInput)) &&
6416              "Can only indirectify direct input operands!");
6417
6418       // Memory operands really want the address of the value.  If we don't have
6419       // an indirect input, put it in the constpool if we can, otherwise spill
6420       // it to a stack slot.
6421       // TODO: This isn't quite right. We need to handle these according to
6422       // the addressing mode that the constraint wants. Also, this may take
6423       // an additional register for the computation and we don't want that
6424       // either.
6425
6426       // If the operand is a float, integer, or vector constant, spill to a
6427       // constant pool entry to get its address.
6428       const Value *OpVal = OpInfo.CallOperandVal;
6429       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6430           isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6431         OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
6432                                                  TLI.getPointerTy());
6433       } else {
6434         // Otherwise, create a stack slot and emit a store to it before the
6435         // asm.
6436         Type *Ty = OpVal->getType();
6437         uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
6438         unsigned Align  = TLI.getDataLayout()->getPrefTypeAlignment(Ty);
6439         MachineFunction &MF = DAG.getMachineFunction();
6440         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6441         SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
6442         Chain = DAG.getStore(Chain, getCurSDLoc(),
6443                              OpInfo.CallOperand, StackSlot,
6444                              MachinePointerInfo::getFixedStack(SSFI),
6445                              false, false, 0);
6446         OpInfo.CallOperand = StackSlot;
6447       }
6448
6449       // There is no longer a Value* corresponding to this operand.
6450       OpInfo.CallOperandVal = nullptr;
6451
6452       // It is now an indirect operand.
6453       OpInfo.isIndirect = true;
6454     }
6455
6456     // If this constraint is for a specific register, allocate it before
6457     // anything else.
6458     if (OpInfo.ConstraintType == TargetLowering::C_Register)
6459       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6460   }
6461
6462   // Second pass - Loop over all of the operands, assigning virtual or physregs
6463   // to register class operands.
6464   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6465     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6466
6467     // C_Register operands have already been allocated, Other/Memory don't need
6468     // to be.
6469     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6470       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6471   }
6472
6473   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6474   std::vector<SDValue> AsmNodeOperands;
6475   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6476   AsmNodeOperands.push_back(
6477           DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6478                                       TLI.getPointerTy()));
6479
6480   // If we have a !srcloc metadata node associated with it, we want to attach
6481   // this to the ultimately generated inline asm machineinstr.  To do this, we
6482   // pass in the third operand as this (potentially null) inline asm MDNode.
6483   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6484   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6485
6486   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6487   // bits as operand 3.
6488   unsigned ExtraInfo = 0;
6489   if (IA->hasSideEffects())
6490     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6491   if (IA->isAlignStack())
6492     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6493   // Set the asm dialect.
6494   ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6495
6496   // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6497   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6498     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6499
6500     // Compute the constraint code and ConstraintType to use.
6501     TLI.ComputeConstraintToUse(OpInfo, SDValue());
6502
6503     // Ideally, we would only check against memory constraints.  However, the
6504     // meaning of an other constraint can be target-specific and we can't easily
6505     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6506     // for other constriants as well.
6507     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6508         OpInfo.ConstraintType == TargetLowering::C_Other) {
6509       if (OpInfo.Type == InlineAsm::isInput)
6510         ExtraInfo |= InlineAsm::Extra_MayLoad;
6511       else if (OpInfo.Type == InlineAsm::isOutput)
6512         ExtraInfo |= InlineAsm::Extra_MayStore;
6513       else if (OpInfo.Type == InlineAsm::isClobber)
6514         ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6515     }
6516   }
6517
6518   AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6519                                                   TLI.getPointerTy()));
6520
6521   // Loop over all of the inputs, copying the operand values into the
6522   // appropriate registers and processing the output regs.
6523   RegsForValue RetValRegs;
6524
6525   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6526   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6527
6528   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6529     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6530
6531     switch (OpInfo.Type) {
6532     case InlineAsm::isOutput: {
6533       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6534           OpInfo.ConstraintType != TargetLowering::C_Register) {
6535         // Memory output, or 'other' output (e.g. 'X' constraint).
6536         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6537
6538         unsigned ConstraintID =
6539             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6540         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6541                "Failed to convert memory constraint code to constraint id.");
6542
6543         // Add information to the INLINEASM node to know about this output.
6544         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6545         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
6546         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, MVT::i32));
6547         AsmNodeOperands.push_back(OpInfo.CallOperand);
6548         break;
6549       }
6550
6551       // Otherwise, this is a register or register class output.
6552
6553       // Copy the output from the appropriate register.  Find a register that
6554       // we can use.
6555       if (OpInfo.AssignedRegs.Regs.empty()) {
6556         LLVMContext &Ctx = *DAG.getContext();
6557         Ctx.emitError(CS.getInstruction(),
6558                       "couldn't allocate output register for constraint '" +
6559                           Twine(OpInfo.ConstraintCode) + "'");
6560         return;
6561       }
6562
6563       // If this is an indirect operand, store through the pointer after the
6564       // asm.
6565       if (OpInfo.isIndirect) {
6566         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6567                                                       OpInfo.CallOperandVal));
6568       } else {
6569         // This is the result value of the call.
6570         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6571         // Concatenate this output onto the outputs list.
6572         RetValRegs.append(OpInfo.AssignedRegs);
6573       }
6574
6575       // Add information to the INLINEASM node to know that this register is
6576       // set.
6577       OpInfo.AssignedRegs
6578           .AddInlineAsmOperands(OpInfo.isEarlyClobber
6579                                     ? InlineAsm::Kind_RegDefEarlyClobber
6580                                     : InlineAsm::Kind_RegDef,
6581                                 false, 0, DAG, AsmNodeOperands);
6582       break;
6583     }
6584     case InlineAsm::isInput: {
6585       SDValue InOperandVal = OpInfo.CallOperand;
6586
6587       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6588         // If this is required to match an output register we have already set,
6589         // just use its register.
6590         unsigned OperandNo = OpInfo.getMatchedOperand();
6591
6592         // Scan until we find the definition we already emitted of this operand.
6593         // When we find it, create a RegsForValue operand.
6594         unsigned CurOp = InlineAsm::Op_FirstOperand;
6595         for (; OperandNo; --OperandNo) {
6596           // Advance to the next operand.
6597           unsigned OpFlag =
6598             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6599           assert((InlineAsm::isRegDefKind(OpFlag) ||
6600                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6601                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6602           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6603         }
6604
6605         unsigned OpFlag =
6606           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6607         if (InlineAsm::isRegDefKind(OpFlag) ||
6608             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6609           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6610           if (OpInfo.isIndirect) {
6611             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6612             LLVMContext &Ctx = *DAG.getContext();
6613             Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
6614                                                " don't know how to handle tied "
6615                                                "indirect register inputs");
6616             return;
6617           }
6618
6619           RegsForValue MatchedRegs;
6620           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6621           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6622           MatchedRegs.RegVTs.push_back(RegVT);
6623           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6624           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6625                i != e; ++i) {
6626             if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6627               MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6628             else {
6629               LLVMContext &Ctx = *DAG.getContext();
6630               Ctx.emitError(CS.getInstruction(),
6631                             "inline asm error: This value"
6632                             " type register class is not natively supported!");
6633               return;
6634             }
6635           }
6636           // Use the produced MatchedRegs object to
6637           MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6638                                     Chain, &Flag, CS.getInstruction());
6639           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6640                                            true, OpInfo.getMatchedOperand(),
6641                                            DAG, AsmNodeOperands);
6642           break;
6643         }
6644
6645         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6646         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6647                "Unexpected number of operands");
6648         // Add information to the INLINEASM node to know about this input.
6649         // See InlineAsm.h isUseOperandTiedToDef.
6650         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
6651         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6652                                                     OpInfo.getMatchedOperand());
6653         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6654                                                         TLI.getPointerTy()));
6655         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6656         break;
6657       }
6658
6659       // Treat indirect 'X' constraint as memory.
6660       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6661           OpInfo.isIndirect)
6662         OpInfo.ConstraintType = TargetLowering::C_Memory;
6663
6664       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6665         std::vector<SDValue> Ops;
6666         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6667                                           Ops, DAG);
6668         if (Ops.empty()) {
6669           LLVMContext &Ctx = *DAG.getContext();
6670           Ctx.emitError(CS.getInstruction(),
6671                         "invalid operand for inline asm constraint '" +
6672                             Twine(OpInfo.ConstraintCode) + "'");
6673           return;
6674         }
6675
6676         // Add information to the INLINEASM node to know about this input.
6677         unsigned ResOpType =
6678           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6679         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6680                                                         TLI.getPointerTy()));
6681         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6682         break;
6683       }
6684
6685       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6686         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6687         assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6688                "Memory operands expect pointer values");
6689
6690         unsigned ConstraintID =
6691             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6692         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6693                "Failed to convert memory constraint code to constraint id.");
6694
6695         // Add information to the INLINEASM node to know about this input.
6696         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6697         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
6698         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, MVT::i32));
6699         AsmNodeOperands.push_back(InOperandVal);
6700         break;
6701       }
6702
6703       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6704               OpInfo.ConstraintType == TargetLowering::C_Register) &&
6705              "Unknown constraint type!");
6706
6707       // TODO: Support this.
6708       if (OpInfo.isIndirect) {
6709         LLVMContext &Ctx = *DAG.getContext();
6710         Ctx.emitError(CS.getInstruction(),
6711                       "Don't know how to handle indirect register inputs yet "
6712                       "for constraint '" +
6713                           Twine(OpInfo.ConstraintCode) + "'");
6714         return;
6715       }
6716
6717       // Copy the input into the appropriate registers.
6718       if (OpInfo.AssignedRegs.Regs.empty()) {
6719         LLVMContext &Ctx = *DAG.getContext();
6720         Ctx.emitError(CS.getInstruction(),
6721                       "couldn't allocate input reg for constraint '" +
6722                           Twine(OpInfo.ConstraintCode) + "'");
6723         return;
6724       }
6725
6726       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6727                                         Chain, &Flag, CS.getInstruction());
6728
6729       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6730                                                DAG, AsmNodeOperands);
6731       break;
6732     }
6733     case InlineAsm::isClobber: {
6734       // Add the clobbered value to the operand list, so that the register
6735       // allocator is aware that the physreg got clobbered.
6736       if (!OpInfo.AssignedRegs.Regs.empty())
6737         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6738                                                  false, 0, DAG,
6739                                                  AsmNodeOperands);
6740       break;
6741     }
6742     }
6743   }
6744
6745   // Finish up input operands.  Set the input chain and add the flag last.
6746   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6747   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6748
6749   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
6750                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
6751   Flag = Chain.getValue(1);
6752
6753   // If this asm returns a register value, copy the result from that register
6754   // and set it as the value of the call.
6755   if (!RetValRegs.Regs.empty()) {
6756     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6757                                              Chain, &Flag, CS.getInstruction());
6758
6759     // FIXME: Why don't we do this for inline asms with MRVs?
6760     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6761       EVT ResultType = TLI.getValueType(CS.getType());
6762
6763       // If any of the results of the inline asm is a vector, it may have the
6764       // wrong width/num elts.  This can happen for register classes that can
6765       // contain multiple different value types.  The preg or vreg allocated may
6766       // not have the same VT as was expected.  Convert it to the right type
6767       // with bit_convert.
6768       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6769         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
6770                           ResultType, Val);
6771
6772       } else if (ResultType != Val.getValueType() &&
6773                  ResultType.isInteger() && Val.getValueType().isInteger()) {
6774         // If a result value was tied to an input value, the computed result may
6775         // have a wider width than the expected result.  Extract the relevant
6776         // portion.
6777         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
6778       }
6779
6780       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6781     }
6782
6783     setValue(CS.getInstruction(), Val);
6784     // Don't need to use this as a chain in this case.
6785     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6786       return;
6787   }
6788
6789   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6790
6791   // Process indirect outputs, first output all of the flagged copies out of
6792   // physregs.
6793   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6794     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6795     const Value *Ptr = IndirectStoresToEmit[i].second;
6796     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6797                                              Chain, &Flag, IA);
6798     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6799   }
6800
6801   // Emit the non-flagged stores from the physregs.
6802   SmallVector<SDValue, 8> OutChains;
6803   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6804     SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
6805                                StoresToEmit[i].first,
6806                                getValue(StoresToEmit[i].second),
6807                                MachinePointerInfo(StoresToEmit[i].second),
6808                                false, false, 0);
6809     OutChains.push_back(Val);
6810   }
6811
6812   if (!OutChains.empty())
6813     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
6814
6815   DAG.setRoot(Chain);
6816 }
6817
6818 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6819   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
6820                           MVT::Other, getRoot(),
6821                           getValue(I.getArgOperand(0)),
6822                           DAG.getSrcValue(I.getArgOperand(0))));
6823 }
6824
6825 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6826   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6827   const DataLayout &DL = *TLI.getDataLayout();
6828   SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(),
6829                            getRoot(), getValue(I.getOperand(0)),
6830                            DAG.getSrcValue(I.getOperand(0)),
6831                            DL.getABITypeAlignment(I.getType()));
6832   setValue(&I, V);
6833   DAG.setRoot(V.getValue(1));
6834 }
6835
6836 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6837   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
6838                           MVT::Other, getRoot(),
6839                           getValue(I.getArgOperand(0)),
6840                           DAG.getSrcValue(I.getArgOperand(0))));
6841 }
6842
6843 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6844   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
6845                           MVT::Other, getRoot(),
6846                           getValue(I.getArgOperand(0)),
6847                           getValue(I.getArgOperand(1)),
6848                           DAG.getSrcValue(I.getArgOperand(0)),
6849                           DAG.getSrcValue(I.getArgOperand(1))));
6850 }
6851
6852 /// \brief Lower an argument list according to the target calling convention.
6853 ///
6854 /// \return A tuple of <return-value, token-chain>
6855 ///
6856 /// This is a helper for lowering intrinsics that follow a target calling
6857 /// convention or require stack pointer adjustment. Only a subset of the
6858 /// intrinsic's operands need to participate in the calling convention.
6859 std::pair<SDValue, SDValue>
6860 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx,
6861                                        unsigned NumArgs, SDValue Callee,
6862                                        bool UseVoidTy,
6863                                        MachineBasicBlock *LandingPad,
6864                                        bool IsPatchPoint) {
6865   TargetLowering::ArgListTy Args;
6866   Args.reserve(NumArgs);
6867
6868   // Populate the argument list.
6869   // Attributes for args start at offset 1, after the return attribute.
6870   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
6871        ArgI != ArgE; ++ArgI) {
6872     const Value *V = CS->getOperand(ArgI);
6873
6874     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
6875
6876     TargetLowering::ArgListEntry Entry;
6877     Entry.Node = getValue(V);
6878     Entry.Ty = V->getType();
6879     Entry.setAttributes(&CS, AttrI);
6880     Args.push_back(Entry);
6881   }
6882
6883   Type *retTy = UseVoidTy ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
6884   TargetLowering::CallLoweringInfo CLI(DAG);
6885   CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
6886     .setCallee(CS.getCallingConv(), retTy, Callee, std::move(Args), NumArgs)
6887     .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint);
6888
6889   return lowerInvokable(CLI, LandingPad);
6890 }
6891
6892 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
6893 /// or patchpoint target node's operand list.
6894 ///
6895 /// Constants are converted to TargetConstants purely as an optimization to
6896 /// avoid constant materialization and register allocation.
6897 ///
6898 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
6899 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
6900 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
6901 /// address materialization and register allocation, but may also be required
6902 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
6903 /// alloca in the entry block, then the runtime may assume that the alloca's
6904 /// StackMap location can be read immediately after compilation and that the
6905 /// location is valid at any point during execution (this is similar to the
6906 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
6907 /// only available in a register, then the runtime would need to trap when
6908 /// execution reaches the StackMap in order to read the alloca's location.
6909 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
6910                                 SmallVectorImpl<SDValue> &Ops,
6911                                 SelectionDAGBuilder &Builder) {
6912   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
6913     SDValue OpVal = Builder.getValue(CS.getArgument(i));
6914     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
6915       Ops.push_back(
6916         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64));
6917       Ops.push_back(
6918         Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64));
6919     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
6920       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
6921       Ops.push_back(
6922         Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy()));
6923     } else
6924       Ops.push_back(OpVal);
6925   }
6926 }
6927
6928 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
6929 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
6930   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
6931   //                                  [live variables...])
6932
6933   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
6934
6935   SDValue Chain, InFlag, Callee, NullPtr;
6936   SmallVector<SDValue, 32> Ops;
6937
6938   SDLoc DL = getCurSDLoc();
6939   Callee = getValue(CI.getCalledValue());
6940   NullPtr = DAG.getIntPtrConstant(0, true);
6941
6942   // The stackmap intrinsic only records the live variables (the arguemnts
6943   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
6944   // intrinsic, this won't be lowered to a function call. This means we don't
6945   // have to worry about calling conventions and target specific lowering code.
6946   // Instead we perform the call lowering right here.
6947   //
6948   // chain, flag = CALLSEQ_START(chain, 0)
6949   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
6950   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
6951   //
6952   Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
6953   InFlag = Chain.getValue(1);
6954
6955   // Add the <id> and <numBytes> constants.
6956   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
6957   Ops.push_back(DAG.getTargetConstant(
6958                   cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64));
6959   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
6960   Ops.push_back(DAG.getTargetConstant(
6961                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32));
6962
6963   // Push live variables for the stack map.
6964   addStackMapLiveVars(&CI, 2, Ops, *this);
6965
6966   // We are not pushing any register mask info here on the operands list,
6967   // because the stackmap doesn't clobber anything.
6968
6969   // Push the chain and the glue flag.
6970   Ops.push_back(Chain);
6971   Ops.push_back(InFlag);
6972
6973   // Create the STACKMAP node.
6974   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6975   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
6976   Chain = SDValue(SM, 0);
6977   InFlag = Chain.getValue(1);
6978
6979   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
6980
6981   // Stackmaps don't generate values, so nothing goes into the NodeMap.
6982
6983   // Set the root to the target-lowered call chain.
6984   DAG.setRoot(Chain);
6985
6986   // Inform the Frame Information that we have a stackmap in this function.
6987   FuncInfo.MF->getFrameInfo()->setHasStackMap();
6988 }
6989
6990 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
6991 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
6992                                           MachineBasicBlock *LandingPad) {
6993   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
6994   //                                                 i32 <numBytes>,
6995   //                                                 i8* <target>,
6996   //                                                 i32 <numArgs>,
6997   //                                                 [Args...],
6998   //                                                 [live variables...])
6999
7000   CallingConv::ID CC = CS.getCallingConv();
7001   bool IsAnyRegCC = CC == CallingConv::AnyReg;
7002   bool HasDef = !CS->getType()->isVoidTy();
7003   SDValue Callee = getValue(CS->getOperand(2)); // <target>
7004
7005   // Get the real number of arguments participating in the call <numArgs>
7006   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
7007   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
7008
7009   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
7010   // Intrinsics include all meta-operands up to but not including CC.
7011   unsigned NumMetaOpers = PatchPointOpers::CCPos;
7012   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
7013          "Not enough arguments provided to the patchpoint intrinsic");
7014
7015   // For AnyRegCC the arguments are lowered later on manually.
7016   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
7017   std::pair<SDValue, SDValue> Result =
7018     lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC,
7019                       LandingPad, true);
7020
7021   SDNode *CallEnd = Result.second.getNode();
7022   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
7023     CallEnd = CallEnd->getOperand(0).getNode();
7024
7025   /// Get a call instruction from the call sequence chain.
7026   /// Tail calls are not allowed.
7027   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
7028          "Expected a callseq node.");
7029   SDNode *Call = CallEnd->getOperand(0).getNode();
7030   bool HasGlue = Call->getGluedNode();
7031
7032   // Replace the target specific call node with the patchable intrinsic.
7033   SmallVector<SDValue, 8> Ops;
7034
7035   // Add the <id> and <numBytes> constants.
7036   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
7037   Ops.push_back(DAG.getTargetConstant(
7038                   cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64));
7039   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
7040   Ops.push_back(DAG.getTargetConstant(
7041                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32));
7042
7043   // Assume that the Callee is a constant address.
7044   // FIXME: handle function symbols in the future.
7045   Ops.push_back(
7046     DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(),
7047                           /*isTarget=*/true));
7048
7049   // Adjust <numArgs> to account for any arguments that have been passed on the
7050   // stack instead.
7051   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
7052   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
7053   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
7054   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32));
7055
7056   // Add the calling convention
7057   Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32));
7058
7059   // Add the arguments we omitted previously. The register allocator should
7060   // place these in any free register.
7061   if (IsAnyRegCC)
7062     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
7063       Ops.push_back(getValue(CS.getArgument(i)));
7064
7065   // Push the arguments from the call instruction up to the register mask.
7066   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
7067   Ops.append(Call->op_begin() + 2, e);
7068
7069   // Push live variables for the stack map.
7070   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, Ops, *this);
7071
7072   // Push the register mask info.
7073   if (HasGlue)
7074     Ops.push_back(*(Call->op_end()-2));
7075   else
7076     Ops.push_back(*(Call->op_end()-1));
7077
7078   // Push the chain (this is originally the first operand of the call, but
7079   // becomes now the last or second to last operand).
7080   Ops.push_back(*(Call->op_begin()));
7081
7082   // Push the glue flag (last operand).
7083   if (HasGlue)
7084     Ops.push_back(*(Call->op_end()-1));
7085
7086   SDVTList NodeTys;
7087   if (IsAnyRegCC && HasDef) {
7088     // Create the return types based on the intrinsic definition
7089     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7090     SmallVector<EVT, 3> ValueVTs;
7091     ComputeValueVTs(TLI, CS->getType(), ValueVTs);
7092     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
7093
7094     // There is always a chain and a glue type at the end
7095     ValueVTs.push_back(MVT::Other);
7096     ValueVTs.push_back(MVT::Glue);
7097     NodeTys = DAG.getVTList(ValueVTs);
7098   } else
7099     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7100
7101   // Replace the target specific call node with a PATCHPOINT node.
7102   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
7103                                          getCurSDLoc(), NodeTys, Ops);
7104
7105   // Update the NodeMap.
7106   if (HasDef) {
7107     if (IsAnyRegCC)
7108       setValue(CS.getInstruction(), SDValue(MN, 0));
7109     else
7110       setValue(CS.getInstruction(), Result.first);
7111   }
7112
7113   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
7114   // call sequence. Furthermore the location of the chain and glue can change
7115   // when the AnyReg calling convention is used and the intrinsic returns a
7116   // value.
7117   if (IsAnyRegCC && HasDef) {
7118     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
7119     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
7120     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
7121   } else
7122     DAG.ReplaceAllUsesWith(Call, MN);
7123   DAG.DeleteNode(Call);
7124
7125   // Inform the Frame Information that we have a patchpoint in this function.
7126   FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
7127 }
7128
7129 /// Returns an AttributeSet representing the attributes applied to the return
7130 /// value of the given call.
7131 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
7132   SmallVector<Attribute::AttrKind, 2> Attrs;
7133   if (CLI.RetSExt)
7134     Attrs.push_back(Attribute::SExt);
7135   if (CLI.RetZExt)
7136     Attrs.push_back(Attribute::ZExt);
7137   if (CLI.IsInReg)
7138     Attrs.push_back(Attribute::InReg);
7139
7140   return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
7141                            Attrs);
7142 }
7143
7144 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
7145 /// implementation, which just calls LowerCall.
7146 /// FIXME: When all targets are
7147 /// migrated to using LowerCall, this hook should be integrated into SDISel.
7148 std::pair<SDValue, SDValue>
7149 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
7150   // Handle the incoming return values from the call.
7151   CLI.Ins.clear();
7152   Type *OrigRetTy = CLI.RetTy;
7153   SmallVector<EVT, 4> RetTys;
7154   SmallVector<uint64_t, 4> Offsets;
7155   ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets);
7156
7157   SmallVector<ISD::OutputArg, 4> Outs;
7158   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this);
7159
7160   bool CanLowerReturn =
7161       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
7162                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
7163
7164   SDValue DemoteStackSlot;
7165   int DemoteStackIdx = -100;
7166   if (!CanLowerReturn) {
7167     // FIXME: equivalent assert?
7168     // assert(!CS.hasInAllocaArgument() &&
7169     //        "sret demotion is incompatible with inalloca");
7170     uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy);
7171     unsigned Align  = getDataLayout()->getPrefTypeAlignment(CLI.RetTy);
7172     MachineFunction &MF = CLI.DAG.getMachineFunction();
7173     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
7174     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
7175
7176     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy());
7177     ArgListEntry Entry;
7178     Entry.Node = DemoteStackSlot;
7179     Entry.Ty = StackSlotPtrType;
7180     Entry.isSExt = false;
7181     Entry.isZExt = false;
7182     Entry.isInReg = false;
7183     Entry.isSRet = true;
7184     Entry.isNest = false;
7185     Entry.isByVal = false;
7186     Entry.isReturned = false;
7187     Entry.Alignment = Align;
7188     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
7189     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
7190
7191     // sret demotion isn't compatible with tail-calls, since the sret argument
7192     // points into the callers stack frame.
7193     CLI.IsTailCall = false;
7194   } else {
7195     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7196       EVT VT = RetTys[I];
7197       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7198       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7199       for (unsigned i = 0; i != NumRegs; ++i) {
7200         ISD::InputArg MyFlags;
7201         MyFlags.VT = RegisterVT;
7202         MyFlags.ArgVT = VT;
7203         MyFlags.Used = CLI.IsReturnValueUsed;
7204         if (CLI.RetSExt)
7205           MyFlags.Flags.setSExt();
7206         if (CLI.RetZExt)
7207           MyFlags.Flags.setZExt();
7208         if (CLI.IsInReg)
7209           MyFlags.Flags.setInReg();
7210         CLI.Ins.push_back(MyFlags);
7211       }
7212     }
7213   }
7214
7215   // Handle all of the outgoing arguments.
7216   CLI.Outs.clear();
7217   CLI.OutVals.clear();
7218   ArgListTy &Args = CLI.getArgs();
7219   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7220     SmallVector<EVT, 4> ValueVTs;
7221     ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
7222     Type *FinalType = Args[i].Ty;
7223     if (Args[i].isByVal)
7224       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
7225     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
7226         FinalType, CLI.CallConv, CLI.IsVarArg);
7227     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
7228          ++Value) {
7229       EVT VT = ValueVTs[Value];
7230       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7231       SDValue Op = SDValue(Args[i].Node.getNode(),
7232                            Args[i].Node.getResNo() + Value);
7233       ISD::ArgFlagsTy Flags;
7234       unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy);
7235
7236       if (Args[i].isZExt)
7237         Flags.setZExt();
7238       if (Args[i].isSExt)
7239         Flags.setSExt();
7240       if (Args[i].isInReg)
7241         Flags.setInReg();
7242       if (Args[i].isSRet)
7243         Flags.setSRet();
7244       if (Args[i].isByVal)
7245         Flags.setByVal();
7246       if (Args[i].isInAlloca) {
7247         Flags.setInAlloca();
7248         // Set the byval flag for CCAssignFn callbacks that don't know about
7249         // inalloca.  This way we can know how many bytes we should've allocated
7250         // and how many bytes a callee cleanup function will pop.  If we port
7251         // inalloca to more targets, we'll have to add custom inalloca handling
7252         // in the various CC lowering callbacks.
7253         Flags.setByVal();
7254       }
7255       if (Args[i].isByVal || Args[i].isInAlloca) {
7256         PointerType *Ty = cast<PointerType>(Args[i].Ty);
7257         Type *ElementTy = Ty->getElementType();
7258         Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy));
7259         // For ByVal, alignment should come from FE.  BE will guess if this
7260         // info is not there but there are cases it cannot get right.
7261         unsigned FrameAlign;
7262         if (Args[i].Alignment)
7263           FrameAlign = Args[i].Alignment;
7264         else
7265           FrameAlign = getByValTypeAlignment(ElementTy);
7266         Flags.setByValAlign(FrameAlign);
7267       }
7268       if (Args[i].isNest)
7269         Flags.setNest();
7270       if (NeedsRegBlock)
7271         Flags.setInConsecutiveRegs();
7272       Flags.setOrigAlign(OriginalAlignment);
7273
7274       MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
7275       unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
7276       SmallVector<SDValue, 4> Parts(NumParts);
7277       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
7278
7279       if (Args[i].isSExt)
7280         ExtendKind = ISD::SIGN_EXTEND;
7281       else if (Args[i].isZExt)
7282         ExtendKind = ISD::ZERO_EXTEND;
7283
7284       // Conservatively only handle 'returned' on non-vectors for now
7285       if (Args[i].isReturned && !Op.getValueType().isVector()) {
7286         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
7287                "unexpected use of 'returned'");
7288         // Before passing 'returned' to the target lowering code, ensure that
7289         // either the register MVT and the actual EVT are the same size or that
7290         // the return value and argument are extended in the same way; in these
7291         // cases it's safe to pass the argument register value unchanged as the
7292         // return register value (although it's at the target's option whether
7293         // to do so)
7294         // TODO: allow code generation to take advantage of partially preserved
7295         // registers rather than clobbering the entire register when the
7296         // parameter extension method is not compatible with the return
7297         // extension method
7298         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7299             (ExtendKind != ISD::ANY_EXTEND &&
7300              CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7301         Flags.setReturned();
7302       }
7303
7304       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
7305                      CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
7306
7307       for (unsigned j = 0; j != NumParts; ++j) {
7308         // if it isn't first piece, alignment must be 1
7309         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7310                                i < CLI.NumFixedArgs,
7311                                i, j*Parts[j].getValueType().getStoreSize());
7312         if (NumParts > 1 && j == 0)
7313           MyFlags.Flags.setSplit();
7314         else if (j != 0)
7315           MyFlags.Flags.setOrigAlign(1);
7316
7317         CLI.Outs.push_back(MyFlags);
7318         CLI.OutVals.push_back(Parts[j]);
7319       }
7320
7321       if (NeedsRegBlock && Value == NumValues - 1)
7322         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
7323     }
7324   }
7325
7326   SmallVector<SDValue, 4> InVals;
7327   CLI.Chain = LowerCall(CLI, InVals);
7328
7329   // Verify that the target's LowerCall behaved as expected.
7330   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7331          "LowerCall didn't return a valid chain!");
7332   assert((!CLI.IsTailCall || InVals.empty()) &&
7333          "LowerCall emitted a return value for a tail call!");
7334   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7335          "LowerCall didn't emit the correct number of values!");
7336
7337   // For a tail call, the return value is merely live-out and there aren't
7338   // any nodes in the DAG representing it. Return a special value to
7339   // indicate that a tail call has been emitted and no more Instructions
7340   // should be processed in the current block.
7341   if (CLI.IsTailCall) {
7342     CLI.DAG.setRoot(CLI.Chain);
7343     return std::make_pair(SDValue(), SDValue());
7344   }
7345
7346   DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7347           assert(InVals[i].getNode() &&
7348                  "LowerCall emitted a null value!");
7349           assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7350                  "LowerCall emitted a value with the wrong type!");
7351         });
7352
7353   SmallVector<SDValue, 4> ReturnValues;
7354   if (!CanLowerReturn) {
7355     // The instruction result is the result of loading from the
7356     // hidden sret parameter.
7357     SmallVector<EVT, 1> PVTs;
7358     Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
7359
7360     ComputeValueVTs(*this, PtrRetTy, PVTs);
7361     assert(PVTs.size() == 1 && "Pointers should fit in one register");
7362     EVT PtrVT = PVTs[0];
7363
7364     unsigned NumValues = RetTys.size();
7365     ReturnValues.resize(NumValues);
7366     SmallVector<SDValue, 4> Chains(NumValues);
7367
7368     for (unsigned i = 0; i < NumValues; ++i) {
7369       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
7370                                     CLI.DAG.getConstant(Offsets[i], PtrVT));
7371       SDValue L = CLI.DAG.getLoad(
7372           RetTys[i], CLI.DL, CLI.Chain, Add,
7373           MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false,
7374           false, false, 1);
7375       ReturnValues[i] = L;
7376       Chains[i] = L.getValue(1);
7377     }
7378
7379     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
7380   } else {
7381     // Collect the legal value parts into potentially illegal values
7382     // that correspond to the original function's return values.
7383     ISD::NodeType AssertOp = ISD::DELETED_NODE;
7384     if (CLI.RetSExt)
7385       AssertOp = ISD::AssertSext;
7386     else if (CLI.RetZExt)
7387       AssertOp = ISD::AssertZext;
7388     unsigned CurReg = 0;
7389     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7390       EVT VT = RetTys[I];
7391       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7392       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7393
7394       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7395                                               NumRegs, RegisterVT, VT, nullptr,
7396                                               AssertOp));
7397       CurReg += NumRegs;
7398     }
7399
7400     // For a function returning void, there is no return value. We can't create
7401     // such a node, so we just return a null return value in that case. In
7402     // that case, nothing will actually look at the value.
7403     if (ReturnValues.empty())
7404       return std::make_pair(SDValue(), CLI.Chain);
7405   }
7406
7407   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7408                                 CLI.DAG.getVTList(RetTys), ReturnValues);
7409   return std::make_pair(Res, CLI.Chain);
7410 }
7411
7412 void TargetLowering::LowerOperationWrapper(SDNode *N,
7413                                            SmallVectorImpl<SDValue> &Results,
7414                                            SelectionDAG &DAG) const {
7415   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
7416   if (Res.getNode())
7417     Results.push_back(Res);
7418 }
7419
7420 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7421   llvm_unreachable("LowerOperation not implemented for this target!");
7422 }
7423
7424 void
7425 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
7426   SDValue Op = getNonRegisterValue(V);
7427   assert((Op.getOpcode() != ISD::CopyFromReg ||
7428           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
7429          "Copy from a reg to the same reg!");
7430   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
7431
7432   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7433   RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
7434   SDValue Chain = DAG.getEntryNode();
7435
7436   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
7437                               FuncInfo.PreferredExtendType.end())
7438                                  ? ISD::ANY_EXTEND
7439                                  : FuncInfo.PreferredExtendType[V];
7440   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
7441   PendingExports.push_back(Chain);
7442 }
7443
7444 #include "llvm/CodeGen/SelectionDAGISel.h"
7445
7446 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
7447 /// entry block, return true.  This includes arguments used by switches, since
7448 /// the switch may expand into multiple basic blocks.
7449 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
7450   // With FastISel active, we may be splitting blocks, so force creation
7451   // of virtual registers for all non-dead arguments.
7452   if (FastISel)
7453     return A->use_empty();
7454
7455   const BasicBlock *Entry = A->getParent()->begin();
7456   for (const User *U : A->users())
7457     if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
7458       return false;  // Use not in entry block.
7459
7460   return true;
7461 }
7462
7463 void SelectionDAGISel::LowerArguments(const Function &F) {
7464   SelectionDAG &DAG = SDB->DAG;
7465   SDLoc dl = SDB->getCurSDLoc();
7466   const DataLayout *DL = TLI->getDataLayout();
7467   SmallVector<ISD::InputArg, 16> Ins;
7468
7469   if (!FuncInfo->CanLowerReturn) {
7470     // Put in an sret pointer parameter before all the other parameters.
7471     SmallVector<EVT, 1> ValueVTs;
7472     ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
7473
7474     // NOTE: Assuming that a pointer will never break down to more than one VT
7475     // or one register.
7476     ISD::ArgFlagsTy Flags;
7477     Flags.setSRet();
7478     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
7479     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
7480                          ISD::InputArg::NoArgIndex, 0);
7481     Ins.push_back(RetArg);
7482   }
7483
7484   // Set up the incoming argument description vector.
7485   unsigned Idx = 1;
7486   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
7487        I != E; ++I, ++Idx) {
7488     SmallVector<EVT, 4> ValueVTs;
7489     ComputeValueVTs(*TLI, I->getType(), ValueVTs);
7490     bool isArgValueUsed = !I->use_empty();
7491     unsigned PartBase = 0;
7492     Type *FinalType = I->getType();
7493     if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7494       FinalType = cast<PointerType>(FinalType)->getElementType();
7495     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
7496         FinalType, F.getCallingConv(), F.isVarArg());
7497     for (unsigned Value = 0, NumValues = ValueVTs.size();
7498          Value != NumValues; ++Value) {
7499       EVT VT = ValueVTs[Value];
7500       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
7501       ISD::ArgFlagsTy Flags;
7502       unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy);
7503
7504       if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7505         Flags.setZExt();
7506       if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7507         Flags.setSExt();
7508       if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
7509         Flags.setInReg();
7510       if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
7511         Flags.setSRet();
7512       if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7513         Flags.setByVal();
7514       if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
7515         Flags.setInAlloca();
7516         // Set the byval flag for CCAssignFn callbacks that don't know about
7517         // inalloca.  This way we can know how many bytes we should've allocated
7518         // and how many bytes a callee cleanup function will pop.  If we port
7519         // inalloca to more targets, we'll have to add custom inalloca handling
7520         // in the various CC lowering callbacks.
7521         Flags.setByVal();
7522       }
7523       if (Flags.isByVal() || Flags.isInAlloca()) {
7524         PointerType *Ty = cast<PointerType>(I->getType());
7525         Type *ElementTy = Ty->getElementType();
7526         Flags.setByValSize(DL->getTypeAllocSize(ElementTy));
7527         // For ByVal, alignment should be passed from FE.  BE will guess if
7528         // this info is not there but there are cases it cannot get right.
7529         unsigned FrameAlign;
7530         if (F.getParamAlignment(Idx))
7531           FrameAlign = F.getParamAlignment(Idx);
7532         else
7533           FrameAlign = TLI->getByValTypeAlignment(ElementTy);
7534         Flags.setByValAlign(FrameAlign);
7535       }
7536       if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
7537         Flags.setNest();
7538       if (NeedsRegBlock)
7539         Flags.setInConsecutiveRegs();
7540       Flags.setOrigAlign(OriginalAlignment);
7541
7542       MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7543       unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7544       for (unsigned i = 0; i != NumRegs; ++i) {
7545         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
7546                               Idx-1, PartBase+i*RegisterVT.getStoreSize());
7547         if (NumRegs > 1 && i == 0)
7548           MyFlags.Flags.setSplit();
7549         // if it isn't first piece, alignment must be 1
7550         else if (i > 0)
7551           MyFlags.Flags.setOrigAlign(1);
7552         Ins.push_back(MyFlags);
7553       }
7554       if (NeedsRegBlock && Value == NumValues - 1)
7555         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
7556       PartBase += VT.getStoreSize();
7557     }
7558   }
7559
7560   // Call the target to set up the argument values.
7561   SmallVector<SDValue, 8> InVals;
7562   SDValue NewRoot = TLI->LowerFormalArguments(
7563       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
7564
7565   // Verify that the target's LowerFormalArguments behaved as expected.
7566   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
7567          "LowerFormalArguments didn't return a valid chain!");
7568   assert(InVals.size() == Ins.size() &&
7569          "LowerFormalArguments didn't emit the correct number of values!");
7570   DEBUG({
7571       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
7572         assert(InVals[i].getNode() &&
7573                "LowerFormalArguments emitted a null value!");
7574         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
7575                "LowerFormalArguments emitted a value with the wrong type!");
7576       }
7577     });
7578
7579   // Update the DAG with the new chain value resulting from argument lowering.
7580   DAG.setRoot(NewRoot);
7581
7582   // Set up the argument values.
7583   unsigned i = 0;
7584   Idx = 1;
7585   if (!FuncInfo->CanLowerReturn) {
7586     // Create a virtual register for the sret pointer, and put in a copy
7587     // from the sret argument into it.
7588     SmallVector<EVT, 1> ValueVTs;
7589     ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
7590     MVT VT = ValueVTs[0].getSimpleVT();
7591     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7592     ISD::NodeType AssertOp = ISD::DELETED_NODE;
7593     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
7594                                         RegVT, VT, nullptr, AssertOp);
7595
7596     MachineFunction& MF = SDB->DAG.getMachineFunction();
7597     MachineRegisterInfo& RegInfo = MF.getRegInfo();
7598     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
7599     FuncInfo->DemoteRegister = SRetReg;
7600     NewRoot =
7601         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
7602     DAG.setRoot(NewRoot);
7603
7604     // i indexes lowered arguments.  Bump it past the hidden sret argument.
7605     // Idx indexes LLVM arguments.  Don't touch it.
7606     ++i;
7607   }
7608
7609   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
7610       ++I, ++Idx) {
7611     SmallVector<SDValue, 4> ArgValues;
7612     SmallVector<EVT, 4> ValueVTs;
7613     ComputeValueVTs(*TLI, I->getType(), ValueVTs);
7614     unsigned NumValues = ValueVTs.size();
7615
7616     // If this argument is unused then remember its value. It is used to generate
7617     // debugging information.
7618     if (I->use_empty() && NumValues) {
7619       SDB->setUnusedArgValue(I, InVals[i]);
7620
7621       // Also remember any frame index for use in FastISel.
7622       if (FrameIndexSDNode *FI =
7623           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
7624         FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7625     }
7626
7627     for (unsigned Val = 0; Val != NumValues; ++Val) {
7628       EVT VT = ValueVTs[Val];
7629       MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7630       unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7631
7632       if (!I->use_empty()) {
7633         ISD::NodeType AssertOp = ISD::DELETED_NODE;
7634         if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7635           AssertOp = ISD::AssertSext;
7636         else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7637           AssertOp = ISD::AssertZext;
7638
7639         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
7640                                              NumParts, PartVT, VT,
7641                                              nullptr, AssertOp));
7642       }
7643
7644       i += NumParts;
7645     }
7646
7647     // We don't need to do anything else for unused arguments.
7648     if (ArgValues.empty())
7649       continue;
7650
7651     // Note down frame index.
7652     if (FrameIndexSDNode *FI =
7653         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
7654       FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7655
7656     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
7657                                      SDB->getCurSDLoc());
7658
7659     SDB->setValue(I, Res);
7660     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
7661       if (LoadSDNode *LNode =
7662           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
7663         if (FrameIndexSDNode *FI =
7664             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
7665         FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7666     }
7667
7668     // If this argument is live outside of the entry block, insert a copy from
7669     // wherever we got it to the vreg that other BB's will reference it as.
7670     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
7671       // If we can, though, try to skip creating an unnecessary vreg.
7672       // FIXME: This isn't very clean... it would be nice to make this more
7673       // general.  It's also subtly incompatible with the hacks FastISel
7674       // uses with vregs.
7675       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
7676       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
7677         FuncInfo->ValueMap[I] = Reg;
7678         continue;
7679       }
7680     }
7681     if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
7682       FuncInfo->InitializeRegForValue(I);
7683       SDB->CopyToExportRegsIfNeeded(I);
7684     }
7685   }
7686
7687   assert(i == InVals.size() && "Argument register count mismatch!");
7688
7689   // Finally, if the target has anything special to do, allow it to do so.
7690   EmitFunctionEntryCode();
7691 }
7692
7693 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
7694 /// ensure constants are generated when needed.  Remember the virtual registers
7695 /// that need to be added to the Machine PHI nodes as input.  We cannot just
7696 /// directly add them, because expansion might result in multiple MBB's for one
7697 /// BB.  As such, the start of the BB might correspond to a different MBB than
7698 /// the end.
7699 ///
7700 void
7701 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
7702   const TerminatorInst *TI = LLVMBB->getTerminator();
7703
7704   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
7705
7706   // Check PHI nodes in successors that expect a value to be available from this
7707   // block.
7708   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
7709     const BasicBlock *SuccBB = TI->getSuccessor(succ);
7710     if (!isa<PHINode>(SuccBB->begin())) continue;
7711     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
7712
7713     // If this terminator has multiple identical successors (common for
7714     // switches), only handle each succ once.
7715     if (!SuccsHandled.insert(SuccMBB).second)
7716       continue;
7717
7718     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
7719
7720     // At this point we know that there is a 1-1 correspondence between LLVM PHI
7721     // nodes and Machine PHI nodes, but the incoming operands have not been
7722     // emitted yet.
7723     for (BasicBlock::const_iterator I = SuccBB->begin();
7724          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
7725       // Ignore dead phi's.
7726       if (PN->use_empty()) continue;
7727
7728       // Skip empty types
7729       if (PN->getType()->isEmptyTy())
7730         continue;
7731
7732       unsigned Reg;
7733       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
7734
7735       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
7736         unsigned &RegOut = ConstantsOut[C];
7737         if (RegOut == 0) {
7738           RegOut = FuncInfo.CreateRegs(C->getType());
7739           CopyValueToVirtualRegister(C, RegOut);
7740         }
7741         Reg = RegOut;
7742       } else {
7743         DenseMap<const Value *, unsigned>::iterator I =
7744           FuncInfo.ValueMap.find(PHIOp);
7745         if (I != FuncInfo.ValueMap.end())
7746           Reg = I->second;
7747         else {
7748           assert(isa<AllocaInst>(PHIOp) &&
7749                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
7750                  "Didn't codegen value into a register!??");
7751           Reg = FuncInfo.CreateRegs(PHIOp->getType());
7752           CopyValueToVirtualRegister(PHIOp, Reg);
7753         }
7754       }
7755
7756       // Remember that this register needs to added to the machine PHI node as
7757       // the input for this MBB.
7758       SmallVector<EVT, 4> ValueVTs;
7759       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7760       ComputeValueVTs(TLI, PN->getType(), ValueVTs);
7761       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
7762         EVT VT = ValueVTs[vti];
7763         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
7764         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
7765           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
7766         Reg += NumRegisters;
7767       }
7768     }
7769   }
7770
7771   ConstantsOut.clear();
7772 }
7773
7774 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
7775 /// is 0.
7776 MachineBasicBlock *
7777 SelectionDAGBuilder::StackProtectorDescriptor::
7778 AddSuccessorMBB(const BasicBlock *BB,
7779                 MachineBasicBlock *ParentMBB,
7780                 bool IsLikely,
7781                 MachineBasicBlock *SuccMBB) {
7782   // If SuccBB has not been created yet, create it.
7783   if (!SuccMBB) {
7784     MachineFunction *MF = ParentMBB->getParent();
7785     MachineFunction::iterator BBI = ParentMBB;
7786     SuccMBB = MF->CreateMachineBasicBlock(BB);
7787     MF->insert(++BBI, SuccMBB);
7788   }
7789   // Add it as a successor of ParentMBB.
7790   ParentMBB->addSuccessor(
7791       SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely));
7792   return SuccMBB;
7793 }
7794
7795 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
7796   MachineFunction::iterator I = MBB;
7797   if (++I == FuncInfo.MF->end())
7798     return nullptr;
7799   return I;
7800 }