Clean up the processing of dbg.value in various places
[oota-llvm.git] / lib / CodeGen / SelectionDAG / SelectionDAGBuilder.cpp
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Analysis/VectorUtils.h"
26 #include "llvm/CodeGen/FastISel.h"
27 #include "llvm/CodeGen/FunctionLoweringInfo.h"
28 #include "llvm/CodeGen/GCMetadata.h"
29 #include "llvm/CodeGen/GCStrategy.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineJumpTableInfo.h"
34 #include "llvm/CodeGen/MachineModuleInfo.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/SelectionDAG.h"
37 #include "llvm/CodeGen/StackMaps.h"
38 #include "llvm/CodeGen/WinEHFuncInfo.h"
39 #include "llvm/IR/CallingConv.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugInfo.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/Statepoint.h"
53 #include "llvm/MC/MCSymbol.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Target/TargetFrameLowering.h"
60 #include "llvm/Target/TargetInstrInfo.h"
61 #include "llvm/Target/TargetIntrinsicInfo.h"
62 #include "llvm/Target/TargetLowering.h"
63 #include "llvm/Target/TargetOptions.h"
64 #include "llvm/Target/TargetSelectionDAGInfo.h"
65 #include "llvm/Target/TargetSubtargetInfo.h"
66 #include <algorithm>
67 #include <utility>
68 using namespace llvm;
69
70 #define DEBUG_TYPE "isel"
71
72 /// LimitFloatPrecision - Generate low-precision inline sequences for
73 /// some float libcalls (6, 8 or 12 bits).
74 static unsigned LimitFloatPrecision;
75
76 static cl::opt<unsigned, true>
77 LimitFPPrecision("limit-float-precision",
78                  cl::desc("Generate low-precision inline sequences "
79                           "for some float libcalls"),
80                  cl::location(LimitFloatPrecision),
81                  cl::init(0));
82
83 static cl::opt<bool>
84 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden,
85                 cl::desc("Enable fast-math-flags for DAG nodes"));
86
87 // Limit the width of DAG chains. This is important in general to prevent
88 // DAG-based analysis from blowing up. For example, alias analysis and
89 // load clustering may not complete in reasonable time. It is difficult to
90 // recognize and avoid this situation within each individual analysis, and
91 // future analyses are likely to have the same behavior. Limiting DAG width is
92 // the safe approach and will be especially important with global DAGs.
93 //
94 // MaxParallelChains default is arbitrarily high to avoid affecting
95 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
96 // sequence over this should have been converted to llvm.memcpy by the
97 // frontend. It easy to induce this behavior with .ll code such as:
98 // %buffer = alloca [4096 x i8]
99 // %data = load [4096 x i8]* %argPtr
100 // store [4096 x i8] %data, [4096 x i8]* %buffer
101 static const unsigned MaxParallelChains = 64;
102
103 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
104                                       const SDValue *Parts, unsigned NumParts,
105                                       MVT PartVT, EVT ValueVT, const Value *V);
106
107 /// getCopyFromParts - Create a value that contains the specified legal parts
108 /// combined into the value they represent.  If the parts combine to a type
109 /// larger then ValueVT then AssertOp can be used to specify whether the extra
110 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
111 /// (ISD::AssertSext).
112 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
113                                 const SDValue *Parts,
114                                 unsigned NumParts, MVT PartVT, EVT ValueVT,
115                                 const Value *V,
116                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
117   if (ValueVT.isVector())
118     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
119                                   PartVT, ValueVT, V);
120
121   assert(NumParts > 0 && "No parts to assemble!");
122   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
123   SDValue Val = Parts[0];
124
125   if (NumParts > 1) {
126     // Assemble the value from multiple parts.
127     if (ValueVT.isInteger()) {
128       unsigned PartBits = PartVT.getSizeInBits();
129       unsigned ValueBits = ValueVT.getSizeInBits();
130
131       // Assemble the power of 2 part.
132       unsigned RoundParts = NumParts & (NumParts - 1) ?
133         1 << Log2_32(NumParts) : NumParts;
134       unsigned RoundBits = PartBits * RoundParts;
135       EVT RoundVT = RoundBits == ValueBits ?
136         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
137       SDValue Lo, Hi;
138
139       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
140
141       if (RoundParts > 2) {
142         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
143                               PartVT, HalfVT, V);
144         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
145                               RoundParts / 2, PartVT, HalfVT, V);
146       } else {
147         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
148         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
149       }
150
151       if (DAG.getDataLayout().isBigEndian())
152         std::swap(Lo, Hi);
153
154       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
155
156       if (RoundParts < NumParts) {
157         // Assemble the trailing non-power-of-2 part.
158         unsigned OddParts = NumParts - RoundParts;
159         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
160         Hi = getCopyFromParts(DAG, DL,
161                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
162
163         // Combine the round and odd parts.
164         Lo = Val;
165         if (DAG.getDataLayout().isBigEndian())
166           std::swap(Lo, Hi);
167         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
168         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
169         Hi =
170             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
171                         DAG.getConstant(Lo.getValueType().getSizeInBits(), DL,
172                                         TLI.getPointerTy(DAG.getDataLayout())));
173         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
174         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
175       }
176     } else if (PartVT.isFloatingPoint()) {
177       // FP split into multiple FP parts (for ppcf128)
178       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
179              "Unexpected split");
180       SDValue Lo, Hi;
181       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
182       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
183       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
184         std::swap(Lo, Hi);
185       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
186     } else {
187       // FP split into integer parts (soft fp)
188       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
189              !PartVT.isVector() && "Unexpected split");
190       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
191       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
192     }
193   }
194
195   // There is now one part, held in Val.  Correct it to match ValueVT.
196   EVT PartEVT = Val.getValueType();
197
198   if (PartEVT == ValueVT)
199     return Val;
200
201   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
202       ValueVT.bitsLT(PartEVT)) {
203     // For an FP value in an integer part, we need to truncate to the right
204     // width first.
205     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
206     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
207   }
208
209   if (PartEVT.isInteger() && ValueVT.isInteger()) {
210     if (ValueVT.bitsLT(PartEVT)) {
211       // For a truncate, see if we have any information to
212       // indicate whether the truncated bits will always be
213       // zero or sign-extension.
214       if (AssertOp != ISD::DELETED_NODE)
215         Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
216                           DAG.getValueType(ValueVT));
217       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
218     }
219     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
220   }
221
222   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
223     // FP_ROUND's are always exact here.
224     if (ValueVT.bitsLT(Val.getValueType()))
225       return DAG.getNode(
226           ISD::FP_ROUND, DL, ValueVT, Val,
227           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
228
229     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
230   }
231
232   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
233     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
234
235   llvm_unreachable("Unknown mismatch!");
236 }
237
238 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
239                                               const Twine &ErrMsg) {
240   const Instruction *I = dyn_cast_or_null<Instruction>(V);
241   if (!V)
242     return Ctx.emitError(ErrMsg);
243
244   const char *AsmError = ", possible invalid constraint for vector type";
245   if (const CallInst *CI = dyn_cast<CallInst>(I))
246     if (isa<InlineAsm>(CI->getCalledValue()))
247       return Ctx.emitError(I, ErrMsg + AsmError);
248
249   return Ctx.emitError(I, ErrMsg);
250 }
251
252 /// getCopyFromPartsVector - Create a value that contains the specified legal
253 /// parts combined into the value they represent.  If the parts combine to a
254 /// type larger then ValueVT then AssertOp can be used to specify whether the
255 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
256 /// ValueVT (ISD::AssertSext).
257 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
258                                       const SDValue *Parts, unsigned NumParts,
259                                       MVT PartVT, EVT ValueVT, const Value *V) {
260   assert(ValueVT.isVector() && "Not a vector value");
261   assert(NumParts > 0 && "No parts to assemble!");
262   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
263   SDValue Val = Parts[0];
264
265   // Handle a multi-element vector.
266   if (NumParts > 1) {
267     EVT IntermediateVT;
268     MVT RegisterVT;
269     unsigned NumIntermediates;
270     unsigned NumRegs =
271     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
272                                NumIntermediates, RegisterVT);
273     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
274     NumParts = NumRegs; // Silence a compiler warning.
275     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
276     assert(RegisterVT.getSizeInBits() ==
277            Parts[0].getSimpleValueType().getSizeInBits() &&
278            "Part type sizes don't match!");
279
280     // Assemble the parts into intermediate operands.
281     SmallVector<SDValue, 8> Ops(NumIntermediates);
282     if (NumIntermediates == NumParts) {
283       // If the register was not expanded, truncate or copy the value,
284       // as appropriate.
285       for (unsigned i = 0; i != NumParts; ++i)
286         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
287                                   PartVT, IntermediateVT, V);
288     } else if (NumParts > 0) {
289       // If the intermediate type was expanded, build the intermediate
290       // operands from the parts.
291       assert(NumParts % NumIntermediates == 0 &&
292              "Must expand into a divisible number of parts!");
293       unsigned Factor = NumParts / NumIntermediates;
294       for (unsigned i = 0; i != NumIntermediates; ++i)
295         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
296                                   PartVT, IntermediateVT, V);
297     }
298
299     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
300     // intermediate operands.
301     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
302                                                 : ISD::BUILD_VECTOR,
303                       DL, ValueVT, Ops);
304   }
305
306   // There is now one part, held in Val.  Correct it to match ValueVT.
307   EVT PartEVT = Val.getValueType();
308
309   if (PartEVT == ValueVT)
310     return Val;
311
312   if (PartEVT.isVector()) {
313     // If the element type of the source/dest vectors are the same, but the
314     // parts vector has more elements than the value vector, then we have a
315     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
316     // elements we want.
317     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
318       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
319              "Cannot narrow, it would be a lossy transformation");
320       return DAG.getNode(
321           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
322           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
323     }
324
325     // Vector/Vector bitcast.
326     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
327       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
328
329     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
330       "Cannot handle this kind of promotion");
331     // Promoted vector extract
332     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
333
334   }
335
336   // Trivial bitcast if the types are the same size and the destination
337   // vector type is legal.
338   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
339       TLI.isTypeLegal(ValueVT))
340     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
341
342   // Handle cases such as i8 -> <1 x i1>
343   if (ValueVT.getVectorNumElements() != 1) {
344     diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
345                                       "non-trivial scalar-to-vector conversion");
346     return DAG.getUNDEF(ValueVT);
347   }
348
349   if (ValueVT.getVectorNumElements() == 1 &&
350       ValueVT.getVectorElementType() != PartEVT)
351     Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType());
352
353   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
354 }
355
356 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
357                                  SDValue Val, SDValue *Parts, unsigned NumParts,
358                                  MVT PartVT, const Value *V);
359
360 /// getCopyToParts - Create a series of nodes that contain the specified value
361 /// split into legal parts.  If the parts contain more bits than Val, then, for
362 /// integers, ExtendKind can be used to specify how to generate the extra bits.
363 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
364                            SDValue Val, SDValue *Parts, unsigned NumParts,
365                            MVT PartVT, const Value *V,
366                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
367   EVT ValueVT = Val.getValueType();
368
369   // Handle the vector case separately.
370   if (ValueVT.isVector())
371     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
372
373   unsigned PartBits = PartVT.getSizeInBits();
374   unsigned OrigNumParts = NumParts;
375   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
376          "Copying to an illegal type!");
377
378   if (NumParts == 0)
379     return;
380
381   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
382   EVT PartEVT = PartVT;
383   if (PartEVT == ValueVT) {
384     assert(NumParts == 1 && "No-op copy with multiple parts!");
385     Parts[0] = Val;
386     return;
387   }
388
389   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
390     // If the parts cover more bits than the value has, promote the value.
391     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
392       assert(NumParts == 1 && "Do not know what to promote to!");
393       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
394     } else {
395       if (ValueVT.isFloatingPoint()) {
396         // FP values need to be bitcast, then extended if they are being put
397         // into a larger container.
398         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
399         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
400       }
401       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
402              ValueVT.isInteger() &&
403              "Unknown mismatch!");
404       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
405       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
406       if (PartVT == MVT::x86mmx)
407         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
408     }
409   } else if (PartBits == ValueVT.getSizeInBits()) {
410     // Different types of the same size.
411     assert(NumParts == 1 && PartEVT != ValueVT);
412     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
413   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
414     // If the parts cover less bits than value has, truncate the value.
415     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
416            ValueVT.isInteger() &&
417            "Unknown mismatch!");
418     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
419     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
420     if (PartVT == MVT::x86mmx)
421       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
422   }
423
424   // The value may have changed - recompute ValueVT.
425   ValueVT = Val.getValueType();
426   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
427          "Failed to tile the value with PartVT!");
428
429   if (NumParts == 1) {
430     if (PartEVT != ValueVT)
431       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
432                                         "scalar-to-vector conversion failed");
433
434     Parts[0] = Val;
435     return;
436   }
437
438   // Expand the value into multiple parts.
439   if (NumParts & (NumParts - 1)) {
440     // The number of parts is not a power of 2.  Split off and copy the tail.
441     assert(PartVT.isInteger() && ValueVT.isInteger() &&
442            "Do not know what to expand to!");
443     unsigned RoundParts = 1 << Log2_32(NumParts);
444     unsigned RoundBits = RoundParts * PartBits;
445     unsigned OddParts = NumParts - RoundParts;
446     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
447                                  DAG.getIntPtrConstant(RoundBits, DL));
448     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
449
450     if (DAG.getDataLayout().isBigEndian())
451       // The odd parts were reversed by getCopyToParts - unreverse them.
452       std::reverse(Parts + RoundParts, Parts + NumParts);
453
454     NumParts = RoundParts;
455     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
456     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
457   }
458
459   // The number of parts is a power of 2.  Repeatedly bisect the value using
460   // EXTRACT_ELEMENT.
461   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
462                          EVT::getIntegerVT(*DAG.getContext(),
463                                            ValueVT.getSizeInBits()),
464                          Val);
465
466   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
467     for (unsigned i = 0; i < NumParts; i += StepSize) {
468       unsigned ThisBits = StepSize * PartBits / 2;
469       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
470       SDValue &Part0 = Parts[i];
471       SDValue &Part1 = Parts[i+StepSize/2];
472
473       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
474                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
475       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
476                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
477
478       if (ThisBits == PartBits && ThisVT != PartVT) {
479         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
480         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
481       }
482     }
483   }
484
485   if (DAG.getDataLayout().isBigEndian())
486     std::reverse(Parts, Parts + OrigNumParts);
487 }
488
489
490 /// getCopyToPartsVector - Create a series of nodes that contain the specified
491 /// value split into legal parts.
492 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
493                                  SDValue Val, SDValue *Parts, unsigned NumParts,
494                                  MVT PartVT, const Value *V) {
495   EVT ValueVT = Val.getValueType();
496   assert(ValueVT.isVector() && "Not a vector");
497   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
498
499   if (NumParts == 1) {
500     EVT PartEVT = PartVT;
501     if (PartEVT == ValueVT) {
502       // Nothing to do.
503     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
504       // Bitconvert vector->vector case.
505       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
506     } else if (PartVT.isVector() &&
507                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
508                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
509       EVT ElementVT = PartVT.getVectorElementType();
510       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
511       // undef elements.
512       SmallVector<SDValue, 16> Ops;
513       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
514         Ops.push_back(DAG.getNode(
515             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
516             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
517
518       for (unsigned i = ValueVT.getVectorNumElements(),
519            e = PartVT.getVectorNumElements(); i != e; ++i)
520         Ops.push_back(DAG.getUNDEF(ElementVT));
521
522       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
523
524       // FIXME: Use CONCAT for 2x -> 4x.
525
526       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
527       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
528     } else if (PartVT.isVector() &&
529                PartEVT.getVectorElementType().bitsGE(
530                  ValueVT.getVectorElementType()) &&
531                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
532
533       // Promoted vector extract
534       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
535     } else{
536       // Vector -> scalar conversion.
537       assert(ValueVT.getVectorNumElements() == 1 &&
538              "Only trivial vector-to-scalar conversions should get here!");
539       Val = DAG.getNode(
540           ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
541           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
542
543       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
544     }
545
546     Parts[0] = Val;
547     return;
548   }
549
550   // Handle a multi-element vector.
551   EVT IntermediateVT;
552   MVT RegisterVT;
553   unsigned NumIntermediates;
554   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
555                                                 IntermediateVT,
556                                                 NumIntermediates, RegisterVT);
557   unsigned NumElements = ValueVT.getVectorNumElements();
558
559   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
560   NumParts = NumRegs; // Silence a compiler warning.
561   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
562
563   // Split the vector into intermediate operands.
564   SmallVector<SDValue, 8> Ops(NumIntermediates);
565   for (unsigned i = 0; i != NumIntermediates; ++i) {
566     if (IntermediateVT.isVector())
567       Ops[i] =
568           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
569                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
570                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
571     else
572       Ops[i] = DAG.getNode(
573           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
574           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
575   }
576
577   // Split the intermediate operands into legal parts.
578   if (NumParts == NumIntermediates) {
579     // If the register was not expanded, promote or copy the value,
580     // as appropriate.
581     for (unsigned i = 0; i != NumParts; ++i)
582       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
583   } else if (NumParts > 0) {
584     // If the intermediate type was expanded, split each the value into
585     // legal parts.
586     assert(NumIntermediates != 0 && "division by zero");
587     assert(NumParts % NumIntermediates == 0 &&
588            "Must expand into a divisible number of parts!");
589     unsigned Factor = NumParts / NumIntermediates;
590     for (unsigned i = 0; i != NumIntermediates; ++i)
591       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
592   }
593 }
594
595 RegsForValue::RegsForValue() {}
596
597 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
598                            EVT valuevt)
599     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
600
601 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
602                            const DataLayout &DL, unsigned Reg, Type *Ty) {
603   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
604
605   for (EVT ValueVT : ValueVTs) {
606     unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT);
607     MVT RegisterVT = TLI.getRegisterType(Context, ValueVT);
608     for (unsigned i = 0; i != NumRegs; ++i)
609       Regs.push_back(Reg + i);
610     RegVTs.push_back(RegisterVT);
611     Reg += NumRegs;
612   }
613 }
614
615 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
616 /// this value and returns the result as a ValueVT value.  This uses
617 /// Chain/Flag as the input and updates them for the output Chain/Flag.
618 /// If the Flag pointer is NULL, no flag is used.
619 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
620                                       FunctionLoweringInfo &FuncInfo,
621                                       SDLoc dl,
622                                       SDValue &Chain, SDValue *Flag,
623                                       const Value *V) const {
624   // A Value with type {} or [0 x %t] needs no registers.
625   if (ValueVTs.empty())
626     return SDValue();
627
628   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
629
630   // Assemble the legal parts into the final values.
631   SmallVector<SDValue, 4> Values(ValueVTs.size());
632   SmallVector<SDValue, 8> Parts;
633   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
634     // Copy the legal parts from the registers.
635     EVT ValueVT = ValueVTs[Value];
636     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
637     MVT RegisterVT = RegVTs[Value];
638
639     Parts.resize(NumRegs);
640     for (unsigned i = 0; i != NumRegs; ++i) {
641       SDValue P;
642       if (!Flag) {
643         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
644       } else {
645         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
646         *Flag = P.getValue(2);
647       }
648
649       Chain = P.getValue(1);
650       Parts[i] = P;
651
652       // If the source register was virtual and if we know something about it,
653       // add an assert node.
654       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
655           !RegisterVT.isInteger() || RegisterVT.isVector())
656         continue;
657
658       const FunctionLoweringInfo::LiveOutInfo *LOI =
659         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
660       if (!LOI)
661         continue;
662
663       unsigned RegSize = RegisterVT.getSizeInBits();
664       unsigned NumSignBits = LOI->NumSignBits;
665       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
666
667       if (NumZeroBits == RegSize) {
668         // The current value is a zero.
669         // Explicitly express that as it would be easier for
670         // optimizations to kick in.
671         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
672         continue;
673       }
674
675       // FIXME: We capture more information than the dag can represent.  For
676       // now, just use the tightest assertzext/assertsext possible.
677       bool isSExt = true;
678       EVT FromVT(MVT::Other);
679       if (NumSignBits == RegSize)
680         isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
681       else if (NumZeroBits >= RegSize-1)
682         isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
683       else if (NumSignBits > RegSize-8)
684         isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
685       else if (NumZeroBits >= RegSize-8)
686         isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
687       else if (NumSignBits > RegSize-16)
688         isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
689       else if (NumZeroBits >= RegSize-16)
690         isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
691       else if (NumSignBits > RegSize-32)
692         isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
693       else if (NumZeroBits >= RegSize-32)
694         isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
695       else
696         continue;
697
698       // Add an assertion node.
699       assert(FromVT != MVT::Other);
700       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
701                              RegisterVT, P, DAG.getValueType(FromVT));
702     }
703
704     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
705                                      NumRegs, RegisterVT, ValueVT, V);
706     Part += NumRegs;
707     Parts.clear();
708   }
709
710   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
711 }
712
713 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
714 /// specified value into the registers specified by this object.  This uses
715 /// Chain/Flag as the input and updates them for the output Chain/Flag.
716 /// If the Flag pointer is NULL, no flag is used.
717 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
718                                  SDValue &Chain, SDValue *Flag, const Value *V,
719                                  ISD::NodeType PreferredExtendType) const {
720   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
721   ISD::NodeType ExtendKind = PreferredExtendType;
722
723   // Get the list of the values's legal parts.
724   unsigned NumRegs = Regs.size();
725   SmallVector<SDValue, 8> Parts(NumRegs);
726   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
727     EVT ValueVT = ValueVTs[Value];
728     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
729     MVT RegisterVT = RegVTs[Value];
730
731     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
732       ExtendKind = ISD::ZERO_EXTEND;
733
734     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
735                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
736     Part += NumParts;
737   }
738
739   // Copy the parts into the registers.
740   SmallVector<SDValue, 8> Chains(NumRegs);
741   for (unsigned i = 0; i != NumRegs; ++i) {
742     SDValue Part;
743     if (!Flag) {
744       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
745     } else {
746       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
747       *Flag = Part.getValue(1);
748     }
749
750     Chains[i] = Part.getValue(0);
751   }
752
753   if (NumRegs == 1 || Flag)
754     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
755     // flagged to it. That is the CopyToReg nodes and the user are considered
756     // a single scheduling unit. If we create a TokenFactor and return it as
757     // chain, then the TokenFactor is both a predecessor (operand) of the
758     // user as well as a successor (the TF operands are flagged to the user).
759     // c1, f1 = CopyToReg
760     // c2, f2 = CopyToReg
761     // c3     = TokenFactor c1, c2
762     // ...
763     //        = op c3, ..., f2
764     Chain = Chains[NumRegs-1];
765   else
766     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
767 }
768
769 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
770 /// operand list.  This adds the code marker and includes the number of
771 /// values added into it.
772 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
773                                         unsigned MatchingIdx, SDLoc dl,
774                                         SelectionDAG &DAG,
775                                         std::vector<SDValue> &Ops) const {
776   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
777
778   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
779   if (HasMatching)
780     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
781   else if (!Regs.empty() &&
782            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
783     // Put the register class of the virtual registers in the flag word.  That
784     // way, later passes can recompute register class constraints for inline
785     // assembly as well as normal instructions.
786     // Don't do this for tied operands that can use the regclass information
787     // from the def.
788     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
789     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
790     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
791   }
792
793   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
794   Ops.push_back(Res);
795
796   unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
797   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
798     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
799     MVT RegisterVT = RegVTs[Value];
800     for (unsigned i = 0; i != NumRegs; ++i) {
801       assert(Reg < Regs.size() && "Mismatch in # registers expected");
802       unsigned TheReg = Regs[Reg++];
803       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
804
805       if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
806         // If we clobbered the stack pointer, MFI should know about it.
807         assert(DAG.getMachineFunction().getFrameInfo()->
808             hasOpaqueSPAdjustment());
809       }
810     }
811   }
812 }
813
814 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
815                                const TargetLibraryInfo *li) {
816   AA = &aa;
817   GFI = gfi;
818   LibInfo = li;
819   DL = &DAG.getDataLayout();
820   Context = DAG.getContext();
821   LPadToCallSiteMap.clear();
822 }
823
824 /// clear - Clear out the current SelectionDAG and the associated
825 /// state and prepare this SelectionDAGBuilder object to be used
826 /// for a new block. This doesn't clear out information about
827 /// additional blocks that are needed to complete switch lowering
828 /// or PHI node updating; that information is cleared out as it is
829 /// consumed.
830 void SelectionDAGBuilder::clear() {
831   NodeMap.clear();
832   UnusedArgNodeMap.clear();
833   PendingLoads.clear();
834   PendingExports.clear();
835   CurInst = nullptr;
836   HasTailCall = false;
837   SDNodeOrder = LowestSDNodeOrder;
838   StatepointLowering.clear();
839 }
840
841 /// clearDanglingDebugInfo - Clear the dangling debug information
842 /// map. This function is separated from the clear so that debug
843 /// information that is dangling in a basic block can be properly
844 /// resolved in a different basic block. This allows the
845 /// SelectionDAG to resolve dangling debug information attached
846 /// to PHI nodes.
847 void SelectionDAGBuilder::clearDanglingDebugInfo() {
848   DanglingDebugInfoMap.clear();
849 }
850
851 /// getRoot - Return the current virtual root of the Selection DAG,
852 /// flushing any PendingLoad items. This must be done before emitting
853 /// a store or any other node that may need to be ordered after any
854 /// prior load instructions.
855 ///
856 SDValue SelectionDAGBuilder::getRoot() {
857   if (PendingLoads.empty())
858     return DAG.getRoot();
859
860   if (PendingLoads.size() == 1) {
861     SDValue Root = PendingLoads[0];
862     DAG.setRoot(Root);
863     PendingLoads.clear();
864     return Root;
865   }
866
867   // Otherwise, we have to make a token factor node.
868   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
869                              PendingLoads);
870   PendingLoads.clear();
871   DAG.setRoot(Root);
872   return Root;
873 }
874
875 /// getControlRoot - Similar to getRoot, but instead of flushing all the
876 /// PendingLoad items, flush all the PendingExports items. It is necessary
877 /// to do this before emitting a terminator instruction.
878 ///
879 SDValue SelectionDAGBuilder::getControlRoot() {
880   SDValue Root = DAG.getRoot();
881
882   if (PendingExports.empty())
883     return Root;
884
885   // Turn all of the CopyToReg chains into one factored node.
886   if (Root.getOpcode() != ISD::EntryToken) {
887     unsigned i = 0, e = PendingExports.size();
888     for (; i != e; ++i) {
889       assert(PendingExports[i].getNode()->getNumOperands() > 1);
890       if (PendingExports[i].getNode()->getOperand(0) == Root)
891         break;  // Don't add the root if we already indirectly depend on it.
892     }
893
894     if (i == e)
895       PendingExports.push_back(Root);
896   }
897
898   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
899                      PendingExports);
900   PendingExports.clear();
901   DAG.setRoot(Root);
902   return Root;
903 }
904
905 void SelectionDAGBuilder::visit(const Instruction &I) {
906   // Set up outgoing PHI node register values before emitting the terminator.
907   if (isa<TerminatorInst>(&I))
908     HandlePHINodesInSuccessorBlocks(I.getParent());
909
910   ++SDNodeOrder;
911
912   CurInst = &I;
913
914   visit(I.getOpcode(), I);
915
916   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
917       !isStatepoint(&I)) // statepoints handle their exports internally
918     CopyToExportRegsIfNeeded(&I);
919
920   CurInst = nullptr;
921 }
922
923 void SelectionDAGBuilder::visitPHI(const PHINode &) {
924   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
925 }
926
927 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
928   // Note: this doesn't use InstVisitor, because it has to work with
929   // ConstantExpr's in addition to instructions.
930   switch (Opcode) {
931   default: llvm_unreachable("Unknown instruction type encountered!");
932     // Build the switch statement using the Instruction.def file.
933 #define HANDLE_INST(NUM, OPCODE, CLASS) \
934     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
935 #include "llvm/IR/Instruction.def"
936   }
937 }
938
939 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
940 // generate the debug data structures now that we've seen its definition.
941 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
942                                                    SDValue Val) {
943   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
944   if (DDI.getDI()) {
945     const DbgValueInst *DI = DDI.getDI();
946     DebugLoc dl = DDI.getdl();
947     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
948     DILocalVariable *Variable = DI->getVariable();
949     DIExpression *Expr = DI->getExpression();
950     assert(Variable->isValidLocationForIntrinsic(dl) &&
951            "Expected inlined-at fields to agree");
952     uint64_t Offset = DI->getOffset();
953     SDDbgValue *SDV;
954     if (Val.getNode()) {
955       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false,
956                                     Val)) {
957         SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(),
958                               false, Offset, dl, DbgSDNodeOrder);
959         DAG.AddDbgValue(SDV, Val.getNode(), false);
960       }
961     } else
962       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
963     DanglingDebugInfoMap[V] = DanglingDebugInfo();
964   }
965 }
966
967 /// getCopyFromRegs - If there was virtual register allocated for the value V
968 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
969 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
970   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
971   SDValue Result;
972
973   if (It != FuncInfo.ValueMap.end()) {
974     unsigned InReg = It->second;
975     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
976                      DAG.getDataLayout(), InReg, Ty);
977     SDValue Chain = DAG.getEntryNode();
978     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
979     resolveDanglingDebugInfo(V, Result);
980   }
981
982   return Result;
983 }
984
985 /// getValue - Return an SDValue for the given Value.
986 SDValue SelectionDAGBuilder::getValue(const Value *V) {
987   // If we already have an SDValue for this value, use it. It's important
988   // to do this first, so that we don't create a CopyFromReg if we already
989   // have a regular SDValue.
990   SDValue &N = NodeMap[V];
991   if (N.getNode()) return N;
992
993   // If there's a virtual register allocated and initialized for this
994   // value, use it.
995   SDValue copyFromReg = getCopyFromRegs(V, V->getType());
996   if (copyFromReg.getNode()) {
997     return copyFromReg;
998   }
999
1000   // Otherwise create a new SDValue and remember it.
1001   SDValue Val = getValueImpl(V);
1002   NodeMap[V] = Val;
1003   resolveDanglingDebugInfo(V, Val);
1004   return Val;
1005 }
1006
1007 // Return true if SDValue exists for the given Value
1008 bool SelectionDAGBuilder::findValue(const Value *V) const {
1009   return (NodeMap.find(V) != NodeMap.end()) ||
1010     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1011 }
1012
1013 /// getNonRegisterValue - Return an SDValue for the given Value, but
1014 /// don't look in FuncInfo.ValueMap for a virtual register.
1015 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1016   // If we already have an SDValue for this value, use it.
1017   SDValue &N = NodeMap[V];
1018   if (N.getNode()) {
1019     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1020       // Remove the debug location from the node as the node is about to be used
1021       // in a location which may differ from the original debug location.  This
1022       // is relevant to Constant and ConstantFP nodes because they can appear
1023       // as constant expressions inside PHI nodes.
1024       N->setDebugLoc(DebugLoc());
1025     }
1026     return N;
1027   }
1028
1029   // Otherwise create a new SDValue and remember it.
1030   SDValue Val = getValueImpl(V);
1031   NodeMap[V] = Val;
1032   resolveDanglingDebugInfo(V, Val);
1033   return Val;
1034 }
1035
1036 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1037 /// Create an SDValue for the given value.
1038 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1039   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1040
1041   if (const Constant *C = dyn_cast<Constant>(V)) {
1042     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1043
1044     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1045       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1046
1047     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1048       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1049
1050     if (isa<ConstantPointerNull>(C)) {
1051       unsigned AS = V->getType()->getPointerAddressSpace();
1052       return DAG.getConstant(0, getCurSDLoc(),
1053                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1054     }
1055
1056     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1057       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1058
1059     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1060       return DAG.getUNDEF(VT);
1061
1062     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1063       visit(CE->getOpcode(), *CE);
1064       SDValue N1 = NodeMap[V];
1065       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1066       return N1;
1067     }
1068
1069     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1070       SmallVector<SDValue, 4> Constants;
1071       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1072            OI != OE; ++OI) {
1073         SDNode *Val = getValue(*OI).getNode();
1074         // If the operand is an empty aggregate, there are no values.
1075         if (!Val) continue;
1076         // Add each leaf value from the operand to the Constants list
1077         // to form a flattened list of all the values.
1078         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1079           Constants.push_back(SDValue(Val, i));
1080       }
1081
1082       return DAG.getMergeValues(Constants, getCurSDLoc());
1083     }
1084
1085     if (const ConstantDataSequential *CDS =
1086           dyn_cast<ConstantDataSequential>(C)) {
1087       SmallVector<SDValue, 4> Ops;
1088       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1089         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1090         // Add each leaf value from the operand to the Constants list
1091         // to form a flattened list of all the values.
1092         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1093           Ops.push_back(SDValue(Val, i));
1094       }
1095
1096       if (isa<ArrayType>(CDS->getType()))
1097         return DAG.getMergeValues(Ops, getCurSDLoc());
1098       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1099                                       VT, Ops);
1100     }
1101
1102     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1103       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1104              "Unknown struct or array constant!");
1105
1106       SmallVector<EVT, 4> ValueVTs;
1107       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1108       unsigned NumElts = ValueVTs.size();
1109       if (NumElts == 0)
1110         return SDValue(); // empty struct
1111       SmallVector<SDValue, 4> Constants(NumElts);
1112       for (unsigned i = 0; i != NumElts; ++i) {
1113         EVT EltVT = ValueVTs[i];
1114         if (isa<UndefValue>(C))
1115           Constants[i] = DAG.getUNDEF(EltVT);
1116         else if (EltVT.isFloatingPoint())
1117           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1118         else
1119           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1120       }
1121
1122       return DAG.getMergeValues(Constants, getCurSDLoc());
1123     }
1124
1125     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1126       return DAG.getBlockAddress(BA, VT);
1127
1128     VectorType *VecTy = cast<VectorType>(V->getType());
1129     unsigned NumElements = VecTy->getNumElements();
1130
1131     // Now that we know the number and type of the elements, get that number of
1132     // elements into the Ops array based on what kind of constant it is.
1133     SmallVector<SDValue, 16> Ops;
1134     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1135       for (unsigned i = 0; i != NumElements; ++i)
1136         Ops.push_back(getValue(CV->getOperand(i)));
1137     } else {
1138       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1139       EVT EltVT =
1140           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1141
1142       SDValue Op;
1143       if (EltVT.isFloatingPoint())
1144         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1145       else
1146         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1147       Ops.assign(NumElements, Op);
1148     }
1149
1150     // Create a BUILD_VECTOR node.
1151     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
1152   }
1153
1154   // If this is a static alloca, generate it as the frameindex instead of
1155   // computation.
1156   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1157     DenseMap<const AllocaInst*, int>::iterator SI =
1158       FuncInfo.StaticAllocaMap.find(AI);
1159     if (SI != FuncInfo.StaticAllocaMap.end())
1160       return DAG.getFrameIndex(SI->second,
1161                                TLI.getPointerTy(DAG.getDataLayout()));
1162   }
1163
1164   // If this is an instruction which fast-isel has deferred, select it now.
1165   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1166     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1167     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1168                      Inst->getType());
1169     SDValue Chain = DAG.getEntryNode();
1170     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1171   }
1172
1173   llvm_unreachable("Can't get register for value!");
1174 }
1175
1176 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1177   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1178   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1179   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1180   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1181   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1182   if (IsMSVCCXX || IsCoreCLR)
1183     CatchPadMBB->setIsEHFuncletEntry();
1184
1185   DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()));
1186 }
1187
1188 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1189   // Update machine-CFG edge.
1190   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1191   FuncInfo.MBB->addSuccessor(TargetMBB);
1192
1193   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1194   bool IsSEH = isAsynchronousEHPersonality(Pers);
1195   if (IsSEH) {
1196     // If this is not a fall-through branch or optimizations are switched off,
1197     // emit the branch.
1198     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1199         TM.getOptLevel() == CodeGenOpt::None)
1200       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1201                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1202     return;
1203   }
1204
1205   // Figure out the funclet membership for the catchret's successor.
1206   // This will be used by the FuncletLayout pass to determine how to order the
1207   // BB's.
1208   WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
1209   const BasicBlock *SuccessorColor = EHInfo->CatchRetSuccessorColorMap[&I];
1210   assert(SuccessorColor && "No parent funclet for catchret!");
1211   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1212   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1213
1214   // Create the terminator node.
1215   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1216                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1217                             DAG.getBasicBlock(SuccessorColorMBB));
1218   DAG.setRoot(Ret);
1219 }
1220
1221 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1222   // Don't emit any special code for the cleanuppad instruction. It just marks
1223   // the start of a funclet.
1224   FuncInfo.MBB->setIsEHFuncletEntry();
1225   FuncInfo.MBB->setIsCleanupFuncletEntry();
1226 }
1227
1228 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1229 /// many places it could ultimately go. In the IR, we have a single unwind
1230 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1231 /// This function skips over imaginary basic blocks that hold catchswitch
1232 /// instructions, and finds all the "real" machine
1233 /// basic block destinations. As those destinations may not be successors of
1234 /// EHPadBB, here we also calculate the edge probability to those destinations.
1235 /// The passed-in Prob is the edge probability to EHPadBB.
1236 static void findUnwindDestinations(
1237     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1238     BranchProbability Prob,
1239     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1240         &UnwindDests) {
1241   EHPersonality Personality =
1242     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1243   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1244   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1245
1246   while (EHPadBB) {
1247     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1248     BasicBlock *NewEHPadBB = nullptr;
1249     if (isa<LandingPadInst>(Pad)) {
1250       // Stop on landingpads. They are not funclets.
1251       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1252       break;
1253     } else if (isa<CleanupPadInst>(Pad)) {
1254       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1255       // personalities.
1256       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1257       UnwindDests.back().first->setIsEHFuncletEntry();
1258       break;
1259     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1260       // Add the catchpad handlers to the possible destinations.
1261       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1262         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1263         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1264         if (IsMSVCCXX || IsCoreCLR)
1265           UnwindDests.back().first->setIsEHFuncletEntry();
1266       }
1267       NewEHPadBB = CatchSwitch->getUnwindDest();
1268     } else {
1269       continue;
1270     }
1271
1272     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1273     if (BPI && NewEHPadBB)
1274       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1275     EHPadBB = NewEHPadBB;
1276   }
1277 }
1278
1279 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1280   // Update successor info.
1281   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1282   auto UnwindDest = I.getUnwindDest();
1283   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1284   BranchProbability UnwindDestProb =
1285       (BPI && UnwindDest)
1286           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1287           : BranchProbability::getZero();
1288   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1289   for (auto &UnwindDest : UnwindDests) {
1290     UnwindDest.first->setIsEHPad();
1291     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1292   }
1293   FuncInfo.MBB->normalizeSuccProbs();
1294
1295   // Create the terminator node.
1296   SDValue Ret =
1297       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1298   DAG.setRoot(Ret);
1299 }
1300
1301 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1302   report_fatal_error("visitCatchSwitch not yet implemented!");
1303 }
1304
1305 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1306   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1307   auto &DL = DAG.getDataLayout();
1308   SDValue Chain = getControlRoot();
1309   SmallVector<ISD::OutputArg, 8> Outs;
1310   SmallVector<SDValue, 8> OutVals;
1311
1312   if (!FuncInfo.CanLowerReturn) {
1313     unsigned DemoteReg = FuncInfo.DemoteRegister;
1314     const Function *F = I.getParent()->getParent();
1315
1316     // Emit a store of the return value through the virtual register.
1317     // Leave Outs empty so that LowerReturn won't try to load return
1318     // registers the usual way.
1319     SmallVector<EVT, 1> PtrValueVTs;
1320     ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()),
1321                     PtrValueVTs);
1322
1323     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1324                                         DemoteReg, PtrValueVTs[0]);
1325     SDValue RetOp = getValue(I.getOperand(0));
1326
1327     SmallVector<EVT, 4> ValueVTs;
1328     SmallVector<uint64_t, 4> Offsets;
1329     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1330     unsigned NumValues = ValueVTs.size();
1331
1332     SmallVector<SDValue, 4> Chains(NumValues);
1333     for (unsigned i = 0; i != NumValues; ++i) {
1334       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1335                                 RetPtr.getValueType(), RetPtr,
1336                                 DAG.getIntPtrConstant(Offsets[i],
1337                                                       getCurSDLoc()));
1338       Chains[i] =
1339         DAG.getStore(Chain, getCurSDLoc(),
1340                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1341                      // FIXME: better loc info would be nice.
1342                      Add, MachinePointerInfo(), false, false, 0);
1343     }
1344
1345     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1346                         MVT::Other, Chains);
1347   } else if (I.getNumOperands() != 0) {
1348     SmallVector<EVT, 4> ValueVTs;
1349     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1350     unsigned NumValues = ValueVTs.size();
1351     if (NumValues) {
1352       SDValue RetOp = getValue(I.getOperand(0));
1353
1354       const Function *F = I.getParent()->getParent();
1355
1356       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1357       if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1358                                           Attribute::SExt))
1359         ExtendKind = ISD::SIGN_EXTEND;
1360       else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1361                                                Attribute::ZExt))
1362         ExtendKind = ISD::ZERO_EXTEND;
1363
1364       LLVMContext &Context = F->getContext();
1365       bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1366                                                       Attribute::InReg);
1367
1368       for (unsigned j = 0; j != NumValues; ++j) {
1369         EVT VT = ValueVTs[j];
1370
1371         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1372           VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind);
1373
1374         unsigned NumParts = TLI.getNumRegisters(Context, VT);
1375         MVT PartVT = TLI.getRegisterType(Context, VT);
1376         SmallVector<SDValue, 4> Parts(NumParts);
1377         getCopyToParts(DAG, getCurSDLoc(),
1378                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1379                        &Parts[0], NumParts, PartVT, &I, ExtendKind);
1380
1381         // 'inreg' on function refers to return value
1382         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1383         if (RetInReg)
1384           Flags.setInReg();
1385
1386         // Propagate extension type if any
1387         if (ExtendKind == ISD::SIGN_EXTEND)
1388           Flags.setSExt();
1389         else if (ExtendKind == ISD::ZERO_EXTEND)
1390           Flags.setZExt();
1391
1392         for (unsigned i = 0; i < NumParts; ++i) {
1393           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1394                                         VT, /*isfixed=*/true, 0, 0));
1395           OutVals.push_back(Parts[i]);
1396         }
1397       }
1398     }
1399   }
1400
1401   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1402   CallingConv::ID CallConv =
1403     DAG.getMachineFunction().getFunction()->getCallingConv();
1404   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1405       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1406
1407   // Verify that the target's LowerReturn behaved as expected.
1408   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1409          "LowerReturn didn't return a valid chain!");
1410
1411   // Update the DAG with the new chain value resulting from return lowering.
1412   DAG.setRoot(Chain);
1413 }
1414
1415 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1416 /// created for it, emit nodes to copy the value into the virtual
1417 /// registers.
1418 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1419   // Skip empty types
1420   if (V->getType()->isEmptyTy())
1421     return;
1422
1423   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1424   if (VMI != FuncInfo.ValueMap.end()) {
1425     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1426     CopyValueToVirtualRegister(V, VMI->second);
1427   }
1428 }
1429
1430 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1431 /// the current basic block, add it to ValueMap now so that we'll get a
1432 /// CopyTo/FromReg.
1433 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1434   // No need to export constants.
1435   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1436
1437   // Already exported?
1438   if (FuncInfo.isExportedInst(V)) return;
1439
1440   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1441   CopyValueToVirtualRegister(V, Reg);
1442 }
1443
1444 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1445                                                      const BasicBlock *FromBB) {
1446   // The operands of the setcc have to be in this block.  We don't know
1447   // how to export them from some other block.
1448   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1449     // Can export from current BB.
1450     if (VI->getParent() == FromBB)
1451       return true;
1452
1453     // Is already exported, noop.
1454     return FuncInfo.isExportedInst(V);
1455   }
1456
1457   // If this is an argument, we can export it if the BB is the entry block or
1458   // if it is already exported.
1459   if (isa<Argument>(V)) {
1460     if (FromBB == &FromBB->getParent()->getEntryBlock())
1461       return true;
1462
1463     // Otherwise, can only export this if it is already exported.
1464     return FuncInfo.isExportedInst(V);
1465   }
1466
1467   // Otherwise, constants can always be exported.
1468   return true;
1469 }
1470
1471 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1472 BranchProbability
1473 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1474                                         const MachineBasicBlock *Dst) const {
1475   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1476   const BasicBlock *SrcBB = Src->getBasicBlock();
1477   const BasicBlock *DstBB = Dst->getBasicBlock();
1478   if (!BPI) {
1479     // If BPI is not available, set the default probability as 1 / N, where N is
1480     // the number of successors.
1481     auto SuccSize = std::max<uint32_t>(
1482         std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1);
1483     return BranchProbability(1, SuccSize);
1484   }
1485   return BPI->getEdgeProbability(SrcBB, DstBB);
1486 }
1487
1488 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1489                                                MachineBasicBlock *Dst,
1490                                                BranchProbability Prob) {
1491   if (!FuncInfo.BPI)
1492     Src->addSuccessorWithoutProb(Dst);
1493   else {
1494     if (Prob.isUnknown())
1495       Prob = getEdgeProbability(Src, Dst);
1496     Src->addSuccessor(Dst, Prob);
1497   }
1498 }
1499
1500 static bool InBlock(const Value *V, const BasicBlock *BB) {
1501   if (const Instruction *I = dyn_cast<Instruction>(V))
1502     return I->getParent() == BB;
1503   return true;
1504 }
1505
1506 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1507 /// This function emits a branch and is used at the leaves of an OR or an
1508 /// AND operator tree.
1509 ///
1510 void
1511 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1512                                                   MachineBasicBlock *TBB,
1513                                                   MachineBasicBlock *FBB,
1514                                                   MachineBasicBlock *CurBB,
1515                                                   MachineBasicBlock *SwitchBB,
1516                                                   BranchProbability TProb,
1517                                                   BranchProbability FProb) {
1518   const BasicBlock *BB = CurBB->getBasicBlock();
1519
1520   // If the leaf of the tree is a comparison, merge the condition into
1521   // the caseblock.
1522   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1523     // The operands of the cmp have to be in this block.  We don't know
1524     // how to export them from some other block.  If this is the first block
1525     // of the sequence, no exporting is needed.
1526     if (CurBB == SwitchBB ||
1527         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1528          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1529       ISD::CondCode Condition;
1530       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1531         Condition = getICmpCondCode(IC->getPredicate());
1532       } else {
1533         const FCmpInst *FC = cast<FCmpInst>(Cond);
1534         Condition = getFCmpCondCode(FC->getPredicate());
1535         if (TM.Options.NoNaNsFPMath)
1536           Condition = getFCmpCodeWithoutNaN(Condition);
1537       }
1538
1539       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1540                    TBB, FBB, CurBB, TProb, FProb);
1541       SwitchCases.push_back(CB);
1542       return;
1543     }
1544   }
1545
1546   // Create a CaseBlock record representing this branch.
1547   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1548                nullptr, TBB, FBB, CurBB, TProb, FProb);
1549   SwitchCases.push_back(CB);
1550 }
1551
1552 /// FindMergedConditions - If Cond is an expression like
1553 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1554                                                MachineBasicBlock *TBB,
1555                                                MachineBasicBlock *FBB,
1556                                                MachineBasicBlock *CurBB,
1557                                                MachineBasicBlock *SwitchBB,
1558                                                Instruction::BinaryOps Opc,
1559                                                BranchProbability TProb,
1560                                                BranchProbability FProb) {
1561   // If this node is not part of the or/and tree, emit it as a branch.
1562   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1563   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1564       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1565       BOp->getParent() != CurBB->getBasicBlock() ||
1566       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1567       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1568     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1569                                  TProb, FProb);
1570     return;
1571   }
1572
1573   //  Create TmpBB after CurBB.
1574   MachineFunction::iterator BBI(CurBB);
1575   MachineFunction &MF = DAG.getMachineFunction();
1576   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1577   CurBB->getParent()->insert(++BBI, TmpBB);
1578
1579   if (Opc == Instruction::Or) {
1580     // Codegen X | Y as:
1581     // BB1:
1582     //   jmp_if_X TBB
1583     //   jmp TmpBB
1584     // TmpBB:
1585     //   jmp_if_Y TBB
1586     //   jmp FBB
1587     //
1588
1589     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1590     // The requirement is that
1591     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1592     //     = TrueProb for original BB.
1593     // Assuming the original probabilities are A and B, one choice is to set
1594     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1595     // A/(1+B) and 2B/(1+B). This choice assumes that
1596     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1597     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1598     // TmpBB, but the math is more complicated.
1599
1600     auto NewTrueProb = TProb / 2;
1601     auto NewFalseProb = TProb / 2 + FProb;
1602     // Emit the LHS condition.
1603     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1604                          NewTrueProb, NewFalseProb);
1605
1606     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1607     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1608     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1609     // Emit the RHS condition into TmpBB.
1610     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1611                          Probs[0], Probs[1]);
1612   } else {
1613     assert(Opc == Instruction::And && "Unknown merge op!");
1614     // Codegen X & Y as:
1615     // BB1:
1616     //   jmp_if_X TmpBB
1617     //   jmp FBB
1618     // TmpBB:
1619     //   jmp_if_Y TBB
1620     //   jmp FBB
1621     //
1622     //  This requires creation of TmpBB after CurBB.
1623
1624     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1625     // The requirement is that
1626     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1627     //     = FalseProb for original BB.
1628     // Assuming the original probabilities are A and B, one choice is to set
1629     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1630     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1631     // TrueProb for BB1 * FalseProb for TmpBB.
1632
1633     auto NewTrueProb = TProb + FProb / 2;
1634     auto NewFalseProb = FProb / 2;
1635     // Emit the LHS condition.
1636     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1637                          NewTrueProb, NewFalseProb);
1638
1639     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1640     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1641     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1642     // Emit the RHS condition into TmpBB.
1643     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1644                          Probs[0], Probs[1]);
1645   }
1646 }
1647
1648 /// If the set of cases should be emitted as a series of branches, return true.
1649 /// If we should emit this as a bunch of and/or'd together conditions, return
1650 /// false.
1651 bool
1652 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1653   if (Cases.size() != 2) return true;
1654
1655   // If this is two comparisons of the same values or'd or and'd together, they
1656   // will get folded into a single comparison, so don't emit two blocks.
1657   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1658        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1659       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1660        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1661     return false;
1662   }
1663
1664   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1665   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1666   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1667       Cases[0].CC == Cases[1].CC &&
1668       isa<Constant>(Cases[0].CmpRHS) &&
1669       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1670     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1671       return false;
1672     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1673       return false;
1674   }
1675
1676   return true;
1677 }
1678
1679 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1680   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1681
1682   // Update machine-CFG edges.
1683   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1684
1685   if (I.isUnconditional()) {
1686     // Update machine-CFG edges.
1687     BrMBB->addSuccessor(Succ0MBB);
1688
1689     // If this is not a fall-through branch or optimizations are switched off,
1690     // emit the branch.
1691     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1692       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1693                               MVT::Other, getControlRoot(),
1694                               DAG.getBasicBlock(Succ0MBB)));
1695
1696     return;
1697   }
1698
1699   // If this condition is one of the special cases we handle, do special stuff
1700   // now.
1701   const Value *CondVal = I.getCondition();
1702   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1703
1704   // If this is a series of conditions that are or'd or and'd together, emit
1705   // this as a sequence of branches instead of setcc's with and/or operations.
1706   // As long as jumps are not expensive, this should improve performance.
1707   // For example, instead of something like:
1708   //     cmp A, B
1709   //     C = seteq
1710   //     cmp D, E
1711   //     F = setle
1712   //     or C, F
1713   //     jnz foo
1714   // Emit:
1715   //     cmp A, B
1716   //     je foo
1717   //     cmp D, E
1718   //     jle foo
1719   //
1720   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1721     Instruction::BinaryOps Opcode = BOp->getOpcode();
1722     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
1723         !I.getMetadata(LLVMContext::MD_unpredictable) &&
1724         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
1725       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1726                            Opcode,
1727                            getEdgeProbability(BrMBB, Succ0MBB),
1728                            getEdgeProbability(BrMBB, Succ1MBB));
1729       // If the compares in later blocks need to use values not currently
1730       // exported from this block, export them now.  This block should always
1731       // be the first entry.
1732       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1733
1734       // Allow some cases to be rejected.
1735       if (ShouldEmitAsBranches(SwitchCases)) {
1736         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1737           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1738           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1739         }
1740
1741         // Emit the branch for this block.
1742         visitSwitchCase(SwitchCases[0], BrMBB);
1743         SwitchCases.erase(SwitchCases.begin());
1744         return;
1745       }
1746
1747       // Okay, we decided not to do this, remove any inserted MBB's and clear
1748       // SwitchCases.
1749       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1750         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1751
1752       SwitchCases.clear();
1753     }
1754   }
1755
1756   // Create a CaseBlock record representing this branch.
1757   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1758                nullptr, Succ0MBB, Succ1MBB, BrMBB);
1759
1760   // Use visitSwitchCase to actually insert the fast branch sequence for this
1761   // cond branch.
1762   visitSwitchCase(CB, BrMBB);
1763 }
1764
1765 /// visitSwitchCase - Emits the necessary code to represent a single node in
1766 /// the binary search tree resulting from lowering a switch instruction.
1767 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1768                                           MachineBasicBlock *SwitchBB) {
1769   SDValue Cond;
1770   SDValue CondLHS = getValue(CB.CmpLHS);
1771   SDLoc dl = getCurSDLoc();
1772
1773   // Build the setcc now.
1774   if (!CB.CmpMHS) {
1775     // Fold "(X == true)" to X and "(X == false)" to !X to
1776     // handle common cases produced by branch lowering.
1777     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1778         CB.CC == ISD::SETEQ)
1779       Cond = CondLHS;
1780     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1781              CB.CC == ISD::SETEQ) {
1782       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
1783       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1784     } else
1785       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1786   } else {
1787     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1788
1789     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1790     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1791
1792     SDValue CmpOp = getValue(CB.CmpMHS);
1793     EVT VT = CmpOp.getValueType();
1794
1795     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1796       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
1797                           ISD::SETLE);
1798     } else {
1799       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1800                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
1801       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1802                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
1803     }
1804   }
1805
1806   // Update successor info
1807   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
1808   // TrueBB and FalseBB are always different unless the incoming IR is
1809   // degenerate. This only happens when running llc on weird IR.
1810   if (CB.TrueBB != CB.FalseBB)
1811     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
1812   SwitchBB->normalizeSuccProbs();
1813
1814   // If the lhs block is the next block, invert the condition so that we can
1815   // fall through to the lhs instead of the rhs block.
1816   if (CB.TrueBB == NextBlock(SwitchBB)) {
1817     std::swap(CB.TrueBB, CB.FalseBB);
1818     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
1819     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1820   }
1821
1822   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1823                                MVT::Other, getControlRoot(), Cond,
1824                                DAG.getBasicBlock(CB.TrueBB));
1825
1826   // Insert the false branch. Do this even if it's a fall through branch,
1827   // this makes it easier to do DAG optimizations which require inverting
1828   // the branch condition.
1829   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1830                        DAG.getBasicBlock(CB.FalseBB));
1831
1832   DAG.setRoot(BrCond);
1833 }
1834
1835 /// visitJumpTable - Emit JumpTable node in the current MBB
1836 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1837   // Emit the code for the jump table
1838   assert(JT.Reg != -1U && "Should lower JT Header first!");
1839   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1840   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1841                                      JT.Reg, PTy);
1842   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1843   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1844                                     MVT::Other, Index.getValue(1),
1845                                     Table, Index);
1846   DAG.setRoot(BrJumpTable);
1847 }
1848
1849 /// visitJumpTableHeader - This function emits necessary code to produce index
1850 /// in the JumpTable from switch case.
1851 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1852                                                JumpTableHeader &JTH,
1853                                                MachineBasicBlock *SwitchBB) {
1854   SDLoc dl = getCurSDLoc();
1855
1856   // Subtract the lowest switch case value from the value being switched on and
1857   // conditional branch to default mbb if the result is greater than the
1858   // difference between smallest and largest cases.
1859   SDValue SwitchOp = getValue(JTH.SValue);
1860   EVT VT = SwitchOp.getValueType();
1861   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
1862                             DAG.getConstant(JTH.First, dl, VT));
1863
1864   // The SDNode we just created, which holds the value being switched on minus
1865   // the smallest case value, needs to be copied to a virtual register so it
1866   // can be used as an index into the jump table in a subsequent basic block.
1867   // This value may be smaller or larger than the target's pointer type, and
1868   // therefore require extension or truncating.
1869   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1870   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
1871
1872   unsigned JumpTableReg =
1873       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
1874   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
1875                                     JumpTableReg, SwitchOp);
1876   JT.Reg = JumpTableReg;
1877
1878   // Emit the range check for the jump table, and branch to the default block
1879   // for the switch statement if the value being switched on exceeds the largest
1880   // case in the switch.
1881   SDValue CMP = DAG.getSetCC(
1882       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
1883                                  Sub.getValueType()),
1884       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
1885
1886   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1887                                MVT::Other, CopyTo, CMP,
1888                                DAG.getBasicBlock(JT.Default));
1889
1890   // Avoid emitting unnecessary branches to the next block.
1891   if (JT.MBB != NextBlock(SwitchBB))
1892     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1893                          DAG.getBasicBlock(JT.MBB));
1894
1895   DAG.setRoot(BrCond);
1896 }
1897
1898 /// Codegen a new tail for a stack protector check ParentMBB which has had its
1899 /// tail spliced into a stack protector check success bb.
1900 ///
1901 /// For a high level explanation of how this fits into the stack protector
1902 /// generation see the comment on the declaration of class
1903 /// StackProtectorDescriptor.
1904 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
1905                                                   MachineBasicBlock *ParentBB) {
1906
1907   // First create the loads to the guard/stack slot for the comparison.
1908   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1909   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
1910
1911   MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
1912   int FI = MFI->getStackProtectorIndex();
1913
1914   const Value *IRGuard = SPD.getGuard();
1915   SDValue GuardPtr = getValue(IRGuard);
1916   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
1917
1918   unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType());
1919
1920   SDValue Guard;
1921   SDLoc dl = getCurSDLoc();
1922
1923   // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the
1924   // guard value from the virtual register holding the value. Otherwise, emit a
1925   // volatile load to retrieve the stack guard value.
1926   unsigned GuardReg = SPD.getGuardReg();
1927
1928   if (GuardReg && TLI.useLoadStackGuardNode())
1929     Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg,
1930                                PtrTy);
1931   else
1932     Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(),
1933                         GuardPtr, MachinePointerInfo(IRGuard, 0),
1934                         true, false, false, Align);
1935
1936   SDValue StackSlot = DAG.getLoad(
1937       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
1938       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true,
1939       false, false, Align);
1940
1941   // Perform the comparison via a subtract/getsetcc.
1942   EVT VT = Guard.getValueType();
1943   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
1944
1945   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
1946                                                         *DAG.getContext(),
1947                                                         Sub.getValueType()),
1948                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
1949
1950   // If the sub is not 0, then we know the guard/stackslot do not equal, so
1951   // branch to failure MBB.
1952   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1953                                MVT::Other, StackSlot.getOperand(0),
1954                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
1955   // Otherwise branch to success MBB.
1956   SDValue Br = DAG.getNode(ISD::BR, dl,
1957                            MVT::Other, BrCond,
1958                            DAG.getBasicBlock(SPD.getSuccessMBB()));
1959
1960   DAG.setRoot(Br);
1961 }
1962
1963 /// Codegen the failure basic block for a stack protector check.
1964 ///
1965 /// A failure stack protector machine basic block consists simply of a call to
1966 /// __stack_chk_fail().
1967 ///
1968 /// For a high level explanation of how this fits into the stack protector
1969 /// generation see the comment on the declaration of class
1970 /// StackProtectorDescriptor.
1971 void
1972 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
1973   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1974   SDValue Chain =
1975       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
1976                       None, false, getCurSDLoc(), false, false).second;
1977   DAG.setRoot(Chain);
1978 }
1979
1980 /// visitBitTestHeader - This function emits necessary code to produce value
1981 /// suitable for "bit tests"
1982 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1983                                              MachineBasicBlock *SwitchBB) {
1984   SDLoc dl = getCurSDLoc();
1985
1986   // Subtract the minimum value
1987   SDValue SwitchOp = getValue(B.SValue);
1988   EVT VT = SwitchOp.getValueType();
1989   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
1990                             DAG.getConstant(B.First, dl, VT));
1991
1992   // Check range
1993   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1994   SDValue RangeCmp = DAG.getSetCC(
1995       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
1996                                  Sub.getValueType()),
1997       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
1998
1999   // Determine the type of the test operands.
2000   bool UsePtrType = false;
2001   if (!TLI.isTypeLegal(VT))
2002     UsePtrType = true;
2003   else {
2004     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2005       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2006         // Switch table case range are encoded into series of masks.
2007         // Just use pointer type, it's guaranteed to fit.
2008         UsePtrType = true;
2009         break;
2010       }
2011   }
2012   if (UsePtrType) {
2013     VT = TLI.getPointerTy(DAG.getDataLayout());
2014     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2015   }
2016
2017   B.RegVT = VT.getSimpleVT();
2018   B.Reg = FuncInfo.CreateReg(B.RegVT);
2019   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2020
2021   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2022
2023   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2024   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2025   SwitchBB->normalizeSuccProbs();
2026
2027   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2028                                 MVT::Other, CopyTo, RangeCmp,
2029                                 DAG.getBasicBlock(B.Default));
2030
2031   // Avoid emitting unnecessary branches to the next block.
2032   if (MBB != NextBlock(SwitchBB))
2033     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2034                           DAG.getBasicBlock(MBB));
2035
2036   DAG.setRoot(BrRange);
2037 }
2038
2039 /// visitBitTestCase - this function produces one "bit test"
2040 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2041                                            MachineBasicBlock* NextMBB,
2042                                            BranchProbability BranchProbToNext,
2043                                            unsigned Reg,
2044                                            BitTestCase &B,
2045                                            MachineBasicBlock *SwitchBB) {
2046   SDLoc dl = getCurSDLoc();
2047   MVT VT = BB.RegVT;
2048   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2049   SDValue Cmp;
2050   unsigned PopCount = countPopulation(B.Mask);
2051   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2052   if (PopCount == 1) {
2053     // Testing for a single bit; just compare the shift count with what it
2054     // would need to be to shift a 1 bit in that position.
2055     Cmp = DAG.getSetCC(
2056         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2057         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2058         ISD::SETEQ);
2059   } else if (PopCount == BB.Range) {
2060     // There is only one zero bit in the range, test for it directly.
2061     Cmp = DAG.getSetCC(
2062         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2063         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2064         ISD::SETNE);
2065   } else {
2066     // Make desired shift
2067     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2068                                     DAG.getConstant(1, dl, VT), ShiftOp);
2069
2070     // Emit bit tests and jumps
2071     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2072                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2073     Cmp = DAG.getSetCC(
2074         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2075         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2076   }
2077
2078   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2079   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2080   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2081   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2082   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2083   // one as they are relative probabilities (and thus work more like weights),
2084   // and hence we need to normalize them to let the sum of them become one.
2085   SwitchBB->normalizeSuccProbs();
2086
2087   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2088                               MVT::Other, getControlRoot(),
2089                               Cmp, DAG.getBasicBlock(B.TargetBB));
2090
2091   // Avoid emitting unnecessary branches to the next block.
2092   if (NextMBB != NextBlock(SwitchBB))
2093     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2094                         DAG.getBasicBlock(NextMBB));
2095
2096   DAG.setRoot(BrAnd);
2097 }
2098
2099 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2100   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2101
2102   // Retrieve successors. Look through artificial IR level blocks like
2103   // catchswitch for successors.
2104   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2105   const BasicBlock *EHPadBB = I.getSuccessor(1);
2106
2107   const Value *Callee(I.getCalledValue());
2108   const Function *Fn = dyn_cast<Function>(Callee);
2109   if (isa<InlineAsm>(Callee))
2110     visitInlineAsm(&I);
2111   else if (Fn && Fn->isIntrinsic()) {
2112     switch (Fn->getIntrinsicID()) {
2113     default:
2114       llvm_unreachable("Cannot invoke this intrinsic");
2115     case Intrinsic::donothing:
2116       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2117       break;
2118     case Intrinsic::experimental_patchpoint_void:
2119     case Intrinsic::experimental_patchpoint_i64:
2120       visitPatchpoint(&I, EHPadBB);
2121       break;
2122     case Intrinsic::experimental_gc_statepoint:
2123       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2124       break;
2125     }
2126   } else
2127     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2128
2129   // If the value of the invoke is used outside of its defining block, make it
2130   // available as a virtual register.
2131   // We already took care of the exported value for the statepoint instruction
2132   // during call to the LowerStatepoint.
2133   if (!isStatepoint(I)) {
2134     CopyToExportRegsIfNeeded(&I);
2135   }
2136
2137   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2138   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2139   BranchProbability EHPadBBProb =
2140       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2141           : BranchProbability::getZero();
2142   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2143
2144   // Update successor info.
2145   addSuccessorWithProb(InvokeMBB, Return);
2146   for (auto &UnwindDest : UnwindDests) {
2147     UnwindDest.first->setIsEHPad();
2148     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2149   }
2150   InvokeMBB->normalizeSuccProbs();
2151
2152   // Drop into normal successor.
2153   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2154                           MVT::Other, getControlRoot(),
2155                           DAG.getBasicBlock(Return)));
2156 }
2157
2158 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2159   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2160 }
2161
2162 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2163   assert(FuncInfo.MBB->isEHPad() &&
2164          "Call to landingpad not in landing pad!");
2165
2166   MachineBasicBlock *MBB = FuncInfo.MBB;
2167   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
2168   AddLandingPadInfo(LP, MMI, MBB);
2169
2170   // If there aren't registers to copy the values into (e.g., during SjLj
2171   // exceptions), then don't bother to create these DAG nodes.
2172   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2173   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2174   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2175       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2176     return;
2177
2178   // If landingpad's return type is token type, we don't create DAG nodes
2179   // for its exception pointer and selector value. The extraction of exception
2180   // pointer or selector value from token type landingpads is not currently
2181   // supported.
2182   if (LP.getType()->isTokenTy())
2183     return;
2184
2185   SmallVector<EVT, 2> ValueVTs;
2186   SDLoc dl = getCurSDLoc();
2187   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2188   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2189
2190   // Get the two live-in registers as SDValues. The physregs have already been
2191   // copied into virtual registers.
2192   SDValue Ops[2];
2193   if (FuncInfo.ExceptionPointerVirtReg) {
2194     Ops[0] = DAG.getZExtOrTrunc(
2195         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2196                            FuncInfo.ExceptionPointerVirtReg,
2197                            TLI.getPointerTy(DAG.getDataLayout())),
2198         dl, ValueVTs[0]);
2199   } else {
2200     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2201   }
2202   Ops[1] = DAG.getZExtOrTrunc(
2203       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2204                          FuncInfo.ExceptionSelectorVirtReg,
2205                          TLI.getPointerTy(DAG.getDataLayout())),
2206       dl, ValueVTs[1]);
2207
2208   // Merge into one.
2209   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2210                             DAG.getVTList(ValueVTs), Ops);
2211   setValue(&LP, Res);
2212 }
2213
2214 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2215 #ifndef NDEBUG
2216   for (const CaseCluster &CC : Clusters)
2217     assert(CC.Low == CC.High && "Input clusters must be single-case");
2218 #endif
2219
2220   std::sort(Clusters.begin(), Clusters.end(),
2221             [](const CaseCluster &a, const CaseCluster &b) {
2222     return a.Low->getValue().slt(b.Low->getValue());
2223   });
2224
2225   // Merge adjacent clusters with the same destination.
2226   const unsigned N = Clusters.size();
2227   unsigned DstIndex = 0;
2228   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2229     CaseCluster &CC = Clusters[SrcIndex];
2230     const ConstantInt *CaseVal = CC.Low;
2231     MachineBasicBlock *Succ = CC.MBB;
2232
2233     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2234         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2235       // If this case has the same successor and is a neighbour, merge it into
2236       // the previous cluster.
2237       Clusters[DstIndex - 1].High = CaseVal;
2238       Clusters[DstIndex - 1].Prob += CC.Prob;
2239     } else {
2240       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2241                    sizeof(Clusters[SrcIndex]));
2242     }
2243   }
2244   Clusters.resize(DstIndex);
2245 }
2246
2247 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2248                                            MachineBasicBlock *Last) {
2249   // Update JTCases.
2250   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2251     if (JTCases[i].first.HeaderBB == First)
2252       JTCases[i].first.HeaderBB = Last;
2253
2254   // Update BitTestCases.
2255   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2256     if (BitTestCases[i].Parent == First)
2257       BitTestCases[i].Parent = Last;
2258 }
2259
2260 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2261   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2262
2263   // Update machine-CFG edges with unique successors.
2264   SmallSet<BasicBlock*, 32> Done;
2265   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2266     BasicBlock *BB = I.getSuccessor(i);
2267     bool Inserted = Done.insert(BB).second;
2268     if (!Inserted)
2269         continue;
2270
2271     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2272     addSuccessorWithProb(IndirectBrMBB, Succ);
2273   }
2274   IndirectBrMBB->normalizeSuccProbs();
2275
2276   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2277                           MVT::Other, getControlRoot(),
2278                           getValue(I.getAddress())));
2279 }
2280
2281 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2282   if (DAG.getTarget().Options.TrapUnreachable)
2283     DAG.setRoot(
2284         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2285 }
2286
2287 void SelectionDAGBuilder::visitFSub(const User &I) {
2288   // -0.0 - X --> fneg
2289   Type *Ty = I.getType();
2290   if (isa<Constant>(I.getOperand(0)) &&
2291       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2292     SDValue Op2 = getValue(I.getOperand(1));
2293     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2294                              Op2.getValueType(), Op2));
2295     return;
2296   }
2297
2298   visitBinary(I, ISD::FSUB);
2299 }
2300
2301 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2302   SDValue Op1 = getValue(I.getOperand(0));
2303   SDValue Op2 = getValue(I.getOperand(1));
2304
2305   bool nuw = false;
2306   bool nsw = false;
2307   bool exact = false;
2308   FastMathFlags FMF;
2309
2310   if (const OverflowingBinaryOperator *OFBinOp =
2311           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2312     nuw = OFBinOp->hasNoUnsignedWrap();
2313     nsw = OFBinOp->hasNoSignedWrap();
2314   }
2315   if (const PossiblyExactOperator *ExactOp =
2316           dyn_cast<const PossiblyExactOperator>(&I))
2317     exact = ExactOp->isExact();
2318   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
2319     FMF = FPOp->getFastMathFlags();
2320
2321   SDNodeFlags Flags;
2322   Flags.setExact(exact);
2323   Flags.setNoSignedWrap(nsw);
2324   Flags.setNoUnsignedWrap(nuw);
2325   if (EnableFMFInDAG) {
2326     Flags.setAllowReciprocal(FMF.allowReciprocal());
2327     Flags.setNoInfs(FMF.noInfs());
2328     Flags.setNoNaNs(FMF.noNaNs());
2329     Flags.setNoSignedZeros(FMF.noSignedZeros());
2330     Flags.setUnsafeAlgebra(FMF.unsafeAlgebra());
2331   }
2332   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2333                                      Op1, Op2, &Flags);
2334   setValue(&I, BinNodeValue);
2335 }
2336
2337 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2338   SDValue Op1 = getValue(I.getOperand(0));
2339   SDValue Op2 = getValue(I.getOperand(1));
2340
2341   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2342       Op2.getValueType(), DAG.getDataLayout());
2343
2344   // Coerce the shift amount to the right type if we can.
2345   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2346     unsigned ShiftSize = ShiftTy.getSizeInBits();
2347     unsigned Op2Size = Op2.getValueType().getSizeInBits();
2348     SDLoc DL = getCurSDLoc();
2349
2350     // If the operand is smaller than the shift count type, promote it.
2351     if (ShiftSize > Op2Size)
2352       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2353
2354     // If the operand is larger than the shift count type but the shift
2355     // count type has enough bits to represent any shift value, truncate
2356     // it now. This is a common case and it exposes the truncate to
2357     // optimization early.
2358     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2359       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2360     // Otherwise we'll need to temporarily settle for some other convenient
2361     // type.  Type legalization will make adjustments once the shiftee is split.
2362     else
2363       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2364   }
2365
2366   bool nuw = false;
2367   bool nsw = false;
2368   bool exact = false;
2369
2370   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2371
2372     if (const OverflowingBinaryOperator *OFBinOp =
2373             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2374       nuw = OFBinOp->hasNoUnsignedWrap();
2375       nsw = OFBinOp->hasNoSignedWrap();
2376     }
2377     if (const PossiblyExactOperator *ExactOp =
2378             dyn_cast<const PossiblyExactOperator>(&I))
2379       exact = ExactOp->isExact();
2380   }
2381   SDNodeFlags Flags;
2382   Flags.setExact(exact);
2383   Flags.setNoSignedWrap(nsw);
2384   Flags.setNoUnsignedWrap(nuw);
2385   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2386                             &Flags);
2387   setValue(&I, Res);
2388 }
2389
2390 void SelectionDAGBuilder::visitSDiv(const User &I) {
2391   SDValue Op1 = getValue(I.getOperand(0));
2392   SDValue Op2 = getValue(I.getOperand(1));
2393
2394   SDNodeFlags Flags;
2395   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2396                  cast<PossiblyExactOperator>(&I)->isExact());
2397   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2398                            Op2, &Flags));
2399 }
2400
2401 void SelectionDAGBuilder::visitICmp(const User &I) {
2402   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2403   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2404     predicate = IC->getPredicate();
2405   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2406     predicate = ICmpInst::Predicate(IC->getPredicate());
2407   SDValue Op1 = getValue(I.getOperand(0));
2408   SDValue Op2 = getValue(I.getOperand(1));
2409   ISD::CondCode Opcode = getICmpCondCode(predicate);
2410
2411   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2412                                                         I.getType());
2413   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2414 }
2415
2416 void SelectionDAGBuilder::visitFCmp(const User &I) {
2417   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2418   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2419     predicate = FC->getPredicate();
2420   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2421     predicate = FCmpInst::Predicate(FC->getPredicate());
2422   SDValue Op1 = getValue(I.getOperand(0));
2423   SDValue Op2 = getValue(I.getOperand(1));
2424   ISD::CondCode Condition = getFCmpCondCode(predicate);
2425   
2426   // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them.
2427   // FIXME: We should propagate the fast-math-flags to the DAG node itself for
2428   // further optimization, but currently FMF is only applicable to binary nodes.
2429   if (TM.Options.NoNaNsFPMath)
2430     Condition = getFCmpCodeWithoutNaN(Condition);
2431   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2432                                                         I.getType());
2433   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2434 }
2435
2436 void SelectionDAGBuilder::visitSelect(const User &I) {
2437   SmallVector<EVT, 4> ValueVTs;
2438   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2439                   ValueVTs);
2440   unsigned NumValues = ValueVTs.size();
2441   if (NumValues == 0) return;
2442
2443   SmallVector<SDValue, 4> Values(NumValues);
2444   SDValue Cond     = getValue(I.getOperand(0));
2445   SDValue LHSVal   = getValue(I.getOperand(1));
2446   SDValue RHSVal   = getValue(I.getOperand(2));
2447   auto BaseOps = {Cond};
2448   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2449     ISD::VSELECT : ISD::SELECT;
2450
2451   // Min/max matching is only viable if all output VTs are the same.
2452   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2453     EVT VT = ValueVTs[0];
2454     LLVMContext &Ctx = *DAG.getContext();
2455     auto &TLI = DAG.getTargetLoweringInfo();
2456
2457     // We care about the legality of the operation after it has been type
2458     // legalized.
2459     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2460            VT != TLI.getTypeToTransformTo(Ctx, VT))
2461       VT = TLI.getTypeToTransformTo(Ctx, VT);
2462
2463     // If the vselect is legal, assume we want to leave this as a vector setcc +
2464     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2465     // min/max is legal on the scalar type.
2466     bool UseScalarMinMax = VT.isVector() &&
2467       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2468
2469     Value *LHS, *RHS;
2470     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2471     ISD::NodeType Opc = ISD::DELETED_NODE;
2472     switch (SPR.Flavor) {
2473     case SPF_UMAX:    Opc = ISD::UMAX; break;
2474     case SPF_UMIN:    Opc = ISD::UMIN; break;
2475     case SPF_SMAX:    Opc = ISD::SMAX; break;
2476     case SPF_SMIN:    Opc = ISD::SMIN; break;
2477     case SPF_FMINNUM:
2478       switch (SPR.NaNBehavior) {
2479       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2480       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2481       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2482       case SPNB_RETURNS_ANY: {
2483         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2484           Opc = ISD::FMINNUM;
2485         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2486           Opc = ISD::FMINNAN;
2487         else if (UseScalarMinMax)
2488           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2489             ISD::FMINNUM : ISD::FMINNAN;
2490         break;
2491       }
2492       }
2493       break;
2494     case SPF_FMAXNUM:
2495       switch (SPR.NaNBehavior) {
2496       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2497       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2498       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2499       case SPNB_RETURNS_ANY:
2500
2501         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2502           Opc = ISD::FMAXNUM;
2503         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2504           Opc = ISD::FMAXNAN;
2505         else if (UseScalarMinMax)
2506           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2507             ISD::FMAXNUM : ISD::FMAXNAN;
2508         break;
2509       }
2510       break;
2511     default: break;
2512     }
2513
2514     if (Opc != ISD::DELETED_NODE &&
2515         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2516          (UseScalarMinMax &&
2517           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2518         // If the underlying comparison instruction is used by any other
2519         // instruction, the consumed instructions won't be destroyed, so it is
2520         // not profitable to convert to a min/max.
2521         cast<SelectInst>(&I)->getCondition()->hasOneUse()) {
2522       OpCode = Opc;
2523       LHSVal = getValue(LHS);
2524       RHSVal = getValue(RHS);
2525       BaseOps = {};
2526     }
2527   }
2528
2529   for (unsigned i = 0; i != NumValues; ++i) {
2530     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2531     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2532     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2533     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2534                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2535                             Ops);
2536   }
2537
2538   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2539                            DAG.getVTList(ValueVTs), Values));
2540 }
2541
2542 void SelectionDAGBuilder::visitTrunc(const User &I) {
2543   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2544   SDValue N = getValue(I.getOperand(0));
2545   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2546                                                         I.getType());
2547   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2548 }
2549
2550 void SelectionDAGBuilder::visitZExt(const User &I) {
2551   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2552   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2553   SDValue N = getValue(I.getOperand(0));
2554   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2555                                                         I.getType());
2556   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2557 }
2558
2559 void SelectionDAGBuilder::visitSExt(const User &I) {
2560   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2561   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2562   SDValue N = getValue(I.getOperand(0));
2563   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2564                                                         I.getType());
2565   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2566 }
2567
2568 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2569   // FPTrunc is never a no-op cast, no need to check
2570   SDValue N = getValue(I.getOperand(0));
2571   SDLoc dl = getCurSDLoc();
2572   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2573   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2574   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
2575                            DAG.getTargetConstant(
2576                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
2577 }
2578
2579 void SelectionDAGBuilder::visitFPExt(const User &I) {
2580   // FPExt is never a no-op cast, no need to check
2581   SDValue N = getValue(I.getOperand(0));
2582   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2583                                                         I.getType());
2584   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2585 }
2586
2587 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2588   // FPToUI is never a no-op cast, no need to check
2589   SDValue N = getValue(I.getOperand(0));
2590   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2591                                                         I.getType());
2592   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2593 }
2594
2595 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2596   // FPToSI is never a no-op cast, no need to check
2597   SDValue N = getValue(I.getOperand(0));
2598   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2599                                                         I.getType());
2600   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2601 }
2602
2603 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2604   // UIToFP is never a no-op cast, no need to check
2605   SDValue N = getValue(I.getOperand(0));
2606   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2607                                                         I.getType());
2608   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2609 }
2610
2611 void SelectionDAGBuilder::visitSIToFP(const User &I) {
2612   // SIToFP is never a no-op cast, no need to check
2613   SDValue N = getValue(I.getOperand(0));
2614   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2615                                                         I.getType());
2616   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2617 }
2618
2619 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2620   // What to do depends on the size of the integer and the size of the pointer.
2621   // We can either truncate, zero extend, or no-op, accordingly.
2622   SDValue N = getValue(I.getOperand(0));
2623   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2624                                                         I.getType());
2625   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2626 }
2627
2628 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2629   // What to do depends on the size of the integer and the size of the pointer.
2630   // We can either truncate, zero extend, or no-op, accordingly.
2631   SDValue N = getValue(I.getOperand(0));
2632   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2633                                                         I.getType());
2634   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2635 }
2636
2637 void SelectionDAGBuilder::visitBitCast(const User &I) {
2638   SDValue N = getValue(I.getOperand(0));
2639   SDLoc dl = getCurSDLoc();
2640   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2641                                                         I.getType());
2642
2643   // BitCast assures us that source and destination are the same size so this is
2644   // either a BITCAST or a no-op.
2645   if (DestVT != N.getValueType())
2646     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
2647                              DestVT, N)); // convert types.
2648   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
2649   // might fold any kind of constant expression to an integer constant and that
2650   // is not what we are looking for. Only regcognize a bitcast of a genuine
2651   // constant integer as an opaque constant.
2652   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
2653     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
2654                                  /*isOpaque*/true));
2655   else
2656     setValue(&I, N);            // noop cast.
2657 }
2658
2659 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
2660   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2661   const Value *SV = I.getOperand(0);
2662   SDValue N = getValue(SV);
2663   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2664
2665   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
2666   unsigned DestAS = I.getType()->getPointerAddressSpace();
2667
2668   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
2669     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
2670
2671   setValue(&I, N);
2672 }
2673
2674 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2675   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2676   SDValue InVec = getValue(I.getOperand(0));
2677   SDValue InVal = getValue(I.getOperand(1));
2678   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
2679                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2680   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2681                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2682                            InVec, InVal, InIdx));
2683 }
2684
2685 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2686   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2687   SDValue InVec = getValue(I.getOperand(0));
2688   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
2689                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2690   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2691                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2692                            InVec, InIdx));
2693 }
2694
2695 // Utility for visitShuffleVector - Return true if every element in Mask,
2696 // beginning from position Pos and ending in Pos+Size, falls within the
2697 // specified sequential range [L, L+Pos). or is undef.
2698 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2699                                 unsigned Pos, unsigned Size, int Low) {
2700   for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2701     if (Mask[i] >= 0 && Mask[i] != Low)
2702       return false;
2703   return true;
2704 }
2705
2706 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2707   SDValue Src1 = getValue(I.getOperand(0));
2708   SDValue Src2 = getValue(I.getOperand(1));
2709
2710   SmallVector<int, 8> Mask;
2711   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2712   unsigned MaskNumElts = Mask.size();
2713
2714   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2715   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2716   EVT SrcVT = Src1.getValueType();
2717   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2718
2719   if (SrcNumElts == MaskNumElts) {
2720     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2721                                       &Mask[0]));
2722     return;
2723   }
2724
2725   // Normalize the shuffle vector since mask and vector length don't match.
2726   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2727     // Mask is longer than the source vectors and is a multiple of the source
2728     // vectors.  We can use concatenate vector to make the mask and vectors
2729     // lengths match.
2730     if (SrcNumElts*2 == MaskNumElts) {
2731       // First check for Src1 in low and Src2 in high
2732       if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2733           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2734         // The shuffle is concatenating two vectors together.
2735         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2736                                  VT, Src1, Src2));
2737         return;
2738       }
2739       // Then check for Src2 in low and Src1 in high
2740       if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2741           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2742         // The shuffle is concatenating two vectors together.
2743         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2744                                  VT, Src2, Src1));
2745         return;
2746       }
2747     }
2748
2749     // Pad both vectors with undefs to make them the same length as the mask.
2750     unsigned NumConcat = MaskNumElts / SrcNumElts;
2751     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2752     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2753     SDValue UndefVal = DAG.getUNDEF(SrcVT);
2754
2755     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2756     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2757     MOps1[0] = Src1;
2758     MOps2[0] = Src2;
2759
2760     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2761                                                   getCurSDLoc(), VT, MOps1);
2762     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2763                                                   getCurSDLoc(), VT, MOps2);
2764
2765     // Readjust mask for new input vector length.
2766     SmallVector<int, 8> MappedOps;
2767     for (unsigned i = 0; i != MaskNumElts; ++i) {
2768       int Idx = Mask[i];
2769       if (Idx >= (int)SrcNumElts)
2770         Idx -= SrcNumElts - MaskNumElts;
2771       MappedOps.push_back(Idx);
2772     }
2773
2774     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2775                                       &MappedOps[0]));
2776     return;
2777   }
2778
2779   if (SrcNumElts > MaskNumElts) {
2780     // Analyze the access pattern of the vector to see if we can extract
2781     // two subvectors and do the shuffle. The analysis is done by calculating
2782     // the range of elements the mask access on both vectors.
2783     int MinRange[2] = { static_cast<int>(SrcNumElts),
2784                         static_cast<int>(SrcNumElts)};
2785     int MaxRange[2] = {-1, -1};
2786
2787     for (unsigned i = 0; i != MaskNumElts; ++i) {
2788       int Idx = Mask[i];
2789       unsigned Input = 0;
2790       if (Idx < 0)
2791         continue;
2792
2793       if (Idx >= (int)SrcNumElts) {
2794         Input = 1;
2795         Idx -= SrcNumElts;
2796       }
2797       if (Idx > MaxRange[Input])
2798         MaxRange[Input] = Idx;
2799       if (Idx < MinRange[Input])
2800         MinRange[Input] = Idx;
2801     }
2802
2803     // Check if the access is smaller than the vector size and can we find
2804     // a reasonable extract index.
2805     int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
2806                                    // Extract.
2807     int StartIdx[2];  // StartIdx to extract from
2808     for (unsigned Input = 0; Input < 2; ++Input) {
2809       if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
2810         RangeUse[Input] = 0; // Unused
2811         StartIdx[Input] = 0;
2812         continue;
2813       }
2814
2815       // Find a good start index that is a multiple of the mask length. Then
2816       // see if the rest of the elements are in range.
2817       StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2818       if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2819           StartIdx[Input] + MaskNumElts <= SrcNumElts)
2820         RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2821     }
2822
2823     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2824       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2825       return;
2826     }
2827     if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
2828       // Extract appropriate subvector and generate a vector shuffle
2829       for (unsigned Input = 0; Input < 2; ++Input) {
2830         SDValue &Src = Input == 0 ? Src1 : Src2;
2831         if (RangeUse[Input] == 0)
2832           Src = DAG.getUNDEF(VT);
2833         else {
2834           SDLoc dl = getCurSDLoc();
2835           Src = DAG.getNode(
2836               ISD::EXTRACT_SUBVECTOR, dl, VT, Src,
2837               DAG.getConstant(StartIdx[Input], dl,
2838                               TLI.getVectorIdxTy(DAG.getDataLayout())));
2839         }
2840       }
2841
2842       // Calculate new mask.
2843       SmallVector<int, 8> MappedOps;
2844       for (unsigned i = 0; i != MaskNumElts; ++i) {
2845         int Idx = Mask[i];
2846         if (Idx >= 0) {
2847           if (Idx < (int)SrcNumElts)
2848             Idx -= StartIdx[0];
2849           else
2850             Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
2851         }
2852         MappedOps.push_back(Idx);
2853       }
2854
2855       setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2856                                         &MappedOps[0]));
2857       return;
2858     }
2859   }
2860
2861   // We can't use either concat vectors or extract subvectors so fall back to
2862   // replacing the shuffle with extract and build vector.
2863   // to insert and build vector.
2864   EVT EltVT = VT.getVectorElementType();
2865   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
2866   SDLoc dl = getCurSDLoc();
2867   SmallVector<SDValue,8> Ops;
2868   for (unsigned i = 0; i != MaskNumElts; ++i) {
2869     int Idx = Mask[i];
2870     SDValue Res;
2871
2872     if (Idx < 0) {
2873       Res = DAG.getUNDEF(EltVT);
2874     } else {
2875       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
2876       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
2877
2878       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
2879                         EltVT, Src, DAG.getConstant(Idx, dl, IdxVT));
2880     }
2881
2882     Ops.push_back(Res);
2883   }
2884
2885   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops));
2886 }
2887
2888 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2889   const Value *Op0 = I.getOperand(0);
2890   const Value *Op1 = I.getOperand(1);
2891   Type *AggTy = I.getType();
2892   Type *ValTy = Op1->getType();
2893   bool IntoUndef = isa<UndefValue>(Op0);
2894   bool FromUndef = isa<UndefValue>(Op1);
2895
2896   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2897
2898   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2899   SmallVector<EVT, 4> AggValueVTs;
2900   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
2901   SmallVector<EVT, 4> ValValueVTs;
2902   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
2903
2904   unsigned NumAggValues = AggValueVTs.size();
2905   unsigned NumValValues = ValValueVTs.size();
2906   SmallVector<SDValue, 4> Values(NumAggValues);
2907
2908   // Ignore an insertvalue that produces an empty object
2909   if (!NumAggValues) {
2910     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
2911     return;
2912   }
2913
2914   SDValue Agg = getValue(Op0);
2915   unsigned i = 0;
2916   // Copy the beginning value(s) from the original aggregate.
2917   for (; i != LinearIndex; ++i)
2918     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2919                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2920   // Copy values from the inserted value(s).
2921   if (NumValValues) {
2922     SDValue Val = getValue(Op1);
2923     for (; i != LinearIndex + NumValValues; ++i)
2924       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2925                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2926   }
2927   // Copy remaining value(s) from the original aggregate.
2928   for (; i != NumAggValues; ++i)
2929     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2930                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2931
2932   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2933                            DAG.getVTList(AggValueVTs), Values));
2934 }
2935
2936 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2937   const Value *Op0 = I.getOperand(0);
2938   Type *AggTy = Op0->getType();
2939   Type *ValTy = I.getType();
2940   bool OutOfUndef = isa<UndefValue>(Op0);
2941
2942   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2943
2944   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2945   SmallVector<EVT, 4> ValValueVTs;
2946   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
2947
2948   unsigned NumValValues = ValValueVTs.size();
2949
2950   // Ignore a extractvalue that produces an empty object
2951   if (!NumValValues) {
2952     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
2953     return;
2954   }
2955
2956   SmallVector<SDValue, 4> Values(NumValValues);
2957
2958   SDValue Agg = getValue(Op0);
2959   // Copy out the selected value(s).
2960   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2961     Values[i - LinearIndex] =
2962       OutOfUndef ?
2963         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2964         SDValue(Agg.getNode(), Agg.getResNo() + i);
2965
2966   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2967                            DAG.getVTList(ValValueVTs), Values));
2968 }
2969
2970 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2971   Value *Op0 = I.getOperand(0);
2972   // Note that the pointer operand may be a vector of pointers. Take the scalar
2973   // element which holds a pointer.
2974   Type *Ty = Op0->getType()->getScalarType();
2975   unsigned AS = Ty->getPointerAddressSpace();
2976   SDValue N = getValue(Op0);
2977   SDLoc dl = getCurSDLoc();
2978
2979   // Normalize Vector GEP - all scalar operands should be converted to the
2980   // splat vector.
2981   unsigned VectorWidth = I.getType()->isVectorTy() ?
2982     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
2983
2984   if (VectorWidth && !N.getValueType().isVector()) {
2985     MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth);
2986     SmallVector<SDValue, 16> Ops(VectorWidth, N);
2987     N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
2988   }
2989   for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2990        OI != E; ++OI) {
2991     const Value *Idx = *OI;
2992     if (StructType *StTy = dyn_cast<StructType>(Ty)) {
2993       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
2994       if (Field) {
2995         // N = N + Offset
2996         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
2997         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
2998                         DAG.getConstant(Offset, dl, N.getValueType()));
2999       }
3000
3001       Ty = StTy->getElementType(Field);
3002     } else {
3003       Ty = cast<SequentialType>(Ty)->getElementType();
3004       MVT PtrTy =
3005           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS);
3006       unsigned PtrSize = PtrTy.getSizeInBits();
3007       APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty));
3008
3009       // If this is a scalar constant or a splat vector of constants,
3010       // handle it quickly.
3011       const auto *CI = dyn_cast<ConstantInt>(Idx);
3012       if (!CI && isa<ConstantDataVector>(Idx) &&
3013           cast<ConstantDataVector>(Idx)->getSplatValue())
3014         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3015
3016       if (CI) {
3017         if (CI->isZero())
3018           continue;
3019         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
3020         SDValue OffsVal = VectorWidth ?
3021           DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) :
3022           DAG.getConstant(Offs, dl, PtrTy);
3023         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal);
3024         continue;
3025       }
3026
3027       // N = N + Idx * ElementSize;
3028       SDValue IdxN = getValue(Idx);
3029
3030       if (!IdxN.getValueType().isVector() && VectorWidth) {
3031         MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth);
3032         SmallVector<SDValue, 16> Ops(VectorWidth, IdxN);
3033         IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);      
3034       }
3035       // If the index is smaller or larger than intptr_t, truncate or extend
3036       // it.
3037       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3038
3039       // If this is a multiply by a power of two, turn it into a shl
3040       // immediately.  This is a very common case.
3041       if (ElementSize != 1) {
3042         if (ElementSize.isPowerOf2()) {
3043           unsigned Amt = ElementSize.logBase2();
3044           IdxN = DAG.getNode(ISD::SHL, dl,
3045                              N.getValueType(), IdxN,
3046                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3047         } else {
3048           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3049           IdxN = DAG.getNode(ISD::MUL, dl,
3050                              N.getValueType(), IdxN, Scale);
3051         }
3052       }
3053
3054       N = DAG.getNode(ISD::ADD, dl,
3055                       N.getValueType(), N, IdxN);
3056     }
3057   }
3058
3059   setValue(&I, N);
3060 }
3061
3062 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3063   // If this is a fixed sized alloca in the entry block of the function,
3064   // allocate it statically on the stack.
3065   if (FuncInfo.StaticAllocaMap.count(&I))
3066     return;   // getValue will auto-populate this.
3067
3068   SDLoc dl = getCurSDLoc();
3069   Type *Ty = I.getAllocatedType();
3070   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3071   auto &DL = DAG.getDataLayout();
3072   uint64_t TySize = DL.getTypeAllocSize(Ty);
3073   unsigned Align =
3074       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3075
3076   SDValue AllocSize = getValue(I.getArraySize());
3077
3078   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
3079   if (AllocSize.getValueType() != IntPtr)
3080     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3081
3082   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3083                           AllocSize,
3084                           DAG.getConstant(TySize, dl, IntPtr));
3085
3086   // Handle alignment.  If the requested alignment is less than or equal to
3087   // the stack alignment, ignore it.  If the size is greater than or equal to
3088   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3089   unsigned StackAlign =
3090       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3091   if (Align <= StackAlign)
3092     Align = 0;
3093
3094   // Round the size of the allocation up to the stack alignment size
3095   // by add SA-1 to the size.
3096   AllocSize = DAG.getNode(ISD::ADD, dl,
3097                           AllocSize.getValueType(), AllocSize,
3098                           DAG.getIntPtrConstant(StackAlign - 1, dl));
3099
3100   // Mask out the low bits for alignment purposes.
3101   AllocSize = DAG.getNode(ISD::AND, dl,
3102                           AllocSize.getValueType(), AllocSize,
3103                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1),
3104                                                 dl));
3105
3106   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) };
3107   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3108   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3109   setValue(&I, DSA);
3110   DAG.setRoot(DSA.getValue(1));
3111
3112   assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects());
3113 }
3114
3115 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3116   if (I.isAtomic())
3117     return visitAtomicLoad(I);
3118
3119   const Value *SV = I.getOperand(0);
3120   SDValue Ptr = getValue(SV);
3121
3122   Type *Ty = I.getType();
3123
3124   bool isVolatile = I.isVolatile();
3125   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3126
3127   // The IR notion of invariant_load only guarantees that all *non-faulting*
3128   // invariant loads result in the same value.  The MI notion of invariant load
3129   // guarantees that the load can be legally moved to any location within its
3130   // containing function.  The MI notion of invariant_load is stronger than the
3131   // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load
3132   // with a guarantee that the location being loaded from is dereferenceable
3133   // throughout the function's lifetime.
3134
3135   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr &&
3136                      isDereferenceablePointer(SV, DAG.getDataLayout());
3137   unsigned Alignment = I.getAlignment();
3138
3139   AAMDNodes AAInfo;
3140   I.getAAMetadata(AAInfo);
3141   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3142
3143   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3144   SmallVector<EVT, 4> ValueVTs;
3145   SmallVector<uint64_t, 4> Offsets;
3146   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3147   unsigned NumValues = ValueVTs.size();
3148   if (NumValues == 0)
3149     return;
3150
3151   SDValue Root;
3152   bool ConstantMemory = false;
3153   if (isVolatile || NumValues > MaxParallelChains)
3154     // Serialize volatile loads with other side effects.
3155     Root = getRoot();
3156   else if (AA->pointsToConstantMemory(MemoryLocation(
3157                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3158     // Do not serialize (non-volatile) loads of constant memory with anything.
3159     Root = DAG.getEntryNode();
3160     ConstantMemory = true;
3161   } else {
3162     // Do not serialize non-volatile loads against each other.
3163     Root = DAG.getRoot();
3164   }
3165
3166   SDLoc dl = getCurSDLoc();
3167
3168   if (isVolatile)
3169     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3170
3171   SmallVector<SDValue, 4> Values(NumValues);
3172   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3173   EVT PtrVT = Ptr.getValueType();
3174   unsigned ChainI = 0;
3175   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3176     // Serializing loads here may result in excessive register pressure, and
3177     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3178     // could recover a bit by hoisting nodes upward in the chain by recognizing
3179     // they are side-effect free or do not alias. The optimizer should really
3180     // avoid this case by converting large object/array copies to llvm.memcpy
3181     // (MaxParallelChains should always remain as failsafe).
3182     if (ChainI == MaxParallelChains) {
3183       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3184       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3185                                   makeArrayRef(Chains.data(), ChainI));
3186       Root = Chain;
3187       ChainI = 0;
3188     }
3189     SDValue A = DAG.getNode(ISD::ADD, dl,
3190                             PtrVT, Ptr,
3191                             DAG.getConstant(Offsets[i], dl, PtrVT));
3192     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root,
3193                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3194                             isNonTemporal, isInvariant, Alignment, AAInfo,
3195                             Ranges);
3196
3197     Values[i] = L;
3198     Chains[ChainI] = L.getValue(1);
3199   }
3200
3201   if (!ConstantMemory) {
3202     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3203                                 makeArrayRef(Chains.data(), ChainI));
3204     if (isVolatile)
3205       DAG.setRoot(Chain);
3206     else
3207       PendingLoads.push_back(Chain);
3208   }
3209
3210   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3211                            DAG.getVTList(ValueVTs), Values));
3212 }
3213
3214 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3215   if (I.isAtomic())
3216     return visitAtomicStore(I);
3217
3218   const Value *SrcV = I.getOperand(0);
3219   const Value *PtrV = I.getOperand(1);
3220
3221   SmallVector<EVT, 4> ValueVTs;
3222   SmallVector<uint64_t, 4> Offsets;
3223   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3224                   SrcV->getType(), ValueVTs, &Offsets);
3225   unsigned NumValues = ValueVTs.size();
3226   if (NumValues == 0)
3227     return;
3228
3229   // Get the lowered operands. Note that we do this after
3230   // checking if NumResults is zero, because with zero results
3231   // the operands won't have values in the map.
3232   SDValue Src = getValue(SrcV);
3233   SDValue Ptr = getValue(PtrV);
3234
3235   SDValue Root = getRoot();
3236   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3237   EVT PtrVT = Ptr.getValueType();
3238   bool isVolatile = I.isVolatile();
3239   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3240   unsigned Alignment = I.getAlignment();
3241   SDLoc dl = getCurSDLoc();
3242
3243   AAMDNodes AAInfo;
3244   I.getAAMetadata(AAInfo);
3245
3246   unsigned ChainI = 0;
3247   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3248     // See visitLoad comments.
3249     if (ChainI == MaxParallelChains) {
3250       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3251                                   makeArrayRef(Chains.data(), ChainI));
3252       Root = Chain;
3253       ChainI = 0;
3254     }
3255     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3256                               DAG.getConstant(Offsets[i], dl, PtrVT));
3257     SDValue St = DAG.getStore(Root, dl,
3258                               SDValue(Src.getNode(), Src.getResNo() + i),
3259                               Add, MachinePointerInfo(PtrV, Offsets[i]),
3260                               isVolatile, isNonTemporal, Alignment, AAInfo);
3261     Chains[ChainI] = St;
3262   }
3263
3264   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3265                                   makeArrayRef(Chains.data(), ChainI));
3266   DAG.setRoot(StoreNode);
3267 }
3268
3269 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) {
3270   SDLoc sdl = getCurSDLoc();
3271
3272   // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3273   Value  *PtrOperand = I.getArgOperand(1);
3274   SDValue Ptr = getValue(PtrOperand);
3275   SDValue Src0 = getValue(I.getArgOperand(0));
3276   SDValue Mask = getValue(I.getArgOperand(3));
3277   EVT VT = Src0.getValueType();
3278   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3279   if (!Alignment)
3280     Alignment = DAG.getEVTAlignment(VT);
3281
3282   AAMDNodes AAInfo;
3283   I.getAAMetadata(AAInfo);
3284
3285   MachineMemOperand *MMO =
3286     DAG.getMachineFunction().
3287     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3288                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3289                           Alignment, AAInfo);
3290   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3291                                          MMO, false);
3292   DAG.setRoot(StoreNode);
3293   setValue(&I, StoreNode);
3294 }
3295
3296 // Get a uniform base for the Gather/Scatter intrinsic.
3297 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3298 // We try to represent it as a base pointer + vector of indices.
3299 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3300 // The first operand of the GEP may be a single pointer or a vector of pointers
3301 // Example:
3302 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3303 //  or
3304 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3305 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3306 //
3307 // When the first GEP operand is a single pointer - it is the uniform base we
3308 // are looking for. If first operand of the GEP is a splat vector - we
3309 // extract the spalt value and use it as a uniform base.
3310 // In all other cases the function returns 'false'.
3311 //
3312 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index,
3313                            SelectionDAGBuilder* SDB) {
3314
3315   SelectionDAG& DAG = SDB->DAG;
3316   LLVMContext &Context = *DAG.getContext();
3317
3318   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3319   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3320   if (!GEP || GEP->getNumOperands() > 2)
3321     return false;
3322
3323   const Value *GEPPtr = GEP->getPointerOperand();
3324   if (!GEPPtr->getType()->isVectorTy())
3325     Ptr = GEPPtr;
3326   else if (!(Ptr = getSplatValue(GEPPtr)))
3327     return false;
3328
3329   Value *IndexVal = GEP->getOperand(1);
3330
3331   // The operands of the GEP may be defined in another basic block.
3332   // In this case we'll not find nodes for the operands.
3333   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3334     return false;
3335
3336   Base = SDB->getValue(Ptr);
3337   Index = SDB->getValue(IndexVal);
3338
3339   // Suppress sign extension.
3340   if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) {
3341     if (SDB->findValue(Sext->getOperand(0))) {
3342       IndexVal = Sext->getOperand(0);
3343       Index = SDB->getValue(IndexVal);
3344     }
3345   }
3346   if (!Index.getValueType().isVector()) {
3347     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3348     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3349     SmallVector<SDValue, 16> Ops(GEPWidth, Index);
3350     Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops);
3351   }
3352   return true;
3353 }
3354
3355 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3356   SDLoc sdl = getCurSDLoc();
3357
3358   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3359   const Value *Ptr = I.getArgOperand(1);
3360   SDValue Src0 = getValue(I.getArgOperand(0));
3361   SDValue Mask = getValue(I.getArgOperand(3));
3362   EVT VT = Src0.getValueType();
3363   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3364   if (!Alignment)
3365     Alignment = DAG.getEVTAlignment(VT);
3366   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3367
3368   AAMDNodes AAInfo;
3369   I.getAAMetadata(AAInfo);
3370
3371   SDValue Base;
3372   SDValue Index;
3373   const Value *BasePtr = Ptr;
3374   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3375
3376   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3377   MachineMemOperand *MMO = DAG.getMachineFunction().
3378     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3379                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3380                          Alignment, AAInfo);
3381   if (!UniformBase) {
3382     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3383     Index = getValue(Ptr);
3384   }
3385   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
3386   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3387                                          Ops, MMO);
3388   DAG.setRoot(Scatter);
3389   setValue(&I, Scatter);
3390 }
3391
3392 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) {
3393   SDLoc sdl = getCurSDLoc();
3394
3395   // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3396   Value  *PtrOperand = I.getArgOperand(0);
3397   SDValue Ptr = getValue(PtrOperand);
3398   SDValue Src0 = getValue(I.getArgOperand(3));
3399   SDValue Mask = getValue(I.getArgOperand(2));
3400
3401   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3402   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3403   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3404   if (!Alignment)
3405     Alignment = DAG.getEVTAlignment(VT);
3406
3407   AAMDNodes AAInfo;
3408   I.getAAMetadata(AAInfo);
3409   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3410
3411   SDValue InChain = DAG.getRoot();
3412   if (AA->pointsToConstantMemory(MemoryLocation(
3413           PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3414           AAInfo))) {
3415     // Do not serialize (non-volatile) loads of constant memory with anything.
3416     InChain = DAG.getEntryNode();
3417   }
3418
3419   MachineMemOperand *MMO =
3420     DAG.getMachineFunction().
3421     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3422                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
3423                           Alignment, AAInfo, Ranges);
3424
3425   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
3426                                    ISD::NON_EXTLOAD);
3427   SDValue OutChain = Load.getValue(1);
3428   DAG.setRoot(OutChain);
3429   setValue(&I, Load);
3430 }
3431
3432 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
3433   SDLoc sdl = getCurSDLoc();
3434
3435   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
3436   const Value *Ptr = I.getArgOperand(0);
3437   SDValue Src0 = getValue(I.getArgOperand(3));
3438   SDValue Mask = getValue(I.getArgOperand(2));
3439
3440   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3441   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3442   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3443   if (!Alignment)
3444     Alignment = DAG.getEVTAlignment(VT);
3445
3446   AAMDNodes AAInfo;
3447   I.getAAMetadata(AAInfo);
3448   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3449
3450   SDValue Root = DAG.getRoot();
3451   SDValue Base;
3452   SDValue Index;
3453   const Value *BasePtr = Ptr;
3454   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3455   bool ConstantMemory = false;
3456   if (UniformBase &&
3457       AA->pointsToConstantMemory(MemoryLocation(
3458           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3459           AAInfo))) {
3460     // Do not serialize (non-volatile) loads of constant memory with anything.
3461     Root = DAG.getEntryNode();
3462     ConstantMemory = true;
3463   }
3464
3465   MachineMemOperand *MMO =
3466     DAG.getMachineFunction().
3467     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
3468                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
3469                          Alignment, AAInfo, Ranges);
3470
3471   if (!UniformBase) {
3472     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3473     Index = getValue(Ptr);
3474   }
3475   SDValue Ops[] = { Root, Src0, Mask, Base, Index };
3476   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
3477                                        Ops, MMO);
3478
3479   SDValue OutChain = Gather.getValue(1);
3480   if (!ConstantMemory)
3481     PendingLoads.push_back(OutChain);
3482   setValue(&I, Gather);
3483 }
3484
3485 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3486   SDLoc dl = getCurSDLoc();
3487   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3488   AtomicOrdering FailureOrder = I.getFailureOrdering();
3489   SynchronizationScope Scope = I.getSynchScope();
3490
3491   SDValue InChain = getRoot();
3492
3493   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
3494   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
3495   SDValue L = DAG.getAtomicCmpSwap(
3496       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
3497       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
3498       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
3499       /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
3500
3501   SDValue OutChain = L.getValue(2);
3502
3503   setValue(&I, L);
3504   DAG.setRoot(OutChain);
3505 }
3506
3507 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3508   SDLoc dl = getCurSDLoc();
3509   ISD::NodeType NT;
3510   switch (I.getOperation()) {
3511   default: llvm_unreachable("Unknown atomicrmw operation");
3512   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3513   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3514   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3515   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3516   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3517   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3518   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3519   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3520   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3521   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3522   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3523   }
3524   AtomicOrdering Order = I.getOrdering();
3525   SynchronizationScope Scope = I.getSynchScope();
3526
3527   SDValue InChain = getRoot();
3528
3529   SDValue L =
3530     DAG.getAtomic(NT, dl,
3531                   getValue(I.getValOperand()).getSimpleValueType(),
3532                   InChain,
3533                   getValue(I.getPointerOperand()),
3534                   getValue(I.getValOperand()),
3535                   I.getPointerOperand(),
3536                   /* Alignment=*/ 0, Order, Scope);
3537
3538   SDValue OutChain = L.getValue(1);
3539
3540   setValue(&I, L);
3541   DAG.setRoot(OutChain);
3542 }
3543
3544 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3545   SDLoc dl = getCurSDLoc();
3546   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3547   SDValue Ops[3];
3548   Ops[0] = getRoot();
3549   Ops[1] = DAG.getConstant(I.getOrdering(), dl,
3550                            TLI.getPointerTy(DAG.getDataLayout()));
3551   Ops[2] = DAG.getConstant(I.getSynchScope(), dl,
3552                            TLI.getPointerTy(DAG.getDataLayout()));
3553   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
3554 }
3555
3556 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3557   SDLoc dl = getCurSDLoc();
3558   AtomicOrdering Order = I.getOrdering();
3559   SynchronizationScope Scope = I.getSynchScope();
3560
3561   SDValue InChain = getRoot();
3562
3563   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3564   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3565
3566   if (I.getAlignment() < VT.getSizeInBits() / 8)
3567     report_fatal_error("Cannot generate unaligned atomic load");
3568
3569   MachineMemOperand *MMO =
3570       DAG.getMachineFunction().
3571       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
3572                            MachineMemOperand::MOVolatile |
3573                            MachineMemOperand::MOLoad,
3574                            VT.getStoreSize(),
3575                            I.getAlignment() ? I.getAlignment() :
3576                                               DAG.getEVTAlignment(VT));
3577
3578   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
3579   SDValue L =
3580       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3581                     getValue(I.getPointerOperand()), MMO,
3582                     Order, Scope);
3583
3584   SDValue OutChain = L.getValue(1);
3585
3586   setValue(&I, L);
3587   DAG.setRoot(OutChain);
3588 }
3589
3590 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3591   SDLoc dl = getCurSDLoc();
3592
3593   AtomicOrdering Order = I.getOrdering();
3594   SynchronizationScope Scope = I.getSynchScope();
3595
3596   SDValue InChain = getRoot();
3597
3598   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3599   EVT VT =
3600       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
3601
3602   if (I.getAlignment() < VT.getSizeInBits() / 8)
3603     report_fatal_error("Cannot generate unaligned atomic store");
3604
3605   SDValue OutChain =
3606     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3607                   InChain,
3608                   getValue(I.getPointerOperand()),
3609                   getValue(I.getValueOperand()),
3610                   I.getPointerOperand(), I.getAlignment(),
3611                   Order, Scope);
3612
3613   DAG.setRoot(OutChain);
3614 }
3615
3616 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3617 /// node.
3618 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3619                                                unsigned Intrinsic) {
3620   bool HasChain = !I.doesNotAccessMemory();
3621   bool OnlyLoad = HasChain && I.onlyReadsMemory();
3622
3623   // Build the operand list.
3624   SmallVector<SDValue, 8> Ops;
3625   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3626     if (OnlyLoad) {
3627       // We don't need to serialize loads against other loads.
3628       Ops.push_back(DAG.getRoot());
3629     } else {
3630       Ops.push_back(getRoot());
3631     }
3632   }
3633
3634   // Info is set by getTgtMemInstrinsic
3635   TargetLowering::IntrinsicInfo Info;
3636   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3637   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3638
3639   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3640   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3641       Info.opc == ISD::INTRINSIC_W_CHAIN)
3642     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
3643                                         TLI.getPointerTy(DAG.getDataLayout())));
3644
3645   // Add all operands of the call to the operand list.
3646   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3647     SDValue Op = getValue(I.getArgOperand(i));
3648     Ops.push_back(Op);
3649   }
3650
3651   SmallVector<EVT, 4> ValueVTs;
3652   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
3653
3654   if (HasChain)
3655     ValueVTs.push_back(MVT::Other);
3656
3657   SDVTList VTs = DAG.getVTList(ValueVTs);
3658
3659   // Create the node.
3660   SDValue Result;
3661   if (IsTgtIntrinsic) {
3662     // This is target intrinsic that touches memory
3663     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
3664                                      VTs, Ops, Info.memVT,
3665                                    MachinePointerInfo(Info.ptrVal, Info.offset),
3666                                      Info.align, Info.vol,
3667                                      Info.readMem, Info.writeMem, Info.size);
3668   } else if (!HasChain) {
3669     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
3670   } else if (!I.getType()->isVoidTy()) {
3671     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
3672   } else {
3673     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
3674   }
3675
3676   if (HasChain) {
3677     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3678     if (OnlyLoad)
3679       PendingLoads.push_back(Chain);
3680     else
3681       DAG.setRoot(Chain);
3682   }
3683
3684   if (!I.getType()->isVoidTy()) {
3685     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3686       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
3687       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
3688     }
3689
3690     setValue(&I, Result);
3691   }
3692 }
3693
3694 /// GetSignificand - Get the significand and build it into a floating-point
3695 /// number with exponent of 1:
3696 ///
3697 ///   Op = (Op & 0x007fffff) | 0x3f800000;
3698 ///
3699 /// where Op is the hexadecimal representation of floating point value.
3700 static SDValue
3701 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
3702   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3703                            DAG.getConstant(0x007fffff, dl, MVT::i32));
3704   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3705                            DAG.getConstant(0x3f800000, dl, MVT::i32));
3706   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3707 }
3708
3709 /// GetExponent - Get the exponent:
3710 ///
3711 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3712 ///
3713 /// where Op is the hexadecimal representation of floating point value.
3714 static SDValue
3715 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3716             SDLoc dl) {
3717   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3718                            DAG.getConstant(0x7f800000, dl, MVT::i32));
3719   SDValue t1 = DAG.getNode(
3720       ISD::SRL, dl, MVT::i32, t0,
3721       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
3722   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3723                            DAG.getConstant(127, dl, MVT::i32));
3724   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3725 }
3726
3727 /// getF32Constant - Get 32-bit floating point constant.
3728 static SDValue
3729 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) {
3730   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl,
3731                            MVT::f32);
3732 }
3733
3734 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl,
3735                                        SelectionDAG &DAG) {
3736   // TODO: What fast-math-flags should be set on the floating-point nodes?
3737
3738   //   IntegerPartOfX = ((int32_t)(t0);
3739   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3740
3741   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
3742   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3743   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3744
3745   //   IntegerPartOfX <<= 23;
3746   IntegerPartOfX = DAG.getNode(
3747       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3748       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
3749                                   DAG.getDataLayout())));
3750
3751   SDValue TwoToFractionalPartOfX;
3752   if (LimitFloatPrecision <= 6) {
3753     // For floating-point precision of 6:
3754     //
3755     //   TwoToFractionalPartOfX =
3756     //     0.997535578f +
3757     //       (0.735607626f + 0.252464424f * x) * x;
3758     //
3759     // error 0.0144103317, which is 6 bits
3760     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3761                              getF32Constant(DAG, 0x3e814304, dl));
3762     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3763                              getF32Constant(DAG, 0x3f3c50c8, dl));
3764     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3765     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3766                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
3767   } else if (LimitFloatPrecision <= 12) {
3768     // For floating-point precision of 12:
3769     //
3770     //   TwoToFractionalPartOfX =
3771     //     0.999892986f +
3772     //       (0.696457318f +
3773     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3774     //
3775     // error 0.000107046256, which is 13 to 14 bits
3776     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3777                              getF32Constant(DAG, 0x3da235e3, dl));
3778     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3779                              getF32Constant(DAG, 0x3e65b8f3, dl));
3780     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3781     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3782                              getF32Constant(DAG, 0x3f324b07, dl));
3783     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3784     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3785                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
3786   } else { // LimitFloatPrecision <= 18
3787     // For floating-point precision of 18:
3788     //
3789     //   TwoToFractionalPartOfX =
3790     //     0.999999982f +
3791     //       (0.693148872f +
3792     //         (0.240227044f +
3793     //           (0.554906021e-1f +
3794     //             (0.961591928e-2f +
3795     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3796     // error 2.47208000*10^(-7), which is better than 18 bits
3797     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3798                              getF32Constant(DAG, 0x3924b03e, dl));
3799     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3800                              getF32Constant(DAG, 0x3ab24b87, dl));
3801     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3802     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3803                              getF32Constant(DAG, 0x3c1d8c17, dl));
3804     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3805     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3806                              getF32Constant(DAG, 0x3d634a1d, dl));
3807     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3808     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3809                              getF32Constant(DAG, 0x3e75fe14, dl));
3810     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3811     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3812                               getF32Constant(DAG, 0x3f317234, dl));
3813     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3814     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3815                                          getF32Constant(DAG, 0x3f800000, dl));
3816   }
3817
3818   // Add the exponent into the result in integer domain.
3819   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
3820   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3821                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
3822 }
3823
3824 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
3825 /// limited-precision mode.
3826 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3827                          const TargetLowering &TLI) {
3828   if (Op.getValueType() == MVT::f32 &&
3829       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3830
3831     // Put the exponent in the right bit position for later addition to the
3832     // final result:
3833     //
3834     //   #define LOG2OFe 1.4426950f
3835     //   t0 = Op * LOG2OFe
3836
3837     // TODO: What fast-math-flags should be set here?
3838     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3839                              getF32Constant(DAG, 0x3fb8aa3b, dl));
3840     return getLimitedPrecisionExp2(t0, dl, DAG);
3841   }
3842
3843   // No special expansion.
3844   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
3845 }
3846
3847 /// expandLog - Lower a log intrinsic. Handles the special sequences for
3848 /// limited-precision mode.
3849 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3850                          const TargetLowering &TLI) {
3851  
3852   // TODO: What fast-math-flags should be set on the floating-point nodes?
3853
3854   if (Op.getValueType() == MVT::f32 &&
3855       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3856     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3857
3858     // Scale the exponent by log(2) [0.69314718f].
3859     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3860     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3861                                         getF32Constant(DAG, 0x3f317218, dl));
3862
3863     // Get the significand and build it into a floating-point number with
3864     // exponent of 1.
3865     SDValue X = GetSignificand(DAG, Op1, dl);
3866
3867     SDValue LogOfMantissa;
3868     if (LimitFloatPrecision <= 6) {
3869       // For floating-point precision of 6:
3870       //
3871       //   LogofMantissa =
3872       //     -1.1609546f +
3873       //       (1.4034025f - 0.23903021f * x) * x;
3874       //
3875       // error 0.0034276066, which is better than 8 bits
3876       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3877                                getF32Constant(DAG, 0xbe74c456, dl));
3878       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3879                                getF32Constant(DAG, 0x3fb3a2b1, dl));
3880       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3881       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3882                                   getF32Constant(DAG, 0x3f949a29, dl));
3883     } else if (LimitFloatPrecision <= 12) {
3884       // For floating-point precision of 12:
3885       //
3886       //   LogOfMantissa =
3887       //     -1.7417939f +
3888       //       (2.8212026f +
3889       //         (-1.4699568f +
3890       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3891       //
3892       // error 0.000061011436, which is 14 bits
3893       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3894                                getF32Constant(DAG, 0xbd67b6d6, dl));
3895       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3896                                getF32Constant(DAG, 0x3ee4f4b8, dl));
3897       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3898       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3899                                getF32Constant(DAG, 0x3fbc278b, dl));
3900       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3901       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3902                                getF32Constant(DAG, 0x40348e95, dl));
3903       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3904       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3905                                   getF32Constant(DAG, 0x3fdef31a, dl));
3906     } else { // LimitFloatPrecision <= 18
3907       // For floating-point precision of 18:
3908       //
3909       //   LogOfMantissa =
3910       //     -2.1072184f +
3911       //       (4.2372794f +
3912       //         (-3.7029485f +
3913       //           (2.2781945f +
3914       //             (-0.87823314f +
3915       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3916       //
3917       // error 0.0000023660568, which is better than 18 bits
3918       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3919                                getF32Constant(DAG, 0xbc91e5ac, dl));
3920       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3921                                getF32Constant(DAG, 0x3e4350aa, dl));
3922       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3923       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3924                                getF32Constant(DAG, 0x3f60d3e3, dl));
3925       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3926       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3927                                getF32Constant(DAG, 0x4011cdf0, dl));
3928       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3929       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3930                                getF32Constant(DAG, 0x406cfd1c, dl));
3931       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3932       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3933                                getF32Constant(DAG, 0x408797cb, dl));
3934       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3935       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3936                                   getF32Constant(DAG, 0x4006dcab, dl));
3937     }
3938
3939     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
3940   }
3941
3942   // No special expansion.
3943   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
3944 }
3945
3946 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
3947 /// limited-precision mode.
3948 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3949                           const TargetLowering &TLI) {
3950   
3951   // TODO: What fast-math-flags should be set on the floating-point nodes?
3952
3953   if (Op.getValueType() == MVT::f32 &&
3954       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3955     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3956
3957     // Get the exponent.
3958     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3959
3960     // Get the significand and build it into a floating-point number with
3961     // exponent of 1.
3962     SDValue X = GetSignificand(DAG, Op1, dl);
3963
3964     // Different possible minimax approximations of significand in
3965     // floating-point for various degrees of accuracy over [1,2].
3966     SDValue Log2ofMantissa;
3967     if (LimitFloatPrecision <= 6) {
3968       // For floating-point precision of 6:
3969       //
3970       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3971       //
3972       // error 0.0049451742, which is more than 7 bits
3973       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3974                                getF32Constant(DAG, 0xbeb08fe0, dl));
3975       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3976                                getF32Constant(DAG, 0x40019463, dl));
3977       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3978       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3979                                    getF32Constant(DAG, 0x3fd6633d, dl));
3980     } else if (LimitFloatPrecision <= 12) {
3981       // For floating-point precision of 12:
3982       //
3983       //   Log2ofMantissa =
3984       //     -2.51285454f +
3985       //       (4.07009056f +
3986       //         (-2.12067489f +
3987       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3988       //
3989       // error 0.0000876136000, which is better than 13 bits
3990       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3991                                getF32Constant(DAG, 0xbda7262e, dl));
3992       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3993                                getF32Constant(DAG, 0x3f25280b, dl));
3994       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3995       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3996                                getF32Constant(DAG, 0x4007b923, dl));
3997       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3998       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3999                                getF32Constant(DAG, 0x40823e2f, dl));
4000       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4001       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4002                                    getF32Constant(DAG, 0x4020d29c, dl));
4003     } else { // LimitFloatPrecision <= 18
4004       // For floating-point precision of 18:
4005       //
4006       //   Log2ofMantissa =
4007       //     -3.0400495f +
4008       //       (6.1129976f +
4009       //         (-5.3420409f +
4010       //           (3.2865683f +
4011       //             (-1.2669343f +
4012       //               (0.27515199f -
4013       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4014       //
4015       // error 0.0000018516, which is better than 18 bits
4016       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4017                                getF32Constant(DAG, 0xbcd2769e, dl));
4018       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4019                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4020       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4021       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4022                                getF32Constant(DAG, 0x3fa22ae7, dl));
4023       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4024       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4025                                getF32Constant(DAG, 0x40525723, dl));
4026       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4027       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4028                                getF32Constant(DAG, 0x40aaf200, dl));
4029       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4030       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4031                                getF32Constant(DAG, 0x40c39dad, dl));
4032       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4033       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4034                                    getF32Constant(DAG, 0x4042902c, dl));
4035     }
4036
4037     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4038   }
4039
4040   // No special expansion.
4041   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4042 }
4043
4044 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4045 /// limited-precision mode.
4046 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4047                            const TargetLowering &TLI) {
4048
4049   // TODO: What fast-math-flags should be set on the floating-point nodes?
4050
4051   if (Op.getValueType() == MVT::f32 &&
4052       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4053     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4054
4055     // Scale the exponent by log10(2) [0.30102999f].
4056     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4057     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4058                                         getF32Constant(DAG, 0x3e9a209a, dl));
4059
4060     // Get the significand and build it into a floating-point number with
4061     // exponent of 1.
4062     SDValue X = GetSignificand(DAG, Op1, dl);
4063
4064     SDValue Log10ofMantissa;
4065     if (LimitFloatPrecision <= 6) {
4066       // For floating-point precision of 6:
4067       //
4068       //   Log10ofMantissa =
4069       //     -0.50419619f +
4070       //       (0.60948995f - 0.10380950f * x) * x;
4071       //
4072       // error 0.0014886165, which is 6 bits
4073       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4074                                getF32Constant(DAG, 0xbdd49a13, dl));
4075       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4076                                getF32Constant(DAG, 0x3f1c0789, dl));
4077       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4078       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4079                                     getF32Constant(DAG, 0x3f011300, dl));
4080     } else if (LimitFloatPrecision <= 12) {
4081       // For floating-point precision of 12:
4082       //
4083       //   Log10ofMantissa =
4084       //     -0.64831180f +
4085       //       (0.91751397f +
4086       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4087       //
4088       // error 0.00019228036, which is better than 12 bits
4089       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4090                                getF32Constant(DAG, 0x3d431f31, dl));
4091       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4092                                getF32Constant(DAG, 0x3ea21fb2, dl));
4093       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4094       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4095                                getF32Constant(DAG, 0x3f6ae232, dl));
4096       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4097       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4098                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4099     } else { // LimitFloatPrecision <= 18
4100       // For floating-point precision of 18:
4101       //
4102       //   Log10ofMantissa =
4103       //     -0.84299375f +
4104       //       (1.5327582f +
4105       //         (-1.0688956f +
4106       //           (0.49102474f +
4107       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4108       //
4109       // error 0.0000037995730, which is better than 18 bits
4110       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4111                                getF32Constant(DAG, 0x3c5d51ce, dl));
4112       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4113                                getF32Constant(DAG, 0x3e00685a, dl));
4114       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4115       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4116                                getF32Constant(DAG, 0x3efb6798, dl));
4117       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4118       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4119                                getF32Constant(DAG, 0x3f88d192, dl));
4120       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4121       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4122                                getF32Constant(DAG, 0x3fc4316c, dl));
4123       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4124       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4125                                     getF32Constant(DAG, 0x3f57ce70, dl));
4126     }
4127
4128     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4129   }
4130
4131   // No special expansion.
4132   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4133 }
4134
4135 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4136 /// limited-precision mode.
4137 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4138                           const TargetLowering &TLI) {
4139   if (Op.getValueType() == MVT::f32 &&
4140       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4141     return getLimitedPrecisionExp2(Op, dl, DAG);
4142
4143   // No special expansion.
4144   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4145 }
4146
4147 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4148 /// limited-precision mode with x == 10.0f.
4149 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
4150                          SelectionDAG &DAG, const TargetLowering &TLI) {
4151   bool IsExp10 = false;
4152   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4153       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4154     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4155       APFloat Ten(10.0f);
4156       IsExp10 = LHSC->isExactlyValue(Ten);
4157     }
4158   }
4159
4160   // TODO: What fast-math-flags should be set on the FMUL node?
4161   if (IsExp10) {
4162     // Put the exponent in the right bit position for later addition to the
4163     // final result:
4164     //
4165     //   #define LOG2OF10 3.3219281f
4166     //   t0 = Op * LOG2OF10;
4167     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4168                              getF32Constant(DAG, 0x40549a78, dl));
4169     return getLimitedPrecisionExp2(t0, dl, DAG);
4170   }
4171
4172   // No special expansion.
4173   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4174 }
4175
4176
4177 /// ExpandPowI - Expand a llvm.powi intrinsic.
4178 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
4179                           SelectionDAG &DAG) {
4180   // If RHS is a constant, we can expand this out to a multiplication tree,
4181   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4182   // optimizing for size, we only want to do this if the expansion would produce
4183   // a small number of multiplies, otherwise we do the full expansion.
4184   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4185     // Get the exponent as a positive value.
4186     unsigned Val = RHSC->getSExtValue();
4187     if ((int)Val < 0) Val = -Val;
4188
4189     // powi(x, 0) -> 1.0
4190     if (Val == 0)
4191       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4192
4193     const Function *F = DAG.getMachineFunction().getFunction();
4194     if (!F->optForSize() ||
4195         // If optimizing for size, don't insert too many multiplies.
4196         // This inserts up to 5 multiplies.
4197         countPopulation(Val) + Log2_32(Val) < 7) {
4198       // We use the simple binary decomposition method to generate the multiply
4199       // sequence.  There are more optimal ways to do this (for example,
4200       // powi(x,15) generates one more multiply than it should), but this has
4201       // the benefit of being both really simple and much better than a libcall.
4202       SDValue Res;  // Logically starts equal to 1.0
4203       SDValue CurSquare = LHS;
4204       // TODO: Intrinsics should have fast-math-flags that propagate to these
4205       // nodes.
4206       while (Val) {
4207         if (Val & 1) {
4208           if (Res.getNode())
4209             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4210           else
4211             Res = CurSquare;  // 1.0*CurSquare.
4212         }
4213
4214         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4215                                 CurSquare, CurSquare);
4216         Val >>= 1;
4217       }
4218
4219       // If the original was negative, invert the result, producing 1/(x*x*x).
4220       if (RHSC->getSExtValue() < 0)
4221         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4222                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4223       return Res;
4224     }
4225   }
4226
4227   // Otherwise, expand to a libcall.
4228   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4229 }
4230
4231 // getUnderlyingArgReg - Find underlying register used for a truncated or
4232 // bitcasted argument.
4233 static unsigned getUnderlyingArgReg(const SDValue &N) {
4234   switch (N.getOpcode()) {
4235   case ISD::CopyFromReg:
4236     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4237   case ISD::BITCAST:
4238   case ISD::AssertZext:
4239   case ISD::AssertSext:
4240   case ISD::TRUNCATE:
4241     return getUnderlyingArgReg(N.getOperand(0));
4242   default:
4243     return 0;
4244   }
4245 }
4246
4247 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4248 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4249 /// At the end of instruction selection, they will be inserted to the entry BB.
4250 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4251     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4252     DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) {
4253   const Argument *Arg = dyn_cast<Argument>(V);
4254   if (!Arg)
4255     return false;
4256
4257   MachineFunction &MF = DAG.getMachineFunction();
4258   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4259
4260   // Ignore inlined function arguments here.
4261   //
4262   // FIXME: Should we be checking DL->inlinedAt() to determine this?
4263   if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction()))
4264     return false;
4265
4266   Optional<MachineOperand> Op;
4267   // Some arguments' frame index is recorded during argument lowering.
4268   if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4269     Op = MachineOperand::CreateFI(FI);
4270
4271   if (!Op && N.getNode()) {
4272     unsigned Reg = getUnderlyingArgReg(N);
4273     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4274       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4275       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4276       if (PR)
4277         Reg = PR;
4278     }
4279     if (Reg)
4280       Op = MachineOperand::CreateReg(Reg, false);
4281   }
4282
4283   if (!Op) {
4284     // Check if ValueMap has reg number.
4285     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4286     if (VMI != FuncInfo.ValueMap.end())
4287       Op = MachineOperand::CreateReg(VMI->second, false);
4288   }
4289
4290   if (!Op && N.getNode())
4291     // Check if frame index is available.
4292     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4293       if (FrameIndexSDNode *FINode =
4294           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4295         Op = MachineOperand::CreateFI(FINode->getIndex());
4296
4297   if (!Op)
4298     return false;
4299
4300   assert(Variable->isValidLocationForIntrinsic(DL) &&
4301          "Expected inlined-at fields to agree");
4302   if (Op->isReg())
4303     FuncInfo.ArgDbgValues.push_back(
4304         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4305                 Op->getReg(), Offset, Variable, Expr));
4306   else
4307     FuncInfo.ArgDbgValues.push_back(
4308         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4309             .addOperand(*Op)
4310             .addImm(Offset)
4311             .addMetadata(Variable)
4312             .addMetadata(Expr));
4313
4314   return true;
4315 }
4316
4317 // VisualStudio defines setjmp as _setjmp
4318 #if defined(_MSC_VER) && defined(setjmp) && \
4319                          !defined(setjmp_undefined_for_msvc)
4320 #  pragma push_macro("setjmp")
4321 #  undef setjmp
4322 #  define setjmp_undefined_for_msvc
4323 #endif
4324
4325 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4326 /// we want to emit this as a call to a named external function, return the name
4327 /// otherwise lower it and return null.
4328 const char *
4329 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4330   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4331   SDLoc sdl = getCurSDLoc();
4332   DebugLoc dl = getCurDebugLoc();
4333   SDValue Res;
4334
4335   switch (Intrinsic) {
4336   default:
4337     // By default, turn this into a target intrinsic node.
4338     visitTargetIntrinsic(I, Intrinsic);
4339     return nullptr;
4340   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4341   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4342   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4343   case Intrinsic::returnaddress:
4344     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
4345                              TLI.getPointerTy(DAG.getDataLayout()),
4346                              getValue(I.getArgOperand(0))));
4347     return nullptr;
4348   case Intrinsic::frameaddress:
4349     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
4350                              TLI.getPointerTy(DAG.getDataLayout()),
4351                              getValue(I.getArgOperand(0))));
4352     return nullptr;
4353   case Intrinsic::read_register: {
4354     Value *Reg = I.getArgOperand(0);
4355     SDValue Chain = getRoot();
4356     SDValue RegName =
4357         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4358     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4359     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
4360       DAG.getVTList(VT, MVT::Other), Chain, RegName);
4361     setValue(&I, Res);
4362     DAG.setRoot(Res.getValue(1));
4363     return nullptr;
4364   }
4365   case Intrinsic::write_register: {
4366     Value *Reg = I.getArgOperand(0);
4367     Value *RegValue = I.getArgOperand(1);
4368     SDValue Chain = getRoot();
4369     SDValue RegName =
4370         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4371     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4372                             RegName, getValue(RegValue)));
4373     return nullptr;
4374   }
4375   case Intrinsic::setjmp:
4376     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4377   case Intrinsic::longjmp:
4378     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4379   case Intrinsic::memcpy: {
4380     SDValue Op1 = getValue(I.getArgOperand(0));
4381     SDValue Op2 = getValue(I.getArgOperand(1));
4382     SDValue Op3 = getValue(I.getArgOperand(2));
4383     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4384     if (!Align)
4385       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4386     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4387     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4388     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4389                                false, isTC,
4390                                MachinePointerInfo(I.getArgOperand(0)),
4391                                MachinePointerInfo(I.getArgOperand(1)));
4392     updateDAGForMaybeTailCall(MC);
4393     return nullptr;
4394   }
4395   case Intrinsic::memset: {
4396     SDValue Op1 = getValue(I.getArgOperand(0));
4397     SDValue Op2 = getValue(I.getArgOperand(1));
4398     SDValue Op3 = getValue(I.getArgOperand(2));
4399     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4400     if (!Align)
4401       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4402     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4403     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4404     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4405                                isTC, MachinePointerInfo(I.getArgOperand(0)));
4406     updateDAGForMaybeTailCall(MS);
4407     return nullptr;
4408   }
4409   case Intrinsic::memmove: {
4410     SDValue Op1 = getValue(I.getArgOperand(0));
4411     SDValue Op2 = getValue(I.getArgOperand(1));
4412     SDValue Op3 = getValue(I.getArgOperand(2));
4413     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4414     if (!Align)
4415       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4416     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4417     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4418     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4419                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
4420                                 MachinePointerInfo(I.getArgOperand(1)));
4421     updateDAGForMaybeTailCall(MM);
4422     return nullptr;
4423   }
4424   case Intrinsic::dbg_declare: {
4425     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4426     DILocalVariable *Variable = DI.getVariable();
4427     DIExpression *Expression = DI.getExpression();
4428     const Value *Address = DI.getAddress();
4429     assert(Variable && "Missing variable");
4430     if (!Address) {
4431       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4432       return nullptr;
4433     }
4434
4435     // Check if address has undef value.
4436     if (isa<UndefValue>(Address) ||
4437         (Address->use_empty() && !isa<Argument>(Address))) {
4438       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4439       return nullptr;
4440     }
4441
4442     SDValue &N = NodeMap[Address];
4443     if (!N.getNode() && isa<Argument>(Address))
4444       // Check unused arguments map.
4445       N = UnusedArgNodeMap[Address];
4446     SDDbgValue *SDV;
4447     if (N.getNode()) {
4448       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4449         Address = BCI->getOperand(0);
4450       // Parameters are handled specially.
4451       bool isParameter = Variable->isParameter() || isa<Argument>(Address);
4452       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4453       if (isParameter && FINode) {
4454         // Byval parameter. We have a frame index at this point.
4455         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
4456                                         FINode->getIndex(), 0, dl, SDNodeOrder);
4457       } else if (isa<Argument>(Address)) {
4458         // Address is an argument, so try to emit its dbg value using
4459         // virtual register info from the FuncInfo.ValueMap.
4460         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4461                                  N);
4462         return nullptr;
4463       } else {
4464         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4465                               true, 0, dl, SDNodeOrder);
4466       }
4467       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4468     } else {
4469       // If Address is an argument then try to emit its dbg value using
4470       // virtual register info from the FuncInfo.ValueMap.
4471       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4472                                     N)) {
4473         // If variable is pinned by a alloca in dominating bb then
4474         // use StaticAllocaMap.
4475         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4476           if (AI->getParent() != DI.getParent()) {
4477             DenseMap<const AllocaInst*, int>::iterator SI =
4478               FuncInfo.StaticAllocaMap.find(AI);
4479             if (SI != FuncInfo.StaticAllocaMap.end()) {
4480               SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
4481                                               0, dl, SDNodeOrder);
4482               DAG.AddDbgValue(SDV, nullptr, false);
4483               return nullptr;
4484             }
4485           }
4486         }
4487         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4488       }
4489     }
4490     return nullptr;
4491   }
4492   case Intrinsic::dbg_value: {
4493     const DbgValueInst &DI = cast<DbgValueInst>(I);
4494     assert(DI.getVariable() && "Missing variable");
4495
4496     DILocalVariable *Variable = DI.getVariable();
4497     DIExpression *Expression = DI.getExpression();
4498     uint64_t Offset = DI.getOffset();
4499     const Value *V = DI.getValue();
4500     if (!V)
4501       return nullptr;
4502
4503     SDDbgValue *SDV;
4504     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4505       SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
4506                                     SDNodeOrder);
4507       DAG.AddDbgValue(SDV, nullptr, false);
4508     } else {
4509       // Do not use getValue() in here; we don't want to generate code at
4510       // this point if it hasn't been done yet.
4511       SDValue N = NodeMap[V];
4512       if (!N.getNode() && isa<Argument>(V))
4513         // Check unused arguments map.
4514         N = UnusedArgNodeMap[V];
4515       if (N.getNode()) {
4516         if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset,
4517                                       false, N)) {
4518           SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4519                                 false, Offset, dl, SDNodeOrder);
4520           DAG.AddDbgValue(SDV, N.getNode(), false);
4521         }
4522       } else if (!V->use_empty() ) {
4523         // Do not call getValue(V) yet, as we don't want to generate code.
4524         // Remember it for later.
4525         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4526         DanglingDebugInfoMap[V] = DDI;
4527       } else {
4528         // We may expand this to cover more cases.  One case where we have no
4529         // data available is an unreferenced parameter.
4530         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4531       }
4532     }
4533
4534     // Build a debug info table entry.
4535     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4536       V = BCI->getOperand(0);
4537     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4538     // Don't handle byval struct arguments or VLAs, for example.
4539     if (!AI) {
4540       DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4541       DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4542       return nullptr;
4543     }
4544     DenseMap<const AllocaInst*, int>::iterator SI =
4545       FuncInfo.StaticAllocaMap.find(AI);
4546     if (SI == FuncInfo.StaticAllocaMap.end())
4547       return nullptr; // VLAs.
4548     return nullptr;
4549   }
4550
4551   case Intrinsic::eh_typeid_for: {
4552     // Find the type id for the given typeinfo.
4553     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
4554     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4555     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
4556     setValue(&I, Res);
4557     return nullptr;
4558   }
4559
4560   case Intrinsic::eh_return_i32:
4561   case Intrinsic::eh_return_i64:
4562     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4563     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4564                             MVT::Other,
4565                             getControlRoot(),
4566                             getValue(I.getArgOperand(0)),
4567                             getValue(I.getArgOperand(1))));
4568     return nullptr;
4569   case Intrinsic::eh_unwind_init:
4570     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4571     return nullptr;
4572   case Intrinsic::eh_dwarf_cfa: {
4573     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4574                                         TLI.getPointerTy(DAG.getDataLayout()));
4575     SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4576                                  CfaArg.getValueType(),
4577                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4578                                              CfaArg.getValueType()),
4579                                  CfaArg);
4580     SDValue FA = DAG.getNode(
4581         ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()),
4582         DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
4583     setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
4584                              FA, Offset));
4585     return nullptr;
4586   }
4587   case Intrinsic::eh_sjlj_callsite: {
4588     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4589     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4590     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4591     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4592
4593     MMI.setCurrentCallSite(CI->getZExtValue());
4594     return nullptr;
4595   }
4596   case Intrinsic::eh_sjlj_functioncontext: {
4597     // Get and store the index of the function context.
4598     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4599     AllocaInst *FnCtx =
4600       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4601     int FI = FuncInfo.StaticAllocaMap[FnCtx];
4602     MFI->setFunctionContextIndex(FI);
4603     return nullptr;
4604   }
4605   case Intrinsic::eh_sjlj_setjmp: {
4606     SDValue Ops[2];
4607     Ops[0] = getRoot();
4608     Ops[1] = getValue(I.getArgOperand(0));
4609     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
4610                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
4611     setValue(&I, Op.getValue(0));
4612     DAG.setRoot(Op.getValue(1));
4613     return nullptr;
4614   }
4615   case Intrinsic::eh_sjlj_longjmp: {
4616     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
4617                             getRoot(), getValue(I.getArgOperand(0))));
4618     return nullptr;
4619   }
4620   case Intrinsic::eh_sjlj_setup_dispatch: {
4621     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
4622                             getRoot()));
4623     return nullptr;
4624   }
4625
4626   case Intrinsic::masked_gather:
4627     visitMaskedGather(I);
4628     return nullptr;
4629   case Intrinsic::masked_load:
4630     visitMaskedLoad(I);
4631     return nullptr;
4632   case Intrinsic::masked_scatter:
4633     visitMaskedScatter(I);
4634     return nullptr;
4635   case Intrinsic::masked_store:
4636     visitMaskedStore(I);
4637     return nullptr;
4638   case Intrinsic::x86_mmx_pslli_w:
4639   case Intrinsic::x86_mmx_pslli_d:
4640   case Intrinsic::x86_mmx_pslli_q:
4641   case Intrinsic::x86_mmx_psrli_w:
4642   case Intrinsic::x86_mmx_psrli_d:
4643   case Intrinsic::x86_mmx_psrli_q:
4644   case Intrinsic::x86_mmx_psrai_w:
4645   case Intrinsic::x86_mmx_psrai_d: {
4646     SDValue ShAmt = getValue(I.getArgOperand(1));
4647     if (isa<ConstantSDNode>(ShAmt)) {
4648       visitTargetIntrinsic(I, Intrinsic);
4649       return nullptr;
4650     }
4651     unsigned NewIntrinsic = 0;
4652     EVT ShAmtVT = MVT::v2i32;
4653     switch (Intrinsic) {
4654     case Intrinsic::x86_mmx_pslli_w:
4655       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4656       break;
4657     case Intrinsic::x86_mmx_pslli_d:
4658       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4659       break;
4660     case Intrinsic::x86_mmx_pslli_q:
4661       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4662       break;
4663     case Intrinsic::x86_mmx_psrli_w:
4664       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4665       break;
4666     case Intrinsic::x86_mmx_psrli_d:
4667       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4668       break;
4669     case Intrinsic::x86_mmx_psrli_q:
4670       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4671       break;
4672     case Intrinsic::x86_mmx_psrai_w:
4673       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4674       break;
4675     case Intrinsic::x86_mmx_psrai_d:
4676       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4677       break;
4678     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4679     }
4680
4681     // The vector shift intrinsics with scalars uses 32b shift amounts but
4682     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4683     // to be zero.
4684     // We must do this early because v2i32 is not a legal type.
4685     SDValue ShOps[2];
4686     ShOps[0] = ShAmt;
4687     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
4688     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
4689     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4690     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
4691     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
4692                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
4693                        getValue(I.getArgOperand(0)), ShAmt);
4694     setValue(&I, Res);
4695     return nullptr;
4696   }
4697   case Intrinsic::convertff:
4698   case Intrinsic::convertfsi:
4699   case Intrinsic::convertfui:
4700   case Intrinsic::convertsif:
4701   case Intrinsic::convertuif:
4702   case Intrinsic::convertss:
4703   case Intrinsic::convertsu:
4704   case Intrinsic::convertus:
4705   case Intrinsic::convertuu: {
4706     ISD::CvtCode Code = ISD::CVT_INVALID;
4707     switch (Intrinsic) {
4708     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4709     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4710     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4711     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4712     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4713     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4714     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4715     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4716     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4717     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4718     }
4719     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4720     const Value *Op1 = I.getArgOperand(0);
4721     Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
4722                                DAG.getValueType(DestVT),
4723                                DAG.getValueType(getValue(Op1).getValueType()),
4724                                getValue(I.getArgOperand(1)),
4725                                getValue(I.getArgOperand(2)),
4726                                Code);
4727     setValue(&I, Res);
4728     return nullptr;
4729   }
4730   case Intrinsic::powi:
4731     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
4732                             getValue(I.getArgOperand(1)), DAG));
4733     return nullptr;
4734   case Intrinsic::log:
4735     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4736     return nullptr;
4737   case Intrinsic::log2:
4738     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4739     return nullptr;
4740   case Intrinsic::log10:
4741     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4742     return nullptr;
4743   case Intrinsic::exp:
4744     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4745     return nullptr;
4746   case Intrinsic::exp2:
4747     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4748     return nullptr;
4749   case Intrinsic::pow:
4750     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
4751                            getValue(I.getArgOperand(1)), DAG, TLI));
4752     return nullptr;
4753   case Intrinsic::sqrt:
4754   case Intrinsic::fabs:
4755   case Intrinsic::sin:
4756   case Intrinsic::cos:
4757   case Intrinsic::floor:
4758   case Intrinsic::ceil:
4759   case Intrinsic::trunc:
4760   case Intrinsic::rint:
4761   case Intrinsic::nearbyint:
4762   case Intrinsic::round: {
4763     unsigned Opcode;
4764     switch (Intrinsic) {
4765     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4766     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
4767     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
4768     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
4769     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
4770     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
4771     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
4772     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
4773     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
4774     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
4775     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
4776     }
4777
4778     setValue(&I, DAG.getNode(Opcode, sdl,
4779                              getValue(I.getArgOperand(0)).getValueType(),
4780                              getValue(I.getArgOperand(0))));
4781     return nullptr;
4782   }
4783   case Intrinsic::minnum:
4784     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
4785                              getValue(I.getArgOperand(0)).getValueType(),
4786                              getValue(I.getArgOperand(0)),
4787                              getValue(I.getArgOperand(1))));
4788     return nullptr;
4789   case Intrinsic::maxnum:
4790     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
4791                              getValue(I.getArgOperand(0)).getValueType(),
4792                              getValue(I.getArgOperand(0)),
4793                              getValue(I.getArgOperand(1))));
4794     return nullptr;
4795   case Intrinsic::copysign:
4796     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
4797                              getValue(I.getArgOperand(0)).getValueType(),
4798                              getValue(I.getArgOperand(0)),
4799                              getValue(I.getArgOperand(1))));
4800     return nullptr;
4801   case Intrinsic::fma:
4802     setValue(&I, DAG.getNode(ISD::FMA, sdl,
4803                              getValue(I.getArgOperand(0)).getValueType(),
4804                              getValue(I.getArgOperand(0)),
4805                              getValue(I.getArgOperand(1)),
4806                              getValue(I.getArgOperand(2))));
4807     return nullptr;
4808   case Intrinsic::fmuladd: {
4809     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4810     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
4811         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
4812       setValue(&I, DAG.getNode(ISD::FMA, sdl,
4813                                getValue(I.getArgOperand(0)).getValueType(),
4814                                getValue(I.getArgOperand(0)),
4815                                getValue(I.getArgOperand(1)),
4816                                getValue(I.getArgOperand(2))));
4817     } else {
4818       // TODO: Intrinsic calls should have fast-math-flags.
4819       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
4820                                 getValue(I.getArgOperand(0)).getValueType(),
4821                                 getValue(I.getArgOperand(0)),
4822                                 getValue(I.getArgOperand(1)));
4823       SDValue Add = DAG.getNode(ISD::FADD, sdl,
4824                                 getValue(I.getArgOperand(0)).getValueType(),
4825                                 Mul,
4826                                 getValue(I.getArgOperand(2)));
4827       setValue(&I, Add);
4828     }
4829     return nullptr;
4830   }
4831   case Intrinsic::convert_to_fp16:
4832     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
4833                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
4834                                          getValue(I.getArgOperand(0)),
4835                                          DAG.getTargetConstant(0, sdl,
4836                                                                MVT::i32))));
4837     return nullptr;
4838   case Intrinsic::convert_from_fp16:
4839     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
4840                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
4841                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
4842                                          getValue(I.getArgOperand(0)))));
4843     return nullptr;
4844   case Intrinsic::pcmarker: {
4845     SDValue Tmp = getValue(I.getArgOperand(0));
4846     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
4847     return nullptr;
4848   }
4849   case Intrinsic::readcyclecounter: {
4850     SDValue Op = getRoot();
4851     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
4852                       DAG.getVTList(MVT::i64, MVT::Other), Op);
4853     setValue(&I, Res);
4854     DAG.setRoot(Res.getValue(1));
4855     return nullptr;
4856   }
4857   case Intrinsic::bitreverse:
4858     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
4859                              getValue(I.getArgOperand(0)).getValueType(),
4860                              getValue(I.getArgOperand(0))));
4861     return nullptr;
4862   case Intrinsic::bswap:
4863     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
4864                              getValue(I.getArgOperand(0)).getValueType(),
4865                              getValue(I.getArgOperand(0))));
4866     return nullptr;
4867   case Intrinsic::cttz: {
4868     SDValue Arg = getValue(I.getArgOperand(0));
4869     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4870     EVT Ty = Arg.getValueType();
4871     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
4872                              sdl, Ty, Arg));
4873     return nullptr;
4874   }
4875   case Intrinsic::ctlz: {
4876     SDValue Arg = getValue(I.getArgOperand(0));
4877     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4878     EVT Ty = Arg.getValueType();
4879     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
4880                              sdl, Ty, Arg));
4881     return nullptr;
4882   }
4883   case Intrinsic::ctpop: {
4884     SDValue Arg = getValue(I.getArgOperand(0));
4885     EVT Ty = Arg.getValueType();
4886     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
4887     return nullptr;
4888   }
4889   case Intrinsic::stacksave: {
4890     SDValue Op = getRoot();
4891     Res = DAG.getNode(
4892         ISD::STACKSAVE, sdl,
4893         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
4894     setValue(&I, Res);
4895     DAG.setRoot(Res.getValue(1));
4896     return nullptr;
4897   }
4898   case Intrinsic::stackrestore: {
4899     Res = getValue(I.getArgOperand(0));
4900     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
4901     return nullptr;
4902   }
4903   case Intrinsic::get_dynamic_area_offset: {
4904     SDValue Op = getRoot();
4905     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
4906     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
4907     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
4908     // target.
4909     if (PtrTy != ResTy)
4910       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
4911                          " intrinsic!");
4912     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
4913                       Op);
4914     DAG.setRoot(Op);
4915     setValue(&I, Res);
4916     return nullptr;
4917   }
4918   case Intrinsic::stackprotector: {
4919     // Emit code into the DAG to store the stack guard onto the stack.
4920     MachineFunction &MF = DAG.getMachineFunction();
4921     MachineFrameInfo *MFI = MF.getFrameInfo();
4922     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
4923     SDValue Src, Chain = getRoot();
4924     const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand();
4925     const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr);
4926
4927     // See if Ptr is a bitcast. If it is, look through it and see if we can get
4928     // global variable __stack_chk_guard.
4929     if (!GV)
4930       if (const Operator *BC = dyn_cast<Operator>(Ptr))
4931         if (BC->getOpcode() == Instruction::BitCast)
4932           GV = dyn_cast<GlobalVariable>(BC->getOperand(0));
4933
4934     if (GV && TLI.useLoadStackGuardNode()) {
4935       // Emit a LOAD_STACK_GUARD node.
4936       MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD,
4937                                                sdl, PtrTy, Chain);
4938       MachinePointerInfo MPInfo(GV);
4939       MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
4940       unsigned Flags = MachineMemOperand::MOLoad |
4941                        MachineMemOperand::MOInvariant;
4942       *MemRefs = MF.getMachineMemOperand(MPInfo, Flags,
4943                                          PtrTy.getSizeInBits() / 8,
4944                                          DAG.getEVTAlignment(PtrTy));
4945       Node->setMemRefs(MemRefs, MemRefs + 1);
4946
4947       // Copy the guard value to a virtual register so that it can be
4948       // retrieved in the epilogue.
4949       Src = SDValue(Node, 0);
4950       const TargetRegisterClass *RC =
4951           TLI.getRegClassFor(Src.getSimpleValueType());
4952       unsigned Reg = MF.getRegInfo().createVirtualRegister(RC);
4953
4954       SPDescriptor.setGuardReg(Reg);
4955       Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src);
4956     } else {
4957       Src = getValue(I.getArgOperand(0));   // The guard's value.
4958     }
4959
4960     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4961
4962     int FI = FuncInfo.StaticAllocaMap[Slot];
4963     MFI->setStackProtectorIndex(FI);
4964
4965     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4966
4967     // Store the stack protector onto the stack.
4968     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
4969                                                  DAG.getMachineFunction(), FI),
4970                        true, false, 0);
4971     setValue(&I, Res);
4972     DAG.setRoot(Res);
4973     return nullptr;
4974   }
4975   case Intrinsic::objectsize: {
4976     // If we don't know by now, we're never going to know.
4977     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4978
4979     assert(CI && "Non-constant type in __builtin_object_size?");
4980
4981     SDValue Arg = getValue(I.getCalledValue());
4982     EVT Ty = Arg.getValueType();
4983
4984     if (CI->isZero())
4985       Res = DAG.getConstant(-1ULL, sdl, Ty);
4986     else
4987       Res = DAG.getConstant(0, sdl, Ty);
4988
4989     setValue(&I, Res);
4990     return nullptr;
4991   }
4992   case Intrinsic::annotation:
4993   case Intrinsic::ptr_annotation:
4994     // Drop the intrinsic, but forward the value
4995     setValue(&I, getValue(I.getOperand(0)));
4996     return nullptr;
4997   case Intrinsic::assume:
4998   case Intrinsic::var_annotation:
4999     // Discard annotate attributes and assumptions
5000     return nullptr;
5001
5002   case Intrinsic::init_trampoline: {
5003     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5004
5005     SDValue Ops[6];
5006     Ops[0] = getRoot();
5007     Ops[1] = getValue(I.getArgOperand(0));
5008     Ops[2] = getValue(I.getArgOperand(1));
5009     Ops[3] = getValue(I.getArgOperand(2));
5010     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5011     Ops[5] = DAG.getSrcValue(F);
5012
5013     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5014
5015     DAG.setRoot(Res);
5016     return nullptr;
5017   }
5018   case Intrinsic::adjust_trampoline: {
5019     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5020                              TLI.getPointerTy(DAG.getDataLayout()),
5021                              getValue(I.getArgOperand(0))));
5022     return nullptr;
5023   }
5024   case Intrinsic::gcroot:
5025     if (GFI) {
5026       const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5027       const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5028
5029       FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5030       GFI->addStackRoot(FI->getIndex(), TypeMap);
5031     }
5032     return nullptr;
5033   case Intrinsic::gcread:
5034   case Intrinsic::gcwrite:
5035     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5036   case Intrinsic::flt_rounds:
5037     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5038     return nullptr;
5039
5040   case Intrinsic::expect: {
5041     // Just replace __builtin_expect(exp, c) with EXP.
5042     setValue(&I, getValue(I.getArgOperand(0)));
5043     return nullptr;
5044   }
5045
5046   case Intrinsic::debugtrap:
5047   case Intrinsic::trap: {
5048     StringRef TrapFuncName =
5049         I.getAttributes()
5050             .getAttribute(AttributeSet::FunctionIndex, "trap-func-name")
5051             .getValueAsString();
5052     if (TrapFuncName.empty()) {
5053       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5054         ISD::TRAP : ISD::DEBUGTRAP;
5055       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5056       return nullptr;
5057     }
5058     TargetLowering::ArgListTy Args;
5059
5060     TargetLowering::CallLoweringInfo CLI(DAG);
5061     CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee(
5062         CallingConv::C, I.getType(),
5063         DAG.getExternalSymbol(TrapFuncName.data(),
5064                               TLI.getPointerTy(DAG.getDataLayout())),
5065         std::move(Args), 0);
5066
5067     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5068     DAG.setRoot(Result.second);
5069     return nullptr;
5070   }
5071
5072   case Intrinsic::uadd_with_overflow:
5073   case Intrinsic::sadd_with_overflow:
5074   case Intrinsic::usub_with_overflow:
5075   case Intrinsic::ssub_with_overflow:
5076   case Intrinsic::umul_with_overflow:
5077   case Intrinsic::smul_with_overflow: {
5078     ISD::NodeType Op;
5079     switch (Intrinsic) {
5080     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5081     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5082     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5083     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5084     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5085     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5086     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5087     }
5088     SDValue Op1 = getValue(I.getArgOperand(0));
5089     SDValue Op2 = getValue(I.getArgOperand(1));
5090
5091     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5092     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5093     return nullptr;
5094   }
5095   case Intrinsic::prefetch: {
5096     SDValue Ops[5];
5097     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5098     Ops[0] = getRoot();
5099     Ops[1] = getValue(I.getArgOperand(0));
5100     Ops[2] = getValue(I.getArgOperand(1));
5101     Ops[3] = getValue(I.getArgOperand(2));
5102     Ops[4] = getValue(I.getArgOperand(3));
5103     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5104                                         DAG.getVTList(MVT::Other), Ops,
5105                                         EVT::getIntegerVT(*Context, 8),
5106                                         MachinePointerInfo(I.getArgOperand(0)),
5107                                         0, /* align */
5108                                         false, /* volatile */
5109                                         rw==0, /* read */
5110                                         rw==1)); /* write */
5111     return nullptr;
5112   }
5113   case Intrinsic::lifetime_start:
5114   case Intrinsic::lifetime_end: {
5115     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5116     // Stack coloring is not enabled in O0, discard region information.
5117     if (TM.getOptLevel() == CodeGenOpt::None)
5118       return nullptr;
5119
5120     SmallVector<Value *, 4> Allocas;
5121     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5122
5123     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5124            E = Allocas.end(); Object != E; ++Object) {
5125       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5126
5127       // Could not find an Alloca.
5128       if (!LifetimeObject)
5129         continue;
5130
5131       // First check that the Alloca is static, otherwise it won't have a
5132       // valid frame index.
5133       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5134       if (SI == FuncInfo.StaticAllocaMap.end())
5135         return nullptr;
5136
5137       int FI = SI->second;
5138
5139       SDValue Ops[2];
5140       Ops[0] = getRoot();
5141       Ops[1] =
5142           DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true);
5143       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5144
5145       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5146       DAG.setRoot(Res);
5147     }
5148     return nullptr;
5149   }
5150   case Intrinsic::invariant_start:
5151     // Discard region information.
5152     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5153     return nullptr;
5154   case Intrinsic::invariant_end:
5155     // Discard region information.
5156     return nullptr;
5157   case Intrinsic::stackprotectorcheck: {
5158     // Do not actually emit anything for this basic block. Instead we initialize
5159     // the stack protector descriptor and export the guard variable so we can
5160     // access it in FinishBasicBlock.
5161     const BasicBlock *BB = I.getParent();
5162     SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I);
5163     ExportFromCurrentBlock(SPDescriptor.getGuard());
5164
5165     // Flush our exports since we are going to process a terminator.
5166     (void)getControlRoot();
5167     return nullptr;
5168   }
5169   case Intrinsic::clear_cache:
5170     return TLI.getClearCacheBuiltinName();
5171   case Intrinsic::donothing:
5172     // ignore
5173     return nullptr;
5174   case Intrinsic::experimental_stackmap: {
5175     visitStackmap(I);
5176     return nullptr;
5177   }
5178   case Intrinsic::experimental_patchpoint_void:
5179   case Intrinsic::experimental_patchpoint_i64: {
5180     visitPatchpoint(&I);
5181     return nullptr;
5182   }
5183   case Intrinsic::experimental_gc_statepoint: {
5184     visitStatepoint(I);
5185     return nullptr;
5186   }
5187   case Intrinsic::experimental_gc_result_int:
5188   case Intrinsic::experimental_gc_result_float:
5189   case Intrinsic::experimental_gc_result_ptr:
5190   case Intrinsic::experimental_gc_result: {
5191     visitGCResult(I);
5192     return nullptr;
5193   }
5194   case Intrinsic::experimental_gc_relocate: {
5195     visitGCRelocate(I);
5196     return nullptr;
5197   }
5198   case Intrinsic::instrprof_increment:
5199     llvm_unreachable("instrprof failed to lower an increment");
5200   case Intrinsic::instrprof_value_profile:
5201     llvm_unreachable("instrprof failed to lower a value profiling call");
5202   case Intrinsic::localescape: {
5203     MachineFunction &MF = DAG.getMachineFunction();
5204     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5205
5206     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5207     // is the same on all targets.
5208     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5209       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5210       if (isa<ConstantPointerNull>(Arg))
5211         continue; // Skip null pointers. They represent a hole in index space.
5212       AllocaInst *Slot = cast<AllocaInst>(Arg);
5213       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5214              "can only escape static allocas");
5215       int FI = FuncInfo.StaticAllocaMap[Slot];
5216       MCSymbol *FrameAllocSym =
5217           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5218               GlobalValue::getRealLinkageName(MF.getName()), Idx);
5219       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5220               TII->get(TargetOpcode::LOCAL_ESCAPE))
5221           .addSym(FrameAllocSym)
5222           .addFrameIndex(FI);
5223     }
5224
5225     return nullptr;
5226   }
5227
5228   case Intrinsic::localrecover: {
5229     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
5230     MachineFunction &MF = DAG.getMachineFunction();
5231     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
5232
5233     // Get the symbol that defines the frame offset.
5234     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5235     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5236     unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX));
5237     MCSymbol *FrameAllocSym =
5238         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5239             GlobalValue::getRealLinkageName(Fn->getName()), IdxVal);
5240
5241     // Create a MCSymbol for the label to avoid any target lowering
5242     // that would make this PC relative.
5243     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
5244     SDValue OffsetVal =
5245         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
5246
5247     // Add the offset to the FP.
5248     Value *FP = I.getArgOperand(1);
5249     SDValue FPVal = getValue(FP);
5250     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5251     setValue(&I, Add);
5252
5253     return nullptr;
5254   }
5255
5256   case Intrinsic::eh_exceptionpointer:
5257   case Intrinsic::eh_exceptioncode: {
5258     // Get the exception pointer vreg, copy from it, and resize it to fit.
5259     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
5260     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
5261     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
5262     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
5263     SDValue N =
5264         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
5265     if (Intrinsic == Intrinsic::eh_exceptioncode)
5266       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
5267     setValue(&I, N);
5268     return nullptr;
5269   }
5270   }
5271 }
5272
5273 std::pair<SDValue, SDValue>
5274 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
5275                                     const BasicBlock *EHPadBB) {
5276   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5277   MCSymbol *BeginLabel = nullptr;
5278
5279   if (EHPadBB) {
5280     // Insert a label before the invoke call to mark the try range.  This can be
5281     // used to detect deletion of the invoke via the MachineModuleInfo.
5282     BeginLabel = MMI.getContext().createTempSymbol();
5283
5284     // For SjLj, keep track of which landing pads go with which invokes
5285     // so as to maintain the ordering of pads in the LSDA.
5286     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5287     if (CallSiteIndex) {
5288       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5289       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
5290
5291       // Now that the call site is handled, stop tracking it.
5292       MMI.setCurrentCallSite(0);
5293     }
5294
5295     // Both PendingLoads and PendingExports must be flushed here;
5296     // this call might not return.
5297     (void)getRoot();
5298     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5299
5300     CLI.setChain(getRoot());
5301   }
5302   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5303   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5304
5305   assert((CLI.IsTailCall || Result.second.getNode()) &&
5306          "Non-null chain expected with non-tail call!");
5307   assert((Result.second.getNode() || !Result.first.getNode()) &&
5308          "Null value expected with tail call!");
5309
5310   if (!Result.second.getNode()) {
5311     // As a special case, a null chain means that a tail call has been emitted
5312     // and the DAG root is already updated.
5313     HasTailCall = true;
5314
5315     // Since there's no actual continuation from this block, nothing can be
5316     // relying on us setting vregs for them.
5317     PendingExports.clear();
5318   } else {
5319     DAG.setRoot(Result.second);
5320   }
5321
5322   if (EHPadBB) {
5323     // Insert a label at the end of the invoke call to mark the try range.  This
5324     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5325     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
5326     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5327
5328     // Inform MachineModuleInfo of range.
5329     if (MMI.hasEHFunclets()) {
5330       assert(CLI.CS);
5331       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
5332       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()),
5333                                 BeginLabel, EndLabel);
5334     } else {
5335       MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
5336     }
5337   }
5338
5339   return Result;
5340 }
5341
5342 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5343                                       bool isTailCall,
5344                                       const BasicBlock *EHPadBB) {
5345   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5346   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5347   Type *RetTy = FTy->getReturnType();
5348
5349   TargetLowering::ArgListTy Args;
5350   TargetLowering::ArgListEntry Entry;
5351   Args.reserve(CS.arg_size());
5352
5353   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5354        i != e; ++i) {
5355     const Value *V = *i;
5356
5357     // Skip empty types
5358     if (V->getType()->isEmptyTy())
5359       continue;
5360
5361     SDValue ArgNode = getValue(V);
5362     Entry.Node = ArgNode; Entry.Ty = V->getType();
5363
5364     // Skip the first return-type Attribute to get to params.
5365     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5366     Args.push_back(Entry);
5367
5368     // If we have an explicit sret argument that is an Instruction, (i.e., it
5369     // might point to function-local memory), we can't meaningfully tail-call.
5370     if (Entry.isSRet && isa<Instruction>(V))
5371       isTailCall = false;
5372   }
5373
5374   // Check if target-independent constraints permit a tail call here.
5375   // Target-dependent constraints are checked within TLI->LowerCallTo.
5376   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
5377     isTailCall = false;
5378
5379   TargetLowering::CallLoweringInfo CLI(DAG);
5380   CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
5381     .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
5382     .setTailCall(isTailCall);
5383   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
5384
5385   if (Result.first.getNode())
5386     setValue(CS.getInstruction(), Result.first);
5387 }
5388
5389 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5390 /// value is equal or not-equal to zero.
5391 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5392   for (const User *U : V->users()) {
5393     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
5394       if (IC->isEquality())
5395         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5396           if (C->isNullValue())
5397             continue;
5398     // Unknown instruction.
5399     return false;
5400   }
5401   return true;
5402 }
5403
5404 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5405                              Type *LoadTy,
5406                              SelectionDAGBuilder &Builder) {
5407
5408   // Check to see if this load can be trivially constant folded, e.g. if the
5409   // input is from a string literal.
5410   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5411     // Cast pointer to the type we really want to load.
5412     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5413                                          PointerType::getUnqual(LoadTy));
5414
5415     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
5416             const_cast<Constant *>(LoadInput), *Builder.DL))
5417       return Builder.getValue(LoadCst);
5418   }
5419
5420   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5421   // still constant memory, the input chain can be the entry node.
5422   SDValue Root;
5423   bool ConstantMemory = false;
5424
5425   // Do not serialize (non-volatile) loads of constant memory with anything.
5426   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5427     Root = Builder.DAG.getEntryNode();
5428     ConstantMemory = true;
5429   } else {
5430     // Do not serialize non-volatile loads against each other.
5431     Root = Builder.DAG.getRoot();
5432   }
5433
5434   SDValue Ptr = Builder.getValue(PtrVal);
5435   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5436                                         Ptr, MachinePointerInfo(PtrVal),
5437                                         false /*volatile*/,
5438                                         false /*nontemporal*/,
5439                                         false /*isinvariant*/, 1 /* align=1 */);
5440
5441   if (!ConstantMemory)
5442     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5443   return LoadVal;
5444 }
5445
5446 /// processIntegerCallValue - Record the value for an instruction that
5447 /// produces an integer result, converting the type where necessary.
5448 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5449                                                   SDValue Value,
5450                                                   bool IsSigned) {
5451   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5452                                                     I.getType(), true);
5453   if (IsSigned)
5454     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5455   else
5456     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5457   setValue(&I, Value);
5458 }
5459
5460 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5461 /// If so, return true and lower it, otherwise return false and it will be
5462 /// lowered like a normal call.
5463 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5464   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5465   if (I.getNumArgOperands() != 3)
5466     return false;
5467
5468   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5469   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5470       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5471       !I.getType()->isIntegerTy())
5472     return false;
5473
5474   const Value *Size = I.getArgOperand(2);
5475   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5476   if (CSize && CSize->getZExtValue() == 0) {
5477     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5478                                                           I.getType(), true);
5479     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
5480     return true;
5481   }
5482
5483   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5484   std::pair<SDValue, SDValue> Res =
5485     TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5486                                 getValue(LHS), getValue(RHS), getValue(Size),
5487                                 MachinePointerInfo(LHS),
5488                                 MachinePointerInfo(RHS));
5489   if (Res.first.getNode()) {
5490     processIntegerCallValue(I, Res.first, true);
5491     PendingLoads.push_back(Res.second);
5492     return true;
5493   }
5494
5495   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5496   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5497   if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
5498     bool ActuallyDoIt = true;
5499     MVT LoadVT;
5500     Type *LoadTy;
5501     switch (CSize->getZExtValue()) {
5502     default:
5503       LoadVT = MVT::Other;
5504       LoadTy = nullptr;
5505       ActuallyDoIt = false;
5506       break;
5507     case 2:
5508       LoadVT = MVT::i16;
5509       LoadTy = Type::getInt16Ty(CSize->getContext());
5510       break;
5511     case 4:
5512       LoadVT = MVT::i32;
5513       LoadTy = Type::getInt32Ty(CSize->getContext());
5514       break;
5515     case 8:
5516       LoadVT = MVT::i64;
5517       LoadTy = Type::getInt64Ty(CSize->getContext());
5518       break;
5519         /*
5520     case 16:
5521       LoadVT = MVT::v4i32;
5522       LoadTy = Type::getInt32Ty(CSize->getContext());
5523       LoadTy = VectorType::get(LoadTy, 4);
5524       break;
5525          */
5526     }
5527
5528     // This turns into unaligned loads.  We only do this if the target natively
5529     // supports the MVT we'll be loading or if it is small enough (<= 4) that
5530     // we'll only produce a small number of byte loads.
5531
5532     // Require that we can find a legal MVT, and only do this if the target
5533     // supports unaligned loads of that type.  Expanding into byte loads would
5534     // bloat the code.
5535     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5536     if (ActuallyDoIt && CSize->getZExtValue() > 4) {
5537       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
5538       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
5539       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5540       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5541       // TODO: Check alignment of src and dest ptrs.
5542       if (!TLI.isTypeLegal(LoadVT) ||
5543           !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) ||
5544           !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS))
5545         ActuallyDoIt = false;
5546     }
5547
5548     if (ActuallyDoIt) {
5549       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5550       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5551
5552       SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5553                                  ISD::SETNE);
5554       processIntegerCallValue(I, Res, false);
5555       return true;
5556     }
5557   }
5558
5559
5560   return false;
5561 }
5562
5563 /// visitMemChrCall -- See if we can lower a memchr call into an optimized
5564 /// form.  If so, return true and lower it, otherwise return false and it
5565 /// will be lowered like a normal call.
5566 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
5567   // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
5568   if (I.getNumArgOperands() != 3)
5569     return false;
5570
5571   const Value *Src = I.getArgOperand(0);
5572   const Value *Char = I.getArgOperand(1);
5573   const Value *Length = I.getArgOperand(2);
5574   if (!Src->getType()->isPointerTy() ||
5575       !Char->getType()->isIntegerTy() ||
5576       !Length->getType()->isIntegerTy() ||
5577       !I.getType()->isPointerTy())
5578     return false;
5579
5580   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5581   std::pair<SDValue, SDValue> Res =
5582     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
5583                                 getValue(Src), getValue(Char), getValue(Length),
5584                                 MachinePointerInfo(Src));
5585   if (Res.first.getNode()) {
5586     setValue(&I, Res.first);
5587     PendingLoads.push_back(Res.second);
5588     return true;
5589   }
5590
5591   return false;
5592 }
5593
5594 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
5595 /// optimized form.  If so, return true and lower it, otherwise return false
5596 /// and it will be lowered like a normal call.
5597 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
5598   // Verify that the prototype makes sense.  char *strcpy(char *, char *)
5599   if (I.getNumArgOperands() != 2)
5600     return false;
5601
5602   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5603   if (!Arg0->getType()->isPointerTy() ||
5604       !Arg1->getType()->isPointerTy() ||
5605       !I.getType()->isPointerTy())
5606     return false;
5607
5608   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5609   std::pair<SDValue, SDValue> Res =
5610     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
5611                                 getValue(Arg0), getValue(Arg1),
5612                                 MachinePointerInfo(Arg0),
5613                                 MachinePointerInfo(Arg1), isStpcpy);
5614   if (Res.first.getNode()) {
5615     setValue(&I, Res.first);
5616     DAG.setRoot(Res.second);
5617     return true;
5618   }
5619
5620   return false;
5621 }
5622
5623 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
5624 /// If so, return true and lower it, otherwise return false and it will be
5625 /// lowered like a normal call.
5626 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
5627   // Verify that the prototype makes sense.  int strcmp(void*,void*)
5628   if (I.getNumArgOperands() != 2)
5629     return false;
5630
5631   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5632   if (!Arg0->getType()->isPointerTy() ||
5633       !Arg1->getType()->isPointerTy() ||
5634       !I.getType()->isIntegerTy())
5635     return false;
5636
5637   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5638   std::pair<SDValue, SDValue> Res =
5639     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5640                                 getValue(Arg0), getValue(Arg1),
5641                                 MachinePointerInfo(Arg0),
5642                                 MachinePointerInfo(Arg1));
5643   if (Res.first.getNode()) {
5644     processIntegerCallValue(I, Res.first, true);
5645     PendingLoads.push_back(Res.second);
5646     return true;
5647   }
5648
5649   return false;
5650 }
5651
5652 /// visitStrLenCall -- See if we can lower a strlen call into an optimized
5653 /// form.  If so, return true and lower it, otherwise return false and it
5654 /// will be lowered like a normal call.
5655 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
5656   // Verify that the prototype makes sense.  size_t strlen(char *)
5657   if (I.getNumArgOperands() != 1)
5658     return false;
5659
5660   const Value *Arg0 = I.getArgOperand(0);
5661   if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
5662     return false;
5663
5664   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5665   std::pair<SDValue, SDValue> Res =
5666     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
5667                                 getValue(Arg0), MachinePointerInfo(Arg0));
5668   if (Res.first.getNode()) {
5669     processIntegerCallValue(I, Res.first, false);
5670     PendingLoads.push_back(Res.second);
5671     return true;
5672   }
5673
5674   return false;
5675 }
5676
5677 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
5678 /// form.  If so, return true and lower it, otherwise return false and it
5679 /// will be lowered like a normal call.
5680 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
5681   // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
5682   if (I.getNumArgOperands() != 2)
5683     return false;
5684
5685   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5686   if (!Arg0->getType()->isPointerTy() ||
5687       !Arg1->getType()->isIntegerTy() ||
5688       !I.getType()->isIntegerTy())
5689     return false;
5690
5691   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5692   std::pair<SDValue, SDValue> Res =
5693     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
5694                                  getValue(Arg0), getValue(Arg1),
5695                                  MachinePointerInfo(Arg0));
5696   if (Res.first.getNode()) {
5697     processIntegerCallValue(I, Res.first, false);
5698     PendingLoads.push_back(Res.second);
5699     return true;
5700   }
5701
5702   return false;
5703 }
5704
5705 /// visitUnaryFloatCall - If a call instruction is a unary floating-point
5706 /// operation (as expected), translate it to an SDNode with the specified opcode
5707 /// and return true.
5708 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5709                                               unsigned Opcode) {
5710   // Sanity check that it really is a unary floating-point call.
5711   if (I.getNumArgOperands() != 1 ||
5712       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5713       I.getType() != I.getArgOperand(0)->getType() ||
5714       !I.onlyReadsMemory())
5715     return false;
5716
5717   SDValue Tmp = getValue(I.getArgOperand(0));
5718   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
5719   return true;
5720 }
5721
5722 /// visitBinaryFloatCall - If a call instruction is a binary floating-point
5723 /// operation (as expected), translate it to an SDNode with the specified opcode
5724 /// and return true.
5725 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
5726                                                unsigned Opcode) {
5727   // Sanity check that it really is a binary floating-point call.
5728   if (I.getNumArgOperands() != 2 ||
5729       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5730       I.getType() != I.getArgOperand(0)->getType() ||
5731       I.getType() != I.getArgOperand(1)->getType() ||
5732       !I.onlyReadsMemory())
5733     return false;
5734
5735   SDValue Tmp0 = getValue(I.getArgOperand(0));
5736   SDValue Tmp1 = getValue(I.getArgOperand(1));
5737   EVT VT = Tmp0.getValueType();
5738   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
5739   return true;
5740 }
5741
5742 void SelectionDAGBuilder::visitCall(const CallInst &I) {
5743   // Handle inline assembly differently.
5744   if (isa<InlineAsm>(I.getCalledValue())) {
5745     visitInlineAsm(&I);
5746     return;
5747   }
5748
5749   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5750   ComputeUsesVAFloatArgument(I, &MMI);
5751
5752   const char *RenameFn = nullptr;
5753   if (Function *F = I.getCalledFunction()) {
5754     if (F->isDeclaration()) {
5755       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5756         if (unsigned IID = II->getIntrinsicID(F)) {
5757           RenameFn = visitIntrinsicCall(I, IID);
5758           if (!RenameFn)
5759             return;
5760         }
5761       }
5762       if (Intrinsic::ID IID = F->getIntrinsicID()) {
5763         RenameFn = visitIntrinsicCall(I, IID);
5764         if (!RenameFn)
5765           return;
5766       }
5767     }
5768
5769     // Check for well-known libc/libm calls.  If the function is internal, it
5770     // can't be a library call.
5771     LibFunc::Func Func;
5772     if (!F->hasLocalLinkage() && F->hasName() &&
5773         LibInfo->getLibFunc(F->getName(), Func) &&
5774         LibInfo->hasOptimizedCodeGen(Func)) {
5775       switch (Func) {
5776       default: break;
5777       case LibFunc::copysign:
5778       case LibFunc::copysignf:
5779       case LibFunc::copysignl:
5780         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5781             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5782             I.getType() == I.getArgOperand(0)->getType() &&
5783             I.getType() == I.getArgOperand(1)->getType() &&
5784             I.onlyReadsMemory()) {
5785           SDValue LHS = getValue(I.getArgOperand(0));
5786           SDValue RHS = getValue(I.getArgOperand(1));
5787           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
5788                                    LHS.getValueType(), LHS, RHS));
5789           return;
5790         }
5791         break;
5792       case LibFunc::fabs:
5793       case LibFunc::fabsf:
5794       case LibFunc::fabsl:
5795         if (visitUnaryFloatCall(I, ISD::FABS))
5796           return;
5797         break;
5798       case LibFunc::fmin:
5799       case LibFunc::fminf:
5800       case LibFunc::fminl:
5801         if (visitBinaryFloatCall(I, ISD::FMINNUM))
5802           return;
5803         break;
5804       case LibFunc::fmax:
5805       case LibFunc::fmaxf:
5806       case LibFunc::fmaxl:
5807         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
5808           return;
5809         break;
5810       case LibFunc::sin:
5811       case LibFunc::sinf:
5812       case LibFunc::sinl:
5813         if (visitUnaryFloatCall(I, ISD::FSIN))
5814           return;
5815         break;
5816       case LibFunc::cos:
5817       case LibFunc::cosf:
5818       case LibFunc::cosl:
5819         if (visitUnaryFloatCall(I, ISD::FCOS))
5820           return;
5821         break;
5822       case LibFunc::sqrt:
5823       case LibFunc::sqrtf:
5824       case LibFunc::sqrtl:
5825       case LibFunc::sqrt_finite:
5826       case LibFunc::sqrtf_finite:
5827       case LibFunc::sqrtl_finite:
5828         if (visitUnaryFloatCall(I, ISD::FSQRT))
5829           return;
5830         break;
5831       case LibFunc::floor:
5832       case LibFunc::floorf:
5833       case LibFunc::floorl:
5834         if (visitUnaryFloatCall(I, ISD::FFLOOR))
5835           return;
5836         break;
5837       case LibFunc::nearbyint:
5838       case LibFunc::nearbyintf:
5839       case LibFunc::nearbyintl:
5840         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
5841           return;
5842         break;
5843       case LibFunc::ceil:
5844       case LibFunc::ceilf:
5845       case LibFunc::ceill:
5846         if (visitUnaryFloatCall(I, ISD::FCEIL))
5847           return;
5848         break;
5849       case LibFunc::rint:
5850       case LibFunc::rintf:
5851       case LibFunc::rintl:
5852         if (visitUnaryFloatCall(I, ISD::FRINT))
5853           return;
5854         break;
5855       case LibFunc::round:
5856       case LibFunc::roundf:
5857       case LibFunc::roundl:
5858         if (visitUnaryFloatCall(I, ISD::FROUND))
5859           return;
5860         break;
5861       case LibFunc::trunc:
5862       case LibFunc::truncf:
5863       case LibFunc::truncl:
5864         if (visitUnaryFloatCall(I, ISD::FTRUNC))
5865           return;
5866         break;
5867       case LibFunc::log2:
5868       case LibFunc::log2f:
5869       case LibFunc::log2l:
5870         if (visitUnaryFloatCall(I, ISD::FLOG2))
5871           return;
5872         break;
5873       case LibFunc::exp2:
5874       case LibFunc::exp2f:
5875       case LibFunc::exp2l:
5876         if (visitUnaryFloatCall(I, ISD::FEXP2))
5877           return;
5878         break;
5879       case LibFunc::memcmp:
5880         if (visitMemCmpCall(I))
5881           return;
5882         break;
5883       case LibFunc::memchr:
5884         if (visitMemChrCall(I))
5885           return;
5886         break;
5887       case LibFunc::strcpy:
5888         if (visitStrCpyCall(I, false))
5889           return;
5890         break;
5891       case LibFunc::stpcpy:
5892         if (visitStrCpyCall(I, true))
5893           return;
5894         break;
5895       case LibFunc::strcmp:
5896         if (visitStrCmpCall(I))
5897           return;
5898         break;
5899       case LibFunc::strlen:
5900         if (visitStrLenCall(I))
5901           return;
5902         break;
5903       case LibFunc::strnlen:
5904         if (visitStrNLenCall(I))
5905           return;
5906         break;
5907       }
5908     }
5909   }
5910
5911   SDValue Callee;
5912   if (!RenameFn)
5913     Callee = getValue(I.getCalledValue());
5914   else
5915     Callee = DAG.getExternalSymbol(
5916         RenameFn,
5917         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5918
5919   // Check if we can potentially perform a tail call. More detailed checking is
5920   // be done within LowerCallTo, after more information about the call is known.
5921   LowerCallTo(&I, Callee, I.isTailCall());
5922 }
5923
5924 namespace {
5925
5926 /// AsmOperandInfo - This contains information for each constraint that we are
5927 /// lowering.
5928 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5929 public:
5930   /// CallOperand - If this is the result output operand or a clobber
5931   /// this is null, otherwise it is the incoming operand to the CallInst.
5932   /// This gets modified as the asm is processed.
5933   SDValue CallOperand;
5934
5935   /// AssignedRegs - If this is a register or register class operand, this
5936   /// contains the set of register corresponding to the operand.
5937   RegsForValue AssignedRegs;
5938
5939   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5940     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
5941   }
5942
5943   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5944   /// corresponds to.  If there is no Value* for this operand, it returns
5945   /// MVT::Other.
5946   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
5947                            const DataLayout &DL) const {
5948     if (!CallOperandVal) return MVT::Other;
5949
5950     if (isa<BasicBlock>(CallOperandVal))
5951       return TLI.getPointerTy(DL);
5952
5953     llvm::Type *OpTy = CallOperandVal->getType();
5954
5955     // FIXME: code duplicated from TargetLowering::ParseConstraints().
5956     // If this is an indirect operand, the operand is a pointer to the
5957     // accessed type.
5958     if (isIndirect) {
5959       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5960       if (!PtrTy)
5961         report_fatal_error("Indirect operand for inline asm not a pointer!");
5962       OpTy = PtrTy->getElementType();
5963     }
5964
5965     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5966     if (StructType *STy = dyn_cast<StructType>(OpTy))
5967       if (STy->getNumElements() == 1)
5968         OpTy = STy->getElementType(0);
5969
5970     // If OpTy is not a single value, it may be a struct/union that we
5971     // can tile with integers.
5972     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5973       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
5974       switch (BitSize) {
5975       default: break;
5976       case 1:
5977       case 8:
5978       case 16:
5979       case 32:
5980       case 64:
5981       case 128:
5982         OpTy = IntegerType::get(Context, BitSize);
5983         break;
5984       }
5985     }
5986
5987     return TLI.getValueType(DL, OpTy, true);
5988   }
5989 };
5990
5991 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5992
5993 } // end anonymous namespace
5994
5995 /// GetRegistersForValue - Assign registers (virtual or physical) for the
5996 /// specified operand.  We prefer to assign virtual registers, to allow the
5997 /// register allocator to handle the assignment process.  However, if the asm
5998 /// uses features that we can't model on machineinstrs, we have SDISel do the
5999 /// allocation.  This produces generally horrible, but correct, code.
6000 ///
6001 ///   OpInfo describes the operand.
6002 ///
6003 static void GetRegistersForValue(SelectionDAG &DAG,
6004                                  const TargetLowering &TLI,
6005                                  SDLoc DL,
6006                                  SDISelAsmOperandInfo &OpInfo) {
6007   LLVMContext &Context = *DAG.getContext();
6008
6009   MachineFunction &MF = DAG.getMachineFunction();
6010   SmallVector<unsigned, 4> Regs;
6011
6012   // If this is a constraint for a single physreg, or a constraint for a
6013   // register class, find it.
6014   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
6015       TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(),
6016                                        OpInfo.ConstraintCode,
6017                                        OpInfo.ConstraintVT);
6018
6019   unsigned NumRegs = 1;
6020   if (OpInfo.ConstraintVT != MVT::Other) {
6021     // If this is a FP input in an integer register (or visa versa) insert a bit
6022     // cast of the input value.  More generally, handle any case where the input
6023     // value disagrees with the register class we plan to stick this in.
6024     if (OpInfo.Type == InlineAsm::isInput &&
6025         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6026       // Try to convert to the first EVT that the reg class contains.  If the
6027       // types are identical size, use a bitcast to convert (e.g. two differing
6028       // vector types).
6029       MVT RegVT = *PhysReg.second->vt_begin();
6030       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6031         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6032                                          RegVT, OpInfo.CallOperand);
6033         OpInfo.ConstraintVT = RegVT;
6034       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6035         // If the input is a FP value and we want it in FP registers, do a
6036         // bitcast to the corresponding integer type.  This turns an f64 value
6037         // into i64, which can be passed with two i32 values on a 32-bit
6038         // machine.
6039         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6040         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6041                                          RegVT, OpInfo.CallOperand);
6042         OpInfo.ConstraintVT = RegVT;
6043       }
6044     }
6045
6046     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6047   }
6048
6049   MVT RegVT;
6050   EVT ValueVT = OpInfo.ConstraintVT;
6051
6052   // If this is a constraint for a specific physical register, like {r17},
6053   // assign it now.
6054   if (unsigned AssignedReg = PhysReg.first) {
6055     const TargetRegisterClass *RC = PhysReg.second;
6056     if (OpInfo.ConstraintVT == MVT::Other)
6057       ValueVT = *RC->vt_begin();
6058
6059     // Get the actual register value type.  This is important, because the user
6060     // may have asked for (e.g.) the AX register in i32 type.  We need to
6061     // remember that AX is actually i16 to get the right extension.
6062     RegVT = *RC->vt_begin();
6063
6064     // This is a explicit reference to a physical register.
6065     Regs.push_back(AssignedReg);
6066
6067     // If this is an expanded reference, add the rest of the regs to Regs.
6068     if (NumRegs != 1) {
6069       TargetRegisterClass::iterator I = RC->begin();
6070       for (; *I != AssignedReg; ++I)
6071         assert(I != RC->end() && "Didn't find reg!");
6072
6073       // Already added the first reg.
6074       --NumRegs; ++I;
6075       for (; NumRegs; --NumRegs, ++I) {
6076         assert(I != RC->end() && "Ran out of registers to allocate!");
6077         Regs.push_back(*I);
6078       }
6079     }
6080
6081     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6082     return;
6083   }
6084
6085   // Otherwise, if this was a reference to an LLVM register class, create vregs
6086   // for this reference.
6087   if (const TargetRegisterClass *RC = PhysReg.second) {
6088     RegVT = *RC->vt_begin();
6089     if (OpInfo.ConstraintVT == MVT::Other)
6090       ValueVT = RegVT;
6091
6092     // Create the appropriate number of virtual registers.
6093     MachineRegisterInfo &RegInfo = MF.getRegInfo();
6094     for (; NumRegs; --NumRegs)
6095       Regs.push_back(RegInfo.createVirtualRegister(RC));
6096
6097     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6098     return;
6099   }
6100
6101   // Otherwise, we couldn't allocate enough registers for this.
6102 }
6103
6104 /// visitInlineAsm - Handle a call to an InlineAsm object.
6105 ///
6106 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6107   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6108
6109   /// ConstraintOperands - Information about all of the constraints.
6110   SDISelAsmOperandInfoVector ConstraintOperands;
6111
6112   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6113   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
6114       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
6115
6116   bool hasMemory = false;
6117
6118   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6119   unsigned ResNo = 0;   // ResNo - The result number of the next output.
6120   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6121     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6122     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6123
6124     MVT OpVT = MVT::Other;
6125
6126     // Compute the value type for each operand.
6127     switch (OpInfo.Type) {
6128     case InlineAsm::isOutput:
6129       // Indirect outputs just consume an argument.
6130       if (OpInfo.isIndirect) {
6131         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6132         break;
6133       }
6134
6135       // The return value of the call is this value.  As such, there is no
6136       // corresponding argument.
6137       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6138       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6139         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
6140                                       STy->getElementType(ResNo));
6141       } else {
6142         assert(ResNo == 0 && "Asm only has one result!");
6143         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
6144       }
6145       ++ResNo;
6146       break;
6147     case InlineAsm::isInput:
6148       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6149       break;
6150     case InlineAsm::isClobber:
6151       // Nothing to do.
6152       break;
6153     }
6154
6155     // If this is an input or an indirect output, process the call argument.
6156     // BasicBlocks are labels, currently appearing only in asm's.
6157     if (OpInfo.CallOperandVal) {
6158       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6159         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6160       } else {
6161         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6162       }
6163
6164       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
6165                                          DAG.getDataLayout()).getSimpleVT();
6166     }
6167
6168     OpInfo.ConstraintVT = OpVT;
6169
6170     // Indirect operand accesses access memory.
6171     if (OpInfo.isIndirect)
6172       hasMemory = true;
6173     else {
6174       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
6175         TargetLowering::ConstraintType
6176           CType = TLI.getConstraintType(OpInfo.Codes[j]);
6177         if (CType == TargetLowering::C_Memory) {
6178           hasMemory = true;
6179           break;
6180         }
6181       }
6182     }
6183   }
6184
6185   SDValue Chain, Flag;
6186
6187   // We won't need to flush pending loads if this asm doesn't touch
6188   // memory and is nonvolatile.
6189   if (hasMemory || IA->hasSideEffects())
6190     Chain = getRoot();
6191   else
6192     Chain = DAG.getRoot();
6193
6194   // Second pass over the constraints: compute which constraint option to use
6195   // and assign registers to constraints that want a specific physreg.
6196   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6197     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6198
6199     // If this is an output operand with a matching input operand, look up the
6200     // matching input. If their types mismatch, e.g. one is an integer, the
6201     // other is floating point, or their sizes are different, flag it as an
6202     // error.
6203     if (OpInfo.hasMatchingInput()) {
6204       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6205
6206       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6207         const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
6208         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6209             TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6210                                              OpInfo.ConstraintVT);
6211         std::pair<unsigned, const TargetRegisterClass *> InputRC =
6212             TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
6213                                              Input.ConstraintVT);
6214         if ((OpInfo.ConstraintVT.isInteger() !=
6215              Input.ConstraintVT.isInteger()) ||
6216             (MatchRC.second != InputRC.second)) {
6217           report_fatal_error("Unsupported asm: input constraint"
6218                              " with a matching output constraint of"
6219                              " incompatible type!");
6220         }
6221         Input.ConstraintVT = OpInfo.ConstraintVT;
6222       }
6223     }
6224
6225     // Compute the constraint code and ConstraintType to use.
6226     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6227
6228     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6229         OpInfo.Type == InlineAsm::isClobber)
6230       continue;
6231
6232     // If this is a memory input, and if the operand is not indirect, do what we
6233     // need to to provide an address for the memory input.
6234     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6235         !OpInfo.isIndirect) {
6236       assert((OpInfo.isMultipleAlternative ||
6237               (OpInfo.Type == InlineAsm::isInput)) &&
6238              "Can only indirectify direct input operands!");
6239
6240       // Memory operands really want the address of the value.  If we don't have
6241       // an indirect input, put it in the constpool if we can, otherwise spill
6242       // it to a stack slot.
6243       // TODO: This isn't quite right. We need to handle these according to
6244       // the addressing mode that the constraint wants. Also, this may take
6245       // an additional register for the computation and we don't want that
6246       // either.
6247
6248       // If the operand is a float, integer, or vector constant, spill to a
6249       // constant pool entry to get its address.
6250       const Value *OpVal = OpInfo.CallOperandVal;
6251       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6252           isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6253         OpInfo.CallOperand = DAG.getConstantPool(
6254             cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
6255       } else {
6256         // Otherwise, create a stack slot and emit a store to it before the
6257         // asm.
6258         Type *Ty = OpVal->getType();
6259         auto &DL = DAG.getDataLayout();
6260         uint64_t TySize = DL.getTypeAllocSize(Ty);
6261         unsigned Align = DL.getPrefTypeAlignment(Ty);
6262         MachineFunction &MF = DAG.getMachineFunction();
6263         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6264         SDValue StackSlot =
6265             DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout()));
6266         Chain = DAG.getStore(
6267             Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot,
6268             MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
6269             false, false, 0);
6270         OpInfo.CallOperand = StackSlot;
6271       }
6272
6273       // There is no longer a Value* corresponding to this operand.
6274       OpInfo.CallOperandVal = nullptr;
6275
6276       // It is now an indirect operand.
6277       OpInfo.isIndirect = true;
6278     }
6279
6280     // If this constraint is for a specific register, allocate it before
6281     // anything else.
6282     if (OpInfo.ConstraintType == TargetLowering::C_Register)
6283       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6284   }
6285
6286   // Second pass - Loop over all of the operands, assigning virtual or physregs
6287   // to register class operands.
6288   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6289     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6290
6291     // C_Register operands have already been allocated, Other/Memory don't need
6292     // to be.
6293     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6294       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6295   }
6296
6297   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6298   std::vector<SDValue> AsmNodeOperands;
6299   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6300   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
6301       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
6302
6303   // If we have a !srcloc metadata node associated with it, we want to attach
6304   // this to the ultimately generated inline asm machineinstr.  To do this, we
6305   // pass in the third operand as this (potentially null) inline asm MDNode.
6306   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6307   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6308
6309   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6310   // bits as operand 3.
6311   unsigned ExtraInfo = 0;
6312   if (IA->hasSideEffects())
6313     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6314   if (IA->isAlignStack())
6315     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6316   // Set the asm dialect.
6317   ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6318
6319   // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6320   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6321     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6322
6323     // Compute the constraint code and ConstraintType to use.
6324     TLI.ComputeConstraintToUse(OpInfo, SDValue());
6325
6326     // Ideally, we would only check against memory constraints.  However, the
6327     // meaning of an other constraint can be target-specific and we can't easily
6328     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6329     // for other constriants as well.
6330     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6331         OpInfo.ConstraintType == TargetLowering::C_Other) {
6332       if (OpInfo.Type == InlineAsm::isInput)
6333         ExtraInfo |= InlineAsm::Extra_MayLoad;
6334       else if (OpInfo.Type == InlineAsm::isOutput)
6335         ExtraInfo |= InlineAsm::Extra_MayStore;
6336       else if (OpInfo.Type == InlineAsm::isClobber)
6337         ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6338     }
6339   }
6340
6341   AsmNodeOperands.push_back(DAG.getTargetConstant(
6342       ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6343
6344   // Loop over all of the inputs, copying the operand values into the
6345   // appropriate registers and processing the output regs.
6346   RegsForValue RetValRegs;
6347
6348   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6349   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6350
6351   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6352     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6353
6354     switch (OpInfo.Type) {
6355     case InlineAsm::isOutput: {
6356       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6357           OpInfo.ConstraintType != TargetLowering::C_Register) {
6358         // Memory output, or 'other' output (e.g. 'X' constraint).
6359         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6360
6361         unsigned ConstraintID =
6362             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6363         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6364                "Failed to convert memory constraint code to constraint id.");
6365
6366         // Add information to the INLINEASM node to know about this output.
6367         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6368         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
6369         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
6370                                                         MVT::i32));
6371         AsmNodeOperands.push_back(OpInfo.CallOperand);
6372         break;
6373       }
6374
6375       // Otherwise, this is a register or register class output.
6376
6377       // Copy the output from the appropriate register.  Find a register that
6378       // we can use.
6379       if (OpInfo.AssignedRegs.Regs.empty()) {
6380         LLVMContext &Ctx = *DAG.getContext();
6381         Ctx.emitError(CS.getInstruction(),
6382                       "couldn't allocate output register for constraint '" +
6383                           Twine(OpInfo.ConstraintCode) + "'");
6384         return;
6385       }
6386
6387       // If this is an indirect operand, store through the pointer after the
6388       // asm.
6389       if (OpInfo.isIndirect) {
6390         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6391                                                       OpInfo.CallOperandVal));
6392       } else {
6393         // This is the result value of the call.
6394         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6395         // Concatenate this output onto the outputs list.
6396         RetValRegs.append(OpInfo.AssignedRegs);
6397       }
6398
6399       // Add information to the INLINEASM node to know that this register is
6400       // set.
6401       OpInfo.AssignedRegs
6402           .AddInlineAsmOperands(OpInfo.isEarlyClobber
6403                                     ? InlineAsm::Kind_RegDefEarlyClobber
6404                                     : InlineAsm::Kind_RegDef,
6405                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
6406       break;
6407     }
6408     case InlineAsm::isInput: {
6409       SDValue InOperandVal = OpInfo.CallOperand;
6410
6411       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6412         // If this is required to match an output register we have already set,
6413         // just use its register.
6414         unsigned OperandNo = OpInfo.getMatchedOperand();
6415
6416         // Scan until we find the definition we already emitted of this operand.
6417         // When we find it, create a RegsForValue operand.
6418         unsigned CurOp = InlineAsm::Op_FirstOperand;
6419         for (; OperandNo; --OperandNo) {
6420           // Advance to the next operand.
6421           unsigned OpFlag =
6422             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6423           assert((InlineAsm::isRegDefKind(OpFlag) ||
6424                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6425                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6426           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6427         }
6428
6429         unsigned OpFlag =
6430           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6431         if (InlineAsm::isRegDefKind(OpFlag) ||
6432             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6433           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6434           if (OpInfo.isIndirect) {
6435             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6436             LLVMContext &Ctx = *DAG.getContext();
6437             Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
6438                                                " don't know how to handle tied "
6439                                                "indirect register inputs");
6440             return;
6441           }
6442
6443           RegsForValue MatchedRegs;
6444           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6445           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6446           MatchedRegs.RegVTs.push_back(RegVT);
6447           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6448           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6449                i != e; ++i) {
6450             if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6451               MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6452             else {
6453               LLVMContext &Ctx = *DAG.getContext();
6454               Ctx.emitError(CS.getInstruction(),
6455                             "inline asm error: This value"
6456                             " type register class is not natively supported!");
6457               return;
6458             }
6459           }
6460           SDLoc dl = getCurSDLoc();
6461           // Use the produced MatchedRegs object to
6462           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl,
6463                                     Chain, &Flag, CS.getInstruction());
6464           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6465                                            true, OpInfo.getMatchedOperand(), dl,
6466                                            DAG, AsmNodeOperands);
6467           break;
6468         }
6469
6470         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6471         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6472                "Unexpected number of operands");
6473         // Add information to the INLINEASM node to know about this input.
6474         // See InlineAsm.h isUseOperandTiedToDef.
6475         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
6476         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6477                                                     OpInfo.getMatchedOperand());
6478         AsmNodeOperands.push_back(DAG.getTargetConstant(
6479             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6480         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6481         break;
6482       }
6483
6484       // Treat indirect 'X' constraint as memory.
6485       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6486           OpInfo.isIndirect)
6487         OpInfo.ConstraintType = TargetLowering::C_Memory;
6488
6489       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6490         std::vector<SDValue> Ops;
6491         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6492                                           Ops, DAG);
6493         if (Ops.empty()) {
6494           LLVMContext &Ctx = *DAG.getContext();
6495           Ctx.emitError(CS.getInstruction(),
6496                         "invalid operand for inline asm constraint '" +
6497                             Twine(OpInfo.ConstraintCode) + "'");
6498           return;
6499         }
6500
6501         // Add information to the INLINEASM node to know about this input.
6502         unsigned ResOpType =
6503           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6504         AsmNodeOperands.push_back(DAG.getTargetConstant(
6505             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6506         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6507         break;
6508       }
6509
6510       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6511         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6512         assert(InOperandVal.getValueType() ==
6513                    TLI.getPointerTy(DAG.getDataLayout()) &&
6514                "Memory operands expect pointer values");
6515
6516         unsigned ConstraintID =
6517             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6518         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6519                "Failed to convert memory constraint code to constraint id.");
6520
6521         // Add information to the INLINEASM node to know about this input.
6522         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6523         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
6524         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6525                                                         getCurSDLoc(),
6526                                                         MVT::i32));
6527         AsmNodeOperands.push_back(InOperandVal);
6528         break;
6529       }
6530
6531       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6532               OpInfo.ConstraintType == TargetLowering::C_Register) &&
6533              "Unknown constraint type!");
6534
6535       // TODO: Support this.
6536       if (OpInfo.isIndirect) {
6537         LLVMContext &Ctx = *DAG.getContext();
6538         Ctx.emitError(CS.getInstruction(),
6539                       "Don't know how to handle indirect register inputs yet "
6540                       "for constraint '" +
6541                           Twine(OpInfo.ConstraintCode) + "'");
6542         return;
6543       }
6544
6545       // Copy the input into the appropriate registers.
6546       if (OpInfo.AssignedRegs.Regs.empty()) {
6547         LLVMContext &Ctx = *DAG.getContext();
6548         Ctx.emitError(CS.getInstruction(),
6549                       "couldn't allocate input reg for constraint '" +
6550                           Twine(OpInfo.ConstraintCode) + "'");
6551         return;
6552       }
6553
6554       SDLoc dl = getCurSDLoc();
6555
6556       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
6557                                         Chain, &Flag, CS.getInstruction());
6558
6559       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6560                                                dl, DAG, AsmNodeOperands);
6561       break;
6562     }
6563     case InlineAsm::isClobber: {
6564       // Add the clobbered value to the operand list, so that the register
6565       // allocator is aware that the physreg got clobbered.
6566       if (!OpInfo.AssignedRegs.Regs.empty())
6567         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6568                                                  false, 0, getCurSDLoc(), DAG,
6569                                                  AsmNodeOperands);
6570       break;
6571     }
6572     }
6573   }
6574
6575   // Finish up input operands.  Set the input chain and add the flag last.
6576   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6577   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6578
6579   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
6580                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
6581   Flag = Chain.getValue(1);
6582
6583   // If this asm returns a register value, copy the result from that register
6584   // and set it as the value of the call.
6585   if (!RetValRegs.Regs.empty()) {
6586     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6587                                              Chain, &Flag, CS.getInstruction());
6588
6589     // FIXME: Why don't we do this for inline asms with MRVs?
6590     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6591       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
6592
6593       // If any of the results of the inline asm is a vector, it may have the
6594       // wrong width/num elts.  This can happen for register classes that can
6595       // contain multiple different value types.  The preg or vreg allocated may
6596       // not have the same VT as was expected.  Convert it to the right type
6597       // with bit_convert.
6598       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6599         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
6600                           ResultType, Val);
6601
6602       } else if (ResultType != Val.getValueType() &&
6603                  ResultType.isInteger() && Val.getValueType().isInteger()) {
6604         // If a result value was tied to an input value, the computed result may
6605         // have a wider width than the expected result.  Extract the relevant
6606         // portion.
6607         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
6608       }
6609
6610       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6611     }
6612
6613     setValue(CS.getInstruction(), Val);
6614     // Don't need to use this as a chain in this case.
6615     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6616       return;
6617   }
6618
6619   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6620
6621   // Process indirect outputs, first output all of the flagged copies out of
6622   // physregs.
6623   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6624     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6625     const Value *Ptr = IndirectStoresToEmit[i].second;
6626     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6627                                              Chain, &Flag, IA);
6628     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6629   }
6630
6631   // Emit the non-flagged stores from the physregs.
6632   SmallVector<SDValue, 8> OutChains;
6633   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6634     SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
6635                                StoresToEmit[i].first,
6636                                getValue(StoresToEmit[i].second),
6637                                MachinePointerInfo(StoresToEmit[i].second),
6638                                false, false, 0);
6639     OutChains.push_back(Val);
6640   }
6641
6642   if (!OutChains.empty())
6643     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
6644
6645   DAG.setRoot(Chain);
6646 }
6647
6648 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6649   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
6650                           MVT::Other, getRoot(),
6651                           getValue(I.getArgOperand(0)),
6652                           DAG.getSrcValue(I.getArgOperand(0))));
6653 }
6654
6655 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6656   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6657   const DataLayout &DL = DAG.getDataLayout();
6658   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
6659                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
6660                            DAG.getSrcValue(I.getOperand(0)),
6661                            DL.getABITypeAlignment(I.getType()));
6662   setValue(&I, V);
6663   DAG.setRoot(V.getValue(1));
6664 }
6665
6666 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6667   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
6668                           MVT::Other, getRoot(),
6669                           getValue(I.getArgOperand(0)),
6670                           DAG.getSrcValue(I.getArgOperand(0))));
6671 }
6672
6673 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6674   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
6675                           MVT::Other, getRoot(),
6676                           getValue(I.getArgOperand(0)),
6677                           getValue(I.getArgOperand(1)),
6678                           DAG.getSrcValue(I.getArgOperand(0)),
6679                           DAG.getSrcValue(I.getArgOperand(1))));
6680 }
6681
6682 /// \brief Lower an argument list according to the target calling convention.
6683 ///
6684 /// \return A tuple of <return-value, token-chain>
6685 ///
6686 /// This is a helper for lowering intrinsics that follow a target calling
6687 /// convention or require stack pointer adjustment. Only a subset of the
6688 /// intrinsic's operands need to participate in the calling convention.
6689 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands(
6690     ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee,
6691     Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) {
6692   TargetLowering::ArgListTy Args;
6693   Args.reserve(NumArgs);
6694
6695   // Populate the argument list.
6696   // Attributes for args start at offset 1, after the return attribute.
6697   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
6698        ArgI != ArgE; ++ArgI) {
6699     const Value *V = CS->getOperand(ArgI);
6700
6701     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
6702
6703     TargetLowering::ArgListEntry Entry;
6704     Entry.Node = getValue(V);
6705     Entry.Ty = V->getType();
6706     Entry.setAttributes(&CS, AttrI);
6707     Args.push_back(Entry);
6708   }
6709
6710   TargetLowering::CallLoweringInfo CLI(DAG);
6711   CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
6712     .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs)
6713     .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint);
6714
6715   return lowerInvokable(CLI, EHPadBB);
6716 }
6717
6718 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
6719 /// or patchpoint target node's operand list.
6720 ///
6721 /// Constants are converted to TargetConstants purely as an optimization to
6722 /// avoid constant materialization and register allocation.
6723 ///
6724 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
6725 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
6726 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
6727 /// address materialization and register allocation, but may also be required
6728 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
6729 /// alloca in the entry block, then the runtime may assume that the alloca's
6730 /// StackMap location can be read immediately after compilation and that the
6731 /// location is valid at any point during execution (this is similar to the
6732 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
6733 /// only available in a register, then the runtime would need to trap when
6734 /// execution reaches the StackMap in order to read the alloca's location.
6735 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
6736                                 SDLoc DL, SmallVectorImpl<SDValue> &Ops,
6737                                 SelectionDAGBuilder &Builder) {
6738   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
6739     SDValue OpVal = Builder.getValue(CS.getArgument(i));
6740     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
6741       Ops.push_back(
6742         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
6743       Ops.push_back(
6744         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
6745     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
6746       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
6747       Ops.push_back(Builder.DAG.getTargetFrameIndex(
6748           FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout())));
6749     } else
6750       Ops.push_back(OpVal);
6751   }
6752 }
6753
6754 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
6755 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
6756   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
6757   //                                  [live variables...])
6758
6759   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
6760
6761   SDValue Chain, InFlag, Callee, NullPtr;
6762   SmallVector<SDValue, 32> Ops;
6763
6764   SDLoc DL = getCurSDLoc();
6765   Callee = getValue(CI.getCalledValue());
6766   NullPtr = DAG.getIntPtrConstant(0, DL, true);
6767
6768   // The stackmap intrinsic only records the live variables (the arguemnts
6769   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
6770   // intrinsic, this won't be lowered to a function call. This means we don't
6771   // have to worry about calling conventions and target specific lowering code.
6772   // Instead we perform the call lowering right here.
6773   //
6774   // chain, flag = CALLSEQ_START(chain, 0)
6775   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
6776   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
6777   //
6778   Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
6779   InFlag = Chain.getValue(1);
6780
6781   // Add the <id> and <numBytes> constants.
6782   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
6783   Ops.push_back(DAG.getTargetConstant(
6784                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
6785   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
6786   Ops.push_back(DAG.getTargetConstant(
6787                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
6788                   MVT::i32));
6789
6790   // Push live variables for the stack map.
6791   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
6792
6793   // We are not pushing any register mask info here on the operands list,
6794   // because the stackmap doesn't clobber anything.
6795
6796   // Push the chain and the glue flag.
6797   Ops.push_back(Chain);
6798   Ops.push_back(InFlag);
6799
6800   // Create the STACKMAP node.
6801   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6802   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
6803   Chain = SDValue(SM, 0);
6804   InFlag = Chain.getValue(1);
6805
6806   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
6807
6808   // Stackmaps don't generate values, so nothing goes into the NodeMap.
6809
6810   // Set the root to the target-lowered call chain.
6811   DAG.setRoot(Chain);
6812
6813   // Inform the Frame Information that we have a stackmap in this function.
6814   FuncInfo.MF->getFrameInfo()->setHasStackMap();
6815 }
6816
6817 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
6818 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
6819                                           const BasicBlock *EHPadBB) {
6820   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
6821   //                                                 i32 <numBytes>,
6822   //                                                 i8* <target>,
6823   //                                                 i32 <numArgs>,
6824   //                                                 [Args...],
6825   //                                                 [live variables...])
6826
6827   CallingConv::ID CC = CS.getCallingConv();
6828   bool IsAnyRegCC = CC == CallingConv::AnyReg;
6829   bool HasDef = !CS->getType()->isVoidTy();
6830   SDLoc dl = getCurSDLoc();
6831   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
6832
6833   // Handle immediate and symbolic callees.
6834   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
6835     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
6836                                    /*isTarget=*/true);
6837   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
6838     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
6839                                          SDLoc(SymbolicCallee),
6840                                          SymbolicCallee->getValueType(0));
6841
6842   // Get the real number of arguments participating in the call <numArgs>
6843   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
6844   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
6845
6846   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
6847   // Intrinsics include all meta-operands up to but not including CC.
6848   unsigned NumMetaOpers = PatchPointOpers::CCPos;
6849   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
6850          "Not enough arguments provided to the patchpoint intrinsic");
6851
6852   // For AnyRegCC the arguments are lowered later on manually.
6853   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
6854   Type *ReturnTy =
6855     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
6856   std::pair<SDValue, SDValue> Result = lowerCallOperands(
6857       CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true);
6858
6859   SDNode *CallEnd = Result.second.getNode();
6860   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
6861     CallEnd = CallEnd->getOperand(0).getNode();
6862
6863   /// Get a call instruction from the call sequence chain.
6864   /// Tail calls are not allowed.
6865   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
6866          "Expected a callseq node.");
6867   SDNode *Call = CallEnd->getOperand(0).getNode();
6868   bool HasGlue = Call->getGluedNode();
6869
6870   // Replace the target specific call node with the patchable intrinsic.
6871   SmallVector<SDValue, 8> Ops;
6872
6873   // Add the <id> and <numBytes> constants.
6874   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
6875   Ops.push_back(DAG.getTargetConstant(
6876                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
6877   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
6878   Ops.push_back(DAG.getTargetConstant(
6879                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
6880                   MVT::i32));
6881
6882   // Add the callee.
6883   Ops.push_back(Callee);
6884
6885   // Adjust <numArgs> to account for any arguments that have been passed on the
6886   // stack instead.
6887   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
6888   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
6889   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
6890   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
6891
6892   // Add the calling convention
6893   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
6894
6895   // Add the arguments we omitted previously. The register allocator should
6896   // place these in any free register.
6897   if (IsAnyRegCC)
6898     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
6899       Ops.push_back(getValue(CS.getArgument(i)));
6900
6901   // Push the arguments from the call instruction up to the register mask.
6902   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
6903   Ops.append(Call->op_begin() + 2, e);
6904
6905   // Push live variables for the stack map.
6906   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
6907
6908   // Push the register mask info.
6909   if (HasGlue)
6910     Ops.push_back(*(Call->op_end()-2));
6911   else
6912     Ops.push_back(*(Call->op_end()-1));
6913
6914   // Push the chain (this is originally the first operand of the call, but
6915   // becomes now the last or second to last operand).
6916   Ops.push_back(*(Call->op_begin()));
6917
6918   // Push the glue flag (last operand).
6919   if (HasGlue)
6920     Ops.push_back(*(Call->op_end()-1));
6921
6922   SDVTList NodeTys;
6923   if (IsAnyRegCC && HasDef) {
6924     // Create the return types based on the intrinsic definition
6925     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6926     SmallVector<EVT, 3> ValueVTs;
6927     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
6928     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
6929
6930     // There is always a chain and a glue type at the end
6931     ValueVTs.push_back(MVT::Other);
6932     ValueVTs.push_back(MVT::Glue);
6933     NodeTys = DAG.getVTList(ValueVTs);
6934   } else
6935     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6936
6937   // Replace the target specific call node with a PATCHPOINT node.
6938   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
6939                                          dl, NodeTys, Ops);
6940
6941   // Update the NodeMap.
6942   if (HasDef) {
6943     if (IsAnyRegCC)
6944       setValue(CS.getInstruction(), SDValue(MN, 0));
6945     else
6946       setValue(CS.getInstruction(), Result.first);
6947   }
6948
6949   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
6950   // call sequence. Furthermore the location of the chain and glue can change
6951   // when the AnyReg calling convention is used and the intrinsic returns a
6952   // value.
6953   if (IsAnyRegCC && HasDef) {
6954     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
6955     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
6956     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
6957   } else
6958     DAG.ReplaceAllUsesWith(Call, MN);
6959   DAG.DeleteNode(Call);
6960
6961   // Inform the Frame Information that we have a patchpoint in this function.
6962   FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
6963 }
6964
6965 /// Returns an AttributeSet representing the attributes applied to the return
6966 /// value of the given call.
6967 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
6968   SmallVector<Attribute::AttrKind, 2> Attrs;
6969   if (CLI.RetSExt)
6970     Attrs.push_back(Attribute::SExt);
6971   if (CLI.RetZExt)
6972     Attrs.push_back(Attribute::ZExt);
6973   if (CLI.IsInReg)
6974     Attrs.push_back(Attribute::InReg);
6975
6976   return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
6977                            Attrs);
6978 }
6979
6980 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
6981 /// implementation, which just calls LowerCall.
6982 /// FIXME: When all targets are
6983 /// migrated to using LowerCall, this hook should be integrated into SDISel.
6984 std::pair<SDValue, SDValue>
6985 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
6986   // Handle the incoming return values from the call.
6987   CLI.Ins.clear();
6988   Type *OrigRetTy = CLI.RetTy;
6989   SmallVector<EVT, 4> RetTys;
6990   SmallVector<uint64_t, 4> Offsets;
6991   auto &DL = CLI.DAG.getDataLayout();
6992   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
6993
6994   SmallVector<ISD::OutputArg, 4> Outs;
6995   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
6996
6997   bool CanLowerReturn =
6998       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
6999                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
7000
7001   SDValue DemoteStackSlot;
7002   int DemoteStackIdx = -100;
7003   if (!CanLowerReturn) {
7004     // FIXME: equivalent assert?
7005     // assert(!CS.hasInAllocaArgument() &&
7006     //        "sret demotion is incompatible with inalloca");
7007     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
7008     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
7009     MachineFunction &MF = CLI.DAG.getMachineFunction();
7010     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
7011     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
7012
7013     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL));
7014     ArgListEntry Entry;
7015     Entry.Node = DemoteStackSlot;
7016     Entry.Ty = StackSlotPtrType;
7017     Entry.isSExt = false;
7018     Entry.isZExt = false;
7019     Entry.isInReg = false;
7020     Entry.isSRet = true;
7021     Entry.isNest = false;
7022     Entry.isByVal = false;
7023     Entry.isReturned = false;
7024     Entry.Alignment = Align;
7025     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
7026     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
7027
7028     // sret demotion isn't compatible with tail-calls, since the sret argument
7029     // points into the callers stack frame.
7030     CLI.IsTailCall = false;
7031   } else {
7032     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7033       EVT VT = RetTys[I];
7034       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7035       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7036       for (unsigned i = 0; i != NumRegs; ++i) {
7037         ISD::InputArg MyFlags;
7038         MyFlags.VT = RegisterVT;
7039         MyFlags.ArgVT = VT;
7040         MyFlags.Used = CLI.IsReturnValueUsed;
7041         if (CLI.RetSExt)
7042           MyFlags.Flags.setSExt();
7043         if (CLI.RetZExt)
7044           MyFlags.Flags.setZExt();
7045         if (CLI.IsInReg)
7046           MyFlags.Flags.setInReg();
7047         CLI.Ins.push_back(MyFlags);
7048       }
7049     }
7050   }
7051
7052   // Handle all of the outgoing arguments.
7053   CLI.Outs.clear();
7054   CLI.OutVals.clear();
7055   ArgListTy &Args = CLI.getArgs();
7056   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7057     SmallVector<EVT, 4> ValueVTs;
7058     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
7059     Type *FinalType = Args[i].Ty;
7060     if (Args[i].isByVal)
7061       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
7062     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
7063         FinalType, CLI.CallConv, CLI.IsVarArg);
7064     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
7065          ++Value) {
7066       EVT VT = ValueVTs[Value];
7067       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7068       SDValue Op = SDValue(Args[i].Node.getNode(),
7069                            Args[i].Node.getResNo() + Value);
7070       ISD::ArgFlagsTy Flags;
7071       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7072
7073       if (Args[i].isZExt)
7074         Flags.setZExt();
7075       if (Args[i].isSExt)
7076         Flags.setSExt();
7077       if (Args[i].isInReg)
7078         Flags.setInReg();
7079       if (Args[i].isSRet)
7080         Flags.setSRet();
7081       if (Args[i].isByVal)
7082         Flags.setByVal();
7083       if (Args[i].isInAlloca) {
7084         Flags.setInAlloca();
7085         // Set the byval flag for CCAssignFn callbacks that don't know about
7086         // inalloca.  This way we can know how many bytes we should've allocated
7087         // and how many bytes a callee cleanup function will pop.  If we port
7088         // inalloca to more targets, we'll have to add custom inalloca handling
7089         // in the various CC lowering callbacks.
7090         Flags.setByVal();
7091       }
7092       if (Args[i].isByVal || Args[i].isInAlloca) {
7093         PointerType *Ty = cast<PointerType>(Args[i].Ty);
7094         Type *ElementTy = Ty->getElementType();
7095         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7096         // For ByVal, alignment should come from FE.  BE will guess if this
7097         // info is not there but there are cases it cannot get right.
7098         unsigned FrameAlign;
7099         if (Args[i].Alignment)
7100           FrameAlign = Args[i].Alignment;
7101         else
7102           FrameAlign = getByValTypeAlignment(ElementTy, DL);
7103         Flags.setByValAlign(FrameAlign);
7104       }
7105       if (Args[i].isNest)
7106         Flags.setNest();
7107       if (NeedsRegBlock)
7108         Flags.setInConsecutiveRegs();
7109       Flags.setOrigAlign(OriginalAlignment);
7110
7111       MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
7112       unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
7113       SmallVector<SDValue, 4> Parts(NumParts);
7114       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
7115
7116       if (Args[i].isSExt)
7117         ExtendKind = ISD::SIGN_EXTEND;
7118       else if (Args[i].isZExt)
7119         ExtendKind = ISD::ZERO_EXTEND;
7120
7121       // Conservatively only handle 'returned' on non-vectors for now
7122       if (Args[i].isReturned && !Op.getValueType().isVector()) {
7123         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
7124                "unexpected use of 'returned'");
7125         // Before passing 'returned' to the target lowering code, ensure that
7126         // either the register MVT and the actual EVT are the same size or that
7127         // the return value and argument are extended in the same way; in these
7128         // cases it's safe to pass the argument register value unchanged as the
7129         // return register value (although it's at the target's option whether
7130         // to do so)
7131         // TODO: allow code generation to take advantage of partially preserved
7132         // registers rather than clobbering the entire register when the
7133         // parameter extension method is not compatible with the return
7134         // extension method
7135         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7136             (ExtendKind != ISD::ANY_EXTEND &&
7137              CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7138         Flags.setReturned();
7139       }
7140
7141       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
7142                      CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
7143
7144       for (unsigned j = 0; j != NumParts; ++j) {
7145         // if it isn't first piece, alignment must be 1
7146         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7147                                i < CLI.NumFixedArgs,
7148                                i, j*Parts[j].getValueType().getStoreSize());
7149         if (NumParts > 1 && j == 0)
7150           MyFlags.Flags.setSplit();
7151         else if (j != 0)
7152           MyFlags.Flags.setOrigAlign(1);
7153
7154         CLI.Outs.push_back(MyFlags);
7155         CLI.OutVals.push_back(Parts[j]);
7156       }
7157
7158       if (NeedsRegBlock && Value == NumValues - 1)
7159         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
7160     }
7161   }
7162
7163   SmallVector<SDValue, 4> InVals;
7164   CLI.Chain = LowerCall(CLI, InVals);
7165
7166   // Verify that the target's LowerCall behaved as expected.
7167   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7168          "LowerCall didn't return a valid chain!");
7169   assert((!CLI.IsTailCall || InVals.empty()) &&
7170          "LowerCall emitted a return value for a tail call!");
7171   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7172          "LowerCall didn't emit the correct number of values!");
7173
7174   // For a tail call, the return value is merely live-out and there aren't
7175   // any nodes in the DAG representing it. Return a special value to
7176   // indicate that a tail call has been emitted and no more Instructions
7177   // should be processed in the current block.
7178   if (CLI.IsTailCall) {
7179     CLI.DAG.setRoot(CLI.Chain);
7180     return std::make_pair(SDValue(), SDValue());
7181   }
7182
7183   DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7184           assert(InVals[i].getNode() &&
7185                  "LowerCall emitted a null value!");
7186           assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7187                  "LowerCall emitted a value with the wrong type!");
7188         });
7189
7190   SmallVector<SDValue, 4> ReturnValues;
7191   if (!CanLowerReturn) {
7192     // The instruction result is the result of loading from the
7193     // hidden sret parameter.
7194     SmallVector<EVT, 1> PVTs;
7195     Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
7196
7197     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
7198     assert(PVTs.size() == 1 && "Pointers should fit in one register");
7199     EVT PtrVT = PVTs[0];
7200
7201     unsigned NumValues = RetTys.size();
7202     ReturnValues.resize(NumValues);
7203     SmallVector<SDValue, 4> Chains(NumValues);
7204
7205     for (unsigned i = 0; i < NumValues; ++i) {
7206       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
7207                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
7208                                                         PtrVT));
7209       SDValue L = CLI.DAG.getLoad(
7210           RetTys[i], CLI.DL, CLI.Chain, Add,
7211           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
7212                                             DemoteStackIdx, Offsets[i]),
7213           false, false, false, 1);
7214       ReturnValues[i] = L;
7215       Chains[i] = L.getValue(1);
7216     }
7217
7218     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
7219   } else {
7220     // Collect the legal value parts into potentially illegal values
7221     // that correspond to the original function's return values.
7222     ISD::NodeType AssertOp = ISD::DELETED_NODE;
7223     if (CLI.RetSExt)
7224       AssertOp = ISD::AssertSext;
7225     else if (CLI.RetZExt)
7226       AssertOp = ISD::AssertZext;
7227     unsigned CurReg = 0;
7228     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7229       EVT VT = RetTys[I];
7230       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7231       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7232
7233       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7234                                               NumRegs, RegisterVT, VT, nullptr,
7235                                               AssertOp));
7236       CurReg += NumRegs;
7237     }
7238
7239     // For a function returning void, there is no return value. We can't create
7240     // such a node, so we just return a null return value in that case. In
7241     // that case, nothing will actually look at the value.
7242     if (ReturnValues.empty())
7243       return std::make_pair(SDValue(), CLI.Chain);
7244   }
7245
7246   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7247                                 CLI.DAG.getVTList(RetTys), ReturnValues);
7248   return std::make_pair(Res, CLI.Chain);
7249 }
7250
7251 void TargetLowering::LowerOperationWrapper(SDNode *N,
7252                                            SmallVectorImpl<SDValue> &Results,
7253                                            SelectionDAG &DAG) const {
7254   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
7255   if (Res.getNode())
7256     Results.push_back(Res);
7257 }
7258
7259 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7260   llvm_unreachable("LowerOperation not implemented for this target!");
7261 }
7262
7263 void
7264 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
7265   SDValue Op = getNonRegisterValue(V);
7266   assert((Op.getOpcode() != ISD::CopyFromReg ||
7267           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
7268          "Copy from a reg to the same reg!");
7269   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
7270
7271   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7272   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
7273                    V->getType());
7274   SDValue Chain = DAG.getEntryNode();
7275
7276   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
7277                               FuncInfo.PreferredExtendType.end())
7278                                  ? ISD::ANY_EXTEND
7279                                  : FuncInfo.PreferredExtendType[V];
7280   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
7281   PendingExports.push_back(Chain);
7282 }
7283
7284 #include "llvm/CodeGen/SelectionDAGISel.h"
7285
7286 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
7287 /// entry block, return true.  This includes arguments used by switches, since
7288 /// the switch may expand into multiple basic blocks.
7289 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
7290   // With FastISel active, we may be splitting blocks, so force creation
7291   // of virtual registers for all non-dead arguments.
7292   if (FastISel)
7293     return A->use_empty();
7294
7295   const BasicBlock &Entry = A->getParent()->front();
7296   for (const User *U : A->users())
7297     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
7298       return false;  // Use not in entry block.
7299
7300   return true;
7301 }
7302
7303 void SelectionDAGISel::LowerArguments(const Function &F) {
7304   SelectionDAG &DAG = SDB->DAG;
7305   SDLoc dl = SDB->getCurSDLoc();
7306   const DataLayout &DL = DAG.getDataLayout();
7307   SmallVector<ISD::InputArg, 16> Ins;
7308
7309   if (!FuncInfo->CanLowerReturn) {
7310     // Put in an sret pointer parameter before all the other parameters.
7311     SmallVector<EVT, 1> ValueVTs;
7312     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7313                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7314
7315     // NOTE: Assuming that a pointer will never break down to more than one VT
7316     // or one register.
7317     ISD::ArgFlagsTy Flags;
7318     Flags.setSRet();
7319     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
7320     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
7321                          ISD::InputArg::NoArgIndex, 0);
7322     Ins.push_back(RetArg);
7323   }
7324
7325   // Set up the incoming argument description vector.
7326   unsigned Idx = 1;
7327   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
7328        I != E; ++I, ++Idx) {
7329     SmallVector<EVT, 4> ValueVTs;
7330     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7331     bool isArgValueUsed = !I->use_empty();
7332     unsigned PartBase = 0;
7333     Type *FinalType = I->getType();
7334     if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7335       FinalType = cast<PointerType>(FinalType)->getElementType();
7336     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
7337         FinalType, F.getCallingConv(), F.isVarArg());
7338     for (unsigned Value = 0, NumValues = ValueVTs.size();
7339          Value != NumValues; ++Value) {
7340       EVT VT = ValueVTs[Value];
7341       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
7342       ISD::ArgFlagsTy Flags;
7343       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7344
7345       if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7346         Flags.setZExt();
7347       if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7348         Flags.setSExt();
7349       if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
7350         Flags.setInReg();
7351       if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
7352         Flags.setSRet();
7353       if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7354         Flags.setByVal();
7355       if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
7356         Flags.setInAlloca();
7357         // Set the byval flag for CCAssignFn callbacks that don't know about
7358         // inalloca.  This way we can know how many bytes we should've allocated
7359         // and how many bytes a callee cleanup function will pop.  If we port
7360         // inalloca to more targets, we'll have to add custom inalloca handling
7361         // in the various CC lowering callbacks.
7362         Flags.setByVal();
7363       }
7364       if (Flags.isByVal() || Flags.isInAlloca()) {
7365         PointerType *Ty = cast<PointerType>(I->getType());
7366         Type *ElementTy = Ty->getElementType();
7367         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7368         // For ByVal, alignment should be passed from FE.  BE will guess if
7369         // this info is not there but there are cases it cannot get right.
7370         unsigned FrameAlign;
7371         if (F.getParamAlignment(Idx))
7372           FrameAlign = F.getParamAlignment(Idx);
7373         else
7374           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
7375         Flags.setByValAlign(FrameAlign);
7376       }
7377       if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
7378         Flags.setNest();
7379       if (NeedsRegBlock)
7380         Flags.setInConsecutiveRegs();
7381       Flags.setOrigAlign(OriginalAlignment);
7382
7383       MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7384       unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7385       for (unsigned i = 0; i != NumRegs; ++i) {
7386         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
7387                               Idx-1, PartBase+i*RegisterVT.getStoreSize());
7388         if (NumRegs > 1 && i == 0)
7389           MyFlags.Flags.setSplit();
7390         // if it isn't first piece, alignment must be 1
7391         else if (i > 0)
7392           MyFlags.Flags.setOrigAlign(1);
7393         Ins.push_back(MyFlags);
7394       }
7395       if (NeedsRegBlock && Value == NumValues - 1)
7396         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
7397       PartBase += VT.getStoreSize();
7398     }
7399   }
7400
7401   // Call the target to set up the argument values.
7402   SmallVector<SDValue, 8> InVals;
7403   SDValue NewRoot = TLI->LowerFormalArguments(
7404       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
7405
7406   // Verify that the target's LowerFormalArguments behaved as expected.
7407   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
7408          "LowerFormalArguments didn't return a valid chain!");
7409   assert(InVals.size() == Ins.size() &&
7410          "LowerFormalArguments didn't emit the correct number of values!");
7411   DEBUG({
7412       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
7413         assert(InVals[i].getNode() &&
7414                "LowerFormalArguments emitted a null value!");
7415         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
7416                "LowerFormalArguments emitted a value with the wrong type!");
7417       }
7418     });
7419
7420   // Update the DAG with the new chain value resulting from argument lowering.
7421   DAG.setRoot(NewRoot);
7422
7423   // Set up the argument values.
7424   unsigned i = 0;
7425   Idx = 1;
7426   if (!FuncInfo->CanLowerReturn) {
7427     // Create a virtual register for the sret pointer, and put in a copy
7428     // from the sret argument into it.
7429     SmallVector<EVT, 1> ValueVTs;
7430     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7431                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7432     MVT VT = ValueVTs[0].getSimpleVT();
7433     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7434     ISD::NodeType AssertOp = ISD::DELETED_NODE;
7435     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
7436                                         RegVT, VT, nullptr, AssertOp);
7437
7438     MachineFunction& MF = SDB->DAG.getMachineFunction();
7439     MachineRegisterInfo& RegInfo = MF.getRegInfo();
7440     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
7441     FuncInfo->DemoteRegister = SRetReg;
7442     NewRoot =
7443         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
7444     DAG.setRoot(NewRoot);
7445
7446     // i indexes lowered arguments.  Bump it past the hidden sret argument.
7447     // Idx indexes LLVM arguments.  Don't touch it.
7448     ++i;
7449   }
7450
7451   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
7452       ++I, ++Idx) {
7453     SmallVector<SDValue, 4> ArgValues;
7454     SmallVector<EVT, 4> ValueVTs;
7455     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7456     unsigned NumValues = ValueVTs.size();
7457
7458     // If this argument is unused then remember its value. It is used to generate
7459     // debugging information.
7460     if (I->use_empty() && NumValues) {
7461       SDB->setUnusedArgValue(&*I, InVals[i]);
7462
7463       // Also remember any frame index for use in FastISel.
7464       if (FrameIndexSDNode *FI =
7465           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
7466         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
7467     }
7468
7469     for (unsigned Val = 0; Val != NumValues; ++Val) {
7470       EVT VT = ValueVTs[Val];
7471       MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7472       unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7473
7474       if (!I->use_empty()) {
7475         ISD::NodeType AssertOp = ISD::DELETED_NODE;
7476         if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7477           AssertOp = ISD::AssertSext;
7478         else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7479           AssertOp = ISD::AssertZext;
7480
7481         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
7482                                              NumParts, PartVT, VT,
7483                                              nullptr, AssertOp));
7484       }
7485
7486       i += NumParts;
7487     }
7488
7489     // We don't need to do anything else for unused arguments.
7490     if (ArgValues.empty())
7491       continue;
7492
7493     // Note down frame index.
7494     if (FrameIndexSDNode *FI =
7495         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
7496       FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
7497
7498     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
7499                                      SDB->getCurSDLoc());
7500
7501     SDB->setValue(&*I, Res);
7502     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
7503       if (LoadSDNode *LNode =
7504           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
7505         if (FrameIndexSDNode *FI =
7506             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
7507         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
7508     }
7509
7510     // If this argument is live outside of the entry block, insert a copy from
7511     // wherever we got it to the vreg that other BB's will reference it as.
7512     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
7513       // If we can, though, try to skip creating an unnecessary vreg.
7514       // FIXME: This isn't very clean... it would be nice to make this more
7515       // general.  It's also subtly incompatible with the hacks FastISel
7516       // uses with vregs.
7517       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
7518       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
7519         FuncInfo->ValueMap[&*I] = Reg;
7520         continue;
7521       }
7522     }
7523     if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) {
7524       FuncInfo->InitializeRegForValue(&*I);
7525       SDB->CopyToExportRegsIfNeeded(&*I);
7526     }
7527   }
7528
7529   assert(i == InVals.size() && "Argument register count mismatch!");
7530
7531   // Finally, if the target has anything special to do, allow it to do so.
7532   EmitFunctionEntryCode();
7533 }
7534
7535 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
7536 /// ensure constants are generated when needed.  Remember the virtual registers
7537 /// that need to be added to the Machine PHI nodes as input.  We cannot just
7538 /// directly add them, because expansion might result in multiple MBB's for one
7539 /// BB.  As such, the start of the BB might correspond to a different MBB than
7540 /// the end.
7541 ///
7542 void
7543 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
7544   const TerminatorInst *TI = LLVMBB->getTerminator();
7545
7546   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
7547
7548   // Check PHI nodes in successors that expect a value to be available from this
7549   // block.
7550   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
7551     const BasicBlock *SuccBB = TI->getSuccessor(succ);
7552     if (!isa<PHINode>(SuccBB->begin())) continue;
7553     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
7554
7555     // If this terminator has multiple identical successors (common for
7556     // switches), only handle each succ once.
7557     if (!SuccsHandled.insert(SuccMBB).second)
7558       continue;
7559
7560     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
7561
7562     // At this point we know that there is a 1-1 correspondence between LLVM PHI
7563     // nodes and Machine PHI nodes, but the incoming operands have not been
7564     // emitted yet.
7565     for (BasicBlock::const_iterator I = SuccBB->begin();
7566          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
7567       // Ignore dead phi's.
7568       if (PN->use_empty()) continue;
7569
7570       // Skip empty types
7571       if (PN->getType()->isEmptyTy())
7572         continue;
7573
7574       unsigned Reg;
7575       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
7576
7577       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
7578         unsigned &RegOut = ConstantsOut[C];
7579         if (RegOut == 0) {
7580           RegOut = FuncInfo.CreateRegs(C->getType());
7581           CopyValueToVirtualRegister(C, RegOut);
7582         }
7583         Reg = RegOut;
7584       } else {
7585         DenseMap<const Value *, unsigned>::iterator I =
7586           FuncInfo.ValueMap.find(PHIOp);
7587         if (I != FuncInfo.ValueMap.end())
7588           Reg = I->second;
7589         else {
7590           assert(isa<AllocaInst>(PHIOp) &&
7591                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
7592                  "Didn't codegen value into a register!??");
7593           Reg = FuncInfo.CreateRegs(PHIOp->getType());
7594           CopyValueToVirtualRegister(PHIOp, Reg);
7595         }
7596       }
7597
7598       // Remember that this register needs to added to the machine PHI node as
7599       // the input for this MBB.
7600       SmallVector<EVT, 4> ValueVTs;
7601       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7602       ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs);
7603       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
7604         EVT VT = ValueVTs[vti];
7605         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
7606         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
7607           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
7608         Reg += NumRegisters;
7609       }
7610     }
7611   }
7612
7613   ConstantsOut.clear();
7614 }
7615
7616 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
7617 /// is 0.
7618 MachineBasicBlock *
7619 SelectionDAGBuilder::StackProtectorDescriptor::
7620 AddSuccessorMBB(const BasicBlock *BB,
7621                 MachineBasicBlock *ParentMBB,
7622                 bool IsLikely,
7623                 MachineBasicBlock *SuccMBB) {
7624   // If SuccBB has not been created yet, create it.
7625   if (!SuccMBB) {
7626     MachineFunction *MF = ParentMBB->getParent();
7627     MachineFunction::iterator BBI(ParentMBB);
7628     SuccMBB = MF->CreateMachineBasicBlock(BB);
7629     MF->insert(++BBI, SuccMBB);
7630   }
7631   // Add it as a successor of ParentMBB.
7632   ParentMBB->addSuccessor(
7633       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
7634   return SuccMBB;
7635 }
7636
7637 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
7638   MachineFunction::iterator I(MBB);
7639   if (++I == FuncInfo.MF->end())
7640     return nullptr;
7641   return &*I;
7642 }
7643
7644 /// During lowering new call nodes can be created (such as memset, etc.).
7645 /// Those will become new roots of the current DAG, but complications arise
7646 /// when they are tail calls. In such cases, the call lowering will update
7647 /// the root, but the builder still needs to know that a tail call has been
7648 /// lowered in order to avoid generating an additional return.
7649 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
7650   // If the node is null, we do have a tail call.
7651   if (MaybeTC.getNode() != nullptr)
7652     DAG.setRoot(MaybeTC);
7653   else
7654     HasTailCall = true;
7655 }
7656
7657 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters,
7658                                   unsigned *TotalCases, unsigned First,
7659                                   unsigned Last) {
7660   assert(Last >= First);
7661   assert(TotalCases[Last] >= TotalCases[First]);
7662
7663   APInt LowCase = Clusters[First].Low->getValue();
7664   APInt HighCase = Clusters[Last].High->getValue();
7665   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
7666
7667   // FIXME: A range of consecutive cases has 100% density, but only requires one
7668   // comparison to lower. We should discriminate against such consecutive ranges
7669   // in jump tables.
7670
7671   uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100);
7672   uint64_t Range = Diff + 1;
7673
7674   uint64_t NumCases =
7675       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
7676
7677   assert(NumCases < UINT64_MAX / 100);
7678   assert(Range >= NumCases);
7679
7680   return NumCases * 100 >= Range * MinJumpTableDensity;
7681 }
7682
7683 static inline bool areJTsAllowed(const TargetLowering &TLI) {
7684   return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
7685          TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
7686 }
7687
7688 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters,
7689                                          unsigned First, unsigned Last,
7690                                          const SwitchInst *SI,
7691                                          MachineBasicBlock *DefaultMBB,
7692                                          CaseCluster &JTCluster) {
7693   assert(First <= Last);
7694
7695   auto Prob = BranchProbability::getZero();
7696   unsigned NumCmps = 0;
7697   std::vector<MachineBasicBlock*> Table;
7698   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
7699
7700   // Initialize probabilities in JTProbs.
7701   for (unsigned I = First; I <= Last; ++I)
7702     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
7703
7704   for (unsigned I = First; I <= Last; ++I) {
7705     assert(Clusters[I].Kind == CC_Range);
7706     Prob += Clusters[I].Prob;
7707     APInt Low = Clusters[I].Low->getValue();
7708     APInt High = Clusters[I].High->getValue();
7709     NumCmps += (Low == High) ? 1 : 2;
7710     if (I != First) {
7711       // Fill the gap between this and the previous cluster.
7712       APInt PreviousHigh = Clusters[I - 1].High->getValue();
7713       assert(PreviousHigh.slt(Low));
7714       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
7715       for (uint64_t J = 0; J < Gap; J++)
7716         Table.push_back(DefaultMBB);
7717     }
7718     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
7719     for (uint64_t J = 0; J < ClusterSize; ++J)
7720       Table.push_back(Clusters[I].MBB);
7721     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
7722   }
7723
7724   unsigned NumDests = JTProbs.size();
7725   if (isSuitableForBitTests(NumDests, NumCmps,
7726                             Clusters[First].Low->getValue(),
7727                             Clusters[Last].High->getValue())) {
7728     // Clusters[First..Last] should be lowered as bit tests instead.
7729     return false;
7730   }
7731
7732   // Create the MBB that will load from and jump through the table.
7733   // Note: We create it here, but it's not inserted into the function yet.
7734   MachineFunction *CurMF = FuncInfo.MF;
7735   MachineBasicBlock *JumpTableMBB =
7736       CurMF->CreateMachineBasicBlock(SI->getParent());
7737
7738   // Add successors. Note: use table order for determinism.
7739   SmallPtrSet<MachineBasicBlock *, 8> Done;
7740   for (MachineBasicBlock *Succ : Table) {
7741     if (Done.count(Succ))
7742       continue;
7743     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
7744     Done.insert(Succ);
7745   }
7746   JumpTableMBB->normalizeSuccProbs();
7747
7748   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7749   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
7750                      ->createJumpTableIndex(Table);
7751
7752   // Set up the jump table info.
7753   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
7754   JumpTableHeader JTH(Clusters[First].Low->getValue(),
7755                       Clusters[Last].High->getValue(), SI->getCondition(),
7756                       nullptr, false);
7757   JTCases.emplace_back(std::move(JTH), std::move(JT));
7758
7759   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
7760                                      JTCases.size() - 1, Prob);
7761   return true;
7762 }
7763
7764 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
7765                                          const SwitchInst *SI,
7766                                          MachineBasicBlock *DefaultMBB) {
7767 #ifndef NDEBUG
7768   // Clusters must be non-empty, sorted, and only contain Range clusters.
7769   assert(!Clusters.empty());
7770   for (CaseCluster &C : Clusters)
7771     assert(C.Kind == CC_Range);
7772   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
7773     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
7774 #endif
7775
7776   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7777   if (!areJTsAllowed(TLI))
7778     return;
7779
7780   const int64_t N = Clusters.size();
7781   const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries();
7782
7783   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
7784   SmallVector<unsigned, 8> TotalCases(N);
7785
7786   for (unsigned i = 0; i < N; ++i) {
7787     APInt Hi = Clusters[i].High->getValue();
7788     APInt Lo = Clusters[i].Low->getValue();
7789     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
7790     if (i != 0)
7791       TotalCases[i] += TotalCases[i - 1];
7792   }
7793
7794   if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) {
7795     // Cheap case: the whole range might be suitable for jump table.
7796     CaseCluster JTCluster;
7797     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
7798       Clusters[0] = JTCluster;
7799       Clusters.resize(1);
7800       return;
7801     }
7802   }
7803
7804   // The algorithm below is not suitable for -O0.
7805   if (TM.getOptLevel() == CodeGenOpt::None)
7806     return;
7807
7808   // Split Clusters into minimum number of dense partitions. The algorithm uses
7809   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
7810   // for the Case Statement'" (1994), but builds the MinPartitions array in
7811   // reverse order to make it easier to reconstruct the partitions in ascending
7812   // order. In the choice between two optimal partitionings, it picks the one
7813   // which yields more jump tables.
7814
7815   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
7816   SmallVector<unsigned, 8> MinPartitions(N);
7817   // LastElement[i] is the last element of the partition starting at i.
7818   SmallVector<unsigned, 8> LastElement(N);
7819   // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1].
7820   SmallVector<unsigned, 8> NumTables(N);
7821
7822   // Base case: There is only one way to partition Clusters[N-1].
7823   MinPartitions[N - 1] = 1;
7824   LastElement[N - 1] = N - 1;
7825   assert(MinJumpTableSize > 1);
7826   NumTables[N - 1] = 0;
7827
7828   // Note: loop indexes are signed to avoid underflow.
7829   for (int64_t i = N - 2; i >= 0; i--) {
7830     // Find optimal partitioning of Clusters[i..N-1].
7831     // Baseline: Put Clusters[i] into a partition on its own.
7832     MinPartitions[i] = MinPartitions[i + 1] + 1;
7833     LastElement[i] = i;
7834     NumTables[i] = NumTables[i + 1];
7835
7836     // Search for a solution that results in fewer partitions.
7837     for (int64_t j = N - 1; j > i; j--) {
7838       // Try building a partition from Clusters[i..j].
7839       if (isDense(Clusters, &TotalCases[0], i, j)) {
7840         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
7841         bool IsTable = j - i + 1 >= MinJumpTableSize;
7842         unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]);
7843
7844         // If this j leads to fewer partitions, or same number of partitions
7845         // with more lookup tables, it is a better partitioning.
7846         if (NumPartitions < MinPartitions[i] ||
7847             (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) {
7848           MinPartitions[i] = NumPartitions;
7849           LastElement[i] = j;
7850           NumTables[i] = Tables;
7851         }
7852       }
7853     }
7854   }
7855
7856   // Iterate over the partitions, replacing some with jump tables in-place.
7857   unsigned DstIndex = 0;
7858   for (unsigned First = 0, Last; First < N; First = Last + 1) {
7859     Last = LastElement[First];
7860     assert(Last >= First);
7861     assert(DstIndex <= First);
7862     unsigned NumClusters = Last - First + 1;
7863
7864     CaseCluster JTCluster;
7865     if (NumClusters >= MinJumpTableSize &&
7866         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
7867       Clusters[DstIndex++] = JTCluster;
7868     } else {
7869       for (unsigned I = First; I <= Last; ++I)
7870         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
7871     }
7872   }
7873   Clusters.resize(DstIndex);
7874 }
7875
7876 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) {
7877   // FIXME: Using the pointer type doesn't seem ideal.
7878   uint64_t BW = DAG.getDataLayout().getPointerSizeInBits();
7879   uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
7880   return Range <= BW;
7881 }
7882
7883 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests,
7884                                                 unsigned NumCmps,
7885                                                 const APInt &Low,
7886                                                 const APInt &High) {
7887   // FIXME: I don't think NumCmps is the correct metric: a single case and a
7888   // range of cases both require only one branch to lower. Just looking at the
7889   // number of clusters and destinations should be enough to decide whether to
7890   // build bit tests.
7891
7892   // To lower a range with bit tests, the range must fit the bitwidth of a
7893   // machine word.
7894   if (!rangeFitsInWord(Low, High))
7895     return false;
7896
7897   // Decide whether it's profitable to lower this range with bit tests. Each
7898   // destination requires a bit test and branch, and there is an overall range
7899   // check branch. For a small number of clusters, separate comparisons might be
7900   // cheaper, and for many destinations, splitting the range might be better.
7901   return (NumDests == 1 && NumCmps >= 3) ||
7902          (NumDests == 2 && NumCmps >= 5) ||
7903          (NumDests == 3 && NumCmps >= 6);
7904 }
7905
7906 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
7907                                         unsigned First, unsigned Last,
7908                                         const SwitchInst *SI,
7909                                         CaseCluster &BTCluster) {
7910   assert(First <= Last);
7911   if (First == Last)
7912     return false;
7913
7914   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
7915   unsigned NumCmps = 0;
7916   for (int64_t I = First; I <= Last; ++I) {
7917     assert(Clusters[I].Kind == CC_Range);
7918     Dests.set(Clusters[I].MBB->getNumber());
7919     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
7920   }
7921   unsigned NumDests = Dests.count();
7922
7923   APInt Low = Clusters[First].Low->getValue();
7924   APInt High = Clusters[Last].High->getValue();
7925   assert(Low.slt(High));
7926
7927   if (!isSuitableForBitTests(NumDests, NumCmps, Low, High))
7928     return false;
7929
7930   APInt LowBound;
7931   APInt CmpRange;
7932
7933   const int BitWidth = DAG.getTargetLoweringInfo()
7934                            .getPointerTy(DAG.getDataLayout())
7935                            .getSizeInBits();
7936   assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!");
7937
7938   // Check if the clusters cover a contiguous range such that no value in the
7939   // range will jump to the default statement.
7940   bool ContiguousRange = true;
7941   for (int64_t I = First + 1; I <= Last; ++I) {
7942     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
7943       ContiguousRange = false;
7944       break;
7945     }
7946   }
7947
7948   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
7949     // Optimize the case where all the case values fit in a word without having
7950     // to subtract minValue. In this case, we can optimize away the subtraction.
7951     LowBound = APInt::getNullValue(Low.getBitWidth());
7952     CmpRange = High;
7953     ContiguousRange = false;
7954   } else {
7955     LowBound = Low;
7956     CmpRange = High - Low;
7957   }
7958
7959   CaseBitsVector CBV;
7960   auto TotalProb = BranchProbability::getZero();
7961   for (unsigned i = First; i <= Last; ++i) {
7962     // Find the CaseBits for this destination.
7963     unsigned j;
7964     for (j = 0; j < CBV.size(); ++j)
7965       if (CBV[j].BB == Clusters[i].MBB)
7966         break;
7967     if (j == CBV.size())
7968       CBV.push_back(
7969           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
7970     CaseBits *CB = &CBV[j];
7971
7972     // Update Mask, Bits and ExtraProb.
7973     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
7974     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
7975     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
7976     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
7977     CB->Bits += Hi - Lo + 1;
7978     CB->ExtraProb += Clusters[i].Prob;
7979     TotalProb += Clusters[i].Prob;
7980   }
7981
7982   BitTestInfo BTI;
7983   std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
7984     // Sort by probability first, number of bits second.
7985     if (a.ExtraProb != b.ExtraProb)
7986       return a.ExtraProb > b.ExtraProb;
7987     return a.Bits > b.Bits;
7988   });
7989
7990   for (auto &CB : CBV) {
7991     MachineBasicBlock *BitTestBB =
7992         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
7993     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
7994   }
7995   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
7996                             SI->getCondition(), -1U, MVT::Other, false,
7997                             ContiguousRange, nullptr, nullptr, std::move(BTI),
7998                             TotalProb);
7999
8000   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
8001                                     BitTestCases.size() - 1, TotalProb);
8002   return true;
8003 }
8004
8005 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
8006                                               const SwitchInst *SI) {
8007 // Partition Clusters into as few subsets as possible, where each subset has a
8008 // range that fits in a machine word and has <= 3 unique destinations.
8009
8010 #ifndef NDEBUG
8011   // Clusters must be sorted and contain Range or JumpTable clusters.
8012   assert(!Clusters.empty());
8013   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
8014   for (const CaseCluster &C : Clusters)
8015     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
8016   for (unsigned i = 1; i < Clusters.size(); ++i)
8017     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
8018 #endif
8019
8020   // The algorithm below is not suitable for -O0.
8021   if (TM.getOptLevel() == CodeGenOpt::None)
8022     return;
8023
8024   // If target does not have legal shift left, do not emit bit tests at all.
8025   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8026   EVT PTy = TLI.getPointerTy(DAG.getDataLayout());
8027   if (!TLI.isOperationLegal(ISD::SHL, PTy))
8028     return;
8029
8030   int BitWidth = PTy.getSizeInBits();
8031   const int64_t N = Clusters.size();
8032
8033   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8034   SmallVector<unsigned, 8> MinPartitions(N);
8035   // LastElement[i] is the last element of the partition starting at i.
8036   SmallVector<unsigned, 8> LastElement(N);
8037
8038   // FIXME: This might not be the best algorithm for finding bit test clusters.
8039
8040   // Base case: There is only one way to partition Clusters[N-1].
8041   MinPartitions[N - 1] = 1;
8042   LastElement[N - 1] = N - 1;
8043
8044   // Note: loop indexes are signed to avoid underflow.
8045   for (int64_t i = N - 2; i >= 0; --i) {
8046     // Find optimal partitioning of Clusters[i..N-1].
8047     // Baseline: Put Clusters[i] into a partition on its own.
8048     MinPartitions[i] = MinPartitions[i + 1] + 1;
8049     LastElement[i] = i;
8050
8051     // Search for a solution that results in fewer partitions.
8052     // Note: the search is limited by BitWidth, reducing time complexity.
8053     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
8054       // Try building a partition from Clusters[i..j].
8055
8056       // Check the range.
8057       if (!rangeFitsInWord(Clusters[i].Low->getValue(),
8058                            Clusters[j].High->getValue()))
8059         continue;
8060
8061       // Check nbr of destinations and cluster types.
8062       // FIXME: This works, but doesn't seem very efficient.
8063       bool RangesOnly = true;
8064       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8065       for (int64_t k = i; k <= j; k++) {
8066         if (Clusters[k].Kind != CC_Range) {
8067           RangesOnly = false;
8068           break;
8069         }
8070         Dests.set(Clusters[k].MBB->getNumber());
8071       }
8072       if (!RangesOnly || Dests.count() > 3)
8073         break;
8074
8075       // Check if it's a better partition.
8076       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8077       if (NumPartitions < MinPartitions[i]) {
8078         // Found a better partition.
8079         MinPartitions[i] = NumPartitions;
8080         LastElement[i] = j;
8081       }
8082     }
8083   }
8084
8085   // Iterate over the partitions, replacing with bit-test clusters in-place.
8086   unsigned DstIndex = 0;
8087   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8088     Last = LastElement[First];
8089     assert(First <= Last);
8090     assert(DstIndex <= First);
8091
8092     CaseCluster BitTestCluster;
8093     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
8094       Clusters[DstIndex++] = BitTestCluster;
8095     } else {
8096       size_t NumClusters = Last - First + 1;
8097       std::memmove(&Clusters[DstIndex], &Clusters[First],
8098                    sizeof(Clusters[0]) * NumClusters);
8099       DstIndex += NumClusters;
8100     }
8101   }
8102   Clusters.resize(DstIndex);
8103 }
8104
8105 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
8106                                         MachineBasicBlock *SwitchMBB,
8107                                         MachineBasicBlock *DefaultMBB) {
8108   MachineFunction *CurMF = FuncInfo.MF;
8109   MachineBasicBlock *NextMBB = nullptr;
8110   MachineFunction::iterator BBI(W.MBB);
8111   if (++BBI != FuncInfo.MF->end())
8112     NextMBB = &*BBI;
8113
8114   unsigned Size = W.LastCluster - W.FirstCluster + 1;
8115
8116   BranchProbabilityInfo *BPI = FuncInfo.BPI;
8117
8118   if (Size == 2 && W.MBB == SwitchMBB) {
8119     // If any two of the cases has the same destination, and if one value
8120     // is the same as the other, but has one bit unset that the other has set,
8121     // use bit manipulation to do two compares at once.  For example:
8122     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
8123     // TODO: This could be extended to merge any 2 cases in switches with 3
8124     // cases.
8125     // TODO: Handle cases where W.CaseBB != SwitchBB.
8126     CaseCluster &Small = *W.FirstCluster;
8127     CaseCluster &Big = *W.LastCluster;
8128
8129     if (Small.Low == Small.High && Big.Low == Big.High &&
8130         Small.MBB == Big.MBB) {
8131       const APInt &SmallValue = Small.Low->getValue();
8132       const APInt &BigValue = Big.Low->getValue();
8133
8134       // Check that there is only one bit different.
8135       APInt CommonBit = BigValue ^ SmallValue;
8136       if (CommonBit.isPowerOf2()) {
8137         SDValue CondLHS = getValue(Cond);
8138         EVT VT = CondLHS.getValueType();
8139         SDLoc DL = getCurSDLoc();
8140
8141         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
8142                                  DAG.getConstant(CommonBit, DL, VT));
8143         SDValue Cond = DAG.getSetCC(
8144             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
8145             ISD::SETEQ);
8146
8147         // Update successor info.
8148         // Both Small and Big will jump to Small.BB, so we sum up the
8149         // probabilities.
8150         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
8151         if (BPI)
8152           addSuccessorWithProb(
8153               SwitchMBB, DefaultMBB,
8154               // The default destination is the first successor in IR.
8155               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
8156         else
8157           addSuccessorWithProb(SwitchMBB, DefaultMBB);
8158
8159         // Insert the true branch.
8160         SDValue BrCond =
8161             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
8162                         DAG.getBasicBlock(Small.MBB));
8163         // Insert the false branch.
8164         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
8165                              DAG.getBasicBlock(DefaultMBB));
8166
8167         DAG.setRoot(BrCond);
8168         return;
8169       }
8170     }
8171   }
8172
8173   if (TM.getOptLevel() != CodeGenOpt::None) {
8174     // Order cases by probability so the most likely case will be checked first.
8175     std::sort(W.FirstCluster, W.LastCluster + 1,
8176               [](const CaseCluster &a, const CaseCluster &b) {
8177       return a.Prob > b.Prob;
8178     });
8179
8180     // Rearrange the case blocks so that the last one falls through if possible
8181     // without without changing the order of probabilities.
8182     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
8183       --I;
8184       if (I->Prob > W.LastCluster->Prob)
8185         break;
8186       if (I->Kind == CC_Range && I->MBB == NextMBB) {
8187         std::swap(*I, *W.LastCluster);
8188         break;
8189       }
8190     }
8191   }
8192
8193   // Compute total probability.
8194   BranchProbability DefaultProb = W.DefaultProb;
8195   BranchProbability UnhandledProbs = DefaultProb;
8196   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
8197     UnhandledProbs += I->Prob;
8198
8199   MachineBasicBlock *CurMBB = W.MBB;
8200   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
8201     MachineBasicBlock *Fallthrough;
8202     if (I == W.LastCluster) {
8203       // For the last cluster, fall through to the default destination.
8204       Fallthrough = DefaultMBB;
8205     } else {
8206       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
8207       CurMF->insert(BBI, Fallthrough);
8208       // Put Cond in a virtual register to make it available from the new blocks.
8209       ExportFromCurrentBlock(Cond);
8210     }
8211     UnhandledProbs -= I->Prob;
8212
8213     switch (I->Kind) {
8214       case CC_JumpTable: {
8215         // FIXME: Optimize away range check based on pivot comparisons.
8216         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
8217         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
8218
8219         // The jump block hasn't been inserted yet; insert it here.
8220         MachineBasicBlock *JumpMBB = JT->MBB;
8221         CurMF->insert(BBI, JumpMBB);
8222
8223         auto JumpProb = I->Prob;
8224         auto FallthroughProb = UnhandledProbs;
8225
8226         // If the default statement is a target of the jump table, we evenly
8227         // distribute the default probability to successors of CurMBB. Also
8228         // update the probability on the edge from JumpMBB to Fallthrough.
8229         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
8230                                               SE = JumpMBB->succ_end();
8231              SI != SE; ++SI) {
8232           if (*SI == DefaultMBB) {
8233             JumpProb += DefaultProb / 2;
8234             FallthroughProb -= DefaultProb / 2;
8235             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
8236             JumpMBB->normalizeSuccProbs();
8237             break;
8238           }
8239         }
8240
8241         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
8242         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
8243         CurMBB->normalizeSuccProbs();
8244
8245         // The jump table header will be inserted in our current block, do the
8246         // range check, and fall through to our fallthrough block.
8247         JTH->HeaderBB = CurMBB;
8248         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
8249
8250         // If we're in the right place, emit the jump table header right now.
8251         if (CurMBB == SwitchMBB) {
8252           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
8253           JTH->Emitted = true;
8254         }
8255         break;
8256       }
8257       case CC_BitTests: {
8258         // FIXME: Optimize away range check based on pivot comparisons.
8259         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
8260
8261         // The bit test blocks haven't been inserted yet; insert them here.
8262         for (BitTestCase &BTC : BTB->Cases)
8263           CurMF->insert(BBI, BTC.ThisBB);
8264
8265         // Fill in fields of the BitTestBlock.
8266         BTB->Parent = CurMBB;
8267         BTB->Default = Fallthrough;
8268
8269         BTB->DefaultProb = UnhandledProbs;
8270         // If the cases in bit test don't form a contiguous range, we evenly
8271         // distribute the probability on the edge to Fallthrough to two
8272         // successors of CurMBB.
8273         if (!BTB->ContiguousRange) {
8274           BTB->Prob += DefaultProb / 2;
8275           BTB->DefaultProb -= DefaultProb / 2;
8276         }
8277
8278         // If we're in the right place, emit the bit test header right now.
8279         if (CurMBB == SwitchMBB) {
8280           visitBitTestHeader(*BTB, SwitchMBB);
8281           BTB->Emitted = true;
8282         }
8283         break;
8284       }
8285       case CC_Range: {
8286         const Value *RHS, *LHS, *MHS;
8287         ISD::CondCode CC;
8288         if (I->Low == I->High) {
8289           // Check Cond == I->Low.
8290           CC = ISD::SETEQ;
8291           LHS = Cond;
8292           RHS=I->Low;
8293           MHS = nullptr;
8294         } else {
8295           // Check I->Low <= Cond <= I->High.
8296           CC = ISD::SETLE;
8297           LHS = I->Low;
8298           MHS = Cond;
8299           RHS = I->High;
8300         }
8301
8302         // The false probability is the sum of all unhandled cases.
8303         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob,
8304                      UnhandledProbs);
8305
8306         if (CurMBB == SwitchMBB)
8307           visitSwitchCase(CB, SwitchMBB);
8308         else
8309           SwitchCases.push_back(CB);
8310
8311         break;
8312       }
8313     }
8314     CurMBB = Fallthrough;
8315   }
8316 }
8317
8318 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
8319                                               CaseClusterIt First,
8320                                               CaseClusterIt Last) {
8321   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
8322     if (X.Prob != CC.Prob)
8323       return X.Prob > CC.Prob;
8324
8325     // Ties are broken by comparing the case value.
8326     return X.Low->getValue().slt(CC.Low->getValue());
8327   });
8328 }
8329
8330 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
8331                                         const SwitchWorkListItem &W,
8332                                         Value *Cond,
8333                                         MachineBasicBlock *SwitchMBB) {
8334   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
8335          "Clusters not sorted?");
8336
8337   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
8338
8339   // Balance the tree based on branch probabilities to create a near-optimal (in
8340   // terms of search time given key frequency) binary search tree. See e.g. Kurt
8341   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
8342   CaseClusterIt LastLeft = W.FirstCluster;
8343   CaseClusterIt FirstRight = W.LastCluster;
8344   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
8345   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
8346
8347   // Move LastLeft and FirstRight towards each other from opposite directions to
8348   // find a partitioning of the clusters which balances the probability on both
8349   // sides. If LeftProb and RightProb are equal, alternate which side is
8350   // taken to ensure 0-probability nodes are distributed evenly.
8351   unsigned I = 0;
8352   while (LastLeft + 1 < FirstRight) {
8353     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
8354       LeftProb += (++LastLeft)->Prob;
8355     else
8356       RightProb += (--FirstRight)->Prob;
8357     I++;
8358   }
8359
8360   for (;;) {
8361     // Our binary search tree differs from a typical BST in that ours can have up
8362     // to three values in each leaf. The pivot selection above doesn't take that
8363     // into account, which means the tree might require more nodes and be less
8364     // efficient. We compensate for this here.
8365
8366     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
8367     unsigned NumRight = W.LastCluster - FirstRight + 1;
8368
8369     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
8370       // If one side has less than 3 clusters, and the other has more than 3,
8371       // consider taking a cluster from the other side.
8372
8373       if (NumLeft < NumRight) {
8374         // Consider moving the first cluster on the right to the left side.
8375         CaseCluster &CC = *FirstRight;
8376         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
8377         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
8378         if (LeftSideRank <= RightSideRank) {
8379           // Moving the cluster to the left does not demote it.
8380           ++LastLeft;
8381           ++FirstRight;
8382           continue;
8383         }
8384       } else {
8385         assert(NumRight < NumLeft);
8386         // Consider moving the last element on the left to the right side.
8387         CaseCluster &CC = *LastLeft;
8388         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
8389         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
8390         if (RightSideRank <= LeftSideRank) {
8391           // Moving the cluster to the right does not demot it.
8392           --LastLeft;
8393           --FirstRight;
8394           continue;
8395         }
8396       }
8397     }
8398     break;
8399   }
8400
8401   assert(LastLeft + 1 == FirstRight);
8402   assert(LastLeft >= W.FirstCluster);
8403   assert(FirstRight <= W.LastCluster);
8404
8405   // Use the first element on the right as pivot since we will make less-than
8406   // comparisons against it.
8407   CaseClusterIt PivotCluster = FirstRight;
8408   assert(PivotCluster > W.FirstCluster);
8409   assert(PivotCluster <= W.LastCluster);
8410
8411   CaseClusterIt FirstLeft = W.FirstCluster;
8412   CaseClusterIt LastRight = W.LastCluster;
8413
8414   const ConstantInt *Pivot = PivotCluster->Low;
8415
8416   // New blocks will be inserted immediately after the current one.
8417   MachineFunction::iterator BBI(W.MBB);
8418   ++BBI;
8419
8420   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
8421   // we can branch to its destination directly if it's squeezed exactly in
8422   // between the known lower bound and Pivot - 1.
8423   MachineBasicBlock *LeftMBB;
8424   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
8425       FirstLeft->Low == W.GE &&
8426       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
8427     LeftMBB = FirstLeft->MBB;
8428   } else {
8429     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
8430     FuncInfo.MF->insert(BBI, LeftMBB);
8431     WorkList.push_back(
8432         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
8433     // Put Cond in a virtual register to make it available from the new blocks.
8434     ExportFromCurrentBlock(Cond);
8435   }
8436
8437   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
8438   // single cluster, RHS.Low == Pivot, and we can branch to its destination
8439   // directly if RHS.High equals the current upper bound.
8440   MachineBasicBlock *RightMBB;
8441   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
8442       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
8443     RightMBB = FirstRight->MBB;
8444   } else {
8445     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
8446     FuncInfo.MF->insert(BBI, RightMBB);
8447     WorkList.push_back(
8448         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
8449     // Put Cond in a virtual register to make it available from the new blocks.
8450     ExportFromCurrentBlock(Cond);
8451   }
8452
8453   // Create the CaseBlock record that will be used to lower the branch.
8454   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
8455                LeftProb, RightProb);
8456
8457   if (W.MBB == SwitchMBB)
8458     visitSwitchCase(CB, SwitchMBB);
8459   else
8460     SwitchCases.push_back(CB);
8461 }
8462
8463 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
8464   // Extract cases from the switch.
8465   BranchProbabilityInfo *BPI = FuncInfo.BPI;
8466   CaseClusterVector Clusters;
8467   Clusters.reserve(SI.getNumCases());
8468   for (auto I : SI.cases()) {
8469     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
8470     const ConstantInt *CaseVal = I.getCaseValue();
8471     BranchProbability Prob =
8472         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
8473             : BranchProbability(1, SI.getNumCases() + 1);
8474     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
8475   }
8476
8477   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
8478
8479   // Cluster adjacent cases with the same destination. We do this at all
8480   // optimization levels because it's cheap to do and will make codegen faster
8481   // if there are many clusters.
8482   sortAndRangeify(Clusters);
8483
8484   if (TM.getOptLevel() != CodeGenOpt::None) {
8485     // Replace an unreachable default with the most popular destination.
8486     // FIXME: Exploit unreachable default more aggressively.
8487     bool UnreachableDefault =
8488         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
8489     if (UnreachableDefault && !Clusters.empty()) {
8490       DenseMap<const BasicBlock *, unsigned> Popularity;
8491       unsigned MaxPop = 0;
8492       const BasicBlock *MaxBB = nullptr;
8493       for (auto I : SI.cases()) {
8494         const BasicBlock *BB = I.getCaseSuccessor();
8495         if (++Popularity[BB] > MaxPop) {
8496           MaxPop = Popularity[BB];
8497           MaxBB = BB;
8498         }
8499       }
8500       // Set new default.
8501       assert(MaxPop > 0 && MaxBB);
8502       DefaultMBB = FuncInfo.MBBMap[MaxBB];
8503
8504       // Remove cases that were pointing to the destination that is now the
8505       // default.
8506       CaseClusterVector New;
8507       New.reserve(Clusters.size());
8508       for (CaseCluster &CC : Clusters) {
8509         if (CC.MBB != DefaultMBB)
8510           New.push_back(CC);
8511       }
8512       Clusters = std::move(New);
8513     }
8514   }
8515
8516   // If there is only the default destination, jump there directly.
8517   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
8518   if (Clusters.empty()) {
8519     SwitchMBB->addSuccessor(DefaultMBB);
8520     if (DefaultMBB != NextBlock(SwitchMBB)) {
8521       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
8522                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
8523     }
8524     return;
8525   }
8526
8527   findJumpTables(Clusters, &SI, DefaultMBB);
8528   findBitTestClusters(Clusters, &SI);
8529
8530   DEBUG({
8531     dbgs() << "Case clusters: ";
8532     for (const CaseCluster &C : Clusters) {
8533       if (C.Kind == CC_JumpTable) dbgs() << "JT:";
8534       if (C.Kind == CC_BitTests) dbgs() << "BT:";
8535
8536       C.Low->getValue().print(dbgs(), true);
8537       if (C.Low != C.High) {
8538         dbgs() << '-';
8539         C.High->getValue().print(dbgs(), true);
8540       }
8541       dbgs() << ' ';
8542     }
8543     dbgs() << '\n';
8544   });
8545
8546   assert(!Clusters.empty());
8547   SwitchWorkList WorkList;
8548   CaseClusterIt First = Clusters.begin();
8549   CaseClusterIt Last = Clusters.end() - 1;
8550   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
8551   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
8552
8553   while (!WorkList.empty()) {
8554     SwitchWorkListItem W = WorkList.back();
8555     WorkList.pop_back();
8556     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
8557
8558     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) {
8559       // For optimized builds, lower large range as a balanced binary tree.
8560       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
8561       continue;
8562     }
8563
8564     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
8565   }
8566 }