7f4501e4b672eb53ba3738126db0641951a3e473
[oota-llvm.git] / lib / CodeGen / SelectionDAG / LegalizeTypes.h
1 //===-- LegalizeTypes.h - DAG Type Legalizer class definition ---*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the DAGTypeLegalizer class.  This is a private interface
11 // shared between the code that implements the SelectionDAG::LegalizeTypes
12 // method.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
17 #define LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
18
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/DenseSet.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/Support/Compiler.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Target/TargetLowering.h"
25
26 namespace llvm {
27
28 //===----------------------------------------------------------------------===//
29 /// DAGTypeLegalizer - This takes an arbitrary SelectionDAG as input and hacks
30 /// on it until only value types the target machine can handle are left.  This
31 /// involves promoting small sizes to large sizes or splitting up large values
32 /// into small values.
33 ///
34 class LLVM_LIBRARY_VISIBILITY DAGTypeLegalizer {
35   const TargetLowering &TLI;
36   SelectionDAG &DAG;
37 public:
38   // NodeIdFlags - This pass uses the NodeId on the SDNodes to hold information
39   // about the state of the node.  The enum has all the values.
40   enum NodeIdFlags {
41     /// ReadyToProcess - All operands have been processed, so this node is ready
42     /// to be handled.
43     ReadyToProcess = 0,
44
45     /// NewNode - This is a new node, not before seen, that was created in the
46     /// process of legalizing some other node.
47     NewNode = -1,
48
49     /// Unanalyzed - This node's ID needs to be set to the number of its
50     /// unprocessed operands.
51     Unanalyzed = -2,
52
53     /// Processed - This is a node that has already been processed.
54     Processed = -3
55
56     // 1+ - This is a node which has this many unprocessed operands.
57   };
58 private:
59
60   /// ValueTypeActions - This is a bitvector that contains two bits for each
61   /// simple value type, where the two bits correspond to the LegalizeAction
62   /// enum from TargetLowering.  This can be queried with "getTypeAction(VT)".
63   TargetLowering::ValueTypeActionImpl ValueTypeActions;
64
65   /// getTypeAction - Return how we should legalize values of this type.
66   TargetLowering::LegalizeTypeAction getTypeAction(EVT VT) const {
67     return TLI.getTypeAction(*DAG.getContext(), VT);
68   }
69
70   /// isTypeLegal - Return true if this type is legal on this target.
71   bool isTypeLegal(EVT VT) const {
72     return TLI.getTypeAction(*DAG.getContext(), VT) == TargetLowering::TypeLegal;
73   }
74
75   EVT getSetCCResultType(EVT VT) const {
76     return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
77   }
78
79   /// IgnoreNodeResults - Pretend all of this node's results are legal.
80   bool IgnoreNodeResults(SDNode *N) const {
81     return N->getOpcode() == ISD::TargetConstant;
82   }
83
84   /// PromotedIntegers - For integer nodes that are below legal width, this map
85   /// indicates what promoted value to use.
86   SmallDenseMap<SDValue, SDValue, 8> PromotedIntegers;
87
88   /// ExpandedIntegers - For integer nodes that need to be expanded this map
89   /// indicates which operands are the expanded version of the input.
90   SmallDenseMap<SDValue, std::pair<SDValue, SDValue>, 8> ExpandedIntegers;
91
92   /// SoftenedFloats - For floating point nodes converted to integers of
93   /// the same size, this map indicates the converted value to use.
94   SmallDenseMap<SDValue, SDValue, 8> SoftenedFloats;
95
96   /// PromotedFloats - For floating point nodes that have a smaller precision
97   /// than the smallest supported precision, this map indicates what promoted
98   /// value to use.
99   SmallDenseMap<SDValue, SDValue, 8> PromotedFloats;
100
101   /// ExpandedFloats - For float nodes that need to be expanded this map
102   /// indicates which operands are the expanded version of the input.
103   SmallDenseMap<SDValue, std::pair<SDValue, SDValue>, 8> ExpandedFloats;
104
105   /// ScalarizedVectors - For nodes that are <1 x ty>, this map indicates the
106   /// scalar value of type 'ty' to use.
107   SmallDenseMap<SDValue, SDValue, 8> ScalarizedVectors;
108
109   /// SplitVectors - For nodes that need to be split this map indicates
110   /// which operands are the expanded version of the input.
111   SmallDenseMap<SDValue, std::pair<SDValue, SDValue>, 8> SplitVectors;
112
113   /// WidenedVectors - For vector nodes that need to be widened, indicates
114   /// the widened value to use.
115   SmallDenseMap<SDValue, SDValue, 8> WidenedVectors;
116
117   /// ReplacedValues - For values that have been replaced with another,
118   /// indicates the replacement value to use.
119   SmallDenseMap<SDValue, SDValue, 8> ReplacedValues;
120
121   /// Worklist - This defines a worklist of nodes to process.  In order to be
122   /// pushed onto this worklist, all operands of a node must have already been
123   /// processed.
124   SmallVector<SDNode*, 128> Worklist;
125
126 public:
127   explicit DAGTypeLegalizer(SelectionDAG &dag)
128     : TLI(dag.getTargetLoweringInfo()), DAG(dag),
129     ValueTypeActions(TLI.getValueTypeActions()) {
130     static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
131                   "Too many value types for ValueTypeActions to hold!");
132   }
133
134   /// run - This is the main entry point for the type legalizer.  This does a
135   /// top-down traversal of the dag, legalizing types as it goes.  Returns
136   /// "true" if it made any changes.
137   bool run();
138
139   void NoteDeletion(SDNode *Old, SDNode *New) {
140     ExpungeNode(Old);
141     ExpungeNode(New);
142     for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i)
143       ReplacedValues[SDValue(Old, i)] = SDValue(New, i);
144   }
145
146   SelectionDAG &getDAG() const { return DAG; }
147
148 private:
149   SDNode *AnalyzeNewNode(SDNode *N);
150   void AnalyzeNewValue(SDValue &Val);
151   void ExpungeNode(SDNode *N);
152   void PerformExpensiveChecks();
153   void RemapValue(SDValue &N);
154
155   // Common routines.
156   SDValue BitConvertToInteger(SDValue Op);
157   SDValue BitConvertVectorToIntegerVector(SDValue Op);
158   SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT);
159   bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult);
160   bool CustomWidenLowerNode(SDNode *N, EVT VT);
161
162   /// DisintegrateMERGE_VALUES - Replace each result of the given MERGE_VALUES
163   /// node with the corresponding input operand, except for the result 'ResNo',
164   /// for which the corresponding input operand is returned.
165   SDValue DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo);
166
167   SDValue GetVectorElementPointer(SDValue VecPtr, EVT EltVT, SDValue Index);
168   SDValue JoinIntegers(SDValue Lo, SDValue Hi);
169   SDValue LibCallify(RTLIB::Libcall LC, SDNode *N, bool isSigned);
170
171   std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
172                                                  SDNode *Node, bool isSigned);
173   std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
174
175   SDValue PromoteTargetBoolean(SDValue Bool, EVT ValVT);
176   void ReplaceValueWith(SDValue From, SDValue To);
177   void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
178   void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT,
179                     SDValue &Lo, SDValue &Hi);
180
181   //===--------------------------------------------------------------------===//
182   // Integer Promotion Support: LegalizeIntegerTypes.cpp
183   //===--------------------------------------------------------------------===//
184
185   /// GetPromotedInteger - Given a processed operand Op which was promoted to a
186   /// larger integer type, this returns the promoted value.  The low bits of the
187   /// promoted value corresponding to the original type are exactly equal to Op.
188   /// The extra bits contain rubbish, so the promoted value may need to be zero-
189   /// or sign-extended from the original type before it is usable (the helpers
190   /// SExtPromotedInteger and ZExtPromotedInteger can do this for you).
191   /// For example, if Op is an i16 and was promoted to an i32, then this method
192   /// returns an i32, the lower 16 bits of which coincide with Op, and the upper
193   /// 16 bits of which contain rubbish.
194   SDValue GetPromotedInteger(SDValue Op) {
195     SDValue &PromotedOp = PromotedIntegers[Op];
196     RemapValue(PromotedOp);
197     assert(PromotedOp.getNode() && "Operand wasn't promoted?");
198     return PromotedOp;
199   }
200   void SetPromotedInteger(SDValue Op, SDValue Result);
201
202   /// SExtPromotedInteger - Get a promoted operand and sign extend it to the
203   /// final size.
204   SDValue SExtPromotedInteger(SDValue Op) {
205     EVT OldVT = Op.getValueType();
206     SDLoc dl(Op);
207     Op = GetPromotedInteger(Op);
208     return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op,
209                        DAG.getValueType(OldVT));
210   }
211
212   /// ZExtPromotedInteger - Get a promoted operand and zero extend it to the
213   /// final size.
214   SDValue ZExtPromotedInteger(SDValue Op) {
215     EVT OldVT = Op.getValueType();
216     SDLoc dl(Op);
217     Op = GetPromotedInteger(Op);
218     return DAG.getZeroExtendInReg(Op, dl, OldVT.getScalarType());
219   }
220
221   // Integer Result Promotion.
222   void PromoteIntegerResult(SDNode *N, unsigned ResNo);
223   SDValue PromoteIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
224   SDValue PromoteIntRes_AssertSext(SDNode *N);
225   SDValue PromoteIntRes_AssertZext(SDNode *N);
226   SDValue PromoteIntRes_Atomic0(AtomicSDNode *N);
227   SDValue PromoteIntRes_Atomic1(AtomicSDNode *N);
228   SDValue PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N, unsigned ResNo);
229   SDValue PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N);
230   SDValue PromoteIntRes_VECTOR_SHUFFLE(SDNode *N);
231   SDValue PromoteIntRes_BUILD_VECTOR(SDNode *N);
232   SDValue PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N);
233   SDValue PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N);
234   SDValue PromoteIntRes_CONCAT_VECTORS(SDNode *N);
235   SDValue PromoteIntRes_BITCAST(SDNode *N);
236   SDValue PromoteIntRes_BSWAP(SDNode *N);
237   SDValue PromoteIntRes_BITREVERSE(SDNode *N);
238   SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
239   SDValue PromoteIntRes_Constant(SDNode *N);
240   SDValue PromoteIntRes_CONVERT_RNDSAT(SDNode *N);
241   SDValue PromoteIntRes_CTLZ(SDNode *N);
242   SDValue PromoteIntRes_CTPOP(SDNode *N);
243   SDValue PromoteIntRes_CTTZ(SDNode *N);
244   SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
245   SDValue PromoteIntRes_FP_TO_XINT(SDNode *N);
246   SDValue PromoteIntRes_FP_TO_FP16(SDNode *N);
247   SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
248   SDValue PromoteIntRes_LOAD(LoadSDNode *N);
249   SDValue PromoteIntRes_MLOAD(MaskedLoadSDNode *N);
250   SDValue PromoteIntRes_Overflow(SDNode *N);
251   SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo);
252   SDValue PromoteIntRes_SDIV(SDNode *N);
253   SDValue PromoteIntRes_SELECT(SDNode *N);
254   SDValue PromoteIntRes_VSELECT(SDNode *N);
255   SDValue PromoteIntRes_SELECT_CC(SDNode *N);
256   SDValue PromoteIntRes_SETCC(SDNode *N);
257   SDValue PromoteIntRes_SHL(SDNode *N);
258   SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N);
259   SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N);
260   SDValue PromoteIntRes_SRA(SDNode *N);
261   SDValue PromoteIntRes_SRL(SDNode *N);
262   SDValue PromoteIntRes_TRUNCATE(SDNode *N);
263   SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo);
264   SDValue PromoteIntRes_UDIV(SDNode *N);
265   SDValue PromoteIntRes_UNDEF(SDNode *N);
266   SDValue PromoteIntRes_VAARG(SDNode *N);
267   SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo);
268
269   // Integer Operand Promotion.
270   bool PromoteIntegerOperand(SDNode *N, unsigned OperandNo);
271   SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
272   SDValue PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N);
273   SDValue PromoteIntOp_BITCAST(SDNode *N);
274   SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
275   SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
276   SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
277   SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
278   SDValue PromoteIntOp_CONVERT_RNDSAT(SDNode *N);
279   SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
280   SDValue PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N);
281   SDValue PromoteIntOp_EXTRACT_SUBVECTOR(SDNode *N);
282   SDValue PromoteIntOp_CONCAT_VECTORS(SDNode *N);
283   SDValue PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N);
284   SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
285   SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
286   SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
287   SDValue PromoteIntOp_Shift(SDNode *N);
288   SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N);
289   SDValue PromoteIntOp_SINT_TO_FP(SDNode *N);
290   SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
291   SDValue PromoteIntOp_TRUNCATE(SDNode *N);
292   SDValue PromoteIntOp_UINT_TO_FP(SDNode *N);
293   SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
294   SDValue PromoteIntOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
295   SDValue PromoteIntOp_MLOAD(MaskedLoadSDNode *N, unsigned OpNo);
296
297   void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
298
299   //===--------------------------------------------------------------------===//
300   // Integer Expansion Support: LegalizeIntegerTypes.cpp
301   //===--------------------------------------------------------------------===//
302
303   /// GetExpandedInteger - Given a processed operand Op which was expanded into
304   /// two integers of half the size, this returns the two halves.  The low bits
305   /// of Op are exactly equal to the bits of Lo; the high bits exactly equal Hi.
306   /// For example, if Op is an i64 which was expanded into two i32's, then this
307   /// method returns the two i32's, with Lo being equal to the lower 32 bits of
308   /// Op, and Hi being equal to the upper 32 bits.
309   void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
310   void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi);
311
312   // Integer Result Expansion.
313   void ExpandIntegerResult(SDNode *N, unsigned ResNo);
314   void ExpandIntRes_ANY_EXTEND        (SDNode *N, SDValue &Lo, SDValue &Hi);
315   void ExpandIntRes_AssertSext        (SDNode *N, SDValue &Lo, SDValue &Hi);
316   void ExpandIntRes_AssertZext        (SDNode *N, SDValue &Lo, SDValue &Hi);
317   void ExpandIntRes_Constant          (SDNode *N, SDValue &Lo, SDValue &Hi);
318   void ExpandIntRes_CTLZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
319   void ExpandIntRes_CTPOP             (SDNode *N, SDValue &Lo, SDValue &Hi);
320   void ExpandIntRes_CTTZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
321   void ExpandIntRes_LOAD          (LoadSDNode *N, SDValue &Lo, SDValue &Hi);
322   void ExpandIntRes_READCYCLECOUNTER  (SDNode *N, SDValue &Lo, SDValue &Hi);
323   void ExpandIntRes_SIGN_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
324   void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
325   void ExpandIntRes_TRUNCATE          (SDNode *N, SDValue &Lo, SDValue &Hi);
326   void ExpandIntRes_ZERO_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
327   void ExpandIntRes_FP_TO_SINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
328   void ExpandIntRes_FP_TO_UINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
329
330   void ExpandIntRes_Logical           (SDNode *N, SDValue &Lo, SDValue &Hi);
331   void ExpandIntRes_ADDSUB            (SDNode *N, SDValue &Lo, SDValue &Hi);
332   void ExpandIntRes_ADDSUBC           (SDNode *N, SDValue &Lo, SDValue &Hi);
333   void ExpandIntRes_ADDSUBE           (SDNode *N, SDValue &Lo, SDValue &Hi);
334   void ExpandIntRes_BITREVERSE        (SDNode *N, SDValue &Lo, SDValue &Hi);
335   void ExpandIntRes_BSWAP             (SDNode *N, SDValue &Lo, SDValue &Hi);
336   void ExpandIntRes_MUL               (SDNode *N, SDValue &Lo, SDValue &Hi);
337   void ExpandIntRes_SDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
338   void ExpandIntRes_SREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
339   void ExpandIntRes_UDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
340   void ExpandIntRes_UREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
341   void ExpandIntRes_Shift             (SDNode *N, SDValue &Lo, SDValue &Hi);
342
343   void ExpandIntRes_SADDSUBO          (SDNode *N, SDValue &Lo, SDValue &Hi);
344   void ExpandIntRes_UADDSUBO          (SDNode *N, SDValue &Lo, SDValue &Hi);
345   void ExpandIntRes_XMULO             (SDNode *N, SDValue &Lo, SDValue &Hi);
346
347   void ExpandIntRes_ATOMIC_LOAD       (SDNode *N, SDValue &Lo, SDValue &Hi);
348
349   void ExpandShiftByConstant(SDNode *N, const APInt &Amt,
350                              SDValue &Lo, SDValue &Hi);
351   bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
352   bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
353
354   // Integer Operand Expansion.
355   bool ExpandIntegerOperand(SDNode *N, unsigned OperandNo);
356   SDValue ExpandIntOp_BR_CC(SDNode *N);
357   SDValue ExpandIntOp_SELECT_CC(SDNode *N);
358   SDValue ExpandIntOp_SETCC(SDNode *N);
359   SDValue ExpandIntOp_Shift(SDNode *N);
360   SDValue ExpandIntOp_SINT_TO_FP(SDNode *N);
361   SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
362   SDValue ExpandIntOp_TRUNCATE(SDNode *N);
363   SDValue ExpandIntOp_UINT_TO_FP(SDNode *N);
364   SDValue ExpandIntOp_RETURNADDR(SDNode *N);
365   SDValue ExpandIntOp_ATOMIC_STORE(SDNode *N);
366
367   void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
368                                   ISD::CondCode &CCCode, SDLoc dl);
369
370   //===--------------------------------------------------------------------===//
371   // Float to Integer Conversion Support: LegalizeFloatTypes.cpp
372   //===--------------------------------------------------------------------===//
373
374   /// GetSoftenedFloat - Given a processed operand Op which was converted to an
375   /// integer of the same size, this returns the integer.  The integer contains
376   /// exactly the same bits as Op - only the type changed.  For example, if Op
377   /// is an f32 which was softened to an i32, then this method returns an i32,
378   /// the bits of which coincide with those of Op.
379   SDValue GetSoftenedFloat(SDValue Op) {
380     SDValue &SoftenedOp = SoftenedFloats[Op];
381     RemapValue(SoftenedOp);
382     assert(SoftenedOp.getNode() && "Operand wasn't converted to integer?");
383     return SoftenedOp;
384   }
385   void SetSoftenedFloat(SDValue Op, SDValue Result);
386
387   // Result Float to Integer Conversion.
388   void SoftenFloatResult(SDNode *N, unsigned OpNo);
389   SDValue SoftenFloatRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
390   SDValue SoftenFloatRes_BITCAST(SDNode *N);
391   SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
392   SDValue SoftenFloatRes_ConstantFP(ConstantFPSDNode *N);
393   SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N);
394   SDValue SoftenFloatRes_FABS(SDNode *N);
395   SDValue SoftenFloatRes_FMINNUM(SDNode *N);
396   SDValue SoftenFloatRes_FMAXNUM(SDNode *N);
397   SDValue SoftenFloatRes_FADD(SDNode *N);
398   SDValue SoftenFloatRes_FCEIL(SDNode *N);
399   SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N);
400   SDValue SoftenFloatRes_FCOS(SDNode *N);
401   SDValue SoftenFloatRes_FDIV(SDNode *N);
402   SDValue SoftenFloatRes_FEXP(SDNode *N);
403   SDValue SoftenFloatRes_FEXP2(SDNode *N);
404   SDValue SoftenFloatRes_FFLOOR(SDNode *N);
405   SDValue SoftenFloatRes_FLOG(SDNode *N);
406   SDValue SoftenFloatRes_FLOG2(SDNode *N);
407   SDValue SoftenFloatRes_FLOG10(SDNode *N);
408   SDValue SoftenFloatRes_FMA(SDNode *N);
409   SDValue SoftenFloatRes_FMUL(SDNode *N);
410   SDValue SoftenFloatRes_FNEARBYINT(SDNode *N);
411   SDValue SoftenFloatRes_FNEG(SDNode *N);
412   SDValue SoftenFloatRes_FP_EXTEND(SDNode *N);
413   SDValue SoftenFloatRes_FP16_TO_FP(SDNode *N);
414   SDValue SoftenFloatRes_FP_ROUND(SDNode *N);
415   SDValue SoftenFloatRes_FPOW(SDNode *N);
416   SDValue SoftenFloatRes_FPOWI(SDNode *N);
417   SDValue SoftenFloatRes_FREM(SDNode *N);
418   SDValue SoftenFloatRes_FRINT(SDNode *N);
419   SDValue SoftenFloatRes_FROUND(SDNode *N);
420   SDValue SoftenFloatRes_FSIN(SDNode *N);
421   SDValue SoftenFloatRes_FSQRT(SDNode *N);
422   SDValue SoftenFloatRes_FSUB(SDNode *N);
423   SDValue SoftenFloatRes_FTRUNC(SDNode *N);
424   SDValue SoftenFloatRes_LOAD(SDNode *N);
425   SDValue SoftenFloatRes_SELECT(SDNode *N);
426   SDValue SoftenFloatRes_SELECT_CC(SDNode *N);
427   SDValue SoftenFloatRes_UNDEF(SDNode *N);
428   SDValue SoftenFloatRes_VAARG(SDNode *N);
429   SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N);
430
431   // Operand Float to Integer Conversion.
432   bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
433   SDValue SoftenFloatOp_BITCAST(SDNode *N);
434   SDValue SoftenFloatOp_BR_CC(SDNode *N);
435   SDValue SoftenFloatOp_FP_EXTEND(SDNode *N);
436   SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
437   SDValue SoftenFloatOp_FP_TO_SINT(SDNode *N);
438   SDValue SoftenFloatOp_FP_TO_UINT(SDNode *N);
439   SDValue SoftenFloatOp_SELECT_CC(SDNode *N);
440   SDValue SoftenFloatOp_SETCC(SDNode *N);
441   SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);
442
443   //===--------------------------------------------------------------------===//
444   // Float Expansion Support: LegalizeFloatTypes.cpp
445   //===--------------------------------------------------------------------===//
446
447   /// GetExpandedFloat - Given a processed operand Op which was expanded into
448   /// two floating point values of half the size, this returns the two halves.
449   /// The low bits of Op are exactly equal to the bits of Lo; the high bits
450   /// exactly equal Hi.  For example, if Op is a ppcf128 which was expanded
451   /// into two f64's, then this method returns the two f64's, with Lo being
452   /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits.
453   void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi);
454   void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi);
455
456   // Float Result Expansion.
457   void ExpandFloatResult(SDNode *N, unsigned ResNo);
458   void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
459   void ExpandFloatRes_FABS      (SDNode *N, SDValue &Lo, SDValue &Hi);
460   void ExpandFloatRes_FMINNUM   (SDNode *N, SDValue &Lo, SDValue &Hi);
461   void ExpandFloatRes_FMAXNUM   (SDNode *N, SDValue &Lo, SDValue &Hi);
462   void ExpandFloatRes_FADD      (SDNode *N, SDValue &Lo, SDValue &Hi);
463   void ExpandFloatRes_FCEIL     (SDNode *N, SDValue &Lo, SDValue &Hi);
464   void ExpandFloatRes_FCOPYSIGN (SDNode *N, SDValue &Lo, SDValue &Hi);
465   void ExpandFloatRes_FCOS      (SDNode *N, SDValue &Lo, SDValue &Hi);
466   void ExpandFloatRes_FDIV      (SDNode *N, SDValue &Lo, SDValue &Hi);
467   void ExpandFloatRes_FEXP      (SDNode *N, SDValue &Lo, SDValue &Hi);
468   void ExpandFloatRes_FEXP2     (SDNode *N, SDValue &Lo, SDValue &Hi);
469   void ExpandFloatRes_FFLOOR    (SDNode *N, SDValue &Lo, SDValue &Hi);
470   void ExpandFloatRes_FLOG      (SDNode *N, SDValue &Lo, SDValue &Hi);
471   void ExpandFloatRes_FLOG2     (SDNode *N, SDValue &Lo, SDValue &Hi);
472   void ExpandFloatRes_FLOG10    (SDNode *N, SDValue &Lo, SDValue &Hi);
473   void ExpandFloatRes_FMA       (SDNode *N, SDValue &Lo, SDValue &Hi);
474   void ExpandFloatRes_FMUL      (SDNode *N, SDValue &Lo, SDValue &Hi);
475   void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi);
476   void ExpandFloatRes_FNEG      (SDNode *N, SDValue &Lo, SDValue &Hi);
477   void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
478   void ExpandFloatRes_FPOW      (SDNode *N, SDValue &Lo, SDValue &Hi);
479   void ExpandFloatRes_FPOWI     (SDNode *N, SDValue &Lo, SDValue &Hi);
480   void ExpandFloatRes_FREM      (SDNode *N, SDValue &Lo, SDValue &Hi);
481   void ExpandFloatRes_FRINT     (SDNode *N, SDValue &Lo, SDValue &Hi);
482   void ExpandFloatRes_FROUND    (SDNode *N, SDValue &Lo, SDValue &Hi);
483   void ExpandFloatRes_FSIN      (SDNode *N, SDValue &Lo, SDValue &Hi);
484   void ExpandFloatRes_FSQRT     (SDNode *N, SDValue &Lo, SDValue &Hi);
485   void ExpandFloatRes_FSUB      (SDNode *N, SDValue &Lo, SDValue &Hi);
486   void ExpandFloatRes_FTRUNC    (SDNode *N, SDValue &Lo, SDValue &Hi);
487   void ExpandFloatRes_LOAD      (SDNode *N, SDValue &Lo, SDValue &Hi);
488   void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi);
489
490   // Float Operand Expansion.
491   bool ExpandFloatOperand(SDNode *N, unsigned OperandNo);
492   SDValue ExpandFloatOp_BR_CC(SDNode *N);
493   SDValue ExpandFloatOp_FCOPYSIGN(SDNode *N);
494   SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
495   SDValue ExpandFloatOp_FP_TO_SINT(SDNode *N);
496   SDValue ExpandFloatOp_FP_TO_UINT(SDNode *N);
497   SDValue ExpandFloatOp_SELECT_CC(SDNode *N);
498   SDValue ExpandFloatOp_SETCC(SDNode *N);
499   SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);
500
501   void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
502                                 ISD::CondCode &CCCode, SDLoc dl);
503
504
505   //===--------------------------------------------------------------------===//
506   // Float promotion support: LegalizeFloatTypes.cpp
507   //===--------------------------------------------------------------------===//
508
509   SDValue GetPromotedFloat(SDValue Op) {
510     SDValue &PromotedOp = PromotedFloats[Op];
511     RemapValue(PromotedOp);
512     assert(PromotedOp.getNode() && "Operand wasn't promoted?");
513     return PromotedOp;
514   }
515   void SetPromotedFloat(SDValue Op, SDValue Result);
516
517   void PromoteFloatResult(SDNode *N, unsigned ResNo);
518   SDValue PromoteFloatRes_BITCAST(SDNode *N);
519   SDValue PromoteFloatRes_BinOp(SDNode *N);
520   SDValue PromoteFloatRes_ConstantFP(SDNode *N);
521   SDValue PromoteFloatRes_EXTRACT_VECTOR_ELT(SDNode *N);
522   SDValue PromoteFloatRes_FCOPYSIGN(SDNode *N);
523   SDValue PromoteFloatRes_FMAD(SDNode *N);
524   SDValue PromoteFloatRes_FPOWI(SDNode *N);
525   SDValue PromoteFloatRes_FP_ROUND(SDNode *N);
526   SDValue PromoteFloatRes_LOAD(SDNode *N);
527   SDValue PromoteFloatRes_SELECT(SDNode *N);
528   SDValue PromoteFloatRes_SELECT_CC(SDNode *N);
529   SDValue PromoteFloatRes_UnaryOp(SDNode *N);
530   SDValue PromoteFloatRes_UNDEF(SDNode *N);
531   SDValue PromoteFloatRes_XINT_TO_FP(SDNode *N);
532
533   bool PromoteFloatOperand(SDNode *N, unsigned ResNo);
534   SDValue PromoteFloatOp_BITCAST(SDNode *N, unsigned OpNo);
535   SDValue PromoteFloatOp_FCOPYSIGN(SDNode *N, unsigned OpNo);
536   SDValue PromoteFloatOp_FP_EXTEND(SDNode *N, unsigned OpNo);
537   SDValue PromoteFloatOp_FP_TO_XINT(SDNode *N, unsigned OpNo);
538   SDValue PromoteFloatOp_STORE(SDNode *N, unsigned OpNo);
539   SDValue PromoteFloatOp_SELECT_CC(SDNode *N, unsigned OpNo);
540   SDValue PromoteFloatOp_SETCC(SDNode *N, unsigned OpNo);
541
542   //===--------------------------------------------------------------------===//
543   // Scalarization Support: LegalizeVectorTypes.cpp
544   //===--------------------------------------------------------------------===//
545
546   /// GetScalarizedVector - Given a processed one-element vector Op which was
547   /// scalarized to its element type, this returns the element.  For example,
548   /// if Op is a v1i32, Op = < i32 val >, this method returns val, an i32.
549   SDValue GetScalarizedVector(SDValue Op) {
550     SDValue &ScalarizedOp = ScalarizedVectors[Op];
551     RemapValue(ScalarizedOp);
552     assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
553     return ScalarizedOp;
554   }
555   void SetScalarizedVector(SDValue Op, SDValue Result);
556
557   // Vector Result Scalarization: <1 x ty> -> ty.
558   void ScalarizeVectorResult(SDNode *N, unsigned OpNo);
559   SDValue ScalarizeVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
560   SDValue ScalarizeVecRes_BinOp(SDNode *N);
561   SDValue ScalarizeVecRes_TernaryOp(SDNode *N);
562   SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
563   SDValue ScalarizeVecRes_InregOp(SDNode *N);
564
565   SDValue ScalarizeVecRes_BITCAST(SDNode *N);
566   SDValue ScalarizeVecRes_BUILD_VECTOR(SDNode *N);
567   SDValue ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N);
568   SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N);
569   SDValue ScalarizeVecRes_FP_ROUND(SDNode *N);
570   SDValue ScalarizeVecRes_FPOWI(SDNode *N);
571   SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
572   SDValue ScalarizeVecRes_LOAD(LoadSDNode *N);
573   SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N);
574   SDValue ScalarizeVecRes_VSELECT(SDNode *N);
575   SDValue ScalarizeVecRes_SELECT(SDNode *N);
576   SDValue ScalarizeVecRes_SELECT_CC(SDNode *N);
577   SDValue ScalarizeVecRes_SETCC(SDNode *N);
578   SDValue ScalarizeVecRes_UNDEF(SDNode *N);
579   SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
580   SDValue ScalarizeVecRes_VSETCC(SDNode *N);
581
582   // Vector Operand Scalarization: <1 x ty> -> ty.
583   bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
584   SDValue ScalarizeVecOp_BITCAST(SDNode *N);
585   SDValue ScalarizeVecOp_UnaryOp(SDNode *N);
586   SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N);
587   SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
588   SDValue ScalarizeVecOp_VSELECT(SDNode *N);
589   SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
590   SDValue ScalarizeVecOp_FP_ROUND(SDNode *N, unsigned OpNo);
591
592   //===--------------------------------------------------------------------===//
593   // Vector Splitting Support: LegalizeVectorTypes.cpp
594   //===--------------------------------------------------------------------===//
595
596   /// GetSplitVector - Given a processed vector Op which was split into vectors
597   /// of half the size, this method returns the halves.  The first elements of
598   /// Op coincide with the elements of Lo; the remaining elements of Op coincide
599   /// with the elements of Hi: Op is what you would get by concatenating Lo and
600   /// Hi.  For example, if Op is a v8i32 that was split into two v4i32's, then
601   /// this method returns the two v4i32's, with Lo corresponding to the first 4
602   /// elements of Op, and Hi to the last 4 elements.
603   void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi);
604   void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi);
605
606   // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
607   void SplitVectorResult(SDNode *N, unsigned OpNo);
608   void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
609   void SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
610   void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
611   void SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo, SDValue &Hi);
612   void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi);
613
614   void SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi);
615   void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
616   void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
617   void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
618   void SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
619   void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi);
620   void SplitVecRes_FCOPYSIGN(SDNode *N, SDValue &Lo, SDValue &Hi);
621   void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
622   void SplitVecRes_LOAD(LoadSDNode *N, SDValue &Lo, SDValue &Hi);
623   void SplitVecRes_MLOAD(MaskedLoadSDNode *N, SDValue &Lo, SDValue &Hi);
624   void SplitVecRes_MGATHER(MaskedGatherSDNode *N, SDValue &Lo, SDValue &Hi);
625   void SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
626   void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
627   void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo,
628                                   SDValue &Hi);
629
630   // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
631   bool SplitVectorOperand(SDNode *N, unsigned OpNo);
632   SDValue SplitVecOp_VSELECT(SDNode *N, unsigned OpNo);
633   SDValue SplitVecOp_UnaryOp(SDNode *N);
634   SDValue SplitVecOp_TruncateHelper(SDNode *N);
635
636   SDValue SplitVecOp_BITCAST(SDNode *N);
637   SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
638   SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
639   SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
640   SDValue SplitVecOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
641   SDValue SplitVecOp_MSCATTER(MaskedScatterSDNode *N, unsigned OpNo);
642   SDValue SplitVecOp_MGATHER(MaskedGatherSDNode *N, unsigned OpNo);
643   SDValue SplitVecOp_CONCAT_VECTORS(SDNode *N);
644   SDValue SplitVecOp_VSETCC(SDNode *N);
645   SDValue SplitVecOp_FP_ROUND(SDNode *N);
646   SDValue SplitVecOp_FCOPYSIGN(SDNode *N);
647
648   //===--------------------------------------------------------------------===//
649   // Vector Widening Support: LegalizeVectorTypes.cpp
650   //===--------------------------------------------------------------------===//
651
652   /// GetWidenedVector - Given a processed vector Op which was widened into a
653   /// larger vector, this method returns the larger vector.  The elements of
654   /// the returned vector consist of the elements of Op followed by elements
655   /// containing rubbish.  For example, if Op is a v2i32 that was widened to a
656   /// v4i32, then this method returns a v4i32 for which the first two elements
657   /// are the same as those of Op, while the last two elements contain rubbish.
658   SDValue GetWidenedVector(SDValue Op) {
659     SDValue &WidenedOp = WidenedVectors[Op];
660     RemapValue(WidenedOp);
661     assert(WidenedOp.getNode() && "Operand wasn't widened?");
662     return WidenedOp;
663   }
664   void SetWidenedVector(SDValue Op, SDValue Result);
665
666   // Widen Vector Result Promotion.
667   void WidenVectorResult(SDNode *N, unsigned ResNo);
668   SDValue WidenVecRes_MERGE_VALUES(SDNode* N, unsigned ResNo);
669   SDValue WidenVecRes_BITCAST(SDNode* N);
670   SDValue WidenVecRes_BUILD_VECTOR(SDNode* N);
671   SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N);
672   SDValue WidenVecRes_CONVERT_RNDSAT(SDNode* N);
673   SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N);
674   SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N);
675   SDValue WidenVecRes_LOAD(SDNode* N);
676   SDValue WidenVecRes_MLOAD(MaskedLoadSDNode* N);
677   SDValue WidenVecRes_SCALAR_TO_VECTOR(SDNode* N);
678   SDValue WidenVecRes_SELECT(SDNode* N);
679   SDValue WidenVecRes_SELECT_CC(SDNode* N);
680   SDValue WidenVecRes_SETCC(SDNode* N);
681   SDValue WidenVecRes_UNDEF(SDNode *N);
682   SDValue WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N);
683   SDValue WidenVecRes_VSETCC(SDNode* N);
684
685   SDValue WidenVecRes_Ternary(SDNode *N);
686   SDValue WidenVecRes_Binary(SDNode *N);
687   SDValue WidenVecRes_BinaryCanTrap(SDNode *N);
688   SDValue WidenVecRes_Convert(SDNode *N);
689   SDValue WidenVecRes_FCOPYSIGN(SDNode *N);
690   SDValue WidenVecRes_POWI(SDNode *N);
691   SDValue WidenVecRes_Shift(SDNode *N);
692   SDValue WidenVecRes_Unary(SDNode *N);
693   SDValue WidenVecRes_InregOp(SDNode *N);
694
695   // Widen Vector Operand.
696   bool WidenVectorOperand(SDNode *N, unsigned OpNo);
697   SDValue WidenVecOp_BITCAST(SDNode *N);
698   SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N);
699   SDValue WidenVecOp_EXTEND(SDNode *N);
700   SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
701   SDValue WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N);
702   SDValue WidenVecOp_STORE(SDNode* N);
703   SDValue WidenVecOp_MSTORE(SDNode* N, unsigned OpNo);
704   SDValue WidenVecOp_SETCC(SDNode* N);
705
706   SDValue WidenVecOp_Convert(SDNode *N);
707   SDValue WidenVecOp_FCOPYSIGN(SDNode *N);
708
709   //===--------------------------------------------------------------------===//
710   // Vector Widening Utilities Support: LegalizeVectorTypes.cpp
711   //===--------------------------------------------------------------------===//
712
713   /// Helper GenWidenVectorLoads - Helper function to generate a set of
714   /// loads to load a vector with a resulting wider type. It takes
715   ///   LdChain: list of chains for the load to be generated.
716   ///   Ld:      load to widen
717   SDValue GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
718                               LoadSDNode *LD);
719
720   /// GenWidenVectorExtLoads - Helper function to generate a set of extension
721   /// loads to load a ector with a resulting wider type.  It takes
722   ///   LdChain: list of chains for the load to be generated.
723   ///   Ld:      load to widen
724   ///   ExtType: extension element type
725   SDValue GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain,
726                                  LoadSDNode *LD, ISD::LoadExtType ExtType);
727
728   /// Helper genWidenVectorStores - Helper function to generate a set of
729   /// stores to store a widen vector into non-widen memory
730   ///   StChain: list of chains for the stores we have generated
731   ///   ST:      store of a widen value
732   void GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain, StoreSDNode *ST);
733
734   /// Helper genWidenVectorTruncStores - Helper function to generate a set of
735   /// stores to store a truncate widen vector into non-widen memory
736   ///   StChain: list of chains for the stores we have generated
737   ///   ST:      store of a widen value
738   void GenWidenVectorTruncStores(SmallVectorImpl<SDValue> &StChain,
739                                  StoreSDNode *ST);
740
741   /// Modifies a vector input (widen or narrows) to a vector of NVT.  The
742   /// input vector must have the same element type as NVT.
743   SDValue ModifyToType(SDValue InOp, EVT WidenVT);
744
745
746   //===--------------------------------------------------------------------===//
747   // Generic Splitting: LegalizeTypesGeneric.cpp
748   //===--------------------------------------------------------------------===//
749
750   // Legalization methods which only use that the illegal type is split into two
751   // not necessarily identical types.  As such they can be used for splitting
752   // vectors and expanding integers and floats.
753
754   void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
755     if (Op.getValueType().isVector())
756       GetSplitVector(Op, Lo, Hi);
757     else if (Op.getValueType().isInteger())
758       GetExpandedInteger(Op, Lo, Hi);
759     else
760       GetExpandedFloat(Op, Lo, Hi);
761   }
762
763   /// GetPairElements - Use ISD::EXTRACT_ELEMENT nodes to extract the low and
764   /// high parts of the given value.
765   void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi);
766
767   // Generic Result Splitting.
768   void SplitRes_MERGE_VALUES(SDNode *N, unsigned ResNo,
769                              SDValue &Lo, SDValue &Hi);
770   void SplitRes_SELECT      (SDNode *N, SDValue &Lo, SDValue &Hi);
771   void SplitRes_SELECT_CC   (SDNode *N, SDValue &Lo, SDValue &Hi);
772   void SplitRes_UNDEF       (SDNode *N, SDValue &Lo, SDValue &Hi);
773
774   //===--------------------------------------------------------------------===//
775   // Generic Expansion: LegalizeTypesGeneric.cpp
776   //===--------------------------------------------------------------------===//
777
778   // Legalization methods which only use that the illegal type is split into two
779   // identical types of half the size, and that the Lo/Hi part is stored first
780   // in memory on little/big-endian machines, followed by the Hi/Lo part.  As
781   // such they can be used for expanding integers and floats.
782
783   void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
784     if (Op.getValueType().isInteger())
785       GetExpandedInteger(Op, Lo, Hi);
786     else
787       GetExpandedFloat(Op, Lo, Hi);
788   }
789
790
791   /// This function will split the integer \p Op into \p NumElements
792   /// operations of type \p EltVT and store them in \p Ops.
793   void IntegerToVector(SDValue Op, unsigned NumElements,
794                        SmallVectorImpl<SDValue> &Ops, EVT EltVT);
795
796   // Generic Result Expansion.
797   void ExpandRes_MERGE_VALUES      (SDNode *N, unsigned ResNo,
798                                     SDValue &Lo, SDValue &Hi);
799   void ExpandRes_BITCAST           (SDNode *N, SDValue &Lo, SDValue &Hi);
800   void ExpandRes_BUILD_PAIR        (SDNode *N, SDValue &Lo, SDValue &Hi);
801   void ExpandRes_EXTRACT_ELEMENT   (SDNode *N, SDValue &Lo, SDValue &Hi);
802   void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
803   void ExpandRes_NormalLoad        (SDNode *N, SDValue &Lo, SDValue &Hi);
804   void ExpandRes_VAARG             (SDNode *N, SDValue &Lo, SDValue &Hi);
805
806   // Generic Operand Expansion.
807   SDValue ExpandOp_BITCAST          (SDNode *N);
808   SDValue ExpandOp_BUILD_VECTOR     (SDNode *N);
809   SDValue ExpandOp_EXTRACT_ELEMENT  (SDNode *N);
810   SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N);
811   SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N);
812   SDValue ExpandOp_NormalStore      (SDNode *N, unsigned OpNo);
813 };
814
815 } // end namespace llvm.
816
817 #endif