CodeGen: Stop using DIDescriptor::is*() and auto-casting
[oota-llvm.git] / lib / CodeGen / SelectionDAG / FastISel.cpp
1 //===-- FastISel.cpp - Implementation of the FastISel class ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the FastISel class.
11 //
12 // "Fast" instruction selection is designed to emit very poor code quickly.
13 // Also, it is not designed to be able to do much lowering, so most illegal
14 // types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15 // also not intended to be able to do much optimization, except in a few cases
16 // where doing optimizations reduces overall compile time.  For example, folding
17 // constants into immediate fields is often done, because it's cheap and it
18 // reduces the number of instructions later phases have to examine.
19 //
20 // "Fast" instruction selection is able to fail gracefully and transfer
21 // control to the SelectionDAG selector for operations that it doesn't
22 // support.  In many cases, this allows us to avoid duplicating a lot of
23 // the complicated lowering logic that SelectionDAG currently has.
24 //
25 // The intended use for "fast" instruction selection is "-O0" mode
26 // compilation, where the quality of the generated code is irrelevant when
27 // weighed against the speed at which the code can be generated.  Also,
28 // at -O0, the LLVM optimizers are not running, and this makes the
29 // compile time of codegen a much higher portion of the overall compile
30 // time.  Despite its limitations, "fast" instruction selection is able to
31 // handle enough code on its own to provide noticeable overall speedups
32 // in -O0 compiles.
33 //
34 // Basic operations are supported in a target-independent way, by reading
35 // the same instruction descriptions that the SelectionDAG selector reads,
36 // and identifying simple arithmetic operations that can be directly selected
37 // from simple operators.  More complicated operations currently require
38 // target-specific code.
39 //
40 //===----------------------------------------------------------------------===//
41
42 #include "llvm/CodeGen/Analysis.h"
43 #include "llvm/ADT/Optional.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/Analysis/BranchProbabilityInfo.h"
46 #include "llvm/Analysis/Loads.h"
47 #include "llvm/Analysis/TargetLibraryInfo.h"
48 #include "llvm/CodeGen/Analysis.h"
49 #include "llvm/CodeGen/FastISel.h"
50 #include "llvm/CodeGen/FunctionLoweringInfo.h"
51 #include "llvm/CodeGen/MachineFrameInfo.h"
52 #include "llvm/CodeGen/MachineInstrBuilder.h"
53 #include "llvm/CodeGen/MachineModuleInfo.h"
54 #include "llvm/CodeGen/MachineRegisterInfo.h"
55 #include "llvm/CodeGen/StackMaps.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/DebugInfo.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/GlobalVariable.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/Operator.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include "llvm/Target/TargetInstrInfo.h"
67 #include "llvm/Target/TargetLowering.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include "llvm/Target/TargetSubtargetInfo.h"
70 using namespace llvm;
71
72 #define DEBUG_TYPE "isel"
73
74 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
75                                          "target-independent selector");
76 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
77                                     "target-specific selector");
78 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
79
80 void FastISel::ArgListEntry::setAttributes(ImmutableCallSite *CS,
81                                            unsigned AttrIdx) {
82   IsSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt);
83   IsZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt);
84   IsInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg);
85   IsSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet);
86   IsNest = CS->paramHasAttr(AttrIdx, Attribute::Nest);
87   IsByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal);
88   IsInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca);
89   IsReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned);
90   Alignment = CS->getParamAlignment(AttrIdx);
91 }
92
93 /// Set the current block to which generated machine instructions will be
94 /// appended, and clear the local CSE map.
95 void FastISel::startNewBlock() {
96   LocalValueMap.clear();
97
98   // Instructions are appended to FuncInfo.MBB. If the basic block already
99   // contains labels or copies, use the last instruction as the last local
100   // value.
101   EmitStartPt = nullptr;
102   if (!FuncInfo.MBB->empty())
103     EmitStartPt = &FuncInfo.MBB->back();
104   LastLocalValue = EmitStartPt;
105 }
106
107 bool FastISel::lowerArguments() {
108   if (!FuncInfo.CanLowerReturn)
109     // Fallback to SDISel argument lowering code to deal with sret pointer
110     // parameter.
111     return false;
112
113   if (!fastLowerArguments())
114     return false;
115
116   // Enter arguments into ValueMap for uses in non-entry BBs.
117   for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
118                                     E = FuncInfo.Fn->arg_end();
119        I != E; ++I) {
120     DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(I);
121     assert(VI != LocalValueMap.end() && "Missed an argument?");
122     FuncInfo.ValueMap[I] = VI->second;
123   }
124   return true;
125 }
126
127 void FastISel::flushLocalValueMap() {
128   LocalValueMap.clear();
129   LastLocalValue = EmitStartPt;
130   recomputeInsertPt();
131   SavedInsertPt = FuncInfo.InsertPt;
132 }
133
134 bool FastISel::hasTrivialKill(const Value *V) {
135   // Don't consider constants or arguments to have trivial kills.
136   const Instruction *I = dyn_cast<Instruction>(V);
137   if (!I)
138     return false;
139
140   // No-op casts are trivially coalesced by fast-isel.
141   if (const auto *Cast = dyn_cast<CastInst>(I))
142     if (Cast->isNoopCast(DL.getIntPtrType(Cast->getContext())) &&
143         !hasTrivialKill(Cast->getOperand(0)))
144       return false;
145
146   // Even the value might have only one use in the LLVM IR, it is possible that
147   // FastISel might fold the use into another instruction and now there is more
148   // than one use at the Machine Instruction level.
149   unsigned Reg = lookUpRegForValue(V);
150   if (Reg && !MRI.use_empty(Reg))
151     return false;
152
153   // GEPs with all zero indices are trivially coalesced by fast-isel.
154   if (const auto *GEP = dyn_cast<GetElementPtrInst>(I))
155     if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0)))
156       return false;
157
158   // Only instructions with a single use in the same basic block are considered
159   // to have trivial kills.
160   return I->hasOneUse() &&
161          !(I->getOpcode() == Instruction::BitCast ||
162            I->getOpcode() == Instruction::PtrToInt ||
163            I->getOpcode() == Instruction::IntToPtr) &&
164          cast<Instruction>(*I->user_begin())->getParent() == I->getParent();
165 }
166
167 unsigned FastISel::getRegForValue(const Value *V) {
168   EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
169   // Don't handle non-simple values in FastISel.
170   if (!RealVT.isSimple())
171     return 0;
172
173   // Ignore illegal types. We must do this before looking up the value
174   // in ValueMap because Arguments are given virtual registers regardless
175   // of whether FastISel can handle them.
176   MVT VT = RealVT.getSimpleVT();
177   if (!TLI.isTypeLegal(VT)) {
178     // Handle integer promotions, though, because they're common and easy.
179     if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
180       VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
181     else
182       return 0;
183   }
184
185   // Look up the value to see if we already have a register for it.
186   unsigned Reg = lookUpRegForValue(V);
187   if (Reg)
188     return Reg;
189
190   // In bottom-up mode, just create the virtual register which will be used
191   // to hold the value. It will be materialized later.
192   if (isa<Instruction>(V) &&
193       (!isa<AllocaInst>(V) ||
194        !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
195     return FuncInfo.InitializeRegForValue(V);
196
197   SavePoint SaveInsertPt = enterLocalValueArea();
198
199   // Materialize the value in a register. Emit any instructions in the
200   // local value area.
201   Reg = materializeRegForValue(V, VT);
202
203   leaveLocalValueArea(SaveInsertPt);
204
205   return Reg;
206 }
207
208 unsigned FastISel::materializeConstant(const Value *V, MVT VT) {
209   unsigned Reg = 0;
210   if (const auto *CI = dyn_cast<ConstantInt>(V)) {
211     if (CI->getValue().getActiveBits() <= 64)
212       Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
213   } else if (isa<AllocaInst>(V))
214     Reg = fastMaterializeAlloca(cast<AllocaInst>(V));
215   else if (isa<ConstantPointerNull>(V))
216     // Translate this as an integer zero so that it can be
217     // local-CSE'd with actual integer zeros.
218     Reg = getRegForValue(
219         Constant::getNullValue(DL.getIntPtrType(V->getContext())));
220   else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
221     if (CF->isNullValue())
222       Reg = fastMaterializeFloatZero(CF);
223     else
224       // Try to emit the constant directly.
225       Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF);
226
227     if (!Reg) {
228       // Try to emit the constant by using an integer constant with a cast.
229       const APFloat &Flt = CF->getValueAPF();
230       EVT IntVT = TLI.getPointerTy();
231
232       uint64_t x[2];
233       uint32_t IntBitWidth = IntVT.getSizeInBits();
234       bool isExact;
235       (void)Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
236                                  APFloat::rmTowardZero, &isExact);
237       if (isExact) {
238         APInt IntVal(IntBitWidth, x);
239
240         unsigned IntegerReg =
241             getRegForValue(ConstantInt::get(V->getContext(), IntVal));
242         if (IntegerReg != 0)
243           Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg,
244                            /*Kill=*/false);
245       }
246     }
247   } else if (const auto *Op = dyn_cast<Operator>(V)) {
248     if (!selectOperator(Op, Op->getOpcode()))
249       if (!isa<Instruction>(Op) ||
250           !fastSelectInstruction(cast<Instruction>(Op)))
251         return 0;
252     Reg = lookUpRegForValue(Op);
253   } else if (isa<UndefValue>(V)) {
254     Reg = createResultReg(TLI.getRegClassFor(VT));
255     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
256             TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
257   }
258   return Reg;
259 }
260
261 /// Helper for getRegForValue. This function is called when the value isn't
262 /// already available in a register and must be materialized with new
263 /// instructions.
264 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
265   unsigned Reg = 0;
266   // Give the target-specific code a try first.
267   if (isa<Constant>(V))
268     Reg = fastMaterializeConstant(cast<Constant>(V));
269
270   // If target-specific code couldn't or didn't want to handle the value, then
271   // give target-independent code a try.
272   if (!Reg)
273     Reg = materializeConstant(V, VT);
274
275   // Don't cache constant materializations in the general ValueMap.
276   // To do so would require tracking what uses they dominate.
277   if (Reg) {
278     LocalValueMap[V] = Reg;
279     LastLocalValue = MRI.getVRegDef(Reg);
280   }
281   return Reg;
282 }
283
284 unsigned FastISel::lookUpRegForValue(const Value *V) {
285   // Look up the value to see if we already have a register for it. We
286   // cache values defined by Instructions across blocks, and other values
287   // only locally. This is because Instructions already have the SSA
288   // def-dominates-use requirement enforced.
289   DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
290   if (I != FuncInfo.ValueMap.end())
291     return I->second;
292   return LocalValueMap[V];
293 }
294
295 void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
296   if (!isa<Instruction>(I)) {
297     LocalValueMap[I] = Reg;
298     return;
299   }
300
301   unsigned &AssignedReg = FuncInfo.ValueMap[I];
302   if (AssignedReg == 0)
303     // Use the new register.
304     AssignedReg = Reg;
305   else if (Reg != AssignedReg) {
306     // Arrange for uses of AssignedReg to be replaced by uses of Reg.
307     for (unsigned i = 0; i < NumRegs; i++)
308       FuncInfo.RegFixups[AssignedReg + i] = Reg + i;
309
310     AssignedReg = Reg;
311   }
312 }
313
314 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
315   unsigned IdxN = getRegForValue(Idx);
316   if (IdxN == 0)
317     // Unhandled operand. Halt "fast" selection and bail.
318     return std::pair<unsigned, bool>(0, false);
319
320   bool IdxNIsKill = hasTrivialKill(Idx);
321
322   // If the index is smaller or larger than intptr_t, truncate or extend it.
323   MVT PtrVT = TLI.getPointerTy();
324   EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
325   if (IdxVT.bitsLT(PtrVT)) {
326     IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN,
327                       IdxNIsKill);
328     IdxNIsKill = true;
329   } else if (IdxVT.bitsGT(PtrVT)) {
330     IdxN =
331         fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill);
332     IdxNIsKill = true;
333   }
334   return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
335 }
336
337 void FastISel::recomputeInsertPt() {
338   if (getLastLocalValue()) {
339     FuncInfo.InsertPt = getLastLocalValue();
340     FuncInfo.MBB = FuncInfo.InsertPt->getParent();
341     ++FuncInfo.InsertPt;
342   } else
343     FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
344
345   // Now skip past any EH_LABELs, which must remain at the beginning.
346   while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
347          FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
348     ++FuncInfo.InsertPt;
349 }
350
351 void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
352                               MachineBasicBlock::iterator E) {
353   assert(I && E && std::distance(I, E) > 0 && "Invalid iterator!");
354   while (I != E) {
355     MachineInstr *Dead = &*I;
356     ++I;
357     Dead->eraseFromParent();
358     ++NumFastIselDead;
359   }
360   recomputeInsertPt();
361 }
362
363 FastISel::SavePoint FastISel::enterLocalValueArea() {
364   MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
365   DebugLoc OldDL = DbgLoc;
366   recomputeInsertPt();
367   DbgLoc = DebugLoc();
368   SavePoint SP = {OldInsertPt, OldDL};
369   return SP;
370 }
371
372 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
373   if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
374     LastLocalValue = std::prev(FuncInfo.InsertPt);
375
376   // Restore the previous insert position.
377   FuncInfo.InsertPt = OldInsertPt.InsertPt;
378   DbgLoc = OldInsertPt.DL;
379 }
380
381 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) {
382   EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
383   if (VT == MVT::Other || !VT.isSimple())
384     // Unhandled type. Halt "fast" selection and bail.
385     return false;
386
387   // We only handle legal types. For example, on x86-32 the instruction
388   // selector contains all of the 64-bit instructions from x86-64,
389   // under the assumption that i64 won't be used if the target doesn't
390   // support it.
391   if (!TLI.isTypeLegal(VT)) {
392     // MVT::i1 is special. Allow AND, OR, or XOR because they
393     // don't require additional zeroing, which makes them easy.
394     if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
395                           ISDOpcode == ISD::XOR))
396       VT = TLI.getTypeToTransformTo(I->getContext(), VT);
397     else
398       return false;
399   }
400
401   // Check if the first operand is a constant, and handle it as "ri".  At -O0,
402   // we don't have anything that canonicalizes operand order.
403   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
404     if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
405       unsigned Op1 = getRegForValue(I->getOperand(1));
406       if (!Op1)
407         return false;
408       bool Op1IsKill = hasTrivialKill(I->getOperand(1));
409
410       unsigned ResultReg =
411           fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill,
412                        CI->getZExtValue(), VT.getSimpleVT());
413       if (!ResultReg)
414         return false;
415
416       // We successfully emitted code for the given LLVM Instruction.
417       updateValueMap(I, ResultReg);
418       return true;
419     }
420
421   unsigned Op0 = getRegForValue(I->getOperand(0));
422   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
423     return false;
424   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
425
426   // Check if the second operand is a constant and handle it appropriately.
427   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
428     uint64_t Imm = CI->getSExtValue();
429
430     // Transform "sdiv exact X, 8" -> "sra X, 3".
431     if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
432         cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) {
433       Imm = Log2_64(Imm);
434       ISDOpcode = ISD::SRA;
435     }
436
437     // Transform "urem x, pow2" -> "and x, pow2-1".
438     if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
439         isPowerOf2_64(Imm)) {
440       --Imm;
441       ISDOpcode = ISD::AND;
442     }
443
444     unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
445                                       Op0IsKill, Imm, VT.getSimpleVT());
446     if (!ResultReg)
447       return false;
448
449     // We successfully emitted code for the given LLVM Instruction.
450     updateValueMap(I, ResultReg);
451     return true;
452   }
453
454   // Check if the second operand is a constant float.
455   if (const auto *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
456     unsigned ResultReg = fastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
457                                      ISDOpcode, Op0, Op0IsKill, CF);
458     if (ResultReg) {
459       // We successfully emitted code for the given LLVM Instruction.
460       updateValueMap(I, ResultReg);
461       return true;
462     }
463   }
464
465   unsigned Op1 = getRegForValue(I->getOperand(1));
466   if (!Op1) // Unhandled operand. Halt "fast" selection and bail.
467     return false;
468   bool Op1IsKill = hasTrivialKill(I->getOperand(1));
469
470   // Now we have both operands in registers. Emit the instruction.
471   unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
472                                    ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill);
473   if (!ResultReg)
474     // Target-specific code wasn't able to find a machine opcode for
475     // the given ISD opcode and type. Halt "fast" selection and bail.
476     return false;
477
478   // We successfully emitted code for the given LLVM Instruction.
479   updateValueMap(I, ResultReg);
480   return true;
481 }
482
483 bool FastISel::selectGetElementPtr(const User *I) {
484   unsigned N = getRegForValue(I->getOperand(0));
485   if (!N) // Unhandled operand. Halt "fast" selection and bail.
486     return false;
487   bool NIsKill = hasTrivialKill(I->getOperand(0));
488
489   // Keep a running tab of the total offset to coalesce multiple N = N + Offset
490   // into a single N = N + TotalOffset.
491   uint64_t TotalOffs = 0;
492   // FIXME: What's a good SWAG number for MaxOffs?
493   uint64_t MaxOffs = 2048;
494   Type *Ty = I->getOperand(0)->getType();
495   MVT VT = TLI.getPointerTy();
496   for (GetElementPtrInst::const_op_iterator OI = I->op_begin() + 1,
497                                             E = I->op_end();
498        OI != E; ++OI) {
499     const Value *Idx = *OI;
500     if (auto *StTy = dyn_cast<StructType>(Ty)) {
501       uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue();
502       if (Field) {
503         // N = N + Offset
504         TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
505         if (TotalOffs >= MaxOffs) {
506           N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
507           if (!N) // Unhandled operand. Halt "fast" selection and bail.
508             return false;
509           NIsKill = true;
510           TotalOffs = 0;
511         }
512       }
513       Ty = StTy->getElementType(Field);
514     } else {
515       Ty = cast<SequentialType>(Ty)->getElementType();
516
517       // If this is a constant subscript, handle it quickly.
518       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
519         if (CI->isZero())
520           continue;
521         // N = N + Offset
522         uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue();
523         TotalOffs += DL.getTypeAllocSize(Ty) * IdxN;
524         if (TotalOffs >= MaxOffs) {
525           N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
526           if (!N) // Unhandled operand. Halt "fast" selection and bail.
527             return false;
528           NIsKill = true;
529           TotalOffs = 0;
530         }
531         continue;
532       }
533       if (TotalOffs) {
534         N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
535         if (!N) // Unhandled operand. Halt "fast" selection and bail.
536           return false;
537         NIsKill = true;
538         TotalOffs = 0;
539       }
540
541       // N = N + Idx * ElementSize;
542       uint64_t ElementSize = DL.getTypeAllocSize(Ty);
543       std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
544       unsigned IdxN = Pair.first;
545       bool IdxNIsKill = Pair.second;
546       if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
547         return false;
548
549       if (ElementSize != 1) {
550         IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
551         if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
552           return false;
553         IdxNIsKill = true;
554       }
555       N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
556       if (!N) // Unhandled operand. Halt "fast" selection and bail.
557         return false;
558     }
559   }
560   if (TotalOffs) {
561     N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
562     if (!N) // Unhandled operand. Halt "fast" selection and bail.
563       return false;
564   }
565
566   // We successfully emitted code for the given LLVM Instruction.
567   updateValueMap(I, N);
568   return true;
569 }
570
571 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
572                                    const CallInst *CI, unsigned StartIdx) {
573   for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) {
574     Value *Val = CI->getArgOperand(i);
575     // Check for constants and encode them with a StackMaps::ConstantOp prefix.
576     if (const auto *C = dyn_cast<ConstantInt>(Val)) {
577       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
578       Ops.push_back(MachineOperand::CreateImm(C->getSExtValue()));
579     } else if (isa<ConstantPointerNull>(Val)) {
580       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
581       Ops.push_back(MachineOperand::CreateImm(0));
582     } else if (auto *AI = dyn_cast<AllocaInst>(Val)) {
583       // Values coming from a stack location also require a sepcial encoding,
584       // but that is added later on by the target specific frame index
585       // elimination implementation.
586       auto SI = FuncInfo.StaticAllocaMap.find(AI);
587       if (SI != FuncInfo.StaticAllocaMap.end())
588         Ops.push_back(MachineOperand::CreateFI(SI->second));
589       else
590         return false;
591     } else {
592       unsigned Reg = getRegForValue(Val);
593       if (!Reg)
594         return false;
595       Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
596     }
597   }
598   return true;
599 }
600
601 bool FastISel::selectStackmap(const CallInst *I) {
602   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
603   //                                  [live variables...])
604   assert(I->getCalledFunction()->getReturnType()->isVoidTy() &&
605          "Stackmap cannot return a value.");
606
607   // The stackmap intrinsic only records the live variables (the arguments
608   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
609   // intrinsic, this won't be lowered to a function call. This means we don't
610   // have to worry about calling conventions and target-specific lowering code.
611   // Instead we perform the call lowering right here.
612   //
613   // CALLSEQ_START(0)
614   // STACKMAP(id, nbytes, ...)
615   // CALLSEQ_END(0, 0)
616   //
617   SmallVector<MachineOperand, 32> Ops;
618
619   // Add the <id> and <numBytes> constants.
620   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
621          "Expected a constant integer.");
622   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
623   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
624
625   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
626          "Expected a constant integer.");
627   const auto *NumBytes =
628       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
629   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
630
631   // Push live variables for the stack map (skipping the first two arguments
632   // <id> and <numBytes>).
633   if (!addStackMapLiveVars(Ops, I, 2))
634     return false;
635
636   // We are not adding any register mask info here, because the stackmap doesn't
637   // clobber anything.
638
639   // Add scratch registers as implicit def and early clobber.
640   CallingConv::ID CC = I->getCallingConv();
641   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
642   for (unsigned i = 0; ScratchRegs[i]; ++i)
643     Ops.push_back(MachineOperand::CreateReg(
644         ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false,
645         /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true));
646
647   // Issue CALLSEQ_START
648   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
649   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
650       .addImm(0);
651
652   // Issue STACKMAP.
653   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
654                                     TII.get(TargetOpcode::STACKMAP));
655   for (auto const &MO : Ops)
656     MIB.addOperand(MO);
657
658   // Issue CALLSEQ_END
659   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
660   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
661       .addImm(0)
662       .addImm(0);
663
664   // Inform the Frame Information that we have a stackmap in this function.
665   FuncInfo.MF->getFrameInfo()->setHasStackMap();
666
667   return true;
668 }
669
670 /// \brief Lower an argument list according to the target calling convention.
671 ///
672 /// This is a helper for lowering intrinsics that follow a target calling
673 /// convention or require stack pointer adjustment. Only a subset of the
674 /// intrinsic's operands need to participate in the calling convention.
675 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx,
676                                  unsigned NumArgs, const Value *Callee,
677                                  bool ForceRetVoidTy, CallLoweringInfo &CLI) {
678   ArgListTy Args;
679   Args.reserve(NumArgs);
680
681   // Populate the argument list.
682   // Attributes for args start at offset 1, after the return attribute.
683   ImmutableCallSite CS(CI);
684   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
685        ArgI != ArgE; ++ArgI) {
686     Value *V = CI->getOperand(ArgI);
687
688     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
689
690     ArgListEntry Entry;
691     Entry.Val = V;
692     Entry.Ty = V->getType();
693     Entry.setAttributes(&CS, AttrI);
694     Args.push_back(Entry);
695   }
696
697   Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext())
698                                : CI->getType();
699   CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs);
700
701   return lowerCallTo(CLI);
702 }
703
704 bool FastISel::selectPatchpoint(const CallInst *I) {
705   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
706   //                                                 i32 <numBytes>,
707   //                                                 i8* <target>,
708   //                                                 i32 <numArgs>,
709   //                                                 [Args...],
710   //                                                 [live variables...])
711   CallingConv::ID CC = I->getCallingConv();
712   bool IsAnyRegCC = CC == CallingConv::AnyReg;
713   bool HasDef = !I->getType()->isVoidTy();
714   Value *Callee = I->getOperand(PatchPointOpers::TargetPos);
715
716   // Get the real number of arguments participating in the call <numArgs>
717   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) &&
718          "Expected a constant integer.");
719   const auto *NumArgsVal =
720       cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos));
721   unsigned NumArgs = NumArgsVal->getZExtValue();
722
723   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
724   // This includes all meta-operands up to but not including CC.
725   unsigned NumMetaOpers = PatchPointOpers::CCPos;
726   assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs &&
727          "Not enough arguments provided to the patchpoint intrinsic");
728
729   // For AnyRegCC the arguments are lowered later on manually.
730   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
731   CallLoweringInfo CLI;
732   CLI.setIsPatchPoint();
733   if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI))
734     return false;
735
736   assert(CLI.Call && "No call instruction specified.");
737
738   SmallVector<MachineOperand, 32> Ops;
739
740   // Add an explicit result reg if we use the anyreg calling convention.
741   if (IsAnyRegCC && HasDef) {
742     assert(CLI.NumResultRegs == 0 && "Unexpected result register.");
743     CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64));
744     CLI.NumResultRegs = 1;
745     Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*IsDef=*/true));
746   }
747
748   // Add the <id> and <numBytes> constants.
749   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
750          "Expected a constant integer.");
751   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
752   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
753
754   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
755          "Expected a constant integer.");
756   const auto *NumBytes =
757       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
758   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
759
760   // Assume that the callee is a constant address or null pointer.
761   // FIXME: handle function symbols in the future.
762   uint64_t CalleeAddr;
763   if (const auto *C = dyn_cast<IntToPtrInst>(Callee))
764     CalleeAddr = cast<ConstantInt>(C->getOperand(0))->getZExtValue();
765   else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) {
766     if (C->getOpcode() == Instruction::IntToPtr)
767       CalleeAddr = cast<ConstantInt>(C->getOperand(0))->getZExtValue();
768     else
769       llvm_unreachable("Unsupported ConstantExpr.");
770   } else if (isa<ConstantPointerNull>(Callee))
771     CalleeAddr = 0;
772   else
773     llvm_unreachable("Unsupported callee address.");
774
775   Ops.push_back(MachineOperand::CreateImm(CalleeAddr));
776
777   // Adjust <numArgs> to account for any arguments that have been passed on
778   // the stack instead.
779   unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size();
780   Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs));
781
782   // Add the calling convention
783   Ops.push_back(MachineOperand::CreateImm((unsigned)CC));
784
785   // Add the arguments we omitted previously. The register allocator should
786   // place these in any free register.
787   if (IsAnyRegCC) {
788     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) {
789       unsigned Reg = getRegForValue(I->getArgOperand(i));
790       if (!Reg)
791         return false;
792       Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
793     }
794   }
795
796   // Push the arguments from the call instruction.
797   for (auto Reg : CLI.OutRegs)
798     Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
799
800   // Push live variables for the stack map.
801   if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs))
802     return false;
803
804   // Push the register mask info.
805   Ops.push_back(MachineOperand::CreateRegMask(
806       TRI.getCallPreservedMask(*FuncInfo.MF, CC)));
807
808   // Add scratch registers as implicit def and early clobber.
809   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
810   for (unsigned i = 0; ScratchRegs[i]; ++i)
811     Ops.push_back(MachineOperand::CreateReg(
812         ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false,
813         /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true));
814
815   // Add implicit defs (return values).
816   for (auto Reg : CLI.InRegs)
817     Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/true,
818                                             /*IsImpl=*/true));
819
820   // Insert the patchpoint instruction before the call generated by the target.
821   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc,
822                                     TII.get(TargetOpcode::PATCHPOINT));
823
824   for (auto &MO : Ops)
825     MIB.addOperand(MO);
826
827   MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI);
828
829   // Delete the original call instruction.
830   CLI.Call->eraseFromParent();
831
832   // Inform the Frame Information that we have a patchpoint in this function.
833   FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
834
835   if (CLI.NumResultRegs)
836     updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs);
837   return true;
838 }
839
840 /// Returns an AttributeSet representing the attributes applied to the return
841 /// value of the given call.
842 static AttributeSet getReturnAttrs(FastISel::CallLoweringInfo &CLI) {
843   SmallVector<Attribute::AttrKind, 2> Attrs;
844   if (CLI.RetSExt)
845     Attrs.push_back(Attribute::SExt);
846   if (CLI.RetZExt)
847     Attrs.push_back(Attribute::ZExt);
848   if (CLI.IsInReg)
849     Attrs.push_back(Attribute::InReg);
850
851   return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
852                            Attrs);
853 }
854
855 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName,
856                            unsigned NumArgs) {
857   ImmutableCallSite CS(CI);
858
859   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
860   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
861   Type *RetTy = FTy->getReturnType();
862
863   ArgListTy Args;
864   Args.reserve(NumArgs);
865
866   // Populate the argument list.
867   // Attributes for args start at offset 1, after the return attribute.
868   for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) {
869     Value *V = CI->getOperand(ArgI);
870
871     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
872
873     ArgListEntry Entry;
874     Entry.Val = V;
875     Entry.Ty = V->getType();
876     Entry.setAttributes(&CS, ArgI + 1);
877     Args.push_back(Entry);
878   }
879
880   CallLoweringInfo CLI;
881   CLI.setCallee(RetTy, FTy, SymName, std::move(Args), CS, NumArgs);
882
883   return lowerCallTo(CLI);
884 }
885
886 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) {
887   // Handle the incoming return values from the call.
888   CLI.clearIns();
889   SmallVector<EVT, 4> RetTys;
890   ComputeValueVTs(TLI, CLI.RetTy, RetTys);
891
892   SmallVector<ISD::OutputArg, 4> Outs;
893   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, TLI);
894
895   bool CanLowerReturn = TLI.CanLowerReturn(
896       CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext());
897
898   // FIXME: sret demotion isn't supported yet - bail out.
899   if (!CanLowerReturn)
900     return false;
901
902   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
903     EVT VT = RetTys[I];
904     MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT);
905     unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT);
906     for (unsigned i = 0; i != NumRegs; ++i) {
907       ISD::InputArg MyFlags;
908       MyFlags.VT = RegisterVT;
909       MyFlags.ArgVT = VT;
910       MyFlags.Used = CLI.IsReturnValueUsed;
911       if (CLI.RetSExt)
912         MyFlags.Flags.setSExt();
913       if (CLI.RetZExt)
914         MyFlags.Flags.setZExt();
915       if (CLI.IsInReg)
916         MyFlags.Flags.setInReg();
917       CLI.Ins.push_back(MyFlags);
918     }
919   }
920
921   // Handle all of the outgoing arguments.
922   CLI.clearOuts();
923   for (auto &Arg : CLI.getArgs()) {
924     Type *FinalType = Arg.Ty;
925     if (Arg.IsByVal)
926       FinalType = cast<PointerType>(Arg.Ty)->getElementType();
927     bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
928         FinalType, CLI.CallConv, CLI.IsVarArg);
929
930     ISD::ArgFlagsTy Flags;
931     if (Arg.IsZExt)
932       Flags.setZExt();
933     if (Arg.IsSExt)
934       Flags.setSExt();
935     if (Arg.IsInReg)
936       Flags.setInReg();
937     if (Arg.IsSRet)
938       Flags.setSRet();
939     if (Arg.IsByVal)
940       Flags.setByVal();
941     if (Arg.IsInAlloca) {
942       Flags.setInAlloca();
943       // Set the byval flag for CCAssignFn callbacks that don't know about
944       // inalloca. This way we can know how many bytes we should've allocated
945       // and how many bytes a callee cleanup function will pop.  If we port
946       // inalloca to more targets, we'll have to add custom inalloca handling in
947       // the various CC lowering callbacks.
948       Flags.setByVal();
949     }
950     if (Arg.IsByVal || Arg.IsInAlloca) {
951       PointerType *Ty = cast<PointerType>(Arg.Ty);
952       Type *ElementTy = Ty->getElementType();
953       unsigned FrameSize = DL.getTypeAllocSize(ElementTy);
954       // For ByVal, alignment should come from FE. BE will guess if this info is
955       // not there, but there are cases it cannot get right.
956       unsigned FrameAlign = Arg.Alignment;
957       if (!FrameAlign)
958         FrameAlign = TLI.getByValTypeAlignment(ElementTy);
959       Flags.setByValSize(FrameSize);
960       Flags.setByValAlign(FrameAlign);
961     }
962     if (Arg.IsNest)
963       Flags.setNest();
964     if (NeedsRegBlock)
965       Flags.setInConsecutiveRegs();
966     unsigned OriginalAlignment = DL.getABITypeAlignment(Arg.Ty);
967     Flags.setOrigAlign(OriginalAlignment);
968
969     CLI.OutVals.push_back(Arg.Val);
970     CLI.OutFlags.push_back(Flags);
971   }
972
973   if (!fastLowerCall(CLI))
974     return false;
975
976   // Set all unused physreg defs as dead.
977   assert(CLI.Call && "No call instruction specified.");
978   CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI);
979
980   if (CLI.NumResultRegs && CLI.CS)
981     updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs);
982
983   return true;
984 }
985
986 bool FastISel::lowerCall(const CallInst *CI) {
987   ImmutableCallSite CS(CI);
988
989   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
990   FunctionType *FuncTy = cast<FunctionType>(PT->getElementType());
991   Type *RetTy = FuncTy->getReturnType();
992
993   ArgListTy Args;
994   ArgListEntry Entry;
995   Args.reserve(CS.arg_size());
996
997   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
998        i != e; ++i) {
999     Value *V = *i;
1000
1001     // Skip empty types
1002     if (V->getType()->isEmptyTy())
1003       continue;
1004
1005     Entry.Val = V;
1006     Entry.Ty = V->getType();
1007
1008     // Skip the first return-type Attribute to get to params.
1009     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
1010     Args.push_back(Entry);
1011   }
1012
1013   // Check if target-independent constraints permit a tail call here.
1014   // Target-dependent constraints are checked within fastLowerCall.
1015   bool IsTailCall = CI->isTailCall();
1016   if (IsTailCall && !isInTailCallPosition(CS, TM))
1017     IsTailCall = false;
1018
1019   CallLoweringInfo CLI;
1020   CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS)
1021       .setTailCall(IsTailCall);
1022
1023   return lowerCallTo(CLI);
1024 }
1025
1026 bool FastISel::selectCall(const User *I) {
1027   const CallInst *Call = cast<CallInst>(I);
1028
1029   // Handle simple inline asms.
1030   if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) {
1031     // If the inline asm has side effects, then make sure that no local value
1032     // lives across by flushing the local value map.
1033     if (IA->hasSideEffects())
1034       flushLocalValueMap();
1035
1036     // Don't attempt to handle constraints.
1037     if (!IA->getConstraintString().empty())
1038       return false;
1039
1040     unsigned ExtraInfo = 0;
1041     if (IA->hasSideEffects())
1042       ExtraInfo |= InlineAsm::Extra_HasSideEffects;
1043     if (IA->isAlignStack())
1044       ExtraInfo |= InlineAsm::Extra_IsAlignStack;
1045
1046     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1047             TII.get(TargetOpcode::INLINEASM))
1048         .addExternalSymbol(IA->getAsmString().c_str())
1049         .addImm(ExtraInfo);
1050     return true;
1051   }
1052
1053   MachineModuleInfo &MMI = FuncInfo.MF->getMMI();
1054   ComputeUsesVAFloatArgument(*Call, &MMI);
1055
1056   // Handle intrinsic function calls.
1057   if (const auto *II = dyn_cast<IntrinsicInst>(Call))
1058     return selectIntrinsicCall(II);
1059
1060   // Usually, it does not make sense to initialize a value,
1061   // make an unrelated function call and use the value, because
1062   // it tends to be spilled on the stack. So, we move the pointer
1063   // to the last local value to the beginning of the block, so that
1064   // all the values which have already been materialized,
1065   // appear after the call. It also makes sense to skip intrinsics
1066   // since they tend to be inlined.
1067   flushLocalValueMap();
1068
1069   return lowerCall(Call);
1070 }
1071
1072 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) {
1073   switch (II->getIntrinsicID()) {
1074   default:
1075     break;
1076   // At -O0 we don't care about the lifetime intrinsics.
1077   case Intrinsic::lifetime_start:
1078   case Intrinsic::lifetime_end:
1079   // The donothing intrinsic does, well, nothing.
1080   case Intrinsic::donothing:
1081     return true;
1082   case Intrinsic::eh_actions: {
1083     unsigned ResultReg = getRegForValue(UndefValue::get(II->getType()));
1084     if (!ResultReg)
1085       return false;
1086     updateValueMap(II, ResultReg);
1087     return true;
1088   }
1089   case Intrinsic::dbg_declare: {
1090     const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
1091     DIVariable DIVar = DI->getVariable();
1092     if (!DIVar || !FuncInfo.MF->getMMI().hasDebugInfo()) {
1093       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1094       return true;
1095     }
1096
1097     const Value *Address = DI->getAddress();
1098     if (!Address || isa<UndefValue>(Address)) {
1099       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1100       return true;
1101     }
1102
1103     unsigned Offset = 0;
1104     Optional<MachineOperand> Op;
1105     if (const auto *Arg = dyn_cast<Argument>(Address))
1106       // Some arguments' frame index is recorded during argument lowering.
1107       Offset = FuncInfo.getArgumentFrameIndex(Arg);
1108     if (Offset)
1109       Op = MachineOperand::CreateFI(Offset);
1110     if (!Op)
1111       if (unsigned Reg = lookUpRegForValue(Address))
1112         Op = MachineOperand::CreateReg(Reg, false);
1113
1114     // If we have a VLA that has a "use" in a metadata node that's then used
1115     // here but it has no other uses, then we have a problem. E.g.,
1116     //
1117     //   int foo (const int *x) {
1118     //     char a[*x];
1119     //     return 0;
1120     //   }
1121     //
1122     // If we assign 'a' a vreg and fast isel later on has to use the selection
1123     // DAG isel, it will want to copy the value to the vreg. However, there are
1124     // no uses, which goes counter to what selection DAG isel expects.
1125     if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
1126         (!isa<AllocaInst>(Address) ||
1127          !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
1128       Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
1129                                      false);
1130
1131     if (Op) {
1132       assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1133              "Expected inlined-at fields to agree");
1134       if (Op->isReg()) {
1135         Op->setIsDebug(true);
1136         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1137                 TII.get(TargetOpcode::DBG_VALUE), false, Op->getReg(), 0,
1138                 DI->getVariable(), DI->getExpression());
1139       } else
1140         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1141                 TII.get(TargetOpcode::DBG_VALUE))
1142             .addOperand(*Op)
1143             .addImm(0)
1144             .addMetadata(DI->getVariable())
1145             .addMetadata(DI->getExpression());
1146     } else {
1147       // We can't yet handle anything else here because it would require
1148       // generating code, thus altering codegen because of debug info.
1149       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1150     }
1151     return true;
1152   }
1153   case Intrinsic::dbg_value: {
1154     // This form of DBG_VALUE is target-independent.
1155     const DbgValueInst *DI = cast<DbgValueInst>(II);
1156     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1157     const Value *V = DI->getValue();
1158     assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1159            "Expected inlined-at fields to agree");
1160     if (!V) {
1161       // Currently the optimizer can produce this; insert an undef to
1162       // help debugging.  Probably the optimizer should not do this.
1163       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1164           .addReg(0U)
1165           .addImm(DI->getOffset())
1166           .addMetadata(DI->getVariable())
1167           .addMetadata(DI->getExpression());
1168     } else if (const auto *CI = dyn_cast<ConstantInt>(V)) {
1169       if (CI->getBitWidth() > 64)
1170         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1171             .addCImm(CI)
1172             .addImm(DI->getOffset())
1173             .addMetadata(DI->getVariable())
1174             .addMetadata(DI->getExpression());
1175       else
1176         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1177             .addImm(CI->getZExtValue())
1178             .addImm(DI->getOffset())
1179             .addMetadata(DI->getVariable())
1180             .addMetadata(DI->getExpression());
1181     } else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
1182       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1183           .addFPImm(CF)
1184           .addImm(DI->getOffset())
1185           .addMetadata(DI->getVariable())
1186           .addMetadata(DI->getExpression());
1187     } else if (unsigned Reg = lookUpRegForValue(V)) {
1188       // FIXME: This does not handle register-indirect values at offset 0.
1189       bool IsIndirect = DI->getOffset() != 0;
1190       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg,
1191               DI->getOffset(), DI->getVariable(), DI->getExpression());
1192     } else {
1193       // We can't yet handle anything else here because it would require
1194       // generating code, thus altering codegen because of debug info.
1195       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1196     }
1197     return true;
1198   }
1199   case Intrinsic::objectsize: {
1200     ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
1201     unsigned long long Res = CI->isZero() ? -1ULL : 0;
1202     Constant *ResCI = ConstantInt::get(II->getType(), Res);
1203     unsigned ResultReg = getRegForValue(ResCI);
1204     if (!ResultReg)
1205       return false;
1206     updateValueMap(II, ResultReg);
1207     return true;
1208   }
1209   case Intrinsic::expect: {
1210     unsigned ResultReg = getRegForValue(II->getArgOperand(0));
1211     if (!ResultReg)
1212       return false;
1213     updateValueMap(II, ResultReg);
1214     return true;
1215   }
1216   case Intrinsic::experimental_stackmap:
1217     return selectStackmap(II);
1218   case Intrinsic::experimental_patchpoint_void:
1219   case Intrinsic::experimental_patchpoint_i64:
1220     return selectPatchpoint(II);
1221   }
1222
1223   return fastLowerIntrinsicCall(II);
1224 }
1225
1226 bool FastISel::selectCast(const User *I, unsigned Opcode) {
1227   EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1228   EVT DstVT = TLI.getValueType(I->getType());
1229
1230   if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other ||
1231       !DstVT.isSimple())
1232     // Unhandled type. Halt "fast" selection and bail.
1233     return false;
1234
1235   // Check if the destination type is legal.
1236   if (!TLI.isTypeLegal(DstVT))
1237     return false;
1238
1239   // Check if the source operand is legal.
1240   if (!TLI.isTypeLegal(SrcVT))
1241     return false;
1242
1243   unsigned InputReg = getRegForValue(I->getOperand(0));
1244   if (!InputReg)
1245     // Unhandled operand.  Halt "fast" selection and bail.
1246     return false;
1247
1248   bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
1249
1250   unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
1251                                   Opcode, InputReg, InputRegIsKill);
1252   if (!ResultReg)
1253     return false;
1254
1255   updateValueMap(I, ResultReg);
1256   return true;
1257 }
1258
1259 bool FastISel::selectBitCast(const User *I) {
1260   // If the bitcast doesn't change the type, just use the operand value.
1261   if (I->getType() == I->getOperand(0)->getType()) {
1262     unsigned Reg = getRegForValue(I->getOperand(0));
1263     if (!Reg)
1264       return false;
1265     updateValueMap(I, Reg);
1266     return true;
1267   }
1268
1269   // Bitcasts of other values become reg-reg copies or BITCAST operators.
1270   EVT SrcEVT = TLI.getValueType(I->getOperand(0)->getType());
1271   EVT DstEVT = TLI.getValueType(I->getType());
1272   if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
1273       !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
1274     // Unhandled type. Halt "fast" selection and bail.
1275     return false;
1276
1277   MVT SrcVT = SrcEVT.getSimpleVT();
1278   MVT DstVT = DstEVT.getSimpleVT();
1279   unsigned Op0 = getRegForValue(I->getOperand(0));
1280   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
1281     return false;
1282   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
1283
1284   // First, try to perform the bitcast by inserting a reg-reg copy.
1285   unsigned ResultReg = 0;
1286   if (SrcVT == DstVT) {
1287     const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT);
1288     const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
1289     // Don't attempt a cross-class copy. It will likely fail.
1290     if (SrcClass == DstClass) {
1291       ResultReg = createResultReg(DstClass);
1292       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1293               TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0);
1294     }
1295   }
1296
1297   // If the reg-reg copy failed, select a BITCAST opcode.
1298   if (!ResultReg)
1299     ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill);
1300
1301   if (!ResultReg)
1302     return false;
1303
1304   updateValueMap(I, ResultReg);
1305   return true;
1306 }
1307
1308 bool FastISel::selectInstruction(const Instruction *I) {
1309   // Just before the terminator instruction, insert instructions to
1310   // feed PHI nodes in successor blocks.
1311   if (isa<TerminatorInst>(I))
1312     if (!handlePHINodesInSuccessorBlocks(I->getParent()))
1313       return false;
1314
1315   DbgLoc = I->getDebugLoc();
1316
1317   SavedInsertPt = FuncInfo.InsertPt;
1318
1319   if (const auto *Call = dyn_cast<CallInst>(I)) {
1320     const Function *F = Call->getCalledFunction();
1321     LibFunc::Func Func;
1322
1323     // As a special case, don't handle calls to builtin library functions that
1324     // may be translated directly to target instructions.
1325     if (F && !F->hasLocalLinkage() && F->hasName() &&
1326         LibInfo->getLibFunc(F->getName(), Func) &&
1327         LibInfo->hasOptimizedCodeGen(Func))
1328       return false;
1329
1330     // Don't handle Intrinsic::trap if a trap funciton is specified.
1331     if (F && F->getIntrinsicID() == Intrinsic::trap &&
1332         !TM.Options.getTrapFunctionName().empty())
1333       return false;
1334   }
1335
1336   // First, try doing target-independent selection.
1337   if (!SkipTargetIndependentISel) {
1338     if (selectOperator(I, I->getOpcode())) {
1339       ++NumFastIselSuccessIndependent;
1340       DbgLoc = DebugLoc();
1341       return true;
1342     }
1343     // Remove dead code.
1344     recomputeInsertPt();
1345     if (SavedInsertPt != FuncInfo.InsertPt)
1346       removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1347     SavedInsertPt = FuncInfo.InsertPt;
1348   }
1349   // Next, try calling the target to attempt to handle the instruction.
1350   if (fastSelectInstruction(I)) {
1351     ++NumFastIselSuccessTarget;
1352     DbgLoc = DebugLoc();
1353     return true;
1354   }
1355   // Remove dead code.
1356   recomputeInsertPt();
1357   if (SavedInsertPt != FuncInfo.InsertPt)
1358     removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1359
1360   DbgLoc = DebugLoc();
1361   // Undo phi node updates, because they will be added again by SelectionDAG.
1362   if (isa<TerminatorInst>(I))
1363     FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
1364   return false;
1365 }
1366
1367 /// Emit an unconditional branch to the given block, unless it is the immediate
1368 /// (fall-through) successor, and update the CFG.
1369 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DbgLoc) {
1370   if (FuncInfo.MBB->getBasicBlock()->size() > 1 &&
1371       FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
1372     // For more accurate line information if this is the only instruction
1373     // in the block then emit it, otherwise we have the unconditional
1374     // fall-through case, which needs no instructions.
1375   } else {
1376     // The unconditional branch case.
1377     TII.InsertBranch(*FuncInfo.MBB, MSucc, nullptr,
1378                      SmallVector<MachineOperand, 0>(), DbgLoc);
1379   }
1380   uint32_t BranchWeight = 0;
1381   if (FuncInfo.BPI)
1382     BranchWeight = FuncInfo.BPI->getEdgeWeight(FuncInfo.MBB->getBasicBlock(),
1383                                                MSucc->getBasicBlock());
1384   FuncInfo.MBB->addSuccessor(MSucc, BranchWeight);
1385 }
1386
1387 /// Emit an FNeg operation.
1388 bool FastISel::selectFNeg(const User *I) {
1389   unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
1390   if (!OpReg)
1391     return false;
1392   bool OpRegIsKill = hasTrivialKill(I);
1393
1394   // If the target has ISD::FNEG, use it.
1395   EVT VT = TLI.getValueType(I->getType());
1396   unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG,
1397                                   OpReg, OpRegIsKill);
1398   if (ResultReg) {
1399     updateValueMap(I, ResultReg);
1400     return true;
1401   }
1402
1403   // Bitcast the value to integer, twiddle the sign bit with xor,
1404   // and then bitcast it back to floating-point.
1405   if (VT.getSizeInBits() > 64)
1406     return false;
1407   EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
1408   if (!TLI.isTypeLegal(IntVT))
1409     return false;
1410
1411   unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
1412                                ISD::BITCAST, OpReg, OpRegIsKill);
1413   if (!IntReg)
1414     return false;
1415
1416   unsigned IntResultReg = fastEmit_ri_(
1417       IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true,
1418       UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT());
1419   if (!IntResultReg)
1420     return false;
1421
1422   ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST,
1423                          IntResultReg, /*IsKill=*/true);
1424   if (!ResultReg)
1425     return false;
1426
1427   updateValueMap(I, ResultReg);
1428   return true;
1429 }
1430
1431 bool FastISel::selectExtractValue(const User *U) {
1432   const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
1433   if (!EVI)
1434     return false;
1435
1436   // Make sure we only try to handle extracts with a legal result.  But also
1437   // allow i1 because it's easy.
1438   EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true);
1439   if (!RealVT.isSimple())
1440     return false;
1441   MVT VT = RealVT.getSimpleVT();
1442   if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
1443     return false;
1444
1445   const Value *Op0 = EVI->getOperand(0);
1446   Type *AggTy = Op0->getType();
1447
1448   // Get the base result register.
1449   unsigned ResultReg;
1450   DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0);
1451   if (I != FuncInfo.ValueMap.end())
1452     ResultReg = I->second;
1453   else if (isa<Instruction>(Op0))
1454     ResultReg = FuncInfo.InitializeRegForValue(Op0);
1455   else
1456     return false; // fast-isel can't handle aggregate constants at the moment
1457
1458   // Get the actual result register, which is an offset from the base register.
1459   unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
1460
1461   SmallVector<EVT, 4> AggValueVTs;
1462   ComputeValueVTs(TLI, AggTy, AggValueVTs);
1463
1464   for (unsigned i = 0; i < VTIndex; i++)
1465     ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
1466
1467   updateValueMap(EVI, ResultReg);
1468   return true;
1469 }
1470
1471 bool FastISel::selectOperator(const User *I, unsigned Opcode) {
1472   switch (Opcode) {
1473   case Instruction::Add:
1474     return selectBinaryOp(I, ISD::ADD);
1475   case Instruction::FAdd:
1476     return selectBinaryOp(I, ISD::FADD);
1477   case Instruction::Sub:
1478     return selectBinaryOp(I, ISD::SUB);
1479   case Instruction::FSub:
1480     // FNeg is currently represented in LLVM IR as a special case of FSub.
1481     if (BinaryOperator::isFNeg(I))
1482       return selectFNeg(I);
1483     return selectBinaryOp(I, ISD::FSUB);
1484   case Instruction::Mul:
1485     return selectBinaryOp(I, ISD::MUL);
1486   case Instruction::FMul:
1487     return selectBinaryOp(I, ISD::FMUL);
1488   case Instruction::SDiv:
1489     return selectBinaryOp(I, ISD::SDIV);
1490   case Instruction::UDiv:
1491     return selectBinaryOp(I, ISD::UDIV);
1492   case Instruction::FDiv:
1493     return selectBinaryOp(I, ISD::FDIV);
1494   case Instruction::SRem:
1495     return selectBinaryOp(I, ISD::SREM);
1496   case Instruction::URem:
1497     return selectBinaryOp(I, ISD::UREM);
1498   case Instruction::FRem:
1499     return selectBinaryOp(I, ISD::FREM);
1500   case Instruction::Shl:
1501     return selectBinaryOp(I, ISD::SHL);
1502   case Instruction::LShr:
1503     return selectBinaryOp(I, ISD::SRL);
1504   case Instruction::AShr:
1505     return selectBinaryOp(I, ISD::SRA);
1506   case Instruction::And:
1507     return selectBinaryOp(I, ISD::AND);
1508   case Instruction::Or:
1509     return selectBinaryOp(I, ISD::OR);
1510   case Instruction::Xor:
1511     return selectBinaryOp(I, ISD::XOR);
1512
1513   case Instruction::GetElementPtr:
1514     return selectGetElementPtr(I);
1515
1516   case Instruction::Br: {
1517     const BranchInst *BI = cast<BranchInst>(I);
1518
1519     if (BI->isUnconditional()) {
1520       const BasicBlock *LLVMSucc = BI->getSuccessor(0);
1521       MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
1522       fastEmitBranch(MSucc, BI->getDebugLoc());
1523       return true;
1524     }
1525
1526     // Conditional branches are not handed yet.
1527     // Halt "fast" selection and bail.
1528     return false;
1529   }
1530
1531   case Instruction::Unreachable:
1532     if (TM.Options.TrapUnreachable)
1533       return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0;
1534     else
1535       return true;
1536
1537   case Instruction::Alloca:
1538     // FunctionLowering has the static-sized case covered.
1539     if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
1540       return true;
1541
1542     // Dynamic-sized alloca is not handled yet.
1543     return false;
1544
1545   case Instruction::Call:
1546     return selectCall(I);
1547
1548   case Instruction::BitCast:
1549     return selectBitCast(I);
1550
1551   case Instruction::FPToSI:
1552     return selectCast(I, ISD::FP_TO_SINT);
1553   case Instruction::ZExt:
1554     return selectCast(I, ISD::ZERO_EXTEND);
1555   case Instruction::SExt:
1556     return selectCast(I, ISD::SIGN_EXTEND);
1557   case Instruction::Trunc:
1558     return selectCast(I, ISD::TRUNCATE);
1559   case Instruction::SIToFP:
1560     return selectCast(I, ISD::SINT_TO_FP);
1561
1562   case Instruction::IntToPtr: // Deliberate fall-through.
1563   case Instruction::PtrToInt: {
1564     EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1565     EVT DstVT = TLI.getValueType(I->getType());
1566     if (DstVT.bitsGT(SrcVT))
1567       return selectCast(I, ISD::ZERO_EXTEND);
1568     if (DstVT.bitsLT(SrcVT))
1569       return selectCast(I, ISD::TRUNCATE);
1570     unsigned Reg = getRegForValue(I->getOperand(0));
1571     if (!Reg)
1572       return false;
1573     updateValueMap(I, Reg);
1574     return true;
1575   }
1576
1577   case Instruction::ExtractValue:
1578     return selectExtractValue(I);
1579
1580   case Instruction::PHI:
1581     llvm_unreachable("FastISel shouldn't visit PHI nodes!");
1582
1583   default:
1584     // Unhandled instruction. Halt "fast" selection and bail.
1585     return false;
1586   }
1587 }
1588
1589 FastISel::FastISel(FunctionLoweringInfo &FuncInfo,
1590                    const TargetLibraryInfo *LibInfo,
1591                    bool SkipTargetIndependentISel)
1592     : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()),
1593       MFI(*FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()),
1594       TM(FuncInfo.MF->getTarget()), DL(*TM.getDataLayout()),
1595       TII(*MF->getSubtarget().getInstrInfo()),
1596       TLI(*MF->getSubtarget().getTargetLowering()),
1597       TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo),
1598       SkipTargetIndependentISel(SkipTargetIndependentISel) {}
1599
1600 FastISel::~FastISel() {}
1601
1602 bool FastISel::fastLowerArguments() { return false; }
1603
1604 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; }
1605
1606 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) {
1607   return false;
1608 }
1609
1610 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; }
1611
1612 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/,
1613                               bool /*Op0IsKill*/) {
1614   return 0;
1615 }
1616
1617 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/,
1618                                bool /*Op0IsKill*/, unsigned /*Op1*/,
1619                                bool /*Op1IsKill*/) {
1620   return 0;
1621 }
1622
1623 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1624   return 0;
1625 }
1626
1627 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned,
1628                               const ConstantFP * /*FPImm*/) {
1629   return 0;
1630 }
1631
1632 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/,
1633                                bool /*Op0IsKill*/, uint64_t /*Imm*/) {
1634   return 0;
1635 }
1636
1637 unsigned FastISel::fastEmit_rf(MVT, MVT, unsigned, unsigned /*Op0*/,
1638                                bool /*Op0IsKill*/,
1639                                const ConstantFP * /*FPImm*/) {
1640   return 0;
1641 }
1642
1643 unsigned FastISel::fastEmit_rri(MVT, MVT, unsigned, unsigned /*Op0*/,
1644                                 bool /*Op0IsKill*/, unsigned /*Op1*/,
1645                                 bool /*Op1IsKill*/, uint64_t /*Imm*/) {
1646   return 0;
1647 }
1648
1649 /// This method is a wrapper of fastEmit_ri. It first tries to emit an
1650 /// instruction with an immediate operand using fastEmit_ri.
1651 /// If that fails, it materializes the immediate into a register and try
1652 /// fastEmit_rr instead.
1653 unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0,
1654                                 bool Op0IsKill, uint64_t Imm, MVT ImmType) {
1655   // If this is a multiply by a power of two, emit this as a shift left.
1656   if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1657     Opcode = ISD::SHL;
1658     Imm = Log2_64(Imm);
1659   } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1660     // div x, 8 -> srl x, 3
1661     Opcode = ISD::SRL;
1662     Imm = Log2_64(Imm);
1663   }
1664
1665   // Horrible hack (to be removed), check to make sure shift amounts are
1666   // in-range.
1667   if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1668       Imm >= VT.getSizeInBits())
1669     return 0;
1670
1671   // First check if immediate type is legal. If not, we can't use the ri form.
1672   unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
1673   if (ResultReg)
1674     return ResultReg;
1675   unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1676   if (!MaterialReg) {
1677     // This is a bit ugly/slow, but failing here means falling out of
1678     // fast-isel, which would be very slow.
1679     IntegerType *ITy =
1680         IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits());
1681     MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
1682     if (!MaterialReg)
1683       return 0;
1684   }
1685   return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg,
1686                      /*IsKill=*/true);
1687 }
1688
1689 unsigned FastISel::createResultReg(const TargetRegisterClass *RC) {
1690   return MRI.createVirtualRegister(RC);
1691 }
1692
1693 unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op,
1694                                             unsigned OpNum) {
1695   if (TargetRegisterInfo::isVirtualRegister(Op)) {
1696     const TargetRegisterClass *RegClass =
1697         TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
1698     if (!MRI.constrainRegClass(Op, RegClass)) {
1699       // If it's not legal to COPY between the register classes, something
1700       // has gone very wrong before we got here.
1701       unsigned NewOp = createResultReg(RegClass);
1702       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1703               TII.get(TargetOpcode::COPY), NewOp).addReg(Op);
1704       return NewOp;
1705     }
1706   }
1707   return Op;
1708 }
1709
1710 unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode,
1711                                  const TargetRegisterClass *RC) {
1712   unsigned ResultReg = createResultReg(RC);
1713   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1714
1715   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg);
1716   return ResultReg;
1717 }
1718
1719 unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode,
1720                                   const TargetRegisterClass *RC, unsigned Op0,
1721                                   bool Op0IsKill) {
1722   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1723
1724   unsigned ResultReg = createResultReg(RC);
1725   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1726
1727   if (II.getNumDefs() >= 1)
1728     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1729         .addReg(Op0, getKillRegState(Op0IsKill));
1730   else {
1731     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1732         .addReg(Op0, getKillRegState(Op0IsKill));
1733     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1734             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1735   }
1736
1737   return ResultReg;
1738 }
1739
1740 unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
1741                                    const TargetRegisterClass *RC, unsigned Op0,
1742                                    bool Op0IsKill, unsigned Op1,
1743                                    bool Op1IsKill) {
1744   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1745
1746   unsigned ResultReg = createResultReg(RC);
1747   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1748   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1749
1750   if (II.getNumDefs() >= 1)
1751     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1752         .addReg(Op0, getKillRegState(Op0IsKill))
1753         .addReg(Op1, getKillRegState(Op1IsKill));
1754   else {
1755     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1756         .addReg(Op0, getKillRegState(Op0IsKill))
1757         .addReg(Op1, getKillRegState(Op1IsKill));
1758     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1759             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1760   }
1761   return ResultReg;
1762 }
1763
1764 unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
1765                                     const TargetRegisterClass *RC, unsigned Op0,
1766                                     bool Op0IsKill, unsigned Op1,
1767                                     bool Op1IsKill, unsigned Op2,
1768                                     bool Op2IsKill) {
1769   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1770
1771   unsigned ResultReg = createResultReg(RC);
1772   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1773   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1774   Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
1775
1776   if (II.getNumDefs() >= 1)
1777     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1778         .addReg(Op0, getKillRegState(Op0IsKill))
1779         .addReg(Op1, getKillRegState(Op1IsKill))
1780         .addReg(Op2, getKillRegState(Op2IsKill));
1781   else {
1782     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1783         .addReg(Op0, getKillRegState(Op0IsKill))
1784         .addReg(Op1, getKillRegState(Op1IsKill))
1785         .addReg(Op2, getKillRegState(Op2IsKill));
1786     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1787             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1788   }
1789   return ResultReg;
1790 }
1791
1792 unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
1793                                    const TargetRegisterClass *RC, unsigned Op0,
1794                                    bool Op0IsKill, uint64_t Imm) {
1795   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1796
1797   unsigned ResultReg = createResultReg(RC);
1798   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1799
1800   if (II.getNumDefs() >= 1)
1801     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1802         .addReg(Op0, getKillRegState(Op0IsKill))
1803         .addImm(Imm);
1804   else {
1805     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1806         .addReg(Op0, getKillRegState(Op0IsKill))
1807         .addImm(Imm);
1808     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1809             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1810   }
1811   return ResultReg;
1812 }
1813
1814 unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode,
1815                                     const TargetRegisterClass *RC, unsigned Op0,
1816                                     bool Op0IsKill, uint64_t Imm1,
1817                                     uint64_t Imm2) {
1818   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1819
1820   unsigned ResultReg = createResultReg(RC);
1821   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1822
1823   if (II.getNumDefs() >= 1)
1824     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1825         .addReg(Op0, getKillRegState(Op0IsKill))
1826         .addImm(Imm1)
1827         .addImm(Imm2);
1828   else {
1829     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1830         .addReg(Op0, getKillRegState(Op0IsKill))
1831         .addImm(Imm1)
1832         .addImm(Imm2);
1833     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1834             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1835   }
1836   return ResultReg;
1837 }
1838
1839 unsigned FastISel::fastEmitInst_rf(unsigned MachineInstOpcode,
1840                                    const TargetRegisterClass *RC, unsigned Op0,
1841                                    bool Op0IsKill, const ConstantFP *FPImm) {
1842   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1843
1844   unsigned ResultReg = createResultReg(RC);
1845   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1846
1847   if (II.getNumDefs() >= 1)
1848     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1849         .addReg(Op0, getKillRegState(Op0IsKill))
1850         .addFPImm(FPImm);
1851   else {
1852     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1853         .addReg(Op0, getKillRegState(Op0IsKill))
1854         .addFPImm(FPImm);
1855     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1856             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1857   }
1858   return ResultReg;
1859 }
1860
1861 unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
1862                                     const TargetRegisterClass *RC, unsigned Op0,
1863                                     bool Op0IsKill, unsigned Op1,
1864                                     bool Op1IsKill, uint64_t Imm) {
1865   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1866
1867   unsigned ResultReg = createResultReg(RC);
1868   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1869   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1870
1871   if (II.getNumDefs() >= 1)
1872     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1873         .addReg(Op0, getKillRegState(Op0IsKill))
1874         .addReg(Op1, getKillRegState(Op1IsKill))
1875         .addImm(Imm);
1876   else {
1877     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1878         .addReg(Op0, getKillRegState(Op0IsKill))
1879         .addReg(Op1, getKillRegState(Op1IsKill))
1880         .addImm(Imm);
1881     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1882             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1883   }
1884   return ResultReg;
1885 }
1886
1887 unsigned FastISel::fastEmitInst_rrii(unsigned MachineInstOpcode,
1888                                      const TargetRegisterClass *RC,
1889                                      unsigned Op0, bool Op0IsKill, unsigned Op1,
1890                                      bool Op1IsKill, uint64_t Imm1,
1891                                      uint64_t Imm2) {
1892   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1893
1894   unsigned ResultReg = createResultReg(RC);
1895   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1896   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1897
1898   if (II.getNumDefs() >= 1)
1899     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1900         .addReg(Op0, getKillRegState(Op0IsKill))
1901         .addReg(Op1, getKillRegState(Op1IsKill))
1902         .addImm(Imm1)
1903         .addImm(Imm2);
1904   else {
1905     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1906         .addReg(Op0, getKillRegState(Op0IsKill))
1907         .addReg(Op1, getKillRegState(Op1IsKill))
1908         .addImm(Imm1)
1909         .addImm(Imm2);
1910     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1911             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1912   }
1913   return ResultReg;
1914 }
1915
1916 unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode,
1917                                   const TargetRegisterClass *RC, uint64_t Imm) {
1918   unsigned ResultReg = createResultReg(RC);
1919   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1920
1921   if (II.getNumDefs() >= 1)
1922     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1923         .addImm(Imm);
1924   else {
1925     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm);
1926     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1927             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1928   }
1929   return ResultReg;
1930 }
1931
1932 unsigned FastISel::fastEmitInst_ii(unsigned MachineInstOpcode,
1933                                    const TargetRegisterClass *RC, uint64_t Imm1,
1934                                    uint64_t Imm2) {
1935   unsigned ResultReg = createResultReg(RC);
1936   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1937
1938   if (II.getNumDefs() >= 1)
1939     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1940         .addImm(Imm1)
1941         .addImm(Imm2);
1942   else {
1943     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm1)
1944         .addImm(Imm2);
1945     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1946             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1947   }
1948   return ResultReg;
1949 }
1950
1951 unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0,
1952                                               bool Op0IsKill, uint32_t Idx) {
1953   unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1954   assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
1955          "Cannot yet extract from physregs");
1956   const TargetRegisterClass *RC = MRI.getRegClass(Op0);
1957   MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
1958   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
1959           ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx);
1960   return ResultReg;
1961 }
1962
1963 /// Emit MachineInstrs to compute the value of Op with all but the least
1964 /// significant bit set to zero.
1965 unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
1966   return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
1967 }
1968
1969 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
1970 /// Emit code to ensure constants are copied into registers when needed.
1971 /// Remember the virtual registers that need to be added to the Machine PHI
1972 /// nodes as input.  We cannot just directly add them, because expansion
1973 /// might result in multiple MBB's for one BB.  As such, the start of the
1974 /// BB might correspond to a different MBB than the end.
1975 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
1976   const TerminatorInst *TI = LLVMBB->getTerminator();
1977
1978   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
1979   FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
1980
1981   // Check successor nodes' PHI nodes that expect a constant to be available
1982   // from this block.
1983   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
1984     const BasicBlock *SuccBB = TI->getSuccessor(succ);
1985     if (!isa<PHINode>(SuccBB->begin()))
1986       continue;
1987     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
1988
1989     // If this terminator has multiple identical successors (common for
1990     // switches), only handle each succ once.
1991     if (!SuccsHandled.insert(SuccMBB).second)
1992       continue;
1993
1994     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
1995
1996     // At this point we know that there is a 1-1 correspondence between LLVM PHI
1997     // nodes and Machine PHI nodes, but the incoming operands have not been
1998     // emitted yet.
1999     for (BasicBlock::const_iterator I = SuccBB->begin();
2000          const auto *PN = dyn_cast<PHINode>(I); ++I) {
2001
2002       // Ignore dead phi's.
2003       if (PN->use_empty())
2004         continue;
2005
2006       // Only handle legal types. Two interesting things to note here. First,
2007       // by bailing out early, we may leave behind some dead instructions,
2008       // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
2009       // own moves. Second, this check is necessary because FastISel doesn't
2010       // use CreateRegs to create registers, so it always creates
2011       // exactly one register for each non-void instruction.
2012       EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
2013       if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
2014         // Handle integer promotions, though, because they're common and easy.
2015         if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) {
2016           FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2017           return false;
2018         }
2019       }
2020
2021       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
2022
2023       // Set the DebugLoc for the copy. Prefer the location of the operand
2024       // if there is one; use the location of the PHI otherwise.
2025       DbgLoc = PN->getDebugLoc();
2026       if (const auto *Inst = dyn_cast<Instruction>(PHIOp))
2027         DbgLoc = Inst->getDebugLoc();
2028
2029       unsigned Reg = getRegForValue(PHIOp);
2030       if (!Reg) {
2031         FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2032         return false;
2033       }
2034       FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
2035       DbgLoc = DebugLoc();
2036     }
2037   }
2038
2039   return true;
2040 }
2041
2042 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
2043   assert(LI->hasOneUse() &&
2044          "tryToFoldLoad expected a LoadInst with a single use");
2045   // We know that the load has a single use, but don't know what it is.  If it
2046   // isn't one of the folded instructions, then we can't succeed here.  Handle
2047   // this by scanning the single-use users of the load until we get to FoldInst.
2048   unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
2049
2050   const Instruction *TheUser = LI->user_back();
2051   while (TheUser != FoldInst && // Scan up until we find FoldInst.
2052          // Stay in the right block.
2053          TheUser->getParent() == FoldInst->getParent() &&
2054          --MaxUsers) { // Don't scan too far.
2055     // If there are multiple or no uses of this instruction, then bail out.
2056     if (!TheUser->hasOneUse())
2057       return false;
2058
2059     TheUser = TheUser->user_back();
2060   }
2061
2062   // If we didn't find the fold instruction, then we failed to collapse the
2063   // sequence.
2064   if (TheUser != FoldInst)
2065     return false;
2066
2067   // Don't try to fold volatile loads.  Target has to deal with alignment
2068   // constraints.
2069   if (LI->isVolatile())
2070     return false;
2071
2072   // Figure out which vreg this is going into.  If there is no assigned vreg yet
2073   // then there actually was no reference to it.  Perhaps the load is referenced
2074   // by a dead instruction.
2075   unsigned LoadReg = getRegForValue(LI);
2076   if (!LoadReg)
2077     return false;
2078
2079   // We can't fold if this vreg has no uses or more than one use.  Multiple uses
2080   // may mean that the instruction got lowered to multiple MIs, or the use of
2081   // the loaded value ended up being multiple operands of the result.
2082   if (!MRI.hasOneUse(LoadReg))
2083     return false;
2084
2085   MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
2086   MachineInstr *User = RI->getParent();
2087
2088   // Set the insertion point properly.  Folding the load can cause generation of
2089   // other random instructions (like sign extends) for addressing modes; make
2090   // sure they get inserted in a logical place before the new instruction.
2091   FuncInfo.InsertPt = User;
2092   FuncInfo.MBB = User->getParent();
2093
2094   // Ask the target to try folding the load.
2095   return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
2096 }
2097
2098 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) {
2099   // Must be an add.
2100   if (!isa<AddOperator>(Add))
2101     return false;
2102   // Type size needs to match.
2103   if (DL.getTypeSizeInBits(GEP->getType()) !=
2104       DL.getTypeSizeInBits(Add->getType()))
2105     return false;
2106   // Must be in the same basic block.
2107   if (isa<Instruction>(Add) &&
2108       FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB)
2109     return false;
2110   // Must have a constant operand.
2111   return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
2112 }
2113
2114 MachineMemOperand *
2115 FastISel::createMachineMemOperandFor(const Instruction *I) const {
2116   const Value *Ptr;
2117   Type *ValTy;
2118   unsigned Alignment;
2119   unsigned Flags;
2120   bool IsVolatile;
2121
2122   if (const auto *LI = dyn_cast<LoadInst>(I)) {
2123     Alignment = LI->getAlignment();
2124     IsVolatile = LI->isVolatile();
2125     Flags = MachineMemOperand::MOLoad;
2126     Ptr = LI->getPointerOperand();
2127     ValTy = LI->getType();
2128   } else if (const auto *SI = dyn_cast<StoreInst>(I)) {
2129     Alignment = SI->getAlignment();
2130     IsVolatile = SI->isVolatile();
2131     Flags = MachineMemOperand::MOStore;
2132     Ptr = SI->getPointerOperand();
2133     ValTy = SI->getValueOperand()->getType();
2134   } else
2135     return nullptr;
2136
2137   bool IsNonTemporal = I->getMetadata(LLVMContext::MD_nontemporal) != nullptr;
2138   bool IsInvariant = I->getMetadata(LLVMContext::MD_invariant_load) != nullptr;
2139   const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range);
2140
2141   AAMDNodes AAInfo;
2142   I->getAAMetadata(AAInfo);
2143
2144   if (Alignment == 0) // Ensure that codegen never sees alignment 0.
2145     Alignment = DL.getABITypeAlignment(ValTy);
2146
2147   unsigned Size = DL.getTypeStoreSize(ValTy);
2148
2149   if (IsVolatile)
2150     Flags |= MachineMemOperand::MOVolatile;
2151   if (IsNonTemporal)
2152     Flags |= MachineMemOperand::MONonTemporal;
2153   if (IsInvariant)
2154     Flags |= MachineMemOperand::MOInvariant;
2155
2156   return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size,
2157                                            Alignment, AAInfo, Ranges);
2158 }
2159
2160 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const {
2161   // If both operands are the same, then try to optimize or fold the cmp.
2162   CmpInst::Predicate Predicate = CI->getPredicate();
2163   if (CI->getOperand(0) != CI->getOperand(1))
2164     return Predicate;
2165
2166   switch (Predicate) {
2167   default: llvm_unreachable("Invalid predicate!");
2168   case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break;
2169   case CmpInst::FCMP_OEQ:   Predicate = CmpInst::FCMP_ORD;   break;
2170   case CmpInst::FCMP_OGT:   Predicate = CmpInst::FCMP_FALSE; break;
2171   case CmpInst::FCMP_OGE:   Predicate = CmpInst::FCMP_ORD;   break;
2172   case CmpInst::FCMP_OLT:   Predicate = CmpInst::FCMP_FALSE; break;
2173   case CmpInst::FCMP_OLE:   Predicate = CmpInst::FCMP_ORD;   break;
2174   case CmpInst::FCMP_ONE:   Predicate = CmpInst::FCMP_FALSE; break;
2175   case CmpInst::FCMP_ORD:   Predicate = CmpInst::FCMP_ORD;   break;
2176   case CmpInst::FCMP_UNO:   Predicate = CmpInst::FCMP_UNO;   break;
2177   case CmpInst::FCMP_UEQ:   Predicate = CmpInst::FCMP_TRUE;  break;
2178   case CmpInst::FCMP_UGT:   Predicate = CmpInst::FCMP_UNO;   break;
2179   case CmpInst::FCMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2180   case CmpInst::FCMP_ULT:   Predicate = CmpInst::FCMP_UNO;   break;
2181   case CmpInst::FCMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2182   case CmpInst::FCMP_UNE:   Predicate = CmpInst::FCMP_UNO;   break;
2183   case CmpInst::FCMP_TRUE:  Predicate = CmpInst::FCMP_TRUE;  break;
2184
2185   case CmpInst::ICMP_EQ:    Predicate = CmpInst::FCMP_TRUE;  break;
2186   case CmpInst::ICMP_NE:    Predicate = CmpInst::FCMP_FALSE; break;
2187   case CmpInst::ICMP_UGT:   Predicate = CmpInst::FCMP_FALSE; break;
2188   case CmpInst::ICMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2189   case CmpInst::ICMP_ULT:   Predicate = CmpInst::FCMP_FALSE; break;
2190   case CmpInst::ICMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2191   case CmpInst::ICMP_SGT:   Predicate = CmpInst::FCMP_FALSE; break;
2192   case CmpInst::ICMP_SGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2193   case CmpInst::ICMP_SLT:   Predicate = CmpInst::FCMP_FALSE; break;
2194   case CmpInst::ICMP_SLE:   Predicate = CmpInst::FCMP_TRUE;  break;
2195   }
2196
2197   return Predicate;
2198 }