RegisterPressure: Expose RegisterOperands API
[oota-llvm.git] / lib / CodeGen / ScheduleDAGInstrs.cpp
1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling
11 // of MachineInstrs.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
16 #include "llvm/ADT/IntEqClasses.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/CodeGen/MachineFunctionPass.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineMemOperand.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/PseudoSourceValue.h"
28 #include "llvm/CodeGen/RegisterPressure.h"
29 #include "llvm/CodeGen/ScheduleDFS.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/Format.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetInstrInfo.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include "llvm/Target/TargetRegisterInfo.h"
38 #include "llvm/Target/TargetSubtargetInfo.h"
39 #include <queue>
40
41 using namespace llvm;
42
43 #define DEBUG_TYPE "misched"
44
45 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
46     cl::ZeroOrMore, cl::init(false),
47     cl::desc("Enable use of AA during MI DAG construction"));
48
49 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden,
50     cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction"));
51
52 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
53                                      const MachineLoopInfo *mli,
54                                      bool RemoveKillFlags)
55     : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()),
56       RemoveKillFlags(RemoveKillFlags), CanHandleTerminators(false),
57       TrackLaneMasks(false), FirstDbgValue(nullptr) {
58   DbgValues.clear();
59
60   const TargetSubtargetInfo &ST = mf.getSubtarget();
61   SchedModel.init(ST.getSchedModel(), &ST, TII);
62 }
63
64 /// getUnderlyingObjectFromInt - This is the function that does the work of
65 /// looking through basic ptrtoint+arithmetic+inttoptr sequences.
66 static const Value *getUnderlyingObjectFromInt(const Value *V) {
67   do {
68     if (const Operator *U = dyn_cast<Operator>(V)) {
69       // If we find a ptrtoint, we can transfer control back to the
70       // regular getUnderlyingObjectFromInt.
71       if (U->getOpcode() == Instruction::PtrToInt)
72         return U->getOperand(0);
73       // If we find an add of a constant, a multiplied value, or a phi, it's
74       // likely that the other operand will lead us to the base
75       // object. We don't have to worry about the case where the
76       // object address is somehow being computed by the multiply,
77       // because our callers only care when the result is an
78       // identifiable object.
79       if (U->getOpcode() != Instruction::Add ||
80           (!isa<ConstantInt>(U->getOperand(1)) &&
81            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
82            !isa<PHINode>(U->getOperand(1))))
83         return V;
84       V = U->getOperand(0);
85     } else {
86       return V;
87     }
88     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
89   } while (1);
90 }
91
92 /// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects
93 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
94 static void getUnderlyingObjects(const Value *V,
95                                  SmallVectorImpl<Value *> &Objects,
96                                  const DataLayout &DL) {
97   SmallPtrSet<const Value *, 16> Visited;
98   SmallVector<const Value *, 4> Working(1, V);
99   do {
100     V = Working.pop_back_val();
101
102     SmallVector<Value *, 4> Objs;
103     GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
104
105     for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
106          I != IE; ++I) {
107       V = *I;
108       if (!Visited.insert(V).second)
109         continue;
110       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
111         const Value *O =
112           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
113         if (O->getType()->isPointerTy()) {
114           Working.push_back(O);
115           continue;
116         }
117       }
118       Objects.push_back(const_cast<Value *>(V));
119     }
120   } while (!Working.empty());
121 }
122
123 typedef PointerUnion<const Value *, const PseudoSourceValue *> ValueType;
124 typedef SmallVector<PointerIntPair<ValueType, 1, bool>, 4>
125 UnderlyingObjectsVector;
126
127 /// getUnderlyingObjectsForInstr - If this machine instr has memory reference
128 /// information and it can be tracked to a normal reference to a known
129 /// object, return the Value for that object.
130 static void getUnderlyingObjectsForInstr(const MachineInstr *MI,
131                                          const MachineFrameInfo *MFI,
132                                          UnderlyingObjectsVector &Objects,
133                                          const DataLayout &DL) {
134   if (!MI->hasOneMemOperand() ||
135       (!(*MI->memoperands_begin())->getValue() &&
136        !(*MI->memoperands_begin())->getPseudoValue()) ||
137       (*MI->memoperands_begin())->isVolatile())
138     return;
139
140   if (const PseudoSourceValue *PSV =
141       (*MI->memoperands_begin())->getPseudoValue()) {
142     // Function that contain tail calls don't have unique PseudoSourceValue
143     // objects. Two PseudoSourceValues might refer to the same or overlapping
144     // locations. The client code calling this function assumes this is not the
145     // case. So return a conservative answer of no known object.
146     if (MFI->hasTailCall())
147       return;
148
149     // For now, ignore PseudoSourceValues which may alias LLVM IR values
150     // because the code that uses this function has no way to cope with
151     // such aliases.
152     if (!PSV->isAliased(MFI)) {
153       bool MayAlias = PSV->mayAlias(MFI);
154       Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias));
155     }
156     return;
157   }
158
159   const Value *V = (*MI->memoperands_begin())->getValue();
160   if (!V)
161     return;
162
163   SmallVector<Value *, 4> Objs;
164   getUnderlyingObjects(V, Objs, DL);
165
166   for (Value *V : Objs) {
167     if (!isIdentifiedObject(V)) {
168       Objects.clear();
169       return;
170     }
171
172     Objects.push_back(UnderlyingObjectsVector::value_type(V, true));
173   }
174 }
175
176 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
177   BB = bb;
178 }
179
180 void ScheduleDAGInstrs::finishBlock() {
181   // Subclasses should no longer refer to the old block.
182   BB = nullptr;
183 }
184
185 /// Initialize the DAG and common scheduler state for the current scheduling
186 /// region. This does not actually create the DAG, only clears it. The
187 /// scheduling driver may call BuildSchedGraph multiple times per scheduling
188 /// region.
189 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
190                                     MachineBasicBlock::iterator begin,
191                                     MachineBasicBlock::iterator end,
192                                     unsigned regioninstrs) {
193   assert(bb == BB && "startBlock should set BB");
194   RegionBegin = begin;
195   RegionEnd = end;
196   NumRegionInstrs = regioninstrs;
197 }
198
199 /// Close the current scheduling region. Don't clear any state in case the
200 /// driver wants to refer to the previous scheduling region.
201 void ScheduleDAGInstrs::exitRegion() {
202   // Nothing to do.
203 }
204
205 /// addSchedBarrierDeps - Add dependencies from instructions in the current
206 /// list of instructions being scheduled to scheduling barrier by adding
207 /// the exit SU to the register defs and use list. This is because we want to
208 /// make sure instructions which define registers that are either used by
209 /// the terminator or are live-out are properly scheduled. This is
210 /// especially important when the definition latency of the return value(s)
211 /// are too high to be hidden by the branch or when the liveout registers
212 /// used by instructions in the fallthrough block.
213 void ScheduleDAGInstrs::addSchedBarrierDeps() {
214   MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr;
215   ExitSU.setInstr(ExitMI);
216   bool AllDepKnown = ExitMI &&
217     (ExitMI->isCall() || ExitMI->isBarrier());
218   if (ExitMI && AllDepKnown) {
219     // If it's a call or a barrier, add dependencies on the defs and uses of
220     // instruction.
221     for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
222       const MachineOperand &MO = ExitMI->getOperand(i);
223       if (!MO.isReg() || MO.isDef()) continue;
224       unsigned Reg = MO.getReg();
225       if (Reg == 0) continue;
226
227       if (TRI->isPhysicalRegister(Reg))
228         Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
229       else if (MO.readsReg()) // ignore undef operands
230         addVRegUseDeps(&ExitSU, i);
231     }
232   } else {
233     // For others, e.g. fallthrough, conditional branch, assume the exit
234     // uses all the registers that are livein to the successor blocks.
235     assert(Uses.empty() && "Uses in set before adding deps?");
236     for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
237            SE = BB->succ_end(); SI != SE; ++SI)
238       for (const auto &LI : (*SI)->liveins()) {
239         if (!Uses.contains(LI.PhysReg))
240           Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg));
241       }
242   }
243 }
244
245 /// MO is an operand of SU's instruction that defines a physical register. Add
246 /// data dependencies from SU to any uses of the physical register.
247 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
248   const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
249   assert(MO.isDef() && "expect physreg def");
250
251   // Ask the target if address-backscheduling is desirable, and if so how much.
252   const TargetSubtargetInfo &ST = MF.getSubtarget();
253
254   for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
255        Alias.isValid(); ++Alias) {
256     if (!Uses.contains(*Alias))
257       continue;
258     for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
259       SUnit *UseSU = I->SU;
260       if (UseSU == SU)
261         continue;
262
263       // Adjust the dependence latency using operand def/use information,
264       // then allow the target to perform its own adjustments.
265       int UseOp = I->OpIdx;
266       MachineInstr *RegUse = nullptr;
267       SDep Dep;
268       if (UseOp < 0)
269         Dep = SDep(SU, SDep::Artificial);
270       else {
271         // Set the hasPhysRegDefs only for physreg defs that have a use within
272         // the scheduling region.
273         SU->hasPhysRegDefs = true;
274         Dep = SDep(SU, SDep::Data, *Alias);
275         RegUse = UseSU->getInstr();
276       }
277       Dep.setLatency(
278         SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse,
279                                          UseOp));
280
281       ST.adjustSchedDependency(SU, UseSU, Dep);
282       UseSU->addPred(Dep);
283     }
284   }
285 }
286
287 /// addPhysRegDeps - Add register dependencies (data, anti, and output) from
288 /// this SUnit to following instructions in the same scheduling region that
289 /// depend the physical register referenced at OperIdx.
290 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
291   MachineInstr *MI = SU->getInstr();
292   MachineOperand &MO = MI->getOperand(OperIdx);
293
294   // Optionally add output and anti dependencies. For anti
295   // dependencies we use a latency of 0 because for a multi-issue
296   // target we want to allow the defining instruction to issue
297   // in the same cycle as the using instruction.
298   // TODO: Using a latency of 1 here for output dependencies assumes
299   //       there's no cost for reusing registers.
300   SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
301   for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
302        Alias.isValid(); ++Alias) {
303     if (!Defs.contains(*Alias))
304       continue;
305     for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
306       SUnit *DefSU = I->SU;
307       if (DefSU == &ExitSU)
308         continue;
309       if (DefSU != SU &&
310           (Kind != SDep::Output || !MO.isDead() ||
311            !DefSU->getInstr()->registerDefIsDead(*Alias))) {
312         if (Kind == SDep::Anti)
313           DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
314         else {
315           SDep Dep(SU, Kind, /*Reg=*/*Alias);
316           Dep.setLatency(
317             SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
318           DefSU->addPred(Dep);
319         }
320       }
321     }
322   }
323
324   if (!MO.isDef()) {
325     SU->hasPhysRegUses = true;
326     // Either insert a new Reg2SUnits entry with an empty SUnits list, or
327     // retrieve the existing SUnits list for this register's uses.
328     // Push this SUnit on the use list.
329     Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg()));
330     if (RemoveKillFlags)
331       MO.setIsKill(false);
332   }
333   else {
334     addPhysRegDataDeps(SU, OperIdx);
335     unsigned Reg = MO.getReg();
336
337     // clear this register's use list
338     if (Uses.contains(Reg))
339       Uses.eraseAll(Reg);
340
341     if (!MO.isDead()) {
342       Defs.eraseAll(Reg);
343     } else if (SU->isCall) {
344       // Calls will not be reordered because of chain dependencies (see
345       // below). Since call operands are dead, calls may continue to be added
346       // to the DefList making dependence checking quadratic in the size of
347       // the block. Instead, we leave only one call at the back of the
348       // DefList.
349       Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
350       Reg2SUnitsMap::iterator B = P.first;
351       Reg2SUnitsMap::iterator I = P.second;
352       for (bool isBegin = I == B; !isBegin; /* empty */) {
353         isBegin = (--I) == B;
354         if (!I->SU->isCall)
355           break;
356         I = Defs.erase(I);
357       }
358     }
359
360     // Defs are pushed in the order they are visited and never reordered.
361     Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
362   }
363 }
364
365 LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const
366 {
367   unsigned Reg = MO.getReg();
368   // No point in tracking lanemasks if we don't have interesting subregisters.
369   const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
370   if (!RC.HasDisjunctSubRegs)
371     return ~0u;
372
373   unsigned SubReg = MO.getSubReg();
374   if (SubReg == 0)
375     return RC.getLaneMask();
376   return TRI->getSubRegIndexLaneMask(SubReg);
377 }
378
379 /// addVRegDefDeps - Add register output and data dependencies from this SUnit
380 /// to instructions that occur later in the same scheduling region if they read
381 /// from or write to the virtual register defined at OperIdx.
382 ///
383 /// TODO: Hoist loop induction variable increments. This has to be
384 /// reevaluated. Generally, IV scheduling should be done before coalescing.
385 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
386   MachineInstr *MI = SU->getInstr();
387   MachineOperand &MO = MI->getOperand(OperIdx);
388   unsigned Reg = MO.getReg();
389
390   LaneBitmask DefLaneMask;
391   LaneBitmask KillLaneMask;
392   if (TrackLaneMasks) {
393     bool IsKill = MO.getSubReg() == 0 || MO.isUndef();
394     DefLaneMask = getLaneMaskForMO(MO);
395     // If we have a <read-undef> flag, none of the lane values comes from an
396     // earlier instruction.
397     KillLaneMask = IsKill ? ~0u : DefLaneMask;
398
399     // Clear undef flag, we'll re-add it later once we know which subregister
400     // Def is first.
401     MO.setIsUndef(false);
402   } else {
403     DefLaneMask = ~0u;
404     KillLaneMask = ~0u;
405   }
406
407   if (MO.isDead()) {
408     assert(CurrentVRegUses.find(Reg) == CurrentVRegUses.end() &&
409            "Dead defs should have no uses");
410   } else {
411     // Add data dependence to all uses we found so far.
412     const TargetSubtargetInfo &ST = MF.getSubtarget();
413     for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg),
414          E = CurrentVRegUses.end(); I != E; /*empty*/) {
415       LaneBitmask LaneMask = I->LaneMask;
416       // Ignore uses of other lanes.
417       if ((LaneMask & KillLaneMask) == 0) {
418         ++I;
419         continue;
420       }
421
422       if ((LaneMask & DefLaneMask) != 0) {
423         SUnit *UseSU = I->SU;
424         MachineInstr *Use = UseSU->getInstr();
425         SDep Dep(SU, SDep::Data, Reg);
426         Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use,
427                                                         I->OperandIndex));
428         ST.adjustSchedDependency(SU, UseSU, Dep);
429         UseSU->addPred(Dep);
430       }
431
432       LaneMask &= ~KillLaneMask;
433       // If we found a Def for all lanes of this use, remove it from the list.
434       if (LaneMask != 0) {
435         I->LaneMask = LaneMask;
436         ++I;
437       } else
438         I = CurrentVRegUses.erase(I);
439     }
440   }
441
442   // Shortcut: Singly defined vregs do not have output/anti dependencies.
443   if (MRI.hasOneDef(Reg))
444     return;
445
446   // Add output dependence to the next nearest defs of this vreg.
447   //
448   // Unless this definition is dead, the output dependence should be
449   // transitively redundant with antidependencies from this definition's
450   // uses. We're conservative for now until we have a way to guarantee the uses
451   // are not eliminated sometime during scheduling. The output dependence edge
452   // is also useful if output latency exceeds def-use latency.
453   LaneBitmask LaneMask = DefLaneMask;
454   for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
455                                      CurrentVRegDefs.end())) {
456     // Ignore defs for other lanes.
457     if ((V2SU.LaneMask & LaneMask) == 0)
458       continue;
459     // Add an output dependence.
460     SUnit *DefSU = V2SU.SU;
461     // Ignore additional defs of the same lanes in one instruction. This can
462     // happen because lanemasks are shared for targets with too many
463     // subregisters. We also use some representration tricks/hacks where we
464     // add super-register defs/uses, to imply that although we only access parts
465     // of the reg we care about the full one.
466     if (DefSU == SU)
467       continue;
468     SDep Dep(SU, SDep::Output, Reg);
469     Dep.setLatency(
470       SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
471     DefSU->addPred(Dep);
472
473     // Update current definition. This can get tricky if the def was about a
474     // bigger lanemask before. We then have to shrink it and create a new
475     // VReg2SUnit for the non-overlapping part.
476     LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask;
477     LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask;
478     if (NonOverlapMask != 0)
479       CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, V2SU.SU));
480     V2SU.SU = SU;
481     V2SU.LaneMask = OverlapMask;
482   }
483   // If there was no CurrentVRegDefs entry for some lanes yet, create one.
484   if (LaneMask != 0)
485     CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU));
486 }
487
488 /// addVRegUseDeps - Add a register data dependency if the instruction that
489 /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
490 /// register antidependency from this SUnit to instructions that occur later in
491 /// the same scheduling region if they write the virtual register.
492 ///
493 /// TODO: Handle ExitSU "uses" properly.
494 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
495   const MachineInstr *MI = SU->getInstr();
496   const MachineOperand &MO = MI->getOperand(OperIdx);
497   unsigned Reg = MO.getReg();
498
499   // Remember the use. Data dependencies will be added when we find the def.
500   LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO) : ~0u;
501   CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU));
502
503   // Add antidependences to the following defs of the vreg.
504   for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
505                                      CurrentVRegDefs.end())) {
506     // Ignore defs for unrelated lanes.
507     LaneBitmask PrevDefLaneMask = V2SU.LaneMask;
508     if ((PrevDefLaneMask & LaneMask) == 0)
509       continue;
510     if (V2SU.SU == SU)
511       continue;
512
513     V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg));
514   }
515 }
516
517 /// Return true if MI is an instruction we are unable to reason about
518 /// (like a call or something with unmodeled side effects).
519 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
520   return MI->isCall() || MI->hasUnmodeledSideEffects() ||
521          (MI->hasOrderedMemoryRef() &&
522           (!MI->mayLoad() || !MI->isInvariantLoad(AA)));
523 }
524
525 // This MI might have either incomplete info, or known to be unsafe
526 // to deal with (i.e. volatile object).
527 static inline bool isUnsafeMemoryObject(MachineInstr *MI,
528                                         const MachineFrameInfo *MFI,
529                                         const DataLayout &DL) {
530   if (!MI || MI->memoperands_empty())
531     return true;
532   // We purposefully do no check for hasOneMemOperand() here
533   // in hope to trigger an assert downstream in order to
534   // finish implementation.
535   if ((*MI->memoperands_begin())->isVolatile() ||
536        MI->hasUnmodeledSideEffects())
537     return true;
538
539   if ((*MI->memoperands_begin())->getPseudoValue()) {
540     // Similarly to getUnderlyingObjectForInstr:
541     // For now, ignore PseudoSourceValues which may alias LLVM IR values
542     // because the code that uses this function has no way to cope with
543     // such aliases.
544     return true;
545   }
546
547   const Value *V = (*MI->memoperands_begin())->getValue();
548   if (!V)
549     return true;
550
551   SmallVector<Value *, 4> Objs;
552   getUnderlyingObjects(V, Objs, DL);
553   for (Value *V : Objs) {
554     // Does this pointer refer to a distinct and identifiable object?
555     if (!isIdentifiedObject(V))
556       return true;
557   }
558
559   return false;
560 }
561
562 /// This returns true if the two MIs need a chain edge between them.
563 /// If these are not even memory operations, we still may need
564 /// chain deps between them. The question really is - could
565 /// these two MIs be reordered during scheduling from memory dependency
566 /// point of view.
567 static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
568                              const DataLayout &DL, MachineInstr *MIa,
569                              MachineInstr *MIb) {
570   const MachineFunction *MF = MIa->getParent()->getParent();
571   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
572
573   // Cover a trivial case - no edge is need to itself.
574   if (MIa == MIb)
575     return false;
576  
577   // Let the target decide if memory accesses cannot possibly overlap.
578   if ((MIa->mayLoad() || MIa->mayStore()) &&
579       (MIb->mayLoad() || MIb->mayStore()))
580     if (TII->areMemAccessesTriviallyDisjoint(MIa, MIb, AA))
581       return false;
582
583   // FIXME: Need to handle multiple memory operands to support all targets.
584   if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
585     return true;
586
587   if (isUnsafeMemoryObject(MIa, MFI, DL) || isUnsafeMemoryObject(MIb, MFI, DL))
588     return true;
589
590   // If we are dealing with two "normal" loads, we do not need an edge
591   // between them - they could be reordered.
592   if (!MIa->mayStore() && !MIb->mayStore())
593     return false;
594
595   // To this point analysis is generic. From here on we do need AA.
596   if (!AA)
597     return true;
598
599   MachineMemOperand *MMOa = *MIa->memoperands_begin();
600   MachineMemOperand *MMOb = *MIb->memoperands_begin();
601
602   if (!MMOa->getValue() || !MMOb->getValue())
603     return true;
604
605   // The following interface to AA is fashioned after DAGCombiner::isAlias
606   // and operates with MachineMemOperand offset with some important
607   // assumptions:
608   //   - LLVM fundamentally assumes flat address spaces.
609   //   - MachineOperand offset can *only* result from legalization and
610   //     cannot affect queries other than the trivial case of overlap
611   //     checking.
612   //   - These offsets never wrap and never step outside
613   //     of allocated objects.
614   //   - There should never be any negative offsets here.
615   //
616   // FIXME: Modify API to hide this math from "user"
617   // FIXME: Even before we go to AA we can reason locally about some
618   // memory objects. It can save compile time, and possibly catch some
619   // corner cases not currently covered.
620
621   assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
622   assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
623
624   int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
625   int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
626   int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
627
628   AliasResult AAResult =
629       AA->alias(MemoryLocation(MMOa->getValue(), Overlapa,
630                                UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
631                 MemoryLocation(MMOb->getValue(), Overlapb,
632                                UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
633
634   return (AAResult != NoAlias);
635 }
636
637 /// This recursive function iterates over chain deps of SUb looking for
638 /// "latest" node that needs a chain edge to SUa.
639 static unsigned iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI,
640                                  const DataLayout &DL, SUnit *SUa, SUnit *SUb,
641                                  SUnit *ExitSU, unsigned *Depth,
642                                  SmallPtrSetImpl<const SUnit *> &Visited) {
643   if (!SUa || !SUb || SUb == ExitSU)
644     return *Depth;
645
646   // Remember visited nodes.
647   if (!Visited.insert(SUb).second)
648       return *Depth;
649   // If there is _some_ dependency already in place, do not
650   // descend any further.
651   // TODO: Need to make sure that if that dependency got eliminated or ignored
652   // for any reason in the future, we would not violate DAG topology.
653   // Currently it does not happen, but makes an implicit assumption about
654   // future implementation.
655   //
656   // Independently, if we encounter node that is some sort of global
657   // object (like a call) we already have full set of dependencies to it
658   // and we can stop descending.
659   if (SUa->isSucc(SUb) ||
660       isGlobalMemoryObject(AA, SUb->getInstr()))
661     return *Depth;
662
663   // If we do need an edge, or we have exceeded depth budget,
664   // add that edge to the predecessors chain of SUb,
665   // and stop descending.
666   if (*Depth > 200 ||
667       MIsNeedChainEdge(AA, MFI, DL, SUa->getInstr(), SUb->getInstr())) {
668     SUb->addPred(SDep(SUa, SDep::MayAliasMem));
669     return *Depth;
670   }
671   // Track current depth.
672   (*Depth)++;
673   // Iterate over memory dependencies only.
674   for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end();
675        I != E; ++I)
676     if (I->isNormalMemoryOrBarrier())
677       iterateChainSucc(AA, MFI, DL, SUa, I->getSUnit(), ExitSU, Depth, Visited);
678   return *Depth;
679 }
680
681 /// This function assumes that "downward" from SU there exist
682 /// tail/leaf of already constructed DAG. It iterates downward and
683 /// checks whether SU can be aliasing any node dominated
684 /// by it.
685 static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI,
686                             const DataLayout &DL, SUnit *SU, SUnit *ExitSU,
687                             std::set<SUnit *> &CheckList,
688                             unsigned LatencyToLoad) {
689   if (!SU)
690     return;
691
692   SmallPtrSet<const SUnit*, 16> Visited;
693   unsigned Depth = 0;
694
695   for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end();
696        I != IE; ++I) {
697     if (SU == *I)
698       continue;
699     if (MIsNeedChainEdge(AA, MFI, DL, SU->getInstr(), (*I)->getInstr())) {
700       SDep Dep(SU, SDep::MayAliasMem);
701       Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0);
702       (*I)->addPred(Dep);
703     }
704
705     // Iterate recursively over all previously added memory chain
706     // successors. Keep track of visited nodes.
707     for (SUnit::const_succ_iterator J = (*I)->Succs.begin(),
708          JE = (*I)->Succs.end(); J != JE; ++J)
709       if (J->isNormalMemoryOrBarrier())
710         iterateChainSucc(AA, MFI, DL, SU, J->getSUnit(), ExitSU, &Depth,
711                          Visited);
712   }
713 }
714
715 /// Check whether two objects need a chain edge, if so, add it
716 /// otherwise remember the rejected SU.
717 static inline void addChainDependency(AliasAnalysis *AA,
718                                       const MachineFrameInfo *MFI,
719                                       const DataLayout &DL, SUnit *SUa,
720                                       SUnit *SUb, std::set<SUnit *> &RejectList,
721                                       unsigned TrueMemOrderLatency = 0,
722                                       bool isNormalMemory = false) {
723   // If this is a false dependency,
724   // do not add the edge, but remember the rejected node.
725   if (MIsNeedChainEdge(AA, MFI, DL, SUa->getInstr(), SUb->getInstr())) {
726     SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier);
727     Dep.setLatency(TrueMemOrderLatency);
728     SUb->addPred(Dep);
729   }
730   else {
731     // Duplicate entries should be ignored.
732     RejectList.insert(SUb);
733     DEBUG(dbgs() << "\tReject chain dep between SU("
734           << SUa->NodeNum << ") and SU("
735           << SUb->NodeNum << ")\n");
736   }
737 }
738
739 /// Create an SUnit for each real instruction, numbered in top-down topological
740 /// order. The instruction order A < B, implies that no edge exists from B to A.
741 ///
742 /// Map each real instruction to its SUnit.
743 ///
744 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may
745 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
746 /// instead of pointers.
747 ///
748 /// MachineScheduler relies on initSUnits numbering the nodes by their order in
749 /// the original instruction list.
750 void ScheduleDAGInstrs::initSUnits() {
751   // We'll be allocating one SUnit for each real instruction in the region,
752   // which is contained within a basic block.
753   SUnits.reserve(NumRegionInstrs);
754
755   for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
756     MachineInstr *MI = I;
757     if (MI->isDebugValue())
758       continue;
759
760     SUnit *SU = newSUnit(MI);
761     MISUnitMap[MI] = SU;
762
763     SU->isCall = MI->isCall();
764     SU->isCommutable = MI->isCommutable();
765
766     // Assign the Latency field of SU using target-provided information.
767     SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
768
769     // If this SUnit uses a reserved or unbuffered resource, mark it as such.
770     //
771     // Reserved resources block an instruction from issuing and stall the
772     // entire pipeline. These are identified by BufferSize=0.
773     //
774     // Unbuffered resources prevent execution of subsequent instructions that
775     // require the same resources. This is used for in-order execution pipelines
776     // within an out-of-order core. These are identified by BufferSize=1.
777     if (SchedModel.hasInstrSchedModel()) {
778       const MCSchedClassDesc *SC = getSchedClass(SU);
779       for (TargetSchedModel::ProcResIter
780              PI = SchedModel.getWriteProcResBegin(SC),
781              PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) {
782         switch (SchedModel.getProcResource(PI->ProcResourceIdx)->BufferSize) {
783         case 0:
784           SU->hasReservedResource = true;
785           break;
786         case 1:
787           SU->isUnbuffered = true;
788           break;
789         default:
790           break;
791         }
792       }
793     }
794   }
795 }
796
797 void ScheduleDAGInstrs::collectVRegUses(SUnit *SU) {
798   const MachineInstr *MI = SU->getInstr();
799   for (const MachineOperand &MO : MI->operands()) {
800     if (!MO.isReg())
801       continue;
802     if (!MO.readsReg())
803       continue;
804     if (TrackLaneMasks && !MO.isUse())
805       continue;
806
807     unsigned Reg = MO.getReg();
808     if (!TargetRegisterInfo::isVirtualRegister(Reg))
809       continue;
810
811     // Record this local VReg use.
812     VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
813     for (; UI != VRegUses.end(); ++UI) {
814       if (UI->SU == SU)
815         break;
816     }
817     if (UI == VRegUses.end())
818       VRegUses.insert(VReg2SUnit(Reg, 0, SU));
819   }
820 }
821
822 /// If RegPressure is non-null, compute register pressure as a side effect. The
823 /// DAG builder is an efficient place to do it because it already visits
824 /// operands.
825 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
826                                         RegPressureTracker *RPTracker,
827                                         PressureDiffs *PDiffs,
828                                         bool TrackLaneMasks) {
829   const TargetSubtargetInfo &ST = MF.getSubtarget();
830   bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
831                                                        : ST.useAA();
832   AliasAnalysis *AAForDep = UseAA ? AA : nullptr;
833
834   this->TrackLaneMasks = TrackLaneMasks;
835   MISUnitMap.clear();
836   ScheduleDAG::clearDAG();
837
838   // Create an SUnit for each real instruction.
839   initSUnits();
840
841   if (PDiffs)
842     PDiffs->init(SUnits.size());
843
844   // We build scheduling units by walking a block's instruction list from bottom
845   // to top.
846
847   // Remember where a generic side-effecting instruction is as we proceed.
848   SUnit *BarrierChain = nullptr, *AliasChain = nullptr;
849
850   // Memory references to specific known memory locations are tracked
851   // so that they can be given more precise dependencies. We track
852   // separately the known memory locations that may alias and those
853   // that are known not to alias
854   MapVector<ValueType, std::vector<SUnit *> > AliasMemDefs, NonAliasMemDefs;
855   MapVector<ValueType, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
856   std::set<SUnit*> RejectMemNodes;
857
858   // Remove any stale debug info; sometimes BuildSchedGraph is called again
859   // without emitting the info from the previous call.
860   DbgValues.clear();
861   FirstDbgValue = nullptr;
862
863   assert(Defs.empty() && Uses.empty() &&
864          "Only BuildGraph should update Defs/Uses");
865   Defs.setUniverse(TRI->getNumRegs());
866   Uses.setUniverse(TRI->getNumRegs());
867
868   assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs");
869   assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses");
870   unsigned NumVirtRegs = MRI.getNumVirtRegs();
871   CurrentVRegDefs.setUniverse(NumVirtRegs);
872   CurrentVRegUses.setUniverse(NumVirtRegs);
873
874   VRegUses.clear();
875   VRegUses.setUniverse(NumVirtRegs);
876
877   // Model data dependencies between instructions being scheduled and the
878   // ExitSU.
879   addSchedBarrierDeps();
880
881   // Walk the list of instructions, from bottom moving up.
882   MachineInstr *DbgMI = nullptr;
883   for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
884        MII != MIE; --MII) {
885     MachineInstr *MI = std::prev(MII);
886     if (MI && DbgMI) {
887       DbgValues.push_back(std::make_pair(DbgMI, MI));
888       DbgMI = nullptr;
889     }
890
891     if (MI->isDebugValue()) {
892       DbgMI = MI;
893       continue;
894     }
895     SUnit *SU = MISUnitMap[MI];
896     assert(SU && "No SUnit mapped to this MI");
897
898     if (RPTracker) {
899       collectVRegUses(SU);
900
901       RegisterOperands RegOpers;
902       RegOpers.collect(*MI, *TRI, MRI);
903       if (PDiffs != nullptr)
904         PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI);
905
906       RPTracker->recedeSkipDebugValues();
907       assert(&*RPTracker->getPos() == MI && "RPTracker in sync");
908       RPTracker->recede(RegOpers);
909     }
910
911     assert(
912         (CanHandleTerminators || (!MI->isTerminator() && !MI->isPosition())) &&
913         "Cannot schedule terminators or labels!");
914
915     // Add register-based dependencies (data, anti, and output).
916     bool HasVRegDef = false;
917     for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
918       const MachineOperand &MO = MI->getOperand(j);
919       if (!MO.isReg()) continue;
920       unsigned Reg = MO.getReg();
921       if (Reg == 0) continue;
922
923       if (TRI->isPhysicalRegister(Reg))
924         addPhysRegDeps(SU, j);
925       else {
926         if (MO.isDef()) {
927           HasVRegDef = true;
928           addVRegDefDeps(SU, j);
929         }
930         else if (MO.readsReg()) // ignore undef operands
931           addVRegUseDeps(SU, j);
932       }
933     }
934     // If we haven't seen any uses in this scheduling region, create a
935     // dependence edge to ExitSU to model the live-out latency. This is required
936     // for vreg defs with no in-region use, and prefetches with no vreg def.
937     //
938     // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
939     // check currently relies on being called before adding chain deps.
940     if (SU->NumSuccs == 0 && SU->Latency > 1
941         && (HasVRegDef || MI->mayLoad())) {
942       SDep Dep(SU, SDep::Artificial);
943       Dep.setLatency(SU->Latency - 1);
944       ExitSU.addPred(Dep);
945     }
946
947     // Add chain dependencies.
948     // Chain dependencies used to enforce memory order should have
949     // latency of 0 (except for true dependency of Store followed by
950     // aliased Load... we estimate that with a single cycle of latency
951     // assuming the hardware will bypass)
952     // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
953     // after stack slots are lowered to actual addresses.
954     // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
955     // produce more precise dependence information.
956     unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0;
957     if (isGlobalMemoryObject(AA, MI)) {
958       // Be conservative with these and add dependencies on all memory
959       // references, even those that are known to not alias.
960       for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
961              NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
962         for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
963           I->second[i]->addPred(SDep(SU, SDep::Barrier));
964         }
965       }
966       for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
967              NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
968         for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
969           SDep Dep(SU, SDep::Barrier);
970           Dep.setLatency(TrueMemOrderLatency);
971           I->second[i]->addPred(Dep);
972         }
973       }
974       // Add SU to the barrier chain.
975       if (BarrierChain)
976         BarrierChain->addPred(SDep(SU, SDep::Barrier));
977       BarrierChain = SU;
978       // This is a barrier event that acts as a pivotal node in the DAG,
979       // so it is safe to clear list of exposed nodes.
980       adjustChainDeps(AA, MFI, MF.getDataLayout(), SU, &ExitSU, RejectMemNodes,
981                       TrueMemOrderLatency);
982       RejectMemNodes.clear();
983       NonAliasMemDefs.clear();
984       NonAliasMemUses.clear();
985
986       // fall-through
987     new_alias_chain:
988       // Chain all possibly aliasing memory references through SU.
989       if (AliasChain) {
990         unsigned ChainLatency = 0;
991         if (AliasChain->getInstr()->mayLoad())
992           ChainLatency = TrueMemOrderLatency;
993         addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, AliasChain,
994                            RejectMemNodes, ChainLatency);
995       }
996       AliasChain = SU;
997       for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
998         addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU,
999                            PendingLoads[k], RejectMemNodes,
1000                            TrueMemOrderLatency);
1001       for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
1002            AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) {
1003         for (unsigned i = 0, e = I->second.size(); i != e; ++i)
1004           addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU,
1005                              I->second[i], RejectMemNodes);
1006       }
1007       for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
1008            AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
1009         for (unsigned i = 0, e = I->second.size(); i != e; ++i)
1010           addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU,
1011                              I->second[i], RejectMemNodes, TrueMemOrderLatency);
1012       }
1013       // This call must come after calls to addChainDependency() since it
1014       // consumes the 'RejectMemNodes' list that addChainDependency() possibly
1015       // adds to.
1016       adjustChainDeps(AA, MFI, MF.getDataLayout(), SU, &ExitSU, RejectMemNodes,
1017                       TrueMemOrderLatency);
1018       PendingLoads.clear();
1019       AliasMemDefs.clear();
1020       AliasMemUses.clear();
1021     } else if (MI->mayStore()) {
1022       // Add dependence on barrier chain, if needed.
1023       // There is no point to check aliasing on barrier event. Even if
1024       // SU and barrier _could_ be reordered, they should not. In addition,
1025       // we have lost all RejectMemNodes below barrier.
1026       if (BarrierChain)
1027         BarrierChain->addPred(SDep(SU, SDep::Barrier));
1028
1029       UnderlyingObjectsVector Objs;
1030       getUnderlyingObjectsForInstr(MI, MFI, Objs, MF.getDataLayout());
1031
1032       if (Objs.empty()) {
1033         // Treat all other stores conservatively.
1034         goto new_alias_chain;
1035       }
1036
1037       bool MayAlias = false;
1038       for (UnderlyingObjectsVector::iterator K = Objs.begin(), KE = Objs.end();
1039            K != KE; ++K) {
1040         ValueType V = K->getPointer();
1041         bool ThisMayAlias = K->getInt();
1042         if (ThisMayAlias)
1043           MayAlias = true;
1044
1045         // A store to a specific PseudoSourceValue. Add precise dependencies.
1046         // Record the def in MemDefs, first adding a dep if there is
1047         // an existing def.
1048         MapVector<ValueType, std::vector<SUnit *> >::iterator I =
1049           ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
1050         MapVector<ValueType, std::vector<SUnit *> >::iterator IE =
1051           ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
1052         if (I != IE) {
1053           for (unsigned i = 0, e = I->second.size(); i != e; ++i)
1054             addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU,
1055                                I->second[i], RejectMemNodes, 0, true);
1056
1057           // If we're not using AA, then we only need one store per object.
1058           if (!AAForDep)
1059             I->second.clear();
1060           I->second.push_back(SU);
1061         } else {
1062           if (ThisMayAlias) {
1063             if (!AAForDep)
1064               AliasMemDefs[V].clear();
1065             AliasMemDefs[V].push_back(SU);
1066           } else {
1067             if (!AAForDep)
1068               NonAliasMemDefs[V].clear();
1069             NonAliasMemDefs[V].push_back(SU);
1070           }
1071         }
1072         // Handle the uses in MemUses, if there are any.
1073         MapVector<ValueType, std::vector<SUnit *> >::iterator J =
1074           ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
1075         MapVector<ValueType, std::vector<SUnit *> >::iterator JE =
1076           ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
1077         if (J != JE) {
1078           for (unsigned i = 0, e = J->second.size(); i != e; ++i)
1079             addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU,
1080                                J->second[i], RejectMemNodes,
1081                                TrueMemOrderLatency, true);
1082           J->second.clear();
1083         }
1084       }
1085       if (MayAlias) {
1086         // Add dependencies from all the PendingLoads, i.e. loads
1087         // with no underlying object.
1088         for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
1089           addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU,
1090                              PendingLoads[k], RejectMemNodes,
1091                              TrueMemOrderLatency);
1092         // Add dependence on alias chain, if needed.
1093         if (AliasChain)
1094           addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, AliasChain,
1095                              RejectMemNodes);
1096       }
1097       // This call must come after calls to addChainDependency() since it
1098       // consumes the 'RejectMemNodes' list that addChainDependency() possibly
1099       // adds to.
1100       adjustChainDeps(AA, MFI, MF.getDataLayout(), SU, &ExitSU, RejectMemNodes,
1101                       TrueMemOrderLatency);
1102     } else if (MI->mayLoad()) {
1103       bool MayAlias = true;
1104       if (MI->isInvariantLoad(AA)) {
1105         // Invariant load, no chain dependencies needed!
1106       } else {
1107         UnderlyingObjectsVector Objs;
1108         getUnderlyingObjectsForInstr(MI, MFI, Objs, MF.getDataLayout());
1109
1110         if (Objs.empty()) {
1111           // A load with no underlying object. Depend on all
1112           // potentially aliasing stores.
1113           for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
1114                  AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
1115             for (unsigned i = 0, e = I->second.size(); i != e; ++i)
1116               addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU,
1117                                  I->second[i], RejectMemNodes);
1118
1119           PendingLoads.push_back(SU);
1120           MayAlias = true;
1121         } else {
1122           MayAlias = false;
1123         }
1124
1125         for (UnderlyingObjectsVector::iterator
1126              J = Objs.begin(), JE = Objs.end(); J != JE; ++J) {
1127           ValueType V = J->getPointer();
1128           bool ThisMayAlias = J->getInt();
1129
1130           if (ThisMayAlias)
1131             MayAlias = true;
1132
1133           // A load from a specific PseudoSourceValue. Add precise dependencies.
1134           MapVector<ValueType, std::vector<SUnit *> >::iterator I =
1135             ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
1136           MapVector<ValueType, std::vector<SUnit *> >::iterator IE =
1137             ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
1138           if (I != IE)
1139             for (unsigned i = 0, e = I->second.size(); i != e; ++i)
1140               addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU,
1141                                  I->second[i], RejectMemNodes, 0, true);
1142           if (ThisMayAlias)
1143             AliasMemUses[V].push_back(SU);
1144           else
1145             NonAliasMemUses[V].push_back(SU);
1146         }
1147         // Add dependencies on alias and barrier chains, if needed.
1148         if (MayAlias && AliasChain)
1149           addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, AliasChain,
1150                              RejectMemNodes);
1151         if (MayAlias)
1152           // This call must come after calls to addChainDependency() since it
1153           // consumes the 'RejectMemNodes' list that addChainDependency()
1154           // possibly adds to.
1155           adjustChainDeps(AA, MFI, MF.getDataLayout(), SU, &ExitSU,
1156                           RejectMemNodes, /*Latency=*/0);
1157         if (BarrierChain)
1158           BarrierChain->addPred(SDep(SU, SDep::Barrier));
1159       }
1160     }
1161   }
1162   if (DbgMI)
1163     FirstDbgValue = DbgMI;
1164
1165   Defs.clear();
1166   Uses.clear();
1167   CurrentVRegDefs.clear();
1168   CurrentVRegUses.clear();
1169   PendingLoads.clear();
1170 }
1171
1172 /// \brief Initialize register live-range state for updating kills.
1173 void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) {
1174   // Start with no live registers.
1175   LiveRegs.reset();
1176
1177   // Examine the live-in regs of all successors.
1178   for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
1179        SE = BB->succ_end(); SI != SE; ++SI) {
1180     for (const auto &LI : (*SI)->liveins()) {
1181       // Repeat, for reg and all subregs.
1182       for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
1183            SubRegs.isValid(); ++SubRegs)
1184         LiveRegs.set(*SubRegs);
1185     }
1186   }
1187 }
1188
1189 /// \brief If we change a kill flag on the bundle instruction implicit register
1190 /// operands, then we also need to propagate that to any instructions inside
1191 /// the bundle which had the same kill state.
1192 static void toggleBundleKillFlag(MachineInstr *MI, unsigned Reg,
1193                                  bool NewKillState) {
1194   if (MI->getOpcode() != TargetOpcode::BUNDLE)
1195     return;
1196
1197   // Walk backwards from the last instruction in the bundle to the first.
1198   // Once we set a kill flag on an instruction, we bail out, as otherwise we
1199   // might set it on too many operands.  We will clear as many flags as we
1200   // can though.
1201   MachineBasicBlock::instr_iterator Begin = MI->getIterator();
1202   MachineBasicBlock::instr_iterator End = getBundleEnd(MI);
1203   while (Begin != End) {
1204     for (MachineOperand &MO : (--End)->operands()) {
1205       if (!MO.isReg() || MO.isDef() || Reg != MO.getReg())
1206         continue;
1207
1208       // DEBUG_VALUE nodes do not contribute to code generation and should
1209       // always be ignored.  Failure to do so may result in trying to modify
1210       // KILL flags on DEBUG_VALUE nodes, which is distressing.
1211       if (MO.isDebug())
1212         continue;
1213
1214       // If the register has the internal flag then it could be killing an
1215       // internal def of the register.  In this case, just skip.  We only want
1216       // to toggle the flag on operands visible outside the bundle.
1217       if (MO.isInternalRead())
1218         continue;
1219
1220       if (MO.isKill() == NewKillState)
1221         continue;
1222       MO.setIsKill(NewKillState);
1223       if (NewKillState)
1224         return;
1225     }
1226   }
1227 }
1228
1229 bool ScheduleDAGInstrs::toggleKillFlag(MachineInstr *MI, MachineOperand &MO) {
1230   // Setting kill flag...
1231   if (!MO.isKill()) {
1232     MO.setIsKill(true);
1233     toggleBundleKillFlag(MI, MO.getReg(), true);
1234     return false;
1235   }
1236
1237   // If MO itself is live, clear the kill flag...
1238   if (LiveRegs.test(MO.getReg())) {
1239     MO.setIsKill(false);
1240     toggleBundleKillFlag(MI, MO.getReg(), false);
1241     return false;
1242   }
1243
1244   // If any subreg of MO is live, then create an imp-def for that
1245   // subreg and keep MO marked as killed.
1246   MO.setIsKill(false);
1247   toggleBundleKillFlag(MI, MO.getReg(), false);
1248   bool AllDead = true;
1249   const unsigned SuperReg = MO.getReg();
1250   MachineInstrBuilder MIB(MF, MI);
1251   for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) {
1252     if (LiveRegs.test(*SubRegs)) {
1253       MIB.addReg(*SubRegs, RegState::ImplicitDefine);
1254       AllDead = false;
1255     }
1256   }
1257
1258   if(AllDead) {
1259     MO.setIsKill(true);
1260     toggleBundleKillFlag(MI, MO.getReg(), true);
1261   }
1262   return false;
1263 }
1264
1265 // FIXME: Reuse the LivePhysRegs utility for this.
1266 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) {
1267   DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
1268
1269   LiveRegs.resize(TRI->getNumRegs());
1270   BitVector killedRegs(TRI->getNumRegs());
1271
1272   startBlockForKills(MBB);
1273
1274   // Examine block from end to start...
1275   unsigned Count = MBB->size();
1276   for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
1277        I != E; --Count) {
1278     MachineInstr *MI = --I;
1279     if (MI->isDebugValue())
1280       continue;
1281
1282     // Update liveness.  Registers that are defed but not used in this
1283     // instruction are now dead. Mark register and all subregs as they
1284     // are completely defined.
1285     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1286       MachineOperand &MO = MI->getOperand(i);
1287       if (MO.isRegMask())
1288         LiveRegs.clearBitsNotInMask(MO.getRegMask());
1289       if (!MO.isReg()) continue;
1290       unsigned Reg = MO.getReg();
1291       if (Reg == 0) continue;
1292       if (!MO.isDef()) continue;
1293       // Ignore two-addr defs.
1294       if (MI->isRegTiedToUseOperand(i)) continue;
1295
1296       // Repeat for reg and all subregs.
1297       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1298            SubRegs.isValid(); ++SubRegs)
1299         LiveRegs.reset(*SubRegs);
1300     }
1301
1302     // Examine all used registers and set/clear kill flag. When a
1303     // register is used multiple times we only set the kill flag on
1304     // the first use. Don't set kill flags on undef operands.
1305     killedRegs.reset();
1306     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1307       MachineOperand &MO = MI->getOperand(i);
1308       if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
1309       unsigned Reg = MO.getReg();
1310       if ((Reg == 0) || MRI.isReserved(Reg)) continue;
1311
1312       bool kill = false;
1313       if (!killedRegs.test(Reg)) {
1314         kill = true;
1315         // A register is not killed if any subregs are live...
1316         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
1317           if (LiveRegs.test(*SubRegs)) {
1318             kill = false;
1319             break;
1320           }
1321         }
1322
1323         // If subreg is not live, then register is killed if it became
1324         // live in this instruction
1325         if (kill)
1326           kill = !LiveRegs.test(Reg);
1327       }
1328
1329       if (MO.isKill() != kill) {
1330         DEBUG(dbgs() << "Fixing " << MO << " in ");
1331         // Warning: toggleKillFlag may invalidate MO.
1332         toggleKillFlag(MI, MO);
1333         DEBUG(MI->dump());
1334         DEBUG(if (MI->getOpcode() == TargetOpcode::BUNDLE) {
1335           MachineBasicBlock::instr_iterator Begin = MI->getIterator();
1336           MachineBasicBlock::instr_iterator End = getBundleEnd(MI);
1337           while (++Begin != End)
1338             DEBUG(Begin->dump());
1339         });
1340       }
1341
1342       killedRegs.set(Reg);
1343     }
1344
1345     // Mark any used register (that is not using undef) and subregs as
1346     // now live...
1347     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1348       MachineOperand &MO = MI->getOperand(i);
1349       if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
1350       unsigned Reg = MO.getReg();
1351       if ((Reg == 0) || MRI.isReserved(Reg)) continue;
1352
1353       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1354            SubRegs.isValid(); ++SubRegs)
1355         LiveRegs.set(*SubRegs);
1356     }
1357   }
1358 }
1359
1360 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
1361 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1362   SU->getInstr()->dump();
1363 #endif
1364 }
1365
1366 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
1367   std::string s;
1368   raw_string_ostream oss(s);
1369   if (SU == &EntrySU)
1370     oss << "<entry>";
1371   else if (SU == &ExitSU)
1372     oss << "<exit>";
1373   else
1374     SU->getInstr()->print(oss, /*SkipOpers=*/true);
1375   return oss.str();
1376 }
1377
1378 /// Return the basic block label. It is not necessarilly unique because a block
1379 /// contains multiple scheduling regions. But it is fine for visualization.
1380 std::string ScheduleDAGInstrs::getDAGName() const {
1381   return "dag." + BB->getFullName();
1382 }
1383
1384 //===----------------------------------------------------------------------===//
1385 // SchedDFSResult Implementation
1386 //===----------------------------------------------------------------------===//
1387
1388 namespace llvm {
1389 /// \brief Internal state used to compute SchedDFSResult.
1390 class SchedDFSImpl {
1391   SchedDFSResult &R;
1392
1393   /// Join DAG nodes into equivalence classes by their subtree.
1394   IntEqClasses SubtreeClasses;
1395   /// List PredSU, SuccSU pairs that represent data edges between subtrees.
1396   std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs;
1397
1398   struct RootData {
1399     unsigned NodeID;
1400     unsigned ParentNodeID;  // Parent node (member of the parent subtree).
1401     unsigned SubInstrCount; // Instr count in this tree only, not children.
1402
1403     RootData(unsigned id): NodeID(id),
1404                            ParentNodeID(SchedDFSResult::InvalidSubtreeID),
1405                            SubInstrCount(0) {}
1406
1407     unsigned getSparseSetIndex() const { return NodeID; }
1408   };
1409
1410   SparseSet<RootData> RootSet;
1411
1412 public:
1413   SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
1414     RootSet.setUniverse(R.DFSNodeData.size());
1415   }
1416
1417   /// Return true if this node been visited by the DFS traversal.
1418   ///
1419   /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
1420   /// ID. Later, SubtreeID is updated but remains valid.
1421   bool isVisited(const SUnit *SU) const {
1422     return R.DFSNodeData[SU->NodeNum].SubtreeID
1423       != SchedDFSResult::InvalidSubtreeID;
1424   }
1425
1426   /// Initialize this node's instruction count. We don't need to flag the node
1427   /// visited until visitPostorder because the DAG cannot have cycles.
1428   void visitPreorder(const SUnit *SU) {
1429     R.DFSNodeData[SU->NodeNum].InstrCount =
1430       SU->getInstr()->isTransient() ? 0 : 1;
1431   }
1432
1433   /// Called once for each node after all predecessors are visited. Revisit this
1434   /// node's predecessors and potentially join them now that we know the ILP of
1435   /// the other predecessors.
1436   void visitPostorderNode(const SUnit *SU) {
1437     // Mark this node as the root of a subtree. It may be joined with its
1438     // successors later.
1439     R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
1440     RootData RData(SU->NodeNum);
1441     RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
1442
1443     // If any predecessors are still in their own subtree, they either cannot be
1444     // joined or are large enough to remain separate. If this parent node's
1445     // total instruction count is not greater than a child subtree by at least
1446     // the subtree limit, then try to join it now since splitting subtrees is
1447     // only useful if multiple high-pressure paths are possible.
1448     unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
1449     for (SUnit::const_pred_iterator
1450            PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
1451       if (PI->getKind() != SDep::Data)
1452         continue;
1453       unsigned PredNum = PI->getSUnit()->NodeNum;
1454       if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
1455         joinPredSubtree(*PI, SU, /*CheckLimit=*/false);
1456
1457       // Either link or merge the TreeData entry from the child to the parent.
1458       if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
1459         // If the predecessor's parent is invalid, this is a tree edge and the
1460         // current node is the parent.
1461         if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
1462           RootSet[PredNum].ParentNodeID = SU->NodeNum;
1463       }
1464       else if (RootSet.count(PredNum)) {
1465         // The predecessor is not a root, but is still in the root set. This
1466         // must be the new parent that it was just joined to. Note that
1467         // RootSet[PredNum].ParentNodeID may either be invalid or may still be
1468         // set to the original parent.
1469         RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
1470         RootSet.erase(PredNum);
1471       }
1472     }
1473     RootSet[SU->NodeNum] = RData;
1474   }
1475
1476   /// Called once for each tree edge after calling visitPostOrderNode on the
1477   /// predecessor. Increment the parent node's instruction count and
1478   /// preemptively join this subtree to its parent's if it is small enough.
1479   void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
1480     R.DFSNodeData[Succ->NodeNum].InstrCount
1481       += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
1482     joinPredSubtree(PredDep, Succ);
1483   }
1484
1485   /// Add a connection for cross edges.
1486   void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
1487     ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
1488   }
1489
1490   /// Set each node's subtree ID to the representative ID and record connections
1491   /// between trees.
1492   void finalize() {
1493     SubtreeClasses.compress();
1494     R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
1495     assert(SubtreeClasses.getNumClasses() == RootSet.size()
1496            && "number of roots should match trees");
1497     for (SparseSet<RootData>::const_iterator
1498            RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) {
1499       unsigned TreeID = SubtreeClasses[RI->NodeID];
1500       if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID)
1501         R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID];
1502       R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount;
1503       // Note that SubInstrCount may be greater than InstrCount if we joined
1504       // subtrees across a cross edge. InstrCount will be attributed to the
1505       // original parent, while SubInstrCount will be attributed to the joined
1506       // parent.
1507     }
1508     R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
1509     R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
1510     DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
1511     for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
1512       R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
1513       DEBUG(dbgs() << "  SU(" << Idx << ") in tree "
1514             << R.DFSNodeData[Idx].SubtreeID << '\n');
1515     }
1516     for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator
1517            I = ConnectionPairs.begin(), E = ConnectionPairs.end();
1518          I != E; ++I) {
1519       unsigned PredTree = SubtreeClasses[I->first->NodeNum];
1520       unsigned SuccTree = SubtreeClasses[I->second->NodeNum];
1521       if (PredTree == SuccTree)
1522         continue;
1523       unsigned Depth = I->first->getDepth();
1524       addConnection(PredTree, SuccTree, Depth);
1525       addConnection(SuccTree, PredTree, Depth);
1526     }
1527   }
1528
1529 protected:
1530   /// Join the predecessor subtree with the successor that is its DFS
1531   /// parent. Apply some heuristics before joining.
1532   bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
1533                        bool CheckLimit = true) {
1534     assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
1535
1536     // Check if the predecessor is already joined.
1537     const SUnit *PredSU = PredDep.getSUnit();
1538     unsigned PredNum = PredSU->NodeNum;
1539     if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
1540       return false;
1541
1542     // Four is the magic number of successors before a node is considered a
1543     // pinch point.
1544     unsigned NumDataSucs = 0;
1545     for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(),
1546            SE = PredSU->Succs.end(); SI != SE; ++SI) {
1547       if (SI->getKind() == SDep::Data) {
1548         if (++NumDataSucs >= 4)
1549           return false;
1550       }
1551     }
1552     if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
1553       return false;
1554     R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
1555     SubtreeClasses.join(Succ->NodeNum, PredNum);
1556     return true;
1557   }
1558
1559   /// Called by finalize() to record a connection between trees.
1560   void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
1561     if (!Depth)
1562       return;
1563
1564     do {
1565       SmallVectorImpl<SchedDFSResult::Connection> &Connections =
1566         R.SubtreeConnections[FromTree];
1567       for (SmallVectorImpl<SchedDFSResult::Connection>::iterator
1568              I = Connections.begin(), E = Connections.end(); I != E; ++I) {
1569         if (I->TreeID == ToTree) {
1570           I->Level = std::max(I->Level, Depth);
1571           return;
1572         }
1573       }
1574       Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
1575       FromTree = R.DFSTreeData[FromTree].ParentTreeID;
1576     } while (FromTree != SchedDFSResult::InvalidSubtreeID);
1577   }
1578 };
1579 } // namespace llvm
1580
1581 namespace {
1582 /// \brief Manage the stack used by a reverse depth-first search over the DAG.
1583 class SchedDAGReverseDFS {
1584   std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack;
1585 public:
1586   bool isComplete() const { return DFSStack.empty(); }
1587
1588   void follow(const SUnit *SU) {
1589     DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
1590   }
1591   void advance() { ++DFSStack.back().second; }
1592
1593   const SDep *backtrack() {
1594     DFSStack.pop_back();
1595     return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second);
1596   }
1597
1598   const SUnit *getCurr() const { return DFSStack.back().first; }
1599
1600   SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
1601
1602   SUnit::const_pred_iterator getPredEnd() const {
1603     return getCurr()->Preds.end();
1604   }
1605 };
1606 } // anonymous
1607
1608 static bool hasDataSucc(const SUnit *SU) {
1609   for (SUnit::const_succ_iterator
1610          SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) {
1611     if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode())
1612       return true;
1613   }
1614   return false;
1615 }
1616
1617 /// Compute an ILP metric for all nodes in the subDAG reachable via depth-first
1618 /// search from this root.
1619 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
1620   if (!IsBottomUp)
1621     llvm_unreachable("Top-down ILP metric is unimplemnted");
1622
1623   SchedDFSImpl Impl(*this);
1624   for (ArrayRef<SUnit>::const_iterator
1625          SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) {
1626     const SUnit *SU = &*SI;
1627     if (Impl.isVisited(SU) || hasDataSucc(SU))
1628       continue;
1629
1630     SchedDAGReverseDFS DFS;
1631     Impl.visitPreorder(SU);
1632     DFS.follow(SU);
1633     for (;;) {
1634       // Traverse the leftmost path as far as possible.
1635       while (DFS.getPred() != DFS.getPredEnd()) {
1636         const SDep &PredDep = *DFS.getPred();
1637         DFS.advance();
1638         // Ignore non-data edges.
1639         if (PredDep.getKind() != SDep::Data
1640             || PredDep.getSUnit()->isBoundaryNode()) {
1641           continue;
1642         }
1643         // An already visited edge is a cross edge, assuming an acyclic DAG.
1644         if (Impl.isVisited(PredDep.getSUnit())) {
1645           Impl.visitCrossEdge(PredDep, DFS.getCurr());
1646           continue;
1647         }
1648         Impl.visitPreorder(PredDep.getSUnit());
1649         DFS.follow(PredDep.getSUnit());
1650       }
1651       // Visit the top of the stack in postorder and backtrack.
1652       const SUnit *Child = DFS.getCurr();
1653       const SDep *PredDep = DFS.backtrack();
1654       Impl.visitPostorderNode(Child);
1655       if (PredDep)
1656         Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
1657       if (DFS.isComplete())
1658         break;
1659     }
1660   }
1661   Impl.finalize();
1662 }
1663
1664 /// The root of the given SubtreeID was just scheduled. For all subtrees
1665 /// connected to this tree, record the depth of the connection so that the
1666 /// nearest connected subtrees can be prioritized.
1667 void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
1668   for (SmallVectorImpl<Connection>::const_iterator
1669          I = SubtreeConnections[SubtreeID].begin(),
1670          E = SubtreeConnections[SubtreeID].end(); I != E; ++I) {
1671     SubtreeConnectLevels[I->TreeID] =
1672       std::max(SubtreeConnectLevels[I->TreeID], I->Level);
1673     DEBUG(dbgs() << "  Tree: " << I->TreeID
1674           << " @" << SubtreeConnectLevels[I->TreeID] << '\n');
1675   }
1676 }
1677
1678 LLVM_DUMP_METHOD
1679 void ILPValue::print(raw_ostream &OS) const {
1680   OS << InstrCount << " / " << Length << " = ";
1681   if (!Length)
1682     OS << "BADILP";
1683   else
1684     OS << format("%g", ((double)InstrCount / Length));
1685 }
1686
1687 LLVM_DUMP_METHOD
1688 void ILPValue::dump() const {
1689   dbgs() << *this << '\n';
1690 }
1691
1692 namespace llvm {
1693
1694 LLVM_DUMP_METHOD
1695 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
1696   Val.print(OS);
1697   return OS;
1698 }
1699
1700 } // namespace llvm