d3433018004cc5c363c5af28d07bcb4e3edbe022
[oota-llvm.git] / lib / CodeGen / PHIElimination.cpp
1 //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass eliminates machine instruction PHI nodes by inserting copy
11 // instructions.  This destroys SSA information, but is the desired input for
12 // some register allocators.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/CodeGen/Passes.h"
17 #include "PHIEliminationUtils.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
22 #include "llvm/CodeGen/LiveVariables.h"
23 #include "llvm/CodeGen/MachineDominators.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineLoopInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Compiler.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Target/TargetInstrInfo.h"
34 #include "llvm/Target/TargetSubtargetInfo.h"
35 #include <algorithm>
36 using namespace llvm;
37
38 #define DEBUG_TYPE "phielim"
39
40 static cl::opt<bool>
41 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
42                      cl::Hidden, cl::desc("Disable critical edge splitting "
43                                           "during PHI elimination"));
44
45 static cl::opt<bool>
46 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
47                       cl::Hidden, cl::desc("Split all critical edges during "
48                                            "PHI elimination"));
49
50 static cl::opt<bool> NoPhiElimLiveOutEarlyExit(
51     "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden,
52     cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true."));
53
54 namespace {
55   class PHIElimination : public MachineFunctionPass {
56     MachineRegisterInfo *MRI; // Machine register information
57     LiveVariables *LV;
58     LiveIntervals *LIS;
59
60   public:
61     static char ID; // Pass identification, replacement for typeid
62     PHIElimination() : MachineFunctionPass(ID) {
63       initializePHIEliminationPass(*PassRegistry::getPassRegistry());
64     }
65
66     bool runOnMachineFunction(MachineFunction &Fn) override;
67     void getAnalysisUsage(AnalysisUsage &AU) const override;
68
69   private:
70     /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
71     /// in predecessor basic blocks.
72     ///
73     bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
74     void LowerPHINode(MachineBasicBlock &MBB,
75                       MachineBasicBlock::iterator LastPHIIt);
76
77     /// analyzePHINodes - Gather information about the PHI nodes in
78     /// here. In particular, we want to map the number of uses of a virtual
79     /// register which is used in a PHI node. We map that to the BB the
80     /// vreg is coming from. This is used later to determine when the vreg
81     /// is killed in the BB.
82     ///
83     void analyzePHINodes(const MachineFunction& Fn);
84
85     /// Split critical edges where necessary for good coalescer performance.
86     bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
87                        MachineLoopInfo *MLI);
88
89     // These functions are temporary abstractions around LiveVariables and
90     // LiveIntervals, so they can go away when LiveVariables does.
91     bool isLiveIn(unsigned Reg, const MachineBasicBlock *MBB);
92     bool isLiveOutPastPHIs(unsigned Reg, const MachineBasicBlock *MBB);
93
94     typedef std::pair<unsigned, unsigned> BBVRegPair;
95     typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse;
96
97     VRegPHIUse VRegPHIUseCount;
98
99     // Defs of PHI sources which are implicit_def.
100     SmallPtrSet<MachineInstr*, 4> ImpDefs;
101
102     // Map reusable lowered PHI node -> incoming join register.
103     typedef DenseMap<MachineInstr*, unsigned,
104                      MachineInstrExpressionTrait> LoweredPHIMap;
105     LoweredPHIMap LoweredPHIs;
106   };
107 }
108
109 STATISTIC(NumLowered, "Number of phis lowered");
110 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
111 STATISTIC(NumReused, "Number of reused lowered phis");
112
113 char PHIElimination::ID = 0;
114 char& llvm::PHIEliminationID = PHIElimination::ID;
115
116 INITIALIZE_PASS_BEGIN(PHIElimination, "phi-node-elimination",
117                       "Eliminate PHI nodes for register allocation",
118                       false, false)
119 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
120 INITIALIZE_PASS_END(PHIElimination, "phi-node-elimination",
121                     "Eliminate PHI nodes for register allocation", false, false)
122
123 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
124   AU.addPreserved<LiveVariables>();
125   AU.addPreserved<SlotIndexes>();
126   AU.addPreserved<LiveIntervals>();
127   AU.addPreserved<MachineDominatorTree>();
128   AU.addPreserved<MachineLoopInfo>();
129   MachineFunctionPass::getAnalysisUsage(AU);
130 }
131
132 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
133   MRI = &MF.getRegInfo();
134   LV = getAnalysisIfAvailable<LiveVariables>();
135   LIS = getAnalysisIfAvailable<LiveIntervals>();
136
137   bool Changed = false;
138
139   // This pass takes the function out of SSA form.
140   MRI->leaveSSA();
141
142   // Split critical edges to help the coalescer. This does not yet support
143   // updating LiveIntervals, so we disable it.
144   if (!DisableEdgeSplitting && (LV || LIS)) {
145     MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
146     for (auto &MBB : MF)
147       Changed |= SplitPHIEdges(MF, MBB, MLI);
148   }
149
150   // Populate VRegPHIUseCount
151   analyzePHINodes(MF);
152
153   // Eliminate PHI instructions by inserting copies into predecessor blocks.
154   for (auto &MBB : MF)
155     Changed |= EliminatePHINodes(MF, MBB);
156
157   // Remove dead IMPLICIT_DEF instructions.
158   for (MachineInstr *DefMI : ImpDefs) {
159     unsigned DefReg = DefMI->getOperand(0).getReg();
160     if (MRI->use_nodbg_empty(DefReg)) {
161       if (LIS)
162         LIS->RemoveMachineInstrFromMaps(DefMI);
163       DefMI->eraseFromParent();
164     }
165   }
166
167   // Clean up the lowered PHI instructions.
168   for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
169        I != E; ++I) {
170     if (LIS)
171       LIS->RemoveMachineInstrFromMaps(I->first);
172     MF.DeleteMachineInstr(I->first);
173   }
174
175   LoweredPHIs.clear();
176   ImpDefs.clear();
177   VRegPHIUseCount.clear();
178
179   return Changed;
180 }
181
182 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
183 /// predecessor basic blocks.
184 ///
185 bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
186                                              MachineBasicBlock &MBB) {
187   if (MBB.empty() || !MBB.front().isPHI())
188     return false;   // Quick exit for basic blocks without PHIs.
189
190   // Get an iterator to the first instruction after the last PHI node (this may
191   // also be the end of the basic block).
192   MachineBasicBlock::iterator LastPHIIt =
193     std::prev(MBB.SkipPHIsAndLabels(MBB.begin()));
194
195   while (MBB.front().isPHI())
196     LowerPHINode(MBB, LastPHIIt);
197
198   return true;
199 }
200
201 /// isImplicitlyDefined - Return true if all defs of VirtReg are implicit-defs.
202 /// This includes registers with no defs.
203 static bool isImplicitlyDefined(unsigned VirtReg,
204                                 const MachineRegisterInfo *MRI) {
205   for (MachineInstr &DI : MRI->def_instructions(VirtReg))
206     if (!DI.isImplicitDef())
207       return false;
208   return true;
209 }
210
211 /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
212 /// are implicit_def's.
213 static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
214                                          const MachineRegisterInfo *MRI) {
215   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
216     if (!isImplicitlyDefined(MPhi->getOperand(i).getReg(), MRI))
217       return false;
218   return true;
219 }
220
221
222 /// LowerPHINode - Lower the PHI node at the top of the specified block,
223 ///
224 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
225                                   MachineBasicBlock::iterator LastPHIIt) {
226   ++NumLowered;
227
228   MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt);
229
230   // Unlink the PHI node from the basic block, but don't delete the PHI yet.
231   MachineInstr *MPhi = MBB.remove(MBB.begin());
232
233   unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
234   unsigned DestReg = MPhi->getOperand(0).getReg();
235   assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
236   bool isDead = MPhi->getOperand(0).isDead();
237
238   // Create a new register for the incoming PHI arguments.
239   MachineFunction &MF = *MBB.getParent();
240   unsigned IncomingReg = 0;
241   bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
242
243   // Insert a register to register copy at the top of the current block (but
244   // after any remaining phi nodes) which copies the new incoming register
245   // into the phi node destination.
246   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
247   if (isSourceDefinedByImplicitDef(MPhi, MRI))
248     // If all sources of a PHI node are implicit_def, just emit an
249     // implicit_def instead of a copy.
250     BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
251             TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
252   else {
253     // Can we reuse an earlier PHI node? This only happens for critical edges,
254     // typically those created by tail duplication.
255     unsigned &entry = LoweredPHIs[MPhi];
256     if (entry) {
257       // An identical PHI node was already lowered. Reuse the incoming register.
258       IncomingReg = entry;
259       reusedIncoming = true;
260       ++NumReused;
261       DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
262     } else {
263       const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
264       entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
265     }
266     BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
267             TII->get(TargetOpcode::COPY), DestReg)
268       .addReg(IncomingReg);
269   }
270
271   // Update live variable information if there is any.
272   if (LV) {
273     MachineInstr *PHICopy = std::prev(AfterPHIsIt);
274
275     if (IncomingReg) {
276       LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
277
278       // Increment use count of the newly created virtual register.
279       LV->setPHIJoin(IncomingReg);
280
281       // When we are reusing the incoming register, it may already have been
282       // killed in this block. The old kill will also have been inserted at
283       // AfterPHIsIt, so it appears before the current PHICopy.
284       if (reusedIncoming)
285         if (MachineInstr *OldKill = VI.findKill(&MBB)) {
286           DEBUG(dbgs() << "Remove old kill from " << *OldKill);
287           LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
288           DEBUG(MBB.dump());
289         }
290
291       // Add information to LiveVariables to know that the incoming value is
292       // killed.  Note that because the value is defined in several places (once
293       // each for each incoming block), the "def" block and instruction fields
294       // for the VarInfo is not filled in.
295       LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
296     }
297
298     // Since we are going to be deleting the PHI node, if it is the last use of
299     // any registers, or if the value itself is dead, we need to move this
300     // information over to the new copy we just inserted.
301     LV->removeVirtualRegistersKilled(MPhi);
302
303     // If the result is dead, update LV.
304     if (isDead) {
305       LV->addVirtualRegisterDead(DestReg, PHICopy);
306       LV->removeVirtualRegisterDead(DestReg, MPhi);
307     }
308   }
309
310   // Update LiveIntervals for the new copy or implicit def.
311   if (LIS) {
312     MachineInstr *NewInstr = std::prev(AfterPHIsIt);
313     SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(NewInstr);
314
315     SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
316     if (IncomingReg) {
317       // Add the region from the beginning of MBB to the copy instruction to
318       // IncomingReg's live interval.
319       LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg);
320       VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
321       if (!IncomingVNI)
322         IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
323                                               LIS->getVNInfoAllocator());
324       IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex,
325                                                   DestCopyIndex.getRegSlot(),
326                                                   IncomingVNI));
327     }
328
329     LiveInterval &DestLI = LIS->getInterval(DestReg);
330     assert(DestLI.begin() != DestLI.end() &&
331            "PHIs should have nonempty LiveIntervals.");
332     if (DestLI.endIndex().isDead()) {
333       // A dead PHI's live range begins and ends at the start of the MBB, but
334       // the lowered copy, which will still be dead, needs to begin and end at
335       // the copy instruction.
336       VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
337       assert(OrigDestVNI && "PHI destination should be live at block entry.");
338       DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot());
339       DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
340                            LIS->getVNInfoAllocator());
341       DestLI.removeValNo(OrigDestVNI);
342     } else {
343       // Otherwise, remove the region from the beginning of MBB to the copy
344       // instruction from DestReg's live interval.
345       DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot());
346       VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
347       assert(DestVNI && "PHI destination should be live at its definition.");
348       DestVNI->def = DestCopyIndex.getRegSlot();
349     }
350   }
351
352   // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
353   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
354     --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
355                                  MPhi->getOperand(i).getReg())];
356
357   // Now loop over all of the incoming arguments, changing them to copy into the
358   // IncomingReg register in the corresponding predecessor basic block.
359   SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
360   for (int i = NumSrcs - 1; i >= 0; --i) {
361     unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
362     unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
363     bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
364       isImplicitlyDefined(SrcReg, MRI);
365     assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
366            "Machine PHI Operands must all be virtual registers!");
367
368     // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
369     // path the PHI.
370     MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
371
372     // Check to make sure we haven't already emitted the copy for this block.
373     // This can happen because PHI nodes may have multiple entries for the same
374     // basic block.
375     if (!MBBsInsertedInto.insert(&opBlock).second)
376       continue;  // If the copy has already been emitted, we're done.
377
378     // Find a safe location to insert the copy, this may be the first terminator
379     // in the block (or end()).
380     MachineBasicBlock::iterator InsertPos =
381       findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
382
383     // Insert the copy.
384     MachineInstr *NewSrcInstr = nullptr;
385     if (!reusedIncoming && IncomingReg) {
386       if (SrcUndef) {
387         // The source register is undefined, so there is no need for a real
388         // COPY, but we still need to ensure joint dominance by defs.
389         // Insert an IMPLICIT_DEF instruction.
390         NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
391                               TII->get(TargetOpcode::IMPLICIT_DEF),
392                               IncomingReg);
393
394         // Clean up the old implicit-def, if there even was one.
395         if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
396           if (DefMI->isImplicitDef())
397             ImpDefs.insert(DefMI);
398       } else {
399         NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
400                             TII->get(TargetOpcode::COPY), IncomingReg)
401                         .addReg(SrcReg, 0, SrcSubReg);
402       }
403     }
404
405     // We only need to update the LiveVariables kill of SrcReg if this was the
406     // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
407     // out of the predecessor. We can also ignore undef sources.
408     if (LV && !SrcUndef &&
409         !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
410         !LV->isLiveOut(SrcReg, opBlock)) {
411       // We want to be able to insert a kill of the register if this PHI (aka,
412       // the copy we just inserted) is the last use of the source value. Live
413       // variable analysis conservatively handles this by saying that the value
414       // is live until the end of the block the PHI entry lives in. If the value
415       // really is dead at the PHI copy, there will be no successor blocks which
416       // have the value live-in.
417
418       // Okay, if we now know that the value is not live out of the block, we
419       // can add a kill marker in this block saying that it kills the incoming
420       // value!
421
422       // In our final twist, we have to decide which instruction kills the
423       // register.  In most cases this is the copy, however, terminator
424       // instructions at the end of the block may also use the value. In this
425       // case, we should mark the last such terminator as being the killing
426       // block, not the copy.
427       MachineBasicBlock::iterator KillInst = opBlock.end();
428       MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
429       for (MachineBasicBlock::iterator Term = FirstTerm;
430           Term != opBlock.end(); ++Term) {
431         if (Term->readsRegister(SrcReg))
432           KillInst = Term;
433       }
434
435       if (KillInst == opBlock.end()) {
436         // No terminator uses the register.
437
438         if (reusedIncoming || !IncomingReg) {
439           // We may have to rewind a bit if we didn't insert a copy this time.
440           KillInst = FirstTerm;
441           while (KillInst != opBlock.begin()) {
442             --KillInst;
443             if (KillInst->isDebugValue())
444               continue;
445             if (KillInst->readsRegister(SrcReg))
446               break;
447           }
448         } else {
449           // We just inserted this copy.
450           KillInst = std::prev(InsertPos);
451         }
452       }
453       assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
454
455       // Finally, mark it killed.
456       LV->addVirtualRegisterKilled(SrcReg, KillInst);
457
458       // This vreg no longer lives all of the way through opBlock.
459       unsigned opBlockNum = opBlock.getNumber();
460       LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
461     }
462
463     if (LIS) {
464       if (NewSrcInstr) {
465         LIS->InsertMachineInstrInMaps(NewSrcInstr);
466         LIS->addSegmentToEndOfBlock(IncomingReg, NewSrcInstr);
467       }
468
469       if (!SrcUndef &&
470           !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
471         LiveInterval &SrcLI = LIS->getInterval(SrcReg);
472
473         bool isLiveOut = false;
474         for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
475              SE = opBlock.succ_end(); SI != SE; ++SI) {
476           SlotIndex startIdx = LIS->getMBBStartIdx(*SI);
477           VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
478
479           // Definitions by other PHIs are not truly live-in for our purposes.
480           if (VNI && VNI->def != startIdx) {
481             isLiveOut = true;
482             break;
483           }
484         }
485
486         if (!isLiveOut) {
487           MachineBasicBlock::iterator KillInst = opBlock.end();
488           MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
489           for (MachineBasicBlock::iterator Term = FirstTerm;
490               Term != opBlock.end(); ++Term) {
491             if (Term->readsRegister(SrcReg))
492               KillInst = Term;
493           }
494
495           if (KillInst == opBlock.end()) {
496             // No terminator uses the register.
497
498             if (reusedIncoming || !IncomingReg) {
499               // We may have to rewind a bit if we didn't just insert a copy.
500               KillInst = FirstTerm;
501               while (KillInst != opBlock.begin()) {
502                 --KillInst;
503                 if (KillInst->isDebugValue())
504                   continue;
505                 if (KillInst->readsRegister(SrcReg))
506                   break;
507               }
508             } else {
509               // We just inserted this copy.
510               KillInst = std::prev(InsertPos);
511             }
512           }
513           assert(KillInst->readsRegister(SrcReg) &&
514                  "Cannot find kill instruction");
515
516           SlotIndex LastUseIndex = LIS->getInstructionIndex(KillInst);
517           SrcLI.removeSegment(LastUseIndex.getRegSlot(),
518                               LIS->getMBBEndIdx(&opBlock));
519         }
520       }
521     }
522   }
523
524   // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
525   if (reusedIncoming || !IncomingReg) {
526     if (LIS)
527       LIS->RemoveMachineInstrFromMaps(MPhi);
528     MF.DeleteMachineInstr(MPhi);
529   }
530 }
531
532 /// analyzePHINodes - Gather information about the PHI nodes in here. In
533 /// particular, we want to map the number of uses of a virtual register which is
534 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
535 /// used later to determine when the vreg is killed in the BB.
536 ///
537 void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
538   for (const auto &MBB : MF)
539     for (const auto &BBI : MBB) {
540       if (!BBI.isPHI())
541         break;
542       for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2)
543         ++VRegPHIUseCount[BBVRegPair(BBI.getOperand(i+1).getMBB()->getNumber(),
544                                      BBI.getOperand(i).getReg())];
545     }
546 }
547
548 bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
549                                    MachineBasicBlock &MBB,
550                                    MachineLoopInfo *MLI) {
551   if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
552     return false;   // Quick exit for basic blocks without PHIs.
553
554   const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr;
555   bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
556
557   bool Changed = false;
558   for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
559        BBI != BBE && BBI->isPHI(); ++BBI) {
560     for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
561       unsigned Reg = BBI->getOperand(i).getReg();
562       MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
563       // Is there a critical edge from PreMBB to MBB?
564       if (PreMBB->succ_size() == 1)
565         continue;
566
567       // Avoid splitting backedges of loops. It would introduce small
568       // out-of-line blocks into the loop which is very bad for code placement.
569       if (PreMBB == &MBB && !SplitAllCriticalEdges)
570         continue;
571       const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr;
572       if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
573         continue;
574
575       // LV doesn't consider a phi use live-out, so isLiveOut only returns true
576       // when the source register is live-out for some other reason than a phi
577       // use. That means the copy we will insert in PreMBB won't be a kill, and
578       // there is a risk it may not be coalesced away.
579       //
580       // If the copy would be a kill, there is no need to split the edge.
581       bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB);
582       if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit)
583         continue;
584       if (ShouldSplit) {
585         DEBUG(dbgs() << PrintReg(Reg) << " live-out before critical edge BB#"
586                      << PreMBB->getNumber() << " -> BB#" << MBB.getNumber()
587                      << ": " << *BBI);
588       }
589
590       // If Reg is not live-in to MBB, it means it must be live-in to some
591       // other PreMBB successor, and we can avoid the interference by splitting
592       // the edge.
593       //
594       // If Reg *is* live-in to MBB, the interference is inevitable and a copy
595       // is likely to be left after coalescing. If we are looking at a loop
596       // exiting edge, split it so we won't insert code in the loop, otherwise
597       // don't bother.
598       ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB);
599
600       // Check for a loop exiting edge.
601       if (!ShouldSplit && CurLoop != PreLoop) {
602         DEBUG({
603           dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
604           if (PreLoop) dbgs() << "PreLoop: " << *PreLoop;
605           if (CurLoop) dbgs() << "CurLoop: " << *CurLoop;
606         });
607         // This edge could be entering a loop, exiting a loop, or it could be
608         // both: Jumping directly form one loop to the header of a sibling
609         // loop.
610         // Split unless this edge is entering CurLoop from an outer loop.
611         ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
612       }
613       if (!ShouldSplit && !SplitAllCriticalEdges)
614         continue;
615       if (!PreMBB->SplitCriticalEdge(&MBB, this)) {
616         DEBUG(dbgs() << "Failed to split critical edge.\n");
617         continue;
618       }
619       Changed = true;
620       ++NumCriticalEdgesSplit;
621     }
622   }
623   return Changed;
624 }
625
626 bool PHIElimination::isLiveIn(unsigned Reg, const MachineBasicBlock *MBB) {
627   assert((LV || LIS) &&
628          "isLiveIn() requires either LiveVariables or LiveIntervals");
629   if (LIS)
630     return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
631   else
632     return LV->isLiveIn(Reg, *MBB);
633 }
634
635 bool PHIElimination::isLiveOutPastPHIs(unsigned Reg,
636                                        const MachineBasicBlock *MBB) {
637   assert((LV || LIS) &&
638          "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
639   // LiveVariables considers uses in PHIs to be in the predecessor basic block,
640   // so that a register used only in a PHI is not live out of the block. In
641   // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
642   // in the predecessor basic block, so that a register used only in a PHI is live
643   // out of the block.
644   if (LIS) {
645     const LiveInterval &LI = LIS->getInterval(Reg);
646     for (const MachineBasicBlock *SI : MBB->successors())
647       if (LI.liveAt(LIS->getMBBStartIdx(SI)))
648         return true;
649     return false;
650   } else {
651     return LV->isLiveOut(Reg, *MBB);
652   }
653 }