Move all of the header files which are involved in modelling the LLVM IR
[oota-llvm.git] / lib / CodeGen / PHIElimination.cpp
1 //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass eliminates machine instruction PHI nodes by inserting copy
11 // instructions.  This destroys SSA information, but is the desired input for
12 // some register allocators.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #define DEBUG_TYPE "phielim"
17 #include "llvm/CodeGen/Passes.h"
18 #include "PHIEliminationUtils.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/LiveVariables.h"
23 #include "llvm/CodeGen/MachineDominators.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineLoopInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Compiler.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Target/TargetInstrInfo.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <algorithm>
35 using namespace llvm;
36
37 static cl::opt<bool>
38 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
39                      cl::Hidden, cl::desc("Disable critical edge splitting "
40                                           "during PHI elimination"));
41
42 namespace {
43   class PHIElimination : public MachineFunctionPass {
44     MachineRegisterInfo *MRI; // Machine register information
45
46   public:
47     static char ID; // Pass identification, replacement for typeid
48     PHIElimination() : MachineFunctionPass(ID) {
49       initializePHIEliminationPass(*PassRegistry::getPassRegistry());
50     }
51
52     virtual bool runOnMachineFunction(MachineFunction &Fn);
53     virtual void getAnalysisUsage(AnalysisUsage &AU) const;
54
55   private:
56     /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
57     /// in predecessor basic blocks.
58     ///
59     bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
60     void LowerAtomicPHINode(MachineBasicBlock &MBB,
61                             MachineBasicBlock::iterator AfterPHIsIt);
62
63     /// analyzePHINodes - Gather information about the PHI nodes in
64     /// here. In particular, we want to map the number of uses of a virtual
65     /// register which is used in a PHI node. We map that to the BB the
66     /// vreg is coming from. This is used later to determine when the vreg
67     /// is killed in the BB.
68     ///
69     void analyzePHINodes(const MachineFunction& Fn);
70
71     /// Split critical edges where necessary for good coalescer performance.
72     bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
73                        LiveVariables &LV, MachineLoopInfo *MLI);
74
75     typedef std::pair<unsigned, unsigned> BBVRegPair;
76     typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse;
77
78     VRegPHIUse VRegPHIUseCount;
79
80     // Defs of PHI sources which are implicit_def.
81     SmallPtrSet<MachineInstr*, 4> ImpDefs;
82
83     // Map reusable lowered PHI node -> incoming join register.
84     typedef DenseMap<MachineInstr*, unsigned,
85                      MachineInstrExpressionTrait> LoweredPHIMap;
86     LoweredPHIMap LoweredPHIs;
87   };
88 }
89
90 STATISTIC(NumAtomic, "Number of atomic phis lowered");
91 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
92 STATISTIC(NumReused, "Number of reused lowered phis");
93
94 char PHIElimination::ID = 0;
95 char& llvm::PHIEliminationID = PHIElimination::ID;
96
97 INITIALIZE_PASS_BEGIN(PHIElimination, "phi-node-elimination",
98                       "Eliminate PHI nodes for register allocation",
99                       false, false)
100 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
101 INITIALIZE_PASS_END(PHIElimination, "phi-node-elimination",
102                     "Eliminate PHI nodes for register allocation", false, false)
103
104 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
105   AU.addPreserved<LiveVariables>();
106   AU.addPreserved<MachineDominatorTree>();
107   AU.addPreserved<MachineLoopInfo>();
108   MachineFunctionPass::getAnalysisUsage(AU);
109 }
110
111 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
112   MRI = &MF.getRegInfo();
113
114   bool Changed = false;
115
116   // This pass takes the function out of SSA form.
117   MRI->leaveSSA();
118
119   // Split critical edges to help the coalescer
120   if (!DisableEdgeSplitting) {
121     if (LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>()) {
122       MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
123       for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
124         Changed |= SplitPHIEdges(MF, *I, *LV, MLI);
125     }
126   }
127
128   // Populate VRegPHIUseCount
129   analyzePHINodes(MF);
130
131   // Eliminate PHI instructions by inserting copies into predecessor blocks.
132   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
133     Changed |= EliminatePHINodes(MF, *I);
134
135   // Remove dead IMPLICIT_DEF instructions.
136   for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
137          E = ImpDefs.end(); I != E; ++I) {
138     MachineInstr *DefMI = *I;
139     unsigned DefReg = DefMI->getOperand(0).getReg();
140     if (MRI->use_nodbg_empty(DefReg))
141       DefMI->eraseFromParent();
142   }
143
144   // Clean up the lowered PHI instructions.
145   for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
146        I != E; ++I)
147     MF.DeleteMachineInstr(I->first);
148
149   LoweredPHIs.clear();
150   ImpDefs.clear();
151   VRegPHIUseCount.clear();
152
153   return Changed;
154 }
155
156 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
157 /// predecessor basic blocks.
158 ///
159 bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
160                                              MachineBasicBlock &MBB) {
161   if (MBB.empty() || !MBB.front().isPHI())
162     return false;   // Quick exit for basic blocks without PHIs.
163
164   // Get an iterator to the first instruction after the last PHI node (this may
165   // also be the end of the basic block).
166   MachineBasicBlock::iterator AfterPHIsIt = MBB.SkipPHIsAndLabels(MBB.begin());
167
168   while (MBB.front().isPHI())
169     LowerAtomicPHINode(MBB, AfterPHIsIt);
170
171   return true;
172 }
173
174 /// isImplicitlyDefined - Return true if all defs of VirtReg are implicit-defs.
175 /// This includes registers with no defs.
176 static bool isImplicitlyDefined(unsigned VirtReg,
177                                 const MachineRegisterInfo *MRI) {
178   for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(VirtReg),
179        DE = MRI->def_end(); DI != DE; ++DI)
180     if (!DI->isImplicitDef())
181       return false;
182   return true;
183 }
184
185 /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
186 /// are implicit_def's.
187 static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
188                                          const MachineRegisterInfo *MRI) {
189   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
190     if (!isImplicitlyDefined(MPhi->getOperand(i).getReg(), MRI))
191       return false;
192   return true;
193 }
194
195
196 /// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
197 /// under the assumption that it needs to be lowered in a way that supports
198 /// atomic execution of PHIs.  This lowering method is always correct all of the
199 /// time.
200 ///
201 void PHIElimination::LowerAtomicPHINode(
202                                       MachineBasicBlock &MBB,
203                                       MachineBasicBlock::iterator AfterPHIsIt) {
204   ++NumAtomic;
205   // Unlink the PHI node from the basic block, but don't delete the PHI yet.
206   MachineInstr *MPhi = MBB.remove(MBB.begin());
207
208   unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
209   unsigned DestReg = MPhi->getOperand(0).getReg();
210   assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
211   bool isDead = MPhi->getOperand(0).isDead();
212
213   // Create a new register for the incoming PHI arguments.
214   MachineFunction &MF = *MBB.getParent();
215   unsigned IncomingReg = 0;
216   bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
217
218   // Insert a register to register copy at the top of the current block (but
219   // after any remaining phi nodes) which copies the new incoming register
220   // into the phi node destination.
221   const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
222   if (isSourceDefinedByImplicitDef(MPhi, MRI))
223     // If all sources of a PHI node are implicit_def, just emit an
224     // implicit_def instead of a copy.
225     BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
226             TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
227   else {
228     // Can we reuse an earlier PHI node? This only happens for critical edges,
229     // typically those created by tail duplication.
230     unsigned &entry = LoweredPHIs[MPhi];
231     if (entry) {
232       // An identical PHI node was already lowered. Reuse the incoming register.
233       IncomingReg = entry;
234       reusedIncoming = true;
235       ++NumReused;
236       DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
237     } else {
238       const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
239       entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
240     }
241     BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
242             TII->get(TargetOpcode::COPY), DestReg)
243       .addReg(IncomingReg);
244   }
245
246   // Update live variable information if there is any.
247   LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
248   if (LV) {
249     MachineInstr *PHICopy = prior(AfterPHIsIt);
250
251     if (IncomingReg) {
252       LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
253
254       // Increment use count of the newly created virtual register.
255       LV->setPHIJoin(IncomingReg);
256
257       // When we are reusing the incoming register, it may already have been
258       // killed in this block. The old kill will also have been inserted at
259       // AfterPHIsIt, so it appears before the current PHICopy.
260       if (reusedIncoming)
261         if (MachineInstr *OldKill = VI.findKill(&MBB)) {
262           DEBUG(dbgs() << "Remove old kill from " << *OldKill);
263           LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
264           DEBUG(MBB.dump());
265         }
266
267       // Add information to LiveVariables to know that the incoming value is
268       // killed.  Note that because the value is defined in several places (once
269       // each for each incoming block), the "def" block and instruction fields
270       // for the VarInfo is not filled in.
271       LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
272     }
273
274     // Since we are going to be deleting the PHI node, if it is the last use of
275     // any registers, or if the value itself is dead, we need to move this
276     // information over to the new copy we just inserted.
277     LV->removeVirtualRegistersKilled(MPhi);
278
279     // If the result is dead, update LV.
280     if (isDead) {
281       LV->addVirtualRegisterDead(DestReg, PHICopy);
282       LV->removeVirtualRegisterDead(DestReg, MPhi);
283     }
284   }
285
286   // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
287   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
288     --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
289                                  MPhi->getOperand(i).getReg())];
290
291   // Now loop over all of the incoming arguments, changing them to copy into the
292   // IncomingReg register in the corresponding predecessor basic block.
293   SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
294   for (int i = NumSrcs - 1; i >= 0; --i) {
295     unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
296     unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
297     bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
298       isImplicitlyDefined(SrcReg, MRI);
299     assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
300            "Machine PHI Operands must all be virtual registers!");
301
302     // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
303     // path the PHI.
304     MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
305
306     // Check to make sure we haven't already emitted the copy for this block.
307     // This can happen because PHI nodes may have multiple entries for the same
308     // basic block.
309     if (!MBBsInsertedInto.insert(&opBlock))
310       continue;  // If the copy has already been emitted, we're done.
311
312     // Find a safe location to insert the copy, this may be the first terminator
313     // in the block (or end()).
314     MachineBasicBlock::iterator InsertPos =
315       findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
316
317     // Insert the copy.
318     if (!reusedIncoming && IncomingReg) {
319       if (SrcUndef) {
320         // The source register is undefined, so there is no need for a real
321         // COPY, but we still need to ensure joint dominance by defs.
322         // Insert an IMPLICIT_DEF instruction.
323         BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
324                 TII->get(TargetOpcode::IMPLICIT_DEF), IncomingReg);
325
326         // Clean up the old implicit-def, if there even was one.
327         if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
328           if (DefMI->isImplicitDef())
329             ImpDefs.insert(DefMI);
330       } else {
331         BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
332                 TII->get(TargetOpcode::COPY), IncomingReg)
333           .addReg(SrcReg, 0, SrcSubReg);
334       }
335     }
336
337     // Now update live variable information if we have it.  Otherwise we're done
338     if (SrcUndef || !LV) continue;
339
340     // We want to be able to insert a kill of the register if this PHI (aka, the
341     // copy we just inserted) is the last use of the source value.  Live
342     // variable analysis conservatively handles this by saying that the value is
343     // live until the end of the block the PHI entry lives in.  If the value
344     // really is dead at the PHI copy, there will be no successor blocks which
345     // have the value live-in.
346
347     // Also check to see if this register is in use by another PHI node which
348     // has not yet been eliminated.  If so, it will be killed at an appropriate
349     // point later.
350
351     // Is it used by any PHI instructions in this block?
352     bool ValueIsUsed = VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)];
353
354     // Okay, if we now know that the value is not live out of the block, we can
355     // add a kill marker in this block saying that it kills the incoming value!
356     if (!ValueIsUsed && !LV->isLiveOut(SrcReg, opBlock)) {
357       // In our final twist, we have to decide which instruction kills the
358       // register.  In most cases this is the copy, however, terminator
359       // instructions at the end of the block may also use the value. In this
360       // case, we should mark the last such terminator as being the killing
361       // block, not the copy.
362       MachineBasicBlock::iterator KillInst = opBlock.end();
363       MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
364       for (MachineBasicBlock::iterator Term = FirstTerm;
365           Term != opBlock.end(); ++Term) {
366         if (Term->readsRegister(SrcReg))
367           KillInst = Term;
368       }
369
370       if (KillInst == opBlock.end()) {
371         // No terminator uses the register.
372
373         if (reusedIncoming || !IncomingReg) {
374           // We may have to rewind a bit if we didn't insert a copy this time.
375           KillInst = FirstTerm;
376           while (KillInst != opBlock.begin()) {
377             --KillInst;
378             if (KillInst->isDebugValue())
379               continue;
380             if (KillInst->readsRegister(SrcReg))
381               break;
382           }
383         } else {
384           // We just inserted this copy.
385           KillInst = prior(InsertPos);
386         }
387       }
388       assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
389
390       // Finally, mark it killed.
391       LV->addVirtualRegisterKilled(SrcReg, KillInst);
392
393       // This vreg no longer lives all of the way through opBlock.
394       unsigned opBlockNum = opBlock.getNumber();
395       LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
396     }
397   }
398
399   // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
400   if (reusedIncoming || !IncomingReg)
401     MF.DeleteMachineInstr(MPhi);
402 }
403
404 /// analyzePHINodes - Gather information about the PHI nodes in here. In
405 /// particular, we want to map the number of uses of a virtual register which is
406 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
407 /// used later to determine when the vreg is killed in the BB.
408 ///
409 void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
410   for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
411        I != E; ++I)
412     for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
413          BBI != BBE && BBI->isPHI(); ++BBI)
414       for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
415         ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(),
416                                      BBI->getOperand(i).getReg())];
417 }
418
419 bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
420                                    MachineBasicBlock &MBB,
421                                    LiveVariables &LV,
422                                    MachineLoopInfo *MLI) {
423   if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
424     return false;   // Quick exit for basic blocks without PHIs.
425
426   const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : 0;
427   bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
428
429   bool Changed = false;
430   for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
431        BBI != BBE && BBI->isPHI(); ++BBI) {
432     for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
433       unsigned Reg = BBI->getOperand(i).getReg();
434       MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
435       // Is there a critical edge from PreMBB to MBB?
436       if (PreMBB->succ_size() == 1)
437         continue;
438
439       // Avoid splitting backedges of loops. It would introduce small
440       // out-of-line blocks into the loop which is very bad for code placement.
441       if (PreMBB == &MBB)
442         continue;
443       const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : 0;
444       if (IsLoopHeader && PreLoop == CurLoop)
445         continue;
446
447       // LV doesn't consider a phi use live-out, so isLiveOut only returns true
448       // when the source register is live-out for some other reason than a phi
449       // use. That means the copy we will insert in PreMBB won't be a kill, and
450       // there is a risk it may not be coalesced away.
451       //
452       // If the copy would be a kill, there is no need to split the edge.
453       if (!LV.isLiveOut(Reg, *PreMBB))
454         continue;
455
456       DEBUG(dbgs() << PrintReg(Reg) << " live-out before critical edge BB#"
457                    << PreMBB->getNumber() << " -> BB#" << MBB.getNumber()
458                    << ": " << *BBI);
459
460       // If Reg is not live-in to MBB, it means it must be live-in to some
461       // other PreMBB successor, and we can avoid the interference by splitting
462       // the edge.
463       //
464       // If Reg *is* live-in to MBB, the interference is inevitable and a copy
465       // is likely to be left after coalescing. If we are looking at a loop
466       // exiting edge, split it so we won't insert code in the loop, otherwise
467       // don't bother.
468       bool ShouldSplit = !LV.isLiveIn(Reg, MBB);
469
470       // Check for a loop exiting edge.
471       if (!ShouldSplit && CurLoop != PreLoop) {
472         DEBUG({
473           dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
474           if (PreLoop) dbgs() << "PreLoop: " << *PreLoop;
475           if (CurLoop) dbgs() << "CurLoop: " << *CurLoop;
476         });
477         // This edge could be entering a loop, exiting a loop, or it could be
478         // both: Jumping directly form one loop to the header of a sibling
479         // loop.
480         // Split unless this edge is entering CurLoop from an outer loop.
481         ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
482       }
483       if (!ShouldSplit)
484         continue;
485       if (!PreMBB->SplitCriticalEdge(&MBB, this)) {
486         DEBUG(dbgs() << "Failed to split ciritcal edge.\n");
487         continue;
488       }
489       Changed = true;
490       ++NumCriticalEdgesSplit;
491     }
492   }
493   return Changed;
494 }