use range-based for loops; NFCI
[oota-llvm.git] / lib / CodeGen / MachineTraceMetrics.cpp
1 //===- lib/CodeGen/MachineTraceMetrics.cpp ----------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/CodeGen/MachineTraceMetrics.h"
11 #include "llvm/ADT/PostOrderIterator.h"
12 #include "llvm/ADT/SparseSet.h"
13 #include "llvm/CodeGen/MachineBasicBlock.h"
14 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
15 #include "llvm/CodeGen/MachineLoopInfo.h"
16 #include "llvm/CodeGen/MachineRegisterInfo.h"
17 #include "llvm/CodeGen/Passes.h"
18 #include "llvm/MC/MCSubtargetInfo.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/Format.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include "llvm/Target/TargetInstrInfo.h"
23 #include "llvm/Target/TargetRegisterInfo.h"
24 #include "llvm/Target/TargetSubtargetInfo.h"
25
26 using namespace llvm;
27
28 #define DEBUG_TYPE "machine-trace-metrics"
29
30 char MachineTraceMetrics::ID = 0;
31 char &llvm::MachineTraceMetricsID = MachineTraceMetrics::ID;
32
33 INITIALIZE_PASS_BEGIN(MachineTraceMetrics,
34                   "machine-trace-metrics", "Machine Trace Metrics", false, true)
35 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
36 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
37 INITIALIZE_PASS_END(MachineTraceMetrics,
38                   "machine-trace-metrics", "Machine Trace Metrics", false, true)
39
40 MachineTraceMetrics::MachineTraceMetrics()
41   : MachineFunctionPass(ID), MF(nullptr), TII(nullptr), TRI(nullptr),
42     MRI(nullptr), Loops(nullptr) {
43   std::fill(std::begin(Ensembles), std::end(Ensembles), nullptr);
44 }
45
46 void MachineTraceMetrics::getAnalysisUsage(AnalysisUsage &AU) const {
47   AU.setPreservesAll();
48   AU.addRequired<MachineBranchProbabilityInfo>();
49   AU.addRequired<MachineLoopInfo>();
50   MachineFunctionPass::getAnalysisUsage(AU);
51 }
52
53 bool MachineTraceMetrics::runOnMachineFunction(MachineFunction &Func) {
54   MF = &Func;
55   const TargetSubtargetInfo &ST = MF->getSubtarget();
56   TII = ST.getInstrInfo();
57   TRI = ST.getRegisterInfo();
58   MRI = &MF->getRegInfo();
59   Loops = &getAnalysis<MachineLoopInfo>();
60   SchedModel.init(ST.getSchedModel(), &ST, TII);
61   BlockInfo.resize(MF->getNumBlockIDs());
62   ProcResourceCycles.resize(MF->getNumBlockIDs() *
63                             SchedModel.getNumProcResourceKinds());
64   return false;
65 }
66
67 void MachineTraceMetrics::releaseMemory() {
68   MF = nullptr;
69   BlockInfo.clear();
70   for (unsigned i = 0; i != TS_NumStrategies; ++i) {
71     delete Ensembles[i];
72     Ensembles[i] = nullptr;
73   }
74 }
75
76 //===----------------------------------------------------------------------===//
77 //                          Fixed block information
78 //===----------------------------------------------------------------------===//
79 //
80 // The number of instructions in a basic block and the CPU resources used by
81 // those instructions don't depend on any given trace strategy.
82
83 /// Compute the resource usage in basic block MBB.
84 const MachineTraceMetrics::FixedBlockInfo*
85 MachineTraceMetrics::getResources(const MachineBasicBlock *MBB) {
86   assert(MBB && "No basic block");
87   FixedBlockInfo *FBI = &BlockInfo[MBB->getNumber()];
88   if (FBI->hasResources())
89     return FBI;
90
91   // Compute resource usage in the block.
92   FBI->HasCalls = false;
93   unsigned InstrCount = 0;
94
95   // Add up per-processor resource cycles as well.
96   unsigned PRKinds = SchedModel.getNumProcResourceKinds();
97   SmallVector<unsigned, 32> PRCycles(PRKinds);
98
99   for (const auto &MI : *MBB) {
100     if (MI.isTransient())
101       continue;
102     ++InstrCount;
103     if (MI.isCall())
104       FBI->HasCalls = true;
105
106     // Count processor resources used.
107     if (!SchedModel.hasInstrSchedModel())
108       continue;
109     const MCSchedClassDesc *SC = SchedModel.resolveSchedClass(&MI);
110     if (!SC->isValid())
111       continue;
112
113     for (TargetSchedModel::ProcResIter
114          PI = SchedModel.getWriteProcResBegin(SC),
115          PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) {
116       assert(PI->ProcResourceIdx < PRKinds && "Bad processor resource kind");
117       PRCycles[PI->ProcResourceIdx] += PI->Cycles;
118     }
119   }
120   FBI->InstrCount = InstrCount;
121
122   // Scale the resource cycles so they are comparable.
123   unsigned PROffset = MBB->getNumber() * PRKinds;
124   for (unsigned K = 0; K != PRKinds; ++K)
125     ProcResourceCycles[PROffset + K] =
126       PRCycles[K] * SchedModel.getResourceFactor(K);
127
128   return FBI;
129 }
130
131 ArrayRef<unsigned>
132 MachineTraceMetrics::getProcResourceCycles(unsigned MBBNum) const {
133   assert(BlockInfo[MBBNum].hasResources() &&
134          "getResources() must be called before getProcResourceCycles()");
135   unsigned PRKinds = SchedModel.getNumProcResourceKinds();
136   assert((MBBNum+1) * PRKinds <= ProcResourceCycles.size());
137   return makeArrayRef(ProcResourceCycles.data() + MBBNum * PRKinds, PRKinds);
138 }
139
140
141 //===----------------------------------------------------------------------===//
142 //                         Ensemble utility functions
143 //===----------------------------------------------------------------------===//
144
145 MachineTraceMetrics::Ensemble::Ensemble(MachineTraceMetrics *ct)
146   : MTM(*ct) {
147   BlockInfo.resize(MTM.BlockInfo.size());
148   unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
149   ProcResourceDepths.resize(MTM.BlockInfo.size() * PRKinds);
150   ProcResourceHeights.resize(MTM.BlockInfo.size() * PRKinds);
151 }
152
153 // Virtual destructor serves as an anchor.
154 MachineTraceMetrics::Ensemble::~Ensemble() {}
155
156 const MachineLoop*
157 MachineTraceMetrics::Ensemble::getLoopFor(const MachineBasicBlock *MBB) const {
158   return MTM.Loops->getLoopFor(MBB);
159 }
160
161 // Update resource-related information in the TraceBlockInfo for MBB.
162 // Only update resources related to the trace above MBB.
163 void MachineTraceMetrics::Ensemble::
164 computeDepthResources(const MachineBasicBlock *MBB) {
165   TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
166   unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
167   unsigned PROffset = MBB->getNumber() * PRKinds;
168
169   // Compute resources from trace above. The top block is simple.
170   if (!TBI->Pred) {
171     TBI->InstrDepth = 0;
172     TBI->Head = MBB->getNumber();
173     std::fill(ProcResourceDepths.begin() + PROffset,
174               ProcResourceDepths.begin() + PROffset + PRKinds, 0);
175     return;
176   }
177
178   // Compute from the block above. A post-order traversal ensures the
179   // predecessor is always computed first.
180   unsigned PredNum = TBI->Pred->getNumber();
181   TraceBlockInfo *PredTBI = &BlockInfo[PredNum];
182   assert(PredTBI->hasValidDepth() && "Trace above has not been computed yet");
183   const FixedBlockInfo *PredFBI = MTM.getResources(TBI->Pred);
184   TBI->InstrDepth = PredTBI->InstrDepth + PredFBI->InstrCount;
185   TBI->Head = PredTBI->Head;
186
187   // Compute per-resource depths.
188   ArrayRef<unsigned> PredPRDepths = getProcResourceDepths(PredNum);
189   ArrayRef<unsigned> PredPRCycles = MTM.getProcResourceCycles(PredNum);
190   for (unsigned K = 0; K != PRKinds; ++K)
191     ProcResourceDepths[PROffset + K] = PredPRDepths[K] + PredPRCycles[K];
192 }
193
194 // Update resource-related information in the TraceBlockInfo for MBB.
195 // Only update resources related to the trace below MBB.
196 void MachineTraceMetrics::Ensemble::
197 computeHeightResources(const MachineBasicBlock *MBB) {
198   TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
199   unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
200   unsigned PROffset = MBB->getNumber() * PRKinds;
201
202   // Compute resources for the current block.
203   TBI->InstrHeight = MTM.getResources(MBB)->InstrCount;
204   ArrayRef<unsigned> PRCycles = MTM.getProcResourceCycles(MBB->getNumber());
205
206   // The trace tail is done.
207   if (!TBI->Succ) {
208     TBI->Tail = MBB->getNumber();
209     std::copy(PRCycles.begin(), PRCycles.end(),
210               ProcResourceHeights.begin() + PROffset);
211     return;
212   }
213
214   // Compute from the block below. A post-order traversal ensures the
215   // predecessor is always computed first.
216   unsigned SuccNum = TBI->Succ->getNumber();
217   TraceBlockInfo *SuccTBI = &BlockInfo[SuccNum];
218   assert(SuccTBI->hasValidHeight() && "Trace below has not been computed yet");
219   TBI->InstrHeight += SuccTBI->InstrHeight;
220   TBI->Tail = SuccTBI->Tail;
221
222   // Compute per-resource heights.
223   ArrayRef<unsigned> SuccPRHeights = getProcResourceHeights(SuccNum);
224   for (unsigned K = 0; K != PRKinds; ++K)
225     ProcResourceHeights[PROffset + K] = SuccPRHeights[K] + PRCycles[K];
226 }
227
228 // Check if depth resources for MBB are valid and return the TBI.
229 // Return NULL if the resources have been invalidated.
230 const MachineTraceMetrics::TraceBlockInfo*
231 MachineTraceMetrics::Ensemble::
232 getDepthResources(const MachineBasicBlock *MBB) const {
233   const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
234   return TBI->hasValidDepth() ? TBI : nullptr;
235 }
236
237 // Check if height resources for MBB are valid and return the TBI.
238 // Return NULL if the resources have been invalidated.
239 const MachineTraceMetrics::TraceBlockInfo*
240 MachineTraceMetrics::Ensemble::
241 getHeightResources(const MachineBasicBlock *MBB) const {
242   const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
243   return TBI->hasValidHeight() ? TBI : nullptr;
244 }
245
246 /// Get an array of processor resource depths for MBB. Indexed by processor
247 /// resource kind, this array contains the scaled processor resources consumed
248 /// by all blocks preceding MBB in its trace. It does not include instructions
249 /// in MBB.
250 ///
251 /// Compare TraceBlockInfo::InstrDepth.
252 ArrayRef<unsigned>
253 MachineTraceMetrics::Ensemble::
254 getProcResourceDepths(unsigned MBBNum) const {
255   unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
256   assert((MBBNum+1) * PRKinds <= ProcResourceDepths.size());
257   return makeArrayRef(ProcResourceDepths.data() + MBBNum * PRKinds, PRKinds);
258 }
259
260 /// Get an array of processor resource heights for MBB. Indexed by processor
261 /// resource kind, this array contains the scaled processor resources consumed
262 /// by this block and all blocks following it in its trace.
263 ///
264 /// Compare TraceBlockInfo::InstrHeight.
265 ArrayRef<unsigned>
266 MachineTraceMetrics::Ensemble::
267 getProcResourceHeights(unsigned MBBNum) const {
268   unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
269   assert((MBBNum+1) * PRKinds <= ProcResourceHeights.size());
270   return makeArrayRef(ProcResourceHeights.data() + MBBNum * PRKinds, PRKinds);
271 }
272
273 //===----------------------------------------------------------------------===//
274 //                         Trace Selection Strategies
275 //===----------------------------------------------------------------------===//
276 //
277 // A trace selection strategy is implemented as a sub-class of Ensemble. The
278 // trace through a block B is computed by two DFS traversals of the CFG
279 // starting from B. One upwards, and one downwards. During the upwards DFS,
280 // pickTracePred() is called on the post-ordered blocks. During the downwards
281 // DFS, pickTraceSucc() is called in a post-order.
282 //
283
284 // We never allow traces that leave loops, but we do allow traces to enter
285 // nested loops. We also never allow traces to contain back-edges.
286 //
287 // This means that a loop header can never appear above the center block of a
288 // trace, except as the trace head. Below the center block, loop exiting edges
289 // are banned.
290 //
291 // Return true if an edge from the From loop to the To loop is leaving a loop.
292 // Either of To and From can be null.
293 static bool isExitingLoop(const MachineLoop *From, const MachineLoop *To) {
294   return From && !From->contains(To);
295 }
296
297 // MinInstrCountEnsemble - Pick the trace that executes the least number of
298 // instructions.
299 namespace {
300 class MinInstrCountEnsemble : public MachineTraceMetrics::Ensemble {
301   const char *getName() const override { return "MinInstr"; }
302   const MachineBasicBlock *pickTracePred(const MachineBasicBlock*) override;
303   const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*) override;
304
305 public:
306   MinInstrCountEnsemble(MachineTraceMetrics *mtm)
307     : MachineTraceMetrics::Ensemble(mtm) {}
308 };
309 }
310
311 // Select the preferred predecessor for MBB.
312 const MachineBasicBlock*
313 MinInstrCountEnsemble::pickTracePred(const MachineBasicBlock *MBB) {
314   if (MBB->pred_empty())
315     return nullptr;
316   const MachineLoop *CurLoop = getLoopFor(MBB);
317   // Don't leave loops, and never follow back-edges.
318   if (CurLoop && MBB == CurLoop->getHeader())
319     return nullptr;
320   unsigned CurCount = MTM.getResources(MBB)->InstrCount;
321   const MachineBasicBlock *Best = nullptr;
322   unsigned BestDepth = 0;
323   for (const MachineBasicBlock *Pred : MBB->predecessors()) {
324     const MachineTraceMetrics::TraceBlockInfo *PredTBI =
325       getDepthResources(Pred);
326     // Ignore cycles that aren't natural loops.
327     if (!PredTBI)
328       continue;
329     // Pick the predecessor that would give this block the smallest InstrDepth.
330     unsigned Depth = PredTBI->InstrDepth + CurCount;
331     if (!Best || Depth < BestDepth)
332       Best = Pred, BestDepth = Depth;
333   }
334   return Best;
335 }
336
337 // Select the preferred successor for MBB.
338 const MachineBasicBlock*
339 MinInstrCountEnsemble::pickTraceSucc(const MachineBasicBlock *MBB) {
340   if (MBB->pred_empty())
341     return nullptr;
342   const MachineLoop *CurLoop = getLoopFor(MBB);
343   const MachineBasicBlock *Best = nullptr;
344   unsigned BestHeight = 0;
345   for (const MachineBasicBlock *Succ : MBB->successors()) {
346     // Don't consider back-edges.
347     if (CurLoop && Succ == CurLoop->getHeader())
348       continue;
349     // Don't consider successors exiting CurLoop.
350     if (isExitingLoop(CurLoop, getLoopFor(Succ)))
351       continue;
352     const MachineTraceMetrics::TraceBlockInfo *SuccTBI =
353       getHeightResources(Succ);
354     // Ignore cycles that aren't natural loops.
355     if (!SuccTBI)
356       continue;
357     // Pick the successor that would give this block the smallest InstrHeight.
358     unsigned Height = SuccTBI->InstrHeight;
359     if (!Best || Height < BestHeight)
360       Best = Succ, BestHeight = Height;
361   }
362   return Best;
363 }
364
365 // Get an Ensemble sub-class for the requested trace strategy.
366 MachineTraceMetrics::Ensemble *
367 MachineTraceMetrics::getEnsemble(MachineTraceMetrics::Strategy strategy) {
368   assert(strategy < TS_NumStrategies && "Invalid trace strategy enum");
369   Ensemble *&E = Ensembles[strategy];
370   if (E)
371     return E;
372
373   // Allocate new Ensemble on demand.
374   switch (strategy) {
375   case TS_MinInstrCount: return (E = new MinInstrCountEnsemble(this));
376   default: llvm_unreachable("Invalid trace strategy enum");
377   }
378 }
379
380 void MachineTraceMetrics::invalidate(const MachineBasicBlock *MBB) {
381   DEBUG(dbgs() << "Invalidate traces through BB#" << MBB->getNumber() << '\n');
382   BlockInfo[MBB->getNumber()].invalidate();
383   for (unsigned i = 0; i != TS_NumStrategies; ++i)
384     if (Ensembles[i])
385       Ensembles[i]->invalidate(MBB);
386 }
387
388 void MachineTraceMetrics::verifyAnalysis() const {
389   if (!MF)
390     return;
391 #ifndef NDEBUG
392   assert(BlockInfo.size() == MF->getNumBlockIDs() && "Outdated BlockInfo size");
393   for (unsigned i = 0; i != TS_NumStrategies; ++i)
394     if (Ensembles[i])
395       Ensembles[i]->verify();
396 #endif
397 }
398
399 //===----------------------------------------------------------------------===//
400 //                               Trace building
401 //===----------------------------------------------------------------------===//
402 //
403 // Traces are built by two CFG traversals. To avoid recomputing too much, use a
404 // set abstraction that confines the search to the current loop, and doesn't
405 // revisit blocks.
406
407 namespace {
408 struct LoopBounds {
409   MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> Blocks;
410   SmallPtrSet<const MachineBasicBlock*, 8> Visited;
411   const MachineLoopInfo *Loops;
412   bool Downward;
413   LoopBounds(MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> blocks,
414              const MachineLoopInfo *loops)
415     : Blocks(blocks), Loops(loops), Downward(false) {}
416 };
417 }
418
419 // Specialize po_iterator_storage in order to prune the post-order traversal so
420 // it is limited to the current loop and doesn't traverse the loop back edges.
421 namespace llvm {
422 template<>
423 class po_iterator_storage<LoopBounds, true> {
424   LoopBounds &LB;
425 public:
426   po_iterator_storage(LoopBounds &lb) : LB(lb) {}
427   void finishPostorder(const MachineBasicBlock*) {}
428
429   bool insertEdge(const MachineBasicBlock *From, const MachineBasicBlock *To) {
430     // Skip already visited To blocks.
431     MachineTraceMetrics::TraceBlockInfo &TBI = LB.Blocks[To->getNumber()];
432     if (LB.Downward ? TBI.hasValidHeight() : TBI.hasValidDepth())
433       return false;
434     // From is null once when To is the trace center block.
435     if (From) {
436       if (const MachineLoop *FromLoop = LB.Loops->getLoopFor(From)) {
437         // Don't follow backedges, don't leave FromLoop when going upwards.
438         if ((LB.Downward ? To : From) == FromLoop->getHeader())
439           return false;
440         // Don't leave FromLoop.
441         if (isExitingLoop(FromLoop, LB.Loops->getLoopFor(To)))
442           return false;
443       }
444     }
445     // To is a new block. Mark the block as visited in case the CFG has cycles
446     // that MachineLoopInfo didn't recognize as a natural loop.
447     return LB.Visited.insert(To).second;
448   }
449 };
450 }
451
452 /// Compute the trace through MBB.
453 void MachineTraceMetrics::Ensemble::computeTrace(const MachineBasicBlock *MBB) {
454   DEBUG(dbgs() << "Computing " << getName() << " trace through BB#"
455                << MBB->getNumber() << '\n');
456   // Set up loop bounds for the backwards post-order traversal.
457   LoopBounds Bounds(BlockInfo, MTM.Loops);
458
459   // Run an upwards post-order search for the trace start.
460   Bounds.Downward = false;
461   Bounds.Visited.clear();
462   for (auto I : inverse_post_order_ext(MBB, Bounds)) {
463     DEBUG(dbgs() << "  pred for BB#" << I->getNumber() << ": ");
464     TraceBlockInfo &TBI = BlockInfo[I->getNumber()];
465     // All the predecessors have been visited, pick the preferred one.
466     TBI.Pred = pickTracePred(I);
467     DEBUG({
468       if (TBI.Pred)
469         dbgs() << "BB#" << TBI.Pred->getNumber() << '\n';
470       else
471         dbgs() << "null\n";
472     });
473     // The trace leading to I is now known, compute the depth resources.
474     computeDepthResources(I);
475   }
476
477   // Run a downwards post-order search for the trace end.
478   Bounds.Downward = true;
479   Bounds.Visited.clear();
480   for (auto I : post_order_ext(MBB, Bounds)) {
481     DEBUG(dbgs() << "  succ for BB#" << I->getNumber() << ": ");
482     TraceBlockInfo &TBI = BlockInfo[I->getNumber()];
483     // All the successors have been visited, pick the preferred one.
484     TBI.Succ = pickTraceSucc(I);
485     DEBUG({
486       if (TBI.Succ)
487         dbgs() << "BB#" << TBI.Succ->getNumber() << '\n';
488       else
489         dbgs() << "null\n";
490     });
491     // The trace leaving I is now known, compute the height resources.
492     computeHeightResources(I);
493   }
494 }
495
496 /// Invalidate traces through BadMBB.
497 void
498 MachineTraceMetrics::Ensemble::invalidate(const MachineBasicBlock *BadMBB) {
499   SmallVector<const MachineBasicBlock*, 16> WorkList;
500   TraceBlockInfo &BadTBI = BlockInfo[BadMBB->getNumber()];
501
502   // Invalidate height resources of blocks above MBB.
503   if (BadTBI.hasValidHeight()) {
504     BadTBI.invalidateHeight();
505     WorkList.push_back(BadMBB);
506     do {
507       const MachineBasicBlock *MBB = WorkList.pop_back_val();
508       DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName()
509             << " height.\n");
510       // Find any MBB predecessors that have MBB as their preferred successor.
511       // They are the only ones that need to be invalidated.
512       for (const MachineBasicBlock *Pred : MBB->predecessors()) {
513         TraceBlockInfo &TBI = BlockInfo[Pred->getNumber()];
514         if (!TBI.hasValidHeight())
515           continue;
516         if (TBI.Succ == MBB) {
517           TBI.invalidateHeight();
518           WorkList.push_back(Pred);
519           continue;
520         }
521         // Verify that TBI.Succ is actually a *I successor.
522         assert((!TBI.Succ || Pred->isSuccessor(TBI.Succ)) && "CFG changed");
523       }
524     } while (!WorkList.empty());
525   }
526
527   // Invalidate depth resources of blocks below MBB.
528   if (BadTBI.hasValidDepth()) {
529     BadTBI.invalidateDepth();
530     WorkList.push_back(BadMBB);
531     do {
532       const MachineBasicBlock *MBB = WorkList.pop_back_val();
533       DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName()
534             << " depth.\n");
535       // Find any MBB successors that have MBB as their preferred predecessor.
536       // They are the only ones that need to be invalidated.
537       for (const MachineBasicBlock *Succ : MBB->successors()) {
538         TraceBlockInfo &TBI = BlockInfo[Succ->getNumber()];
539         if (!TBI.hasValidDepth())
540           continue;
541         if (TBI.Pred == MBB) {
542           TBI.invalidateDepth();
543           WorkList.push_back(Succ);
544           continue;
545         }
546         // Verify that TBI.Pred is actually a *I predecessor.
547         assert((!TBI.Pred || Succ->isPredecessor(TBI.Pred)) && "CFG changed");
548       }
549     } while (!WorkList.empty());
550   }
551
552   // Clear any per-instruction data. We only have to do this for BadMBB itself
553   // because the instructions in that block may change. Other blocks may be
554   // invalidated, but their instructions will stay the same, so there is no
555   // need to erase the Cycle entries. They will be overwritten when we
556   // recompute.
557   for (const auto &I : *BadMBB)
558     Cycles.erase(&I);
559 }
560
561 void MachineTraceMetrics::Ensemble::verify() const {
562 #ifndef NDEBUG
563   assert(BlockInfo.size() == MTM.MF->getNumBlockIDs() &&
564          "Outdated BlockInfo size");
565   for (unsigned Num = 0, e = BlockInfo.size(); Num != e; ++Num) {
566     const TraceBlockInfo &TBI = BlockInfo[Num];
567     if (TBI.hasValidDepth() && TBI.Pred) {
568       const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num);
569       assert(MBB->isPredecessor(TBI.Pred) && "CFG doesn't match trace");
570       assert(BlockInfo[TBI.Pred->getNumber()].hasValidDepth() &&
571              "Trace is broken, depth should have been invalidated.");
572       const MachineLoop *Loop = getLoopFor(MBB);
573       assert(!(Loop && MBB == Loop->getHeader()) && "Trace contains backedge");
574     }
575     if (TBI.hasValidHeight() && TBI.Succ) {
576       const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num);
577       assert(MBB->isSuccessor(TBI.Succ) && "CFG doesn't match trace");
578       assert(BlockInfo[TBI.Succ->getNumber()].hasValidHeight() &&
579              "Trace is broken, height should have been invalidated.");
580       const MachineLoop *Loop = getLoopFor(MBB);
581       const MachineLoop *SuccLoop = getLoopFor(TBI.Succ);
582       assert(!(Loop && Loop == SuccLoop && TBI.Succ == Loop->getHeader()) &&
583              "Trace contains backedge");
584     }
585   }
586 #endif
587 }
588
589 //===----------------------------------------------------------------------===//
590 //                             Data Dependencies
591 //===----------------------------------------------------------------------===//
592 //
593 // Compute the depth and height of each instruction based on data dependencies
594 // and instruction latencies. These cycle numbers assume that the CPU can issue
595 // an infinite number of instructions per cycle as long as their dependencies
596 // are ready.
597
598 // A data dependency is represented as a defining MI and operand numbers on the
599 // defining and using MI.
600 namespace {
601 struct DataDep {
602   const MachineInstr *DefMI;
603   unsigned DefOp;
604   unsigned UseOp;
605
606   DataDep(const MachineInstr *DefMI, unsigned DefOp, unsigned UseOp)
607     : DefMI(DefMI), DefOp(DefOp), UseOp(UseOp) {}
608
609   /// Create a DataDep from an SSA form virtual register.
610   DataDep(const MachineRegisterInfo *MRI, unsigned VirtReg, unsigned UseOp)
611     : UseOp(UseOp) {
612     assert(TargetRegisterInfo::isVirtualRegister(VirtReg));
613     MachineRegisterInfo::def_iterator DefI = MRI->def_begin(VirtReg);
614     assert(!DefI.atEnd() && "Register has no defs");
615     DefMI = DefI->getParent();
616     DefOp = DefI.getOperandNo();
617     assert((++DefI).atEnd() && "Register has multiple defs");
618   }
619 };
620 }
621
622 // Get the input data dependencies that must be ready before UseMI can issue.
623 // Return true if UseMI has any physreg operands.
624 static bool getDataDeps(const MachineInstr *UseMI,
625                         SmallVectorImpl<DataDep> &Deps,
626                         const MachineRegisterInfo *MRI) {
627   // Debug values should not be included in any calculations.
628   if (UseMI->isDebugValue())
629     return false;
630   
631   bool HasPhysRegs = false;
632   for (MachineInstr::const_mop_iterator I = UseMI->operands_begin(),
633        E = UseMI->operands_end(); I != E; ++I) {
634     const MachineOperand &MO = *I;
635     if (!MO.isReg())
636       continue;
637     unsigned Reg = MO.getReg();
638     if (!Reg)
639       continue;
640     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
641       HasPhysRegs = true;
642       continue;
643     }
644     // Collect virtual register reads.
645     if (MO.readsReg())
646       Deps.push_back(DataDep(MRI, Reg, UseMI->getOperandNo(I)));
647   }
648   return HasPhysRegs;
649 }
650
651 // Get the input data dependencies of a PHI instruction, using Pred as the
652 // preferred predecessor.
653 // This will add at most one dependency to Deps.
654 static void getPHIDeps(const MachineInstr *UseMI,
655                        SmallVectorImpl<DataDep> &Deps,
656                        const MachineBasicBlock *Pred,
657                        const MachineRegisterInfo *MRI) {
658   // No predecessor at the beginning of a trace. Ignore dependencies.
659   if (!Pred)
660     return;
661   assert(UseMI->isPHI() && UseMI->getNumOperands() % 2 && "Bad PHI");
662   for (unsigned i = 1; i != UseMI->getNumOperands(); i += 2) {
663     if (UseMI->getOperand(i + 1).getMBB() == Pred) {
664       unsigned Reg = UseMI->getOperand(i).getReg();
665       Deps.push_back(DataDep(MRI, Reg, i));
666       return;
667     }
668   }
669 }
670
671 // Keep track of physreg data dependencies by recording each live register unit.
672 // Associate each regunit with an instruction operand. Depending on the
673 // direction instructions are scanned, it could be the operand that defined the
674 // regunit, or the highest operand to read the regunit.
675 namespace {
676 struct LiveRegUnit {
677   unsigned RegUnit;
678   unsigned Cycle;
679   const MachineInstr *MI;
680   unsigned Op;
681
682   unsigned getSparseSetIndex() const { return RegUnit; }
683
684   LiveRegUnit(unsigned RU) : RegUnit(RU), Cycle(0), MI(nullptr), Op(0) {}
685 };
686 }
687
688 // Identify physreg dependencies for UseMI, and update the live regunit
689 // tracking set when scanning instructions downwards.
690 static void updatePhysDepsDownwards(const MachineInstr *UseMI,
691                                     SmallVectorImpl<DataDep> &Deps,
692                                     SparseSet<LiveRegUnit> &RegUnits,
693                                     const TargetRegisterInfo *TRI) {
694   SmallVector<unsigned, 8> Kills;
695   SmallVector<unsigned, 8> LiveDefOps;
696
697   for (MachineInstr::const_mop_iterator MI = UseMI->operands_begin(),
698        ME = UseMI->operands_end(); MI != ME; ++MI) {
699     const MachineOperand &MO = *MI;
700     if (!MO.isReg())
701       continue;
702     unsigned Reg = MO.getReg();
703     if (!TargetRegisterInfo::isPhysicalRegister(Reg))
704       continue;
705     // Track live defs and kills for updating RegUnits.
706     if (MO.isDef()) {
707       if (MO.isDead())
708         Kills.push_back(Reg);
709       else
710         LiveDefOps.push_back(UseMI->getOperandNo(MI));
711     } else if (MO.isKill())
712       Kills.push_back(Reg);
713     // Identify dependencies.
714     if (!MO.readsReg())
715       continue;
716     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
717       SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units);
718       if (I == RegUnits.end())
719         continue;
720       Deps.push_back(DataDep(I->MI, I->Op, UseMI->getOperandNo(MI)));
721       break;
722     }
723   }
724
725   // Update RegUnits to reflect live registers after UseMI.
726   // First kills.
727   for (unsigned Kill : Kills)
728     for (MCRegUnitIterator Units(Kill, TRI); Units.isValid(); ++Units)
729       RegUnits.erase(*Units);
730
731   // Second, live defs.
732   for (unsigned DefOp : LiveDefOps) {
733     for (MCRegUnitIterator Units(UseMI->getOperand(DefOp).getReg(), TRI);
734          Units.isValid(); ++Units) {
735       LiveRegUnit &LRU = RegUnits[*Units];
736       LRU.MI = UseMI;
737       LRU.Op = DefOp;
738     }
739   }
740 }
741
742 /// The length of the critical path through a trace is the maximum of two path
743 /// lengths:
744 ///
745 /// 1. The maximum height+depth over all instructions in the trace center block.
746 ///
747 /// 2. The longest cross-block dependency chain. For small blocks, it is
748 ///    possible that the critical path through the trace doesn't include any
749 ///    instructions in the block.
750 ///
751 /// This function computes the second number from the live-in list of the
752 /// center block.
753 unsigned MachineTraceMetrics::Ensemble::
754 computeCrossBlockCriticalPath(const TraceBlockInfo &TBI) {
755   assert(TBI.HasValidInstrDepths && "Missing depth info");
756   assert(TBI.HasValidInstrHeights && "Missing height info");
757   unsigned MaxLen = 0;
758   for (const LiveInReg &LIR : TBI.LiveIns) {
759     if (!TargetRegisterInfo::isVirtualRegister(LIR.Reg))
760       continue;
761     const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg);
762     // Ignore dependencies outside the current trace.
763     const TraceBlockInfo &DefTBI = BlockInfo[DefMI->getParent()->getNumber()];
764     if (!DefTBI.isUsefulDominator(TBI))
765       continue;
766     unsigned Len = LIR.Height + Cycles[DefMI].Depth;
767     MaxLen = std::max(MaxLen, Len);
768   }
769   return MaxLen;
770 }
771
772 /// Compute instruction depths for all instructions above or in MBB in its
773 /// trace. This assumes that the trace through MBB has already been computed.
774 void MachineTraceMetrics::Ensemble::
775 computeInstrDepths(const MachineBasicBlock *MBB) {
776   // The top of the trace may already be computed, and HasValidInstrDepths
777   // implies Head->HasValidInstrDepths, so we only need to start from the first
778   // block in the trace that needs to be recomputed.
779   SmallVector<const MachineBasicBlock*, 8> Stack;
780   do {
781     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
782     assert(TBI.hasValidDepth() && "Incomplete trace");
783     if (TBI.HasValidInstrDepths)
784       break;
785     Stack.push_back(MBB);
786     MBB = TBI.Pred;
787   } while (MBB);
788
789   // FIXME: If MBB is non-null at this point, it is the last pre-computed block
790   // in the trace. We should track any live-out physregs that were defined in
791   // the trace. This is quite rare in SSA form, typically created by CSE
792   // hoisting a compare.
793   SparseSet<LiveRegUnit> RegUnits;
794   RegUnits.setUniverse(MTM.TRI->getNumRegUnits());
795
796   // Go through trace blocks in top-down order, stopping after the center block.
797   SmallVector<DataDep, 8> Deps;
798   while (!Stack.empty()) {
799     MBB = Stack.pop_back_val();
800     DEBUG(dbgs() << "\nDepths for BB#" << MBB->getNumber() << ":\n");
801     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
802     TBI.HasValidInstrDepths = true;
803     TBI.CriticalPath = 0;
804
805     // Print out resource depths here as well.
806     DEBUG({
807       dbgs() << format("%7u Instructions\n", TBI.InstrDepth);
808       ArrayRef<unsigned> PRDepths = getProcResourceDepths(MBB->getNumber());
809       for (unsigned K = 0; K != PRDepths.size(); ++K)
810         if (PRDepths[K]) {
811           unsigned Factor = MTM.SchedModel.getResourceFactor(K);
812           dbgs() << format("%6uc @ ", MTM.getCycles(PRDepths[K]))
813                  << MTM.SchedModel.getProcResource(K)->Name << " ("
814                  << PRDepths[K]/Factor << " ops x" << Factor << ")\n";
815         }
816     });
817
818     // Also compute the critical path length through MBB when possible.
819     if (TBI.HasValidInstrHeights)
820       TBI.CriticalPath = computeCrossBlockCriticalPath(TBI);
821
822     for (const auto &UseMI : *MBB) {
823       // Collect all data dependencies.
824       Deps.clear();
825       if (UseMI.isPHI())
826         getPHIDeps(&UseMI, Deps, TBI.Pred, MTM.MRI);
827       else if (getDataDeps(&UseMI, Deps, MTM.MRI))
828         updatePhysDepsDownwards(&UseMI, Deps, RegUnits, MTM.TRI);
829
830       // Filter and process dependencies, computing the earliest issue cycle.
831       unsigned Cycle = 0;
832       for (const DataDep &Dep : Deps) {
833         const TraceBlockInfo&DepTBI =
834           BlockInfo[Dep.DefMI->getParent()->getNumber()];
835         // Ignore dependencies from outside the current trace.
836         if (!DepTBI.isUsefulDominator(TBI))
837           continue;
838         assert(DepTBI.HasValidInstrDepths && "Inconsistent dependency");
839         unsigned DepCycle = Cycles.lookup(Dep.DefMI).Depth;
840         // Add latency if DefMI is a real instruction. Transients get latency 0.
841         if (!Dep.DefMI->isTransient())
842           DepCycle += MTM.SchedModel
843             .computeOperandLatency(Dep.DefMI, Dep.DefOp, &UseMI, Dep.UseOp);
844         Cycle = std::max(Cycle, DepCycle);
845       }
846       // Remember the instruction depth.
847       InstrCycles &MICycles = Cycles[&UseMI];
848       MICycles.Depth = Cycle;
849
850       if (!TBI.HasValidInstrHeights) {
851         DEBUG(dbgs() << Cycle << '\t' << UseMI);
852         continue;
853       }
854       // Update critical path length.
855       TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Height);
856       DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << UseMI);
857     }
858   }
859 }
860
861 // Identify physreg dependencies for MI when scanning instructions upwards.
862 // Return the issue height of MI after considering any live regunits.
863 // Height is the issue height computed from virtual register dependencies alone.
864 static unsigned updatePhysDepsUpwards(const MachineInstr *MI, unsigned Height,
865                                       SparseSet<LiveRegUnit> &RegUnits,
866                                       const TargetSchedModel &SchedModel,
867                                       const TargetInstrInfo *TII,
868                                       const TargetRegisterInfo *TRI) {
869   SmallVector<unsigned, 8> ReadOps;
870
871   for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(),
872        MOE = MI->operands_end(); MOI != MOE; ++MOI) {
873     const MachineOperand &MO = *MOI;
874     if (!MO.isReg())
875       continue;
876     unsigned Reg = MO.getReg();
877     if (!TargetRegisterInfo::isPhysicalRegister(Reg))
878       continue;
879     if (MO.readsReg())
880       ReadOps.push_back(MI->getOperandNo(MOI));
881     if (!MO.isDef())
882       continue;
883     // This is a def of Reg. Remove corresponding entries from RegUnits, and
884     // update MI Height to consider the physreg dependencies.
885     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
886       SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units);
887       if (I == RegUnits.end())
888         continue;
889       unsigned DepHeight = I->Cycle;
890       if (!MI->isTransient()) {
891         // We may not know the UseMI of this dependency, if it came from the
892         // live-in list. SchedModel can handle a NULL UseMI.
893         DepHeight += SchedModel
894           .computeOperandLatency(MI, MI->getOperandNo(MOI), I->MI, I->Op);
895       }
896       Height = std::max(Height, DepHeight);
897       // This regunit is dead above MI.
898       RegUnits.erase(I);
899     }
900   }
901
902   // Now we know the height of MI. Update any regunits read.
903   for (unsigned i = 0, e = ReadOps.size(); i != e; ++i) {
904     unsigned Reg = MI->getOperand(ReadOps[i]).getReg();
905     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
906       LiveRegUnit &LRU = RegUnits[*Units];
907       // Set the height to the highest reader of the unit.
908       if (LRU.Cycle <= Height && LRU.MI != MI) {
909         LRU.Cycle = Height;
910         LRU.MI = MI;
911         LRU.Op = ReadOps[i];
912       }
913     }
914   }
915
916   return Height;
917 }
918
919
920 typedef DenseMap<const MachineInstr *, unsigned> MIHeightMap;
921
922 // Push the height of DefMI upwards if required to match UseMI.
923 // Return true if this is the first time DefMI was seen.
924 static bool pushDepHeight(const DataDep &Dep,
925                           const MachineInstr *UseMI, unsigned UseHeight,
926                           MIHeightMap &Heights,
927                           const TargetSchedModel &SchedModel,
928                           const TargetInstrInfo *TII) {
929   // Adjust height by Dep.DefMI latency.
930   if (!Dep.DefMI->isTransient())
931     UseHeight += SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp,
932                                                   UseMI, Dep.UseOp);
933
934   // Update Heights[DefMI] to be the maximum height seen.
935   MIHeightMap::iterator I;
936   bool New;
937   std::tie(I, New) = Heights.insert(std::make_pair(Dep.DefMI, UseHeight));
938   if (New)
939     return true;
940
941   // DefMI has been pushed before. Give it the max height.
942   if (I->second < UseHeight)
943     I->second = UseHeight;
944   return false;
945 }
946
947 /// Assuming that the virtual register defined by DefMI:DefOp was used by
948 /// Trace.back(), add it to the live-in lists of all the blocks in Trace. Stop
949 /// when reaching the block that contains DefMI.
950 void MachineTraceMetrics::Ensemble::
951 addLiveIns(const MachineInstr *DefMI, unsigned DefOp,
952            ArrayRef<const MachineBasicBlock*> Trace) {
953   assert(!Trace.empty() && "Trace should contain at least one block");
954   unsigned Reg = DefMI->getOperand(DefOp).getReg();
955   assert(TargetRegisterInfo::isVirtualRegister(Reg));
956   const MachineBasicBlock *DefMBB = DefMI->getParent();
957
958   // Reg is live-in to all blocks in Trace that follow DefMBB.
959   for (unsigned i = Trace.size(); i; --i) {
960     const MachineBasicBlock *MBB = Trace[i-1];
961     if (MBB == DefMBB)
962       return;
963     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
964     // Just add the register. The height will be updated later.
965     TBI.LiveIns.push_back(Reg);
966   }
967 }
968
969 /// Compute instruction heights in the trace through MBB. This updates MBB and
970 /// the blocks below it in the trace. It is assumed that the trace has already
971 /// been computed.
972 void MachineTraceMetrics::Ensemble::
973 computeInstrHeights(const MachineBasicBlock *MBB) {
974   // The bottom of the trace may already be computed.
975   // Find the blocks that need updating.
976   SmallVector<const MachineBasicBlock*, 8> Stack;
977   do {
978     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
979     assert(TBI.hasValidHeight() && "Incomplete trace");
980     if (TBI.HasValidInstrHeights)
981       break;
982     Stack.push_back(MBB);
983     TBI.LiveIns.clear();
984     MBB = TBI.Succ;
985   } while (MBB);
986
987   // As we move upwards in the trace, keep track of instructions that are
988   // required by deeper trace instructions. Map MI -> height required so far.
989   MIHeightMap Heights;
990
991   // For physregs, the def isn't known when we see the use.
992   // Instead, keep track of the highest use of each regunit.
993   SparseSet<LiveRegUnit> RegUnits;
994   RegUnits.setUniverse(MTM.TRI->getNumRegUnits());
995
996   // If the bottom of the trace was already precomputed, initialize heights
997   // from its live-in list.
998   // MBB is the highest precomputed block in the trace.
999   if (MBB) {
1000     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
1001     for (LiveInReg &LI : TBI.LiveIns) {
1002       if (TargetRegisterInfo::isVirtualRegister(LI.Reg)) {
1003         // For virtual registers, the def latency is included.
1004         unsigned &Height = Heights[MTM.MRI->getVRegDef(LI.Reg)];
1005         if (Height < LI.Height)
1006           Height = LI.Height;
1007       } else {
1008         // For register units, the def latency is not included because we don't
1009         // know the def yet.
1010         RegUnits[LI.Reg].Cycle = LI.Height;
1011       }
1012     }
1013   }
1014
1015   // Go through the trace blocks in bottom-up order.
1016   SmallVector<DataDep, 8> Deps;
1017   for (;!Stack.empty(); Stack.pop_back()) {
1018     MBB = Stack.back();
1019     DEBUG(dbgs() << "Heights for BB#" << MBB->getNumber() << ":\n");
1020     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
1021     TBI.HasValidInstrHeights = true;
1022     TBI.CriticalPath = 0;
1023
1024     DEBUG({
1025       dbgs() << format("%7u Instructions\n", TBI.InstrHeight);
1026       ArrayRef<unsigned> PRHeights = getProcResourceHeights(MBB->getNumber());
1027       for (unsigned K = 0; K != PRHeights.size(); ++K)
1028         if (PRHeights[K]) {
1029           unsigned Factor = MTM.SchedModel.getResourceFactor(K);
1030           dbgs() << format("%6uc @ ", MTM.getCycles(PRHeights[K]))
1031                  << MTM.SchedModel.getProcResource(K)->Name << " ("
1032                  << PRHeights[K]/Factor << " ops x" << Factor << ")\n";
1033         }
1034     });
1035
1036     // Get dependencies from PHIs in the trace successor.
1037     const MachineBasicBlock *Succ = TBI.Succ;
1038     // If MBB is the last block in the trace, and it has a back-edge to the
1039     // loop header, get loop-carried dependencies from PHIs in the header. For
1040     // that purpose, pretend that all the loop header PHIs have height 0.
1041     if (!Succ)
1042       if (const MachineLoop *Loop = getLoopFor(MBB))
1043         if (MBB->isSuccessor(Loop->getHeader()))
1044           Succ = Loop->getHeader();
1045
1046     if (Succ) {
1047       for (const auto &PHI : *Succ) {
1048         if (!PHI.isPHI())
1049           break;
1050         Deps.clear();
1051         getPHIDeps(&PHI, Deps, MBB, MTM.MRI);
1052         if (!Deps.empty()) {
1053           // Loop header PHI heights are all 0.
1054           unsigned Height = TBI.Succ ? Cycles.lookup(&PHI).Height : 0;
1055           DEBUG(dbgs() << "pred\t" << Height << '\t' << PHI);
1056           if (pushDepHeight(Deps.front(), &PHI, Height,
1057                             Heights, MTM.SchedModel, MTM.TII))
1058             addLiveIns(Deps.front().DefMI, Deps.front().DefOp, Stack);
1059         }
1060       }
1061     }
1062
1063     // Go through the block backwards.
1064     for (MachineBasicBlock::const_iterator BI = MBB->end(), BB = MBB->begin();
1065          BI != BB;) {
1066       const MachineInstr *MI = --BI;
1067
1068       // Find the MI height as determined by virtual register uses in the
1069       // trace below.
1070       unsigned Cycle = 0;
1071       MIHeightMap::iterator HeightI = Heights.find(MI);
1072       if (HeightI != Heights.end()) {
1073         Cycle = HeightI->second;
1074         // We won't be seeing any more MI uses.
1075         Heights.erase(HeightI);
1076       }
1077
1078       // Don't process PHI deps. They depend on the specific predecessor, and
1079       // we'll get them when visiting the predecessor.
1080       Deps.clear();
1081       bool HasPhysRegs = !MI->isPHI() && getDataDeps(MI, Deps, MTM.MRI);
1082
1083       // There may also be regunit dependencies to include in the height.
1084       if (HasPhysRegs)
1085         Cycle = updatePhysDepsUpwards(MI, Cycle, RegUnits,
1086                                       MTM.SchedModel, MTM.TII, MTM.TRI);
1087
1088       // Update the required height of any virtual registers read by MI.
1089       for (const DataDep &Dep : Deps)
1090         if (pushDepHeight(Dep, MI, Cycle, Heights, MTM.SchedModel, MTM.TII))
1091           addLiveIns(Dep.DefMI, Dep.DefOp, Stack);
1092
1093       InstrCycles &MICycles = Cycles[MI];
1094       MICycles.Height = Cycle;
1095       if (!TBI.HasValidInstrDepths) {
1096         DEBUG(dbgs() << Cycle << '\t' << *MI);
1097         continue;
1098       }
1099       // Update critical path length.
1100       TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Depth);
1101       DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << *MI);
1102     }
1103
1104     // Update virtual live-in heights. They were added by addLiveIns() with a 0
1105     // height because the final height isn't known until now.
1106     DEBUG(dbgs() << "BB#" << MBB->getNumber() <<  " Live-ins:");
1107     for (LiveInReg &LIR : TBI.LiveIns) {
1108       const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg);
1109       LIR.Height = Heights.lookup(DefMI);
1110       DEBUG(dbgs() << ' ' << PrintReg(LIR.Reg) << '@' << LIR.Height);
1111     }
1112
1113     // Transfer the live regunits to the live-in list.
1114     for (SparseSet<LiveRegUnit>::const_iterator
1115          RI = RegUnits.begin(), RE = RegUnits.end(); RI != RE; ++RI) {
1116       TBI.LiveIns.push_back(LiveInReg(RI->RegUnit, RI->Cycle));
1117       DEBUG(dbgs() << ' ' << PrintRegUnit(RI->RegUnit, MTM.TRI)
1118                    << '@' << RI->Cycle);
1119     }
1120     DEBUG(dbgs() << '\n');
1121
1122     if (!TBI.HasValidInstrDepths)
1123       continue;
1124     // Add live-ins to the critical path length.
1125     TBI.CriticalPath = std::max(TBI.CriticalPath,
1126                                 computeCrossBlockCriticalPath(TBI));
1127     DEBUG(dbgs() << "Critical path: " << TBI.CriticalPath << '\n');
1128   }
1129 }
1130
1131 MachineTraceMetrics::Trace
1132 MachineTraceMetrics::Ensemble::getTrace(const MachineBasicBlock *MBB) {
1133   TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
1134
1135   if (!TBI.hasValidDepth() || !TBI.hasValidHeight())
1136     computeTrace(MBB);
1137   if (!TBI.HasValidInstrDepths)
1138     computeInstrDepths(MBB);
1139   if (!TBI.HasValidInstrHeights)
1140     computeInstrHeights(MBB);
1141   
1142   return Trace(*this, TBI);
1143 }
1144
1145 unsigned
1146 MachineTraceMetrics::Trace::getInstrSlack(const MachineInstr *MI) const {
1147   assert(MI && "Not an instruction.");
1148   assert(getBlockNum() == unsigned(MI->getParent()->getNumber()) &&
1149          "MI must be in the trace center block");
1150   InstrCycles Cyc = getInstrCycles(MI);
1151   return getCriticalPath() - (Cyc.Depth + Cyc.Height);
1152 }
1153
1154 unsigned
1155 MachineTraceMetrics::Trace::getPHIDepth(const MachineInstr *PHI) const {
1156   const MachineBasicBlock *MBB = TE.MTM.MF->getBlockNumbered(getBlockNum());
1157   SmallVector<DataDep, 1> Deps;
1158   getPHIDeps(PHI, Deps, MBB, TE.MTM.MRI);
1159   assert(Deps.size() == 1 && "PHI doesn't have MBB as a predecessor");
1160   DataDep &Dep = Deps.front();
1161   unsigned DepCycle = getInstrCycles(Dep.DefMI).Depth;
1162   // Add latency if DefMI is a real instruction. Transients get latency 0.
1163   if (!Dep.DefMI->isTransient())
1164     DepCycle += TE.MTM.SchedModel
1165       .computeOperandLatency(Dep.DefMI, Dep.DefOp, PHI, Dep.UseOp);
1166   return DepCycle;
1167 }
1168
1169 /// When bottom is set include instructions in current block in estimate.
1170 unsigned MachineTraceMetrics::Trace::getResourceDepth(bool Bottom) const {
1171   // Find the limiting processor resource.
1172   // Numbers have been pre-scaled to be comparable.
1173   unsigned PRMax = 0;
1174   ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum());
1175   if (Bottom) {
1176     ArrayRef<unsigned> PRCycles = TE.MTM.getProcResourceCycles(getBlockNum());
1177     for (unsigned K = 0; K != PRDepths.size(); ++K)
1178       PRMax = std::max(PRMax, PRDepths[K] + PRCycles[K]);
1179   } else {
1180     for (unsigned K = 0; K != PRDepths.size(); ++K)
1181       PRMax = std::max(PRMax, PRDepths[K]);
1182   }
1183   // Convert to cycle count.
1184   PRMax = TE.MTM.getCycles(PRMax);
1185
1186   /// All instructions before current block
1187   unsigned Instrs = TBI.InstrDepth;
1188   // plus instructions in current block
1189   if (Bottom)
1190     Instrs += TE.MTM.BlockInfo[getBlockNum()].InstrCount;
1191   if (unsigned IW = TE.MTM.SchedModel.getIssueWidth())
1192     Instrs /= IW;
1193   // Assume issue width 1 without a schedule model.
1194   return std::max(Instrs, PRMax);
1195 }
1196
1197 unsigned MachineTraceMetrics::Trace::getResourceLength(
1198     ArrayRef<const MachineBasicBlock *> Extrablocks,
1199     ArrayRef<const MCSchedClassDesc *> ExtraInstrs,
1200     ArrayRef<const MCSchedClassDesc *> RemoveInstrs) const {
1201   // Add up resources above and below the center block.
1202   ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum());
1203   ArrayRef<unsigned> PRHeights = TE.getProcResourceHeights(getBlockNum());
1204   unsigned PRMax = 0;
1205
1206   // Capture computing cycles from extra instructions
1207   auto extraCycles = [this](ArrayRef<const MCSchedClassDesc *> Instrs,
1208                             unsigned ResourceIdx)
1209                          ->unsigned {
1210     unsigned Cycles = 0;
1211     for (const MCSchedClassDesc *SC : Instrs) {
1212       if (!SC->isValid())
1213         continue;
1214       for (TargetSchedModel::ProcResIter
1215                PI = TE.MTM.SchedModel.getWriteProcResBegin(SC),
1216                PE = TE.MTM.SchedModel.getWriteProcResEnd(SC);
1217            PI != PE; ++PI) {
1218         if (PI->ProcResourceIdx != ResourceIdx)
1219           continue;
1220         Cycles +=
1221             (PI->Cycles * TE.MTM.SchedModel.getResourceFactor(ResourceIdx));
1222       }
1223     }
1224     return Cycles;
1225   };
1226
1227   for (unsigned K = 0; K != PRDepths.size(); ++K) {
1228     unsigned PRCycles = PRDepths[K] + PRHeights[K];
1229     for (const MachineBasicBlock *MBB : Extrablocks)
1230       PRCycles += TE.MTM.getProcResourceCycles(MBB->getNumber())[K];
1231     PRCycles += extraCycles(ExtraInstrs, K);
1232     PRCycles -= extraCycles(RemoveInstrs, K);
1233     PRMax = std::max(PRMax, PRCycles);
1234   }
1235   // Convert to cycle count.
1236   PRMax = TE.MTM.getCycles(PRMax);
1237
1238   // Instrs: #instructions in current trace outside current block.
1239   unsigned Instrs = TBI.InstrDepth + TBI.InstrHeight;
1240   // Add instruction count from the extra blocks.
1241   for (const MachineBasicBlock *MBB : Extrablocks)
1242     Instrs += TE.MTM.getResources(MBB)->InstrCount;
1243   Instrs += ExtraInstrs.size();
1244   Instrs -= RemoveInstrs.size();
1245   if (unsigned IW = TE.MTM.SchedModel.getIssueWidth())
1246     Instrs /= IW;
1247   // Assume issue width 1 without a schedule model.
1248   return std::max(Instrs, PRMax);
1249 }
1250
1251 bool MachineTraceMetrics::Trace::isDepInTrace(const MachineInstr *DefMI,
1252                                               const MachineInstr *UseMI) const {
1253   if (DefMI->getParent() == UseMI->getParent())
1254     return true;
1255
1256   const TraceBlockInfo &DepTBI = TE.BlockInfo[DefMI->getParent()->getNumber()];
1257   const TraceBlockInfo &TBI = TE.BlockInfo[UseMI->getParent()->getNumber()];
1258
1259   return DepTBI.isUsefulDominator(TBI);
1260 }
1261
1262 void MachineTraceMetrics::Ensemble::print(raw_ostream &OS) const {
1263   OS << getName() << " ensemble:\n";
1264   for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) {
1265     OS << "  BB#" << i << '\t';
1266     BlockInfo[i].print(OS);
1267     OS << '\n';
1268   }
1269 }
1270
1271 void MachineTraceMetrics::TraceBlockInfo::print(raw_ostream &OS) const {
1272   if (hasValidDepth()) {
1273     OS << "depth=" << InstrDepth;
1274     if (Pred)
1275       OS << " pred=BB#" << Pred->getNumber();
1276     else
1277       OS << " pred=null";
1278     OS << " head=BB#" << Head;
1279     if (HasValidInstrDepths)
1280       OS << " +instrs";
1281   } else
1282     OS << "depth invalid";
1283   OS << ", ";
1284   if (hasValidHeight()) {
1285     OS << "height=" << InstrHeight;
1286     if (Succ)
1287       OS << " succ=BB#" << Succ->getNumber();
1288     else
1289       OS << " succ=null";
1290     OS << " tail=BB#" << Tail;
1291     if (HasValidInstrHeights)
1292       OS << " +instrs";
1293   } else
1294     OS << "height invalid";
1295   if (HasValidInstrDepths && HasValidInstrHeights)
1296     OS << ", crit=" << CriticalPath;
1297 }
1298
1299 void MachineTraceMetrics::Trace::print(raw_ostream &OS) const {
1300   unsigned MBBNum = &TBI - &TE.BlockInfo[0];
1301
1302   OS << TE.getName() << " trace BB#" << TBI.Head << " --> BB#" << MBBNum
1303      << " --> BB#" << TBI.Tail << ':';
1304   if (TBI.hasValidHeight() && TBI.hasValidDepth())
1305     OS << ' ' << getInstrCount() << " instrs.";
1306   if (TBI.HasValidInstrDepths && TBI.HasValidInstrHeights)
1307     OS << ' ' << TBI.CriticalPath << " cycles.";
1308
1309   const MachineTraceMetrics::TraceBlockInfo *Block = &TBI;
1310   OS << "\nBB#" << MBBNum;
1311   while (Block->hasValidDepth() && Block->Pred) {
1312     unsigned Num = Block->Pred->getNumber();
1313     OS << " <- BB#" << Num;
1314     Block = &TE.BlockInfo[Num];
1315   }
1316
1317   Block = &TBI;
1318   OS << "\n    ";
1319   while (Block->hasValidHeight() && Block->Succ) {
1320     unsigned Num = Block->Succ->getNumber();
1321     OS << " -> BB#" << Num;
1322     Block = &TE.BlockInfo[Num];
1323   }
1324   OS << '\n';
1325 }