1b9be50068a94c32d00dbee4cefcec125652d890
[oota-llvm.git] / lib / CodeGen / MachineSink.cpp
1 //===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass moves instructions into successor blocks when possible, so that
11 // they aren't executed on paths where their results aren't needed.
12 //
13 // This pass is not intended to be a replacement or a complete alternative
14 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
15 // constructs that are not exposed before lowering and instruction selection.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #include "llvm/CodeGen/Passes.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SparseBitVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
26 #include "llvm/CodeGen/MachineDominators.h"
27 #include "llvm/CodeGen/MachineLoopInfo.h"
28 #include "llvm/CodeGen/MachinePostDominators.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Target/TargetInstrInfo.h"
34 #include "llvm/Target/TargetRegisterInfo.h"
35 #include "llvm/Target/TargetSubtargetInfo.h"
36 using namespace llvm;
37
38 #define DEBUG_TYPE "machine-sink"
39
40 static cl::opt<bool>
41 SplitEdges("machine-sink-split",
42            cl::desc("Split critical edges during machine sinking"),
43            cl::init(true), cl::Hidden);
44
45 static cl::opt<bool>
46 UseBlockFreqInfo("machine-sink-bfi",
47            cl::desc("Use block frequency info to find successors to sink"),
48            cl::init(true), cl::Hidden);
49
50
51 STATISTIC(NumSunk,      "Number of machine instructions sunk");
52 STATISTIC(NumSplit,     "Number of critical edges split");
53 STATISTIC(NumCoalesces, "Number of copies coalesced");
54
55 namespace {
56   class MachineSinking : public MachineFunctionPass {
57     const TargetInstrInfo *TII;
58     const TargetRegisterInfo *TRI;
59     MachineRegisterInfo  *MRI;     // Machine register information
60     MachineDominatorTree *DT;      // Machine dominator tree
61     MachinePostDominatorTree *PDT; // Machine post dominator tree
62     MachineLoopInfo *LI;
63     const MachineBlockFrequencyInfo *MBFI;
64     AliasAnalysis *AA;
65
66     // Remember which edges have been considered for breaking.
67     SmallSet<std::pair<MachineBasicBlock*,MachineBasicBlock*>, 8>
68     CEBCandidates;
69     // Remember which edges we are about to split.
70     // This is different from CEBCandidates since those edges
71     // will be split.
72     SetVector<std::pair<MachineBasicBlock*,MachineBasicBlock*> > ToSplit;
73
74     SparseBitVector<> RegsToClearKillFlags;
75
76     typedef std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>
77         AllSuccsCache;
78
79   public:
80     static char ID; // Pass identification
81     MachineSinking() : MachineFunctionPass(ID) {
82       initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
83     }
84
85     bool runOnMachineFunction(MachineFunction &MF) override;
86
87     void getAnalysisUsage(AnalysisUsage &AU) const override {
88       AU.setPreservesCFG();
89       MachineFunctionPass::getAnalysisUsage(AU);
90       AU.addRequired<AliasAnalysis>();
91       AU.addRequired<MachineDominatorTree>();
92       AU.addRequired<MachinePostDominatorTree>();
93       AU.addRequired<MachineLoopInfo>();
94       AU.addPreserved<MachineDominatorTree>();
95       AU.addPreserved<MachinePostDominatorTree>();
96       AU.addPreserved<MachineLoopInfo>();
97       if (UseBlockFreqInfo)
98         AU.addRequired<MachineBlockFrequencyInfo>();
99     }
100
101     void releaseMemory() override {
102       CEBCandidates.clear();
103     }
104
105   private:
106     bool ProcessBlock(MachineBasicBlock &MBB);
107     bool isWorthBreakingCriticalEdge(MachineInstr *MI,
108                                      MachineBasicBlock *From,
109                                      MachineBasicBlock *To);
110     /// \brief Postpone the splitting of the given critical
111     /// edge (\p From, \p To).
112     ///
113     /// We do not split the edges on the fly. Indeed, this invalidates
114     /// the dominance information and thus triggers a lot of updates
115     /// of that information underneath.
116     /// Instead, we postpone all the splits after each iteration of
117     /// the main loop. That way, the information is at least valid
118     /// for the lifetime of an iteration.
119     ///
120     /// \return True if the edge is marked as toSplit, false otherwise.
121     /// False can be returned if, for instance, this is not profitable.
122     bool PostponeSplitCriticalEdge(MachineInstr *MI,
123                                    MachineBasicBlock *From,
124                                    MachineBasicBlock *To,
125                                    bool BreakPHIEdge);
126     bool SinkInstruction(MachineInstr *MI, bool &SawStore,
127                          AllSuccsCache &AllSuccessors);
128     bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
129                                  MachineBasicBlock *DefMBB,
130                                  bool &BreakPHIEdge, bool &LocalUse) const;
131     MachineBasicBlock *FindSuccToSinkTo(MachineInstr *MI, MachineBasicBlock *MBB,
132                bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
133     bool isProfitableToSinkTo(unsigned Reg, MachineInstr *MI,
134                               MachineBasicBlock *MBB,
135                               MachineBasicBlock *SuccToSinkTo,
136                               AllSuccsCache &AllSuccessors);
137
138     bool PerformTrivialForwardCoalescing(MachineInstr *MI,
139                                          MachineBasicBlock *MBB);
140
141     SmallVector<MachineBasicBlock *, 4> &
142     GetAllSortedSuccessors(MachineInstr *MI, MachineBasicBlock *MBB,
143                            AllSuccsCache &AllSuccessors) const;
144   };
145 } // end anonymous namespace
146
147 char MachineSinking::ID = 0;
148 char &llvm::MachineSinkingID = MachineSinking::ID;
149 INITIALIZE_PASS_BEGIN(MachineSinking, "machine-sink",
150                 "Machine code sinking", false, false)
151 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
152 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
153 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
154 INITIALIZE_PASS_END(MachineSinking, "machine-sink",
155                 "Machine code sinking", false, false)
156
157 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr *MI,
158                                                      MachineBasicBlock *MBB) {
159   if (!MI->isCopy())
160     return false;
161
162   unsigned SrcReg = MI->getOperand(1).getReg();
163   unsigned DstReg = MI->getOperand(0).getReg();
164   if (!TargetRegisterInfo::isVirtualRegister(SrcReg) ||
165       !TargetRegisterInfo::isVirtualRegister(DstReg) ||
166       !MRI->hasOneNonDBGUse(SrcReg))
167     return false;
168
169   const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
170   const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
171   if (SRC != DRC)
172     return false;
173
174   MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
175   if (DefMI->isCopyLike())
176     return false;
177   DEBUG(dbgs() << "Coalescing: " << *DefMI);
178   DEBUG(dbgs() << "*** to: " << *MI);
179   MRI->replaceRegWith(DstReg, SrcReg);
180   MI->eraseFromParent();
181
182   // Conservatively, clear any kill flags, since it's possible that they are no
183   // longer correct.
184   MRI->clearKillFlags(SrcReg);
185
186   ++NumCoalesces;
187   return true;
188 }
189
190 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
191 /// occur in blocks dominated by the specified block. If any use is in the
192 /// definition block, then return false since it is never legal to move def
193 /// after uses.
194 bool
195 MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
196                                         MachineBasicBlock *MBB,
197                                         MachineBasicBlock *DefMBB,
198                                         bool &BreakPHIEdge,
199                                         bool &LocalUse) const {
200   assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
201          "Only makes sense for vregs");
202
203   // Ignore debug uses because debug info doesn't affect the code.
204   if (MRI->use_nodbg_empty(Reg))
205     return true;
206
207   // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
208   // into and they are all PHI nodes. In this case, machine-sink must break
209   // the critical edge first. e.g.
210   //
211   // BB#1: derived from LLVM BB %bb4.preheader
212   //   Predecessors according to CFG: BB#0
213   //     ...
214   //     %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead>
215   //     ...
216   //     JE_4 <BB#37>, %EFLAGS<imp-use>
217   //   Successors according to CFG: BB#37 BB#2
218   //
219   // BB#2: derived from LLVM BB %bb.nph
220   //   Predecessors according to CFG: BB#0 BB#1
221   //     %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1>
222   BreakPHIEdge = true;
223   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
224     MachineInstr *UseInst = MO.getParent();
225     unsigned OpNo = &MO - &UseInst->getOperand(0);
226     MachineBasicBlock *UseBlock = UseInst->getParent();
227     if (!(UseBlock == MBB && UseInst->isPHI() &&
228           UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) {
229       BreakPHIEdge = false;
230       break;
231     }
232   }
233   if (BreakPHIEdge)
234     return true;
235
236   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
237     // Determine the block of the use.
238     MachineInstr *UseInst = MO.getParent();
239     unsigned OpNo = &MO - &UseInst->getOperand(0);
240     MachineBasicBlock *UseBlock = UseInst->getParent();
241     if (UseInst->isPHI()) {
242       // PHI nodes use the operand in the predecessor block, not the block with
243       // the PHI.
244       UseBlock = UseInst->getOperand(OpNo+1).getMBB();
245     } else if (UseBlock == DefMBB) {
246       LocalUse = true;
247       return false;
248     }
249
250     // Check that it dominates.
251     if (!DT->dominates(MBB, UseBlock))
252       return false;
253   }
254
255   return true;
256 }
257
258 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
259   if (skipOptnoneFunction(*MF.getFunction()))
260     return false;
261
262   DEBUG(dbgs() << "******** Machine Sinking ********\n");
263
264   TII = MF.getSubtarget().getInstrInfo();
265   TRI = MF.getSubtarget().getRegisterInfo();
266   MRI = &MF.getRegInfo();
267   DT = &getAnalysis<MachineDominatorTree>();
268   PDT = &getAnalysis<MachinePostDominatorTree>();
269   LI = &getAnalysis<MachineLoopInfo>();
270   MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
271   AA = &getAnalysis<AliasAnalysis>();
272
273   bool EverMadeChange = false;
274
275   while (1) {
276     bool MadeChange = false;
277
278     // Process all basic blocks.
279     CEBCandidates.clear();
280     ToSplit.clear();
281     for (auto &MBB: MF)
282       MadeChange |= ProcessBlock(MBB);
283
284     // If we have anything we marked as toSplit, split it now.
285     for (auto &Pair : ToSplit) {
286       auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, this);
287       if (NewSucc != nullptr) {
288         DEBUG(dbgs() << " *** Splitting critical edge:"
289               " BB#" << Pair.first->getNumber()
290               << " -- BB#" << NewSucc->getNumber()
291               << " -- BB#" << Pair.second->getNumber() << '\n');
292         MadeChange = true;
293         ++NumSplit;
294       } else
295         DEBUG(dbgs() << " *** Not legal to break critical edge\n");
296     }
297     // If this iteration over the code changed anything, keep iterating.
298     if (!MadeChange) break;
299     EverMadeChange = true;
300   }
301
302   // Now clear any kill flags for recorded registers.
303   for (auto I : RegsToClearKillFlags)
304     MRI->clearKillFlags(I);
305   RegsToClearKillFlags.clear();
306
307   return EverMadeChange;
308 }
309
310 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
311   // Can't sink anything out of a block that has less than two successors.
312   if (MBB.succ_size() <= 1 || MBB.empty()) return false;
313
314   // Don't bother sinking code out of unreachable blocks. In addition to being
315   // unprofitable, it can also lead to infinite looping, because in an
316   // unreachable loop there may be nowhere to stop.
317   if (!DT->isReachableFromEntry(&MBB)) return false;
318
319   bool MadeChange = false;
320
321   // Cache all successors, sorted by frequency info and loop depth.
322   AllSuccsCache AllSuccessors;
323
324   // Walk the basic block bottom-up.  Remember if we saw a store.
325   MachineBasicBlock::iterator I = MBB.end();
326   --I;
327   bool ProcessedBegin, SawStore = false;
328   do {
329     MachineInstr *MI = I;  // The instruction to sink.
330
331     // Predecrement I (if it's not begin) so that it isn't invalidated by
332     // sinking.
333     ProcessedBegin = I == MBB.begin();
334     if (!ProcessedBegin)
335       --I;
336
337     if (MI->isDebugValue())
338       continue;
339
340     bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
341     if (Joined) {
342       MadeChange = true;
343       continue;
344     }
345
346     if (SinkInstruction(MI, SawStore, AllSuccessors))
347       ++NumSunk, MadeChange = true;
348
349     // If we just processed the first instruction in the block, we're done.
350   } while (!ProcessedBegin);
351
352   return MadeChange;
353 }
354
355 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr *MI,
356                                                  MachineBasicBlock *From,
357                                                  MachineBasicBlock *To) {
358   // FIXME: Need much better heuristics.
359
360   // If the pass has already considered breaking this edge (during this pass
361   // through the function), then let's go ahead and break it. This means
362   // sinking multiple "cheap" instructions into the same block.
363   if (!CEBCandidates.insert(std::make_pair(From, To)).second)
364     return true;
365
366   if (!MI->isCopy() && !TII->isAsCheapAsAMove(MI))
367     return true;
368
369   // MI is cheap, we probably don't want to break the critical edge for it.
370   // However, if this would allow some definitions of its source operands
371   // to be sunk then it's probably worth it.
372   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
373     const MachineOperand &MO = MI->getOperand(i);
374     if (!MO.isReg() || !MO.isUse())
375       continue;
376     unsigned Reg = MO.getReg();
377     if (Reg == 0)
378       continue;
379
380     // We don't move live definitions of physical registers,
381     // so sinking their uses won't enable any opportunities.
382     if (TargetRegisterInfo::isPhysicalRegister(Reg))
383       continue;
384
385     // If this instruction is the only user of a virtual register,
386     // check if breaking the edge will enable sinking
387     // both this instruction and the defining instruction.
388     if (MRI->hasOneNonDBGUse(Reg)) {
389       // If the definition resides in same MBB,
390       // claim it's likely we can sink these together.
391       // If definition resides elsewhere, we aren't
392       // blocking it from being sunk so don't break the edge.
393       MachineInstr *DefMI = MRI->getVRegDef(Reg);
394       if (DefMI->getParent() == MI->getParent())
395         return true;
396     }
397   }
398
399   return false;
400 }
401
402 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr *MI,
403                                                MachineBasicBlock *FromBB,
404                                                MachineBasicBlock *ToBB,
405                                                bool BreakPHIEdge) {
406   if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
407     return false;
408
409   // Avoid breaking back edge. From == To means backedge for single BB loop.
410   if (!SplitEdges || FromBB == ToBB)
411     return false;
412
413   // Check for backedges of more "complex" loops.
414   if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
415       LI->isLoopHeader(ToBB))
416     return false;
417
418   // It's not always legal to break critical edges and sink the computation
419   // to the edge.
420   //
421   // BB#1:
422   // v1024
423   // Beq BB#3
424   // <fallthrough>
425   // BB#2:
426   // ... no uses of v1024
427   // <fallthrough>
428   // BB#3:
429   // ...
430   //       = v1024
431   //
432   // If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted:
433   //
434   // BB#1:
435   // ...
436   // Bne BB#2
437   // BB#4:
438   // v1024 =
439   // B BB#3
440   // BB#2:
441   // ... no uses of v1024
442   // <fallthrough>
443   // BB#3:
444   // ...
445   //       = v1024
446   //
447   // This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3
448   // flow. We need to ensure the new basic block where the computation is
449   // sunk to dominates all the uses.
450   // It's only legal to break critical edge and sink the computation to the
451   // new block if all the predecessors of "To", except for "From", are
452   // not dominated by "From". Given SSA property, this means these
453   // predecessors are dominated by "To".
454   //
455   // There is no need to do this check if all the uses are PHI nodes. PHI
456   // sources are only defined on the specific predecessor edges.
457   if (!BreakPHIEdge) {
458     for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
459            E = ToBB->pred_end(); PI != E; ++PI) {
460       if (*PI == FromBB)
461         continue;
462       if (!DT->dominates(ToBB, *PI))
463         return false;
464     }
465   }
466
467   ToSplit.insert(std::make_pair(FromBB, ToBB));
468   
469   return true;
470 }
471
472 static bool AvoidsSinking(MachineInstr *MI, MachineRegisterInfo *MRI) {
473   return MI->isInsertSubreg() || MI->isSubregToReg() || MI->isRegSequence();
474 }
475
476 /// collectDebgValues - Scan instructions following MI and collect any
477 /// matching DBG_VALUEs.
478 static void collectDebugValues(MachineInstr *MI,
479                                SmallVectorImpl<MachineInstr *> &DbgValues) {
480   DbgValues.clear();
481   if (!MI->getOperand(0).isReg())
482     return;
483
484   MachineBasicBlock::iterator DI = MI; ++DI;
485   for (MachineBasicBlock::iterator DE = MI->getParent()->end();
486        DI != DE; ++DI) {
487     if (!DI->isDebugValue())
488       return;
489     if (DI->getOperand(0).isReg() &&
490         DI->getOperand(0).getReg() == MI->getOperand(0).getReg())
491       DbgValues.push_back(DI);
492   }
493 }
494
495 /// isProfitableToSinkTo - Return true if it is profitable to sink MI.
496 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr *MI,
497                                           MachineBasicBlock *MBB,
498                                           MachineBasicBlock *SuccToSinkTo,
499                                           AllSuccsCache &AllSuccessors) {
500   assert (MI && "Invalid MachineInstr!");
501   assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
502
503   if (MBB == SuccToSinkTo)
504     return false;
505
506   // It is profitable if SuccToSinkTo does not post dominate current block.
507   if (!PDT->dominates(SuccToSinkTo, MBB))
508     return true;
509
510   // It is profitable to sink an instruction from a deeper loop to a shallower
511   // loop, even if the latter post-dominates the former (PR21115).
512   if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
513     return true;
514
515   // Check if only use in post dominated block is PHI instruction.
516   bool NonPHIUse = false;
517   for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
518     MachineBasicBlock *UseBlock = UseInst.getParent();
519     if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
520       NonPHIUse = true;
521   }
522   if (!NonPHIUse)
523     return true;
524
525   // If SuccToSinkTo post dominates then also it may be profitable if MI
526   // can further profitably sinked into another block in next round.
527   bool BreakPHIEdge = false;
528   // FIXME - If finding successor is compile time expensive then cache results.
529   if (MachineBasicBlock *MBB2 =
530           FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
531     return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
532
533   // If SuccToSinkTo is final destination and it is a post dominator of current
534   // block then it is not profitable to sink MI into SuccToSinkTo block.
535   return false;
536 }
537
538 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly
539 /// computing it if it was not already cached.
540 SmallVector<MachineBasicBlock *, 4> &
541 MachineSinking::GetAllSortedSuccessors(MachineInstr *MI, MachineBasicBlock *MBB,
542                                        AllSuccsCache &AllSuccessors) const {
543
544   // Do we have the sorted successors in cache ?
545   auto Succs = AllSuccessors.find(MBB);
546   if (Succs != AllSuccessors.end())
547     return Succs->second;
548
549   SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(),
550                                                MBB->succ_end());
551
552   // Handle cases where sinking can happen but where the sink point isn't a
553   // successor. For example:
554   //
555   //   x = computation
556   //   if () {} else {}
557   //   use x
558   //
559   const std::vector<MachineDomTreeNode *> &Children =
560     DT->getNode(MBB)->getChildren();
561   for (const auto &DTChild : Children)
562     // DomTree children of MBB that have MBB as immediate dominator are added.
563     if (DTChild->getIDom()->getBlock() == MI->getParent() &&
564         // Skip MBBs already added to the AllSuccs vector above.
565         !MBB->isSuccessor(DTChild->getBlock()))
566       AllSuccs.push_back(DTChild->getBlock());
567
568   // Sort Successors according to their loop depth or block frequency info.
569   std::stable_sort(
570       AllSuccs.begin(), AllSuccs.end(),
571       [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
572         uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
573         uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
574         bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
575         return HasBlockFreq ? LHSFreq < RHSFreq
576                             : LI->getLoopDepth(L) < LI->getLoopDepth(R);
577       });
578
579   auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
580
581   return it.first->second;
582 }
583
584 /// FindSuccToSinkTo - Find a successor to sink this instruction to.
585 MachineBasicBlock *MachineSinking::FindSuccToSinkTo(MachineInstr *MI,
586                                    MachineBasicBlock *MBB,
587                                    bool &BreakPHIEdge,
588                                    AllSuccsCache &AllSuccessors) {
589
590   assert (MI && "Invalid MachineInstr!");
591   assert (MBB && "Invalid MachineBasicBlock!");
592
593   // Loop over all the operands of the specified instruction.  If there is
594   // anything we can't handle, bail out.
595
596   // SuccToSinkTo - This is the successor to sink this instruction to, once we
597   // decide.
598   MachineBasicBlock *SuccToSinkTo = nullptr;
599   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
600     const MachineOperand &MO = MI->getOperand(i);
601     if (!MO.isReg()) continue;  // Ignore non-register operands.
602
603     unsigned Reg = MO.getReg();
604     if (Reg == 0) continue;
605
606     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
607       if (MO.isUse()) {
608         // If the physreg has no defs anywhere, it's just an ambient register
609         // and we can freely move its uses. Alternatively, if it's allocatable,
610         // it could get allocated to something with a def during allocation.
611         if (!MRI->isConstantPhysReg(Reg, *MBB->getParent()))
612           return nullptr;
613       } else if (!MO.isDead()) {
614         // A def that isn't dead. We can't move it.
615         return nullptr;
616       }
617     } else {
618       // Virtual register uses are always safe to sink.
619       if (MO.isUse()) continue;
620
621       // If it's not safe to move defs of the register class, then abort.
622       if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
623         return nullptr;
624
625       // Virtual register defs can only be sunk if all their uses are in blocks
626       // dominated by one of the successors.
627       if (SuccToSinkTo) {
628         // If a previous operand picked a block to sink to, then this operand
629         // must be sinkable to the same block.
630         bool LocalUse = false;
631         if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
632                                      BreakPHIEdge, LocalUse))
633           return nullptr;
634
635         continue;
636       }
637
638       // Otherwise, we should look at all the successors and decide which one
639       // we should sink to. If we have reliable block frequency information
640       // (frequency != 0) available, give successors with smaller frequencies
641       // higher priority, otherwise prioritize smaller loop depths.
642       for (MachineBasicBlock *SuccBlock :
643            GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
644         bool LocalUse = false;
645         if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
646                                     BreakPHIEdge, LocalUse)) {
647           SuccToSinkTo = SuccBlock;
648           break;
649         }
650         if (LocalUse)
651           // Def is used locally, it's never safe to move this def.
652           return nullptr;
653       }
654
655       // If we couldn't find a block to sink to, ignore this instruction.
656       if (!SuccToSinkTo)
657         return nullptr;
658       if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
659         return nullptr;
660     }
661   }
662
663   // It is not possible to sink an instruction into its own block.  This can
664   // happen with loops.
665   if (MBB == SuccToSinkTo)
666     return nullptr;
667
668   // It's not safe to sink instructions to EH landing pad. Control flow into
669   // landing pad is implicitly defined.
670   if (SuccToSinkTo && SuccToSinkTo->isLandingPad())
671     return nullptr;
672
673   return SuccToSinkTo;
674 }
675
676 /// SinkInstruction - Determine whether it is safe to sink the specified machine
677 /// instruction out of its current block into a successor.
678 bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore,
679                                      AllSuccsCache &AllSuccessors) {
680   // Don't sink insert_subreg, subreg_to_reg, reg_sequence. These are meant to
681   // be close to the source to make it easier to coalesce.
682   if (AvoidsSinking(MI, MRI))
683     return false;
684
685   // Check if it's safe to move the instruction.
686   if (!MI->isSafeToMove(AA, SawStore))
687     return false;
688
689   // Convergent operations may only be moved to control equivalent locations.
690   if (MI->isConvergent())
691     return false;
692
693   // FIXME: This should include support for sinking instructions within the
694   // block they are currently in to shorten the live ranges.  We often get
695   // instructions sunk into the top of a large block, but it would be better to
696   // also sink them down before their first use in the block.  This xform has to
697   // be careful not to *increase* register pressure though, e.g. sinking
698   // "x = y + z" down if it kills y and z would increase the live ranges of y
699   // and z and only shrink the live range of x.
700
701   bool BreakPHIEdge = false;
702   MachineBasicBlock *ParentBlock = MI->getParent();
703   MachineBasicBlock *SuccToSinkTo =
704       FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
705
706   // If there are no outputs, it must have side-effects.
707   if (!SuccToSinkTo)
708     return false;
709
710
711   // If the instruction to move defines a dead physical register which is live
712   // when leaving the basic block, don't move it because it could turn into a
713   // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
714   for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
715     const MachineOperand &MO = MI->getOperand(I);
716     if (!MO.isReg()) continue;
717     unsigned Reg = MO.getReg();
718     if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
719     if (SuccToSinkTo->isLiveIn(Reg))
720       return false;
721   }
722
723   DEBUG(dbgs() << "Sink instr " << *MI << "\tinto block " << *SuccToSinkTo);
724
725   // If the block has multiple predecessors, this is a critical edge.
726   // Decide if we can sink along it or need to break the edge.
727   if (SuccToSinkTo->pred_size() > 1) {
728     // We cannot sink a load across a critical edge - there may be stores in
729     // other code paths.
730     bool TryBreak = false;
731     bool store = true;
732     if (!MI->isSafeToMove(AA, store)) {
733       DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
734       TryBreak = true;
735     }
736
737     // We don't want to sink across a critical edge if we don't dominate the
738     // successor. We could be introducing calculations to new code paths.
739     if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
740       DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
741       TryBreak = true;
742     }
743
744     // Don't sink instructions into a loop.
745     if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
746       DEBUG(dbgs() << " *** NOTE: Loop header found\n");
747       TryBreak = true;
748     }
749
750     // Otherwise we are OK with sinking along a critical edge.
751     if (!TryBreak)
752       DEBUG(dbgs() << "Sinking along critical edge.\n");
753     else {
754       // Mark this edge as to be split.
755       // If the edge can actually be split, the next iteration of the main loop
756       // will sink MI in the newly created block.
757       bool Status =
758         PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
759       if (!Status)
760         DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
761               "break critical edge\n");
762       // The instruction will not be sunk this time.
763       return false;
764     }
765   }
766
767   if (BreakPHIEdge) {
768     // BreakPHIEdge is true if all the uses are in the successor MBB being
769     // sunken into and they are all PHI nodes. In this case, machine-sink must
770     // break the critical edge first.
771     bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
772                                             SuccToSinkTo, BreakPHIEdge);
773     if (!Status)
774       DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
775             "break critical edge\n");
776     // The instruction will not be sunk this time.
777     return false;
778   }
779
780   // Determine where to insert into. Skip phi nodes.
781   MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
782   while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
783     ++InsertPos;
784
785   // collect matching debug values.
786   SmallVector<MachineInstr *, 2> DbgValuesToSink;
787   collectDebugValues(MI, DbgValuesToSink);
788
789   // Move the instruction.
790   SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
791                        ++MachineBasicBlock::iterator(MI));
792
793   // Move debug values.
794   for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
795          DBE = DbgValuesToSink.end(); DBI != DBE; ++DBI) {
796     MachineInstr *DbgMI = *DBI;
797     SuccToSinkTo->splice(InsertPos, ParentBlock,  DbgMI,
798                          ++MachineBasicBlock::iterator(DbgMI));
799   }
800
801   // Conservatively, clear any kill flags, since it's possible that they are no
802   // longer correct.
803   // Note that we have to clear the kill flags for any register this instruction
804   // uses as we may sink over another instruction which currently kills the
805   // used registers.
806   for (MachineOperand &MO : MI->operands()) {
807     if (MO.isReg() && MO.isUse())
808       RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags.
809   }
810
811   return true;
812 }