Remove the successor probabilities normalization in tail duplication pass.
[oota-llvm.git] / lib / CodeGen / MachineBlockPlacement.cpp
1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements basic block placement transformations using the CFG
11 // structure and branch probability estimates.
12 //
13 // The pass strives to preserve the structure of the CFG (that is, retain
14 // a topological ordering of basic blocks) in the absence of a *strong* signal
15 // to the contrary from probabilities. However, within the CFG structure, it
16 // attempts to choose an ordering which favors placing more likely sequences of
17 // blocks adjacent to each other.
18 //
19 // The algorithm works from the inner-most loop within a function outward, and
20 // at each stage walks through the basic blocks, trying to coalesce them into
21 // sequential chains where allowed by the CFG (or demanded by heavy
22 // probabilities). Finally, it walks the blocks in topological order, and the
23 // first time it reaches a chain of basic blocks, it schedules them in the
24 // function in-order.
25 //
26 //===----------------------------------------------------------------------===//
27
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
35 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
36 #include "llvm/CodeGen/MachineDominators.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineFunctionPass.h"
39 #include "llvm/CodeGen/MachineLoopInfo.h"
40 #include "llvm/CodeGen/MachineModuleInfo.h"
41 #include "llvm/Support/Allocator.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Target/TargetInstrInfo.h"
46 #include "llvm/Target/TargetLowering.h"
47 #include "llvm/Target/TargetSubtargetInfo.h"
48 #include <algorithm>
49 using namespace llvm;
50
51 #define DEBUG_TYPE "block-placement"
52
53 STATISTIC(NumCondBranches, "Number of conditional branches");
54 STATISTIC(NumUncondBranches, "Number of unconditional branches");
55 STATISTIC(CondBranchTakenFreq,
56           "Potential frequency of taking conditional branches");
57 STATISTIC(UncondBranchTakenFreq,
58           "Potential frequency of taking unconditional branches");
59
60 static cl::opt<unsigned> AlignAllBlock("align-all-blocks",
61                                        cl::desc("Force the alignment of all "
62                                                 "blocks in the function."),
63                                        cl::init(0), cl::Hidden);
64
65 // FIXME: Find a good default for this flag and remove the flag.
66 static cl::opt<unsigned> ExitBlockBias(
67     "block-placement-exit-block-bias",
68     cl::desc("Block frequency percentage a loop exit block needs "
69              "over the original exit to be considered the new exit."),
70     cl::init(0), cl::Hidden);
71
72 static cl::opt<bool> OutlineOptionalBranches(
73     "outline-optional-branches",
74     cl::desc("Put completely optional branches, i.e. branches with a common "
75              "post dominator, out of line."),
76     cl::init(false), cl::Hidden);
77
78 static cl::opt<unsigned> OutlineOptionalThreshold(
79     "outline-optional-threshold",
80     cl::desc("Don't outline optional branches that are a single block with an "
81              "instruction count below this threshold"),
82     cl::init(4), cl::Hidden);
83
84 static cl::opt<unsigned> LoopToColdBlockRatio(
85     "loop-to-cold-block-ratio",
86     cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
87              "(frequency of block) is greater than this ratio"),
88     cl::init(5), cl::Hidden);
89
90 static cl::opt<bool>
91     PreciseRotationCost("precise-rotation-cost",
92                         cl::desc("Model the cost of loop rotation more "
93                                  "precisely by using profile data."),
94                         cl::init(false), cl::Hidden);
95
96 static cl::opt<unsigned> MisfetchCost(
97     "misfetch-cost",
98     cl::desc("Cost that models the probablistic risk of an instruction "
99              "misfetch due to a jump comparing to falling through, whose cost "
100              "is zero."),
101     cl::init(1), cl::Hidden);
102
103 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
104                                       cl::desc("Cost of jump instructions."),
105                                       cl::init(1), cl::Hidden);
106
107 namespace {
108 class BlockChain;
109 /// \brief Type for our function-wide basic block -> block chain mapping.
110 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType;
111 }
112
113 namespace {
114 /// \brief A chain of blocks which will be laid out contiguously.
115 ///
116 /// This is the datastructure representing a chain of consecutive blocks that
117 /// are profitable to layout together in order to maximize fallthrough
118 /// probabilities and code locality. We also can use a block chain to represent
119 /// a sequence of basic blocks which have some external (correctness)
120 /// requirement for sequential layout.
121 ///
122 /// Chains can be built around a single basic block and can be merged to grow
123 /// them. They participate in a block-to-chain mapping, which is updated
124 /// automatically as chains are merged together.
125 class BlockChain {
126   /// \brief The sequence of blocks belonging to this chain.
127   ///
128   /// This is the sequence of blocks for a particular chain. These will be laid
129   /// out in-order within the function.
130   SmallVector<MachineBasicBlock *, 4> Blocks;
131
132   /// \brief A handle to the function-wide basic block to block chain mapping.
133   ///
134   /// This is retained in each block chain to simplify the computation of child
135   /// block chains for SCC-formation and iteration. We store the edges to child
136   /// basic blocks, and map them back to their associated chains using this
137   /// structure.
138   BlockToChainMapType &BlockToChain;
139
140 public:
141   /// \brief Construct a new BlockChain.
142   ///
143   /// This builds a new block chain representing a single basic block in the
144   /// function. It also registers itself as the chain that block participates
145   /// in with the BlockToChain mapping.
146   BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
147       : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) {
148     assert(BB && "Cannot create a chain with a null basic block");
149     BlockToChain[BB] = this;
150   }
151
152   /// \brief Iterator over blocks within the chain.
153   typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator;
154
155   /// \brief Beginning of blocks within the chain.
156   iterator begin() { return Blocks.begin(); }
157
158   /// \brief End of blocks within the chain.
159   iterator end() { return Blocks.end(); }
160
161   /// \brief Merge a block chain into this one.
162   ///
163   /// This routine merges a block chain into this one. It takes care of forming
164   /// a contiguous sequence of basic blocks, updating the edge list, and
165   /// updating the block -> chain mapping. It does not free or tear down the
166   /// old chain, but the old chain's block list is no longer valid.
167   void merge(MachineBasicBlock *BB, BlockChain *Chain) {
168     assert(BB);
169     assert(!Blocks.empty());
170
171     // Fast path in case we don't have a chain already.
172     if (!Chain) {
173       assert(!BlockToChain[BB]);
174       Blocks.push_back(BB);
175       BlockToChain[BB] = this;
176       return;
177     }
178
179     assert(BB == *Chain->begin());
180     assert(Chain->begin() != Chain->end());
181
182     // Update the incoming blocks to point to this chain, and add them to the
183     // chain structure.
184     for (MachineBasicBlock *ChainBB : *Chain) {
185       Blocks.push_back(ChainBB);
186       assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain");
187       BlockToChain[ChainBB] = this;
188     }
189   }
190
191 #ifndef NDEBUG
192   /// \brief Dump the blocks in this chain.
193   LLVM_DUMP_METHOD void dump() {
194     for (MachineBasicBlock *MBB : *this)
195       MBB->dump();
196   }
197 #endif // NDEBUG
198
199   /// \brief Count of predecessors within the loop currently being processed.
200   ///
201   /// This count is updated at each loop we process to represent the number of
202   /// in-loop predecessors of this chain.
203   unsigned LoopPredecessors;
204 };
205 }
206
207 namespace {
208 class MachineBlockPlacement : public MachineFunctionPass {
209   /// \brief A typedef for a block filter set.
210   typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet;
211
212   /// \brief A handle to the branch probability pass.
213   const MachineBranchProbabilityInfo *MBPI;
214
215   /// \brief A handle to the function-wide block frequency pass.
216   const MachineBlockFrequencyInfo *MBFI;
217
218   /// \brief A handle to the loop info.
219   const MachineLoopInfo *MLI;
220
221   /// \brief A handle to the target's instruction info.
222   const TargetInstrInfo *TII;
223
224   /// \brief A handle to the target's lowering info.
225   const TargetLoweringBase *TLI;
226
227   /// \brief A handle to the post dominator tree.
228   MachineDominatorTree *MDT;
229
230   /// \brief A set of blocks that are unavoidably execute, i.e. they dominate
231   /// all terminators of the MachineFunction.
232   SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks;
233
234   /// \brief Allocator and owner of BlockChain structures.
235   ///
236   /// We build BlockChains lazily while processing the loop structure of
237   /// a function. To reduce malloc traffic, we allocate them using this
238   /// slab-like allocator, and destroy them after the pass completes. An
239   /// important guarantee is that this allocator produces stable pointers to
240   /// the chains.
241   SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
242
243   /// \brief Function wide BasicBlock to BlockChain mapping.
244   ///
245   /// This mapping allows efficiently moving from any given basic block to the
246   /// BlockChain it participates in, if any. We use it to, among other things,
247   /// allow implicitly defining edges between chains as the existing edges
248   /// between basic blocks.
249   DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain;
250
251   void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
252                            SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
253                            const BlockFilterSet *BlockFilter = nullptr);
254   MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB,
255                                          BlockChain &Chain,
256                                          const BlockFilterSet *BlockFilter);
257   MachineBasicBlock *
258   selectBestCandidateBlock(BlockChain &Chain,
259                            SmallVectorImpl<MachineBasicBlock *> &WorkList,
260                            const BlockFilterSet *BlockFilter);
261   MachineBasicBlock *
262   getFirstUnplacedBlock(MachineFunction &F, const BlockChain &PlacedChain,
263                         MachineFunction::iterator &PrevUnplacedBlockIt,
264                         const BlockFilterSet *BlockFilter);
265   void buildChain(MachineBasicBlock *BB, BlockChain &Chain,
266                   SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
267                   const BlockFilterSet *BlockFilter = nullptr);
268   MachineBasicBlock *findBestLoopTop(MachineLoop &L,
269                                      const BlockFilterSet &LoopBlockSet);
270   MachineBasicBlock *findBestLoopExit(MachineFunction &F, MachineLoop &L,
271                                       const BlockFilterSet &LoopBlockSet);
272   BlockFilterSet collectLoopBlockSet(MachineFunction &F, MachineLoop &L);
273   void buildLoopChains(MachineFunction &F, MachineLoop &L);
274   void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB,
275                   const BlockFilterSet &LoopBlockSet);
276   void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L,
277                              const BlockFilterSet &LoopBlockSet);
278   void buildCFGChains(MachineFunction &F);
279
280 public:
281   static char ID; // Pass identification, replacement for typeid
282   MachineBlockPlacement() : MachineFunctionPass(ID) {
283     initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
284   }
285
286   bool runOnMachineFunction(MachineFunction &F) override;
287
288   void getAnalysisUsage(AnalysisUsage &AU) const override {
289     AU.addRequired<MachineBranchProbabilityInfo>();
290     AU.addRequired<MachineBlockFrequencyInfo>();
291     AU.addRequired<MachineDominatorTree>();
292     AU.addRequired<MachineLoopInfo>();
293     MachineFunctionPass::getAnalysisUsage(AU);
294   }
295 };
296 }
297
298 char MachineBlockPlacement::ID = 0;
299 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
300 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement",
301                       "Branch Probability Basic Block Placement", false, false)
302 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
303 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
304 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
305 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
306 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement",
307                     "Branch Probability Basic Block Placement", false, false)
308
309 #ifndef NDEBUG
310 /// \brief Helper to print the name of a MBB.
311 ///
312 /// Only used by debug logging.
313 static std::string getBlockName(MachineBasicBlock *BB) {
314   std::string Result;
315   raw_string_ostream OS(Result);
316   OS << "BB#" << BB->getNumber();
317   OS << " (derived from LLVM BB '" << BB->getName() << "')";
318   OS.flush();
319   return Result;
320 }
321
322 /// \brief Helper to print the number of a MBB.
323 ///
324 /// Only used by debug logging.
325 static std::string getBlockNum(MachineBasicBlock *BB) {
326   std::string Result;
327   raw_string_ostream OS(Result);
328   OS << "BB#" << BB->getNumber();
329   OS.flush();
330   return Result;
331 }
332 #endif
333
334 /// \brief Mark a chain's successors as having one fewer preds.
335 ///
336 /// When a chain is being merged into the "placed" chain, this routine will
337 /// quickly walk the successors of each block in the chain and mark them as
338 /// having one fewer active predecessor. It also adds any successors of this
339 /// chain which reach the zero-predecessor state to the worklist passed in.
340 void MachineBlockPlacement::markChainSuccessors(
341     BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
342     SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
343     const BlockFilterSet *BlockFilter) {
344   // Walk all the blocks in this chain, marking their successors as having
345   // a predecessor placed.
346   for (MachineBasicBlock *MBB : Chain) {
347     // Add any successors for which this is the only un-placed in-loop
348     // predecessor to the worklist as a viable candidate for CFG-neutral
349     // placement. No subsequent placement of this block will violate the CFG
350     // shape, so we get to use heuristics to choose a favorable placement.
351     for (MachineBasicBlock *Succ : MBB->successors()) {
352       if (BlockFilter && !BlockFilter->count(Succ))
353         continue;
354       BlockChain &SuccChain = *BlockToChain[Succ];
355       // Disregard edges within a fixed chain, or edges to the loop header.
356       if (&Chain == &SuccChain || Succ == LoopHeaderBB)
357         continue;
358
359       // This is a cross-chain edge that is within the loop, so decrement the
360       // loop predecessor count of the destination chain.
361       if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0)
362         BlockWorkList.push_back(*SuccChain.begin());
363     }
364   }
365 }
366
367 /// \brief Select the best successor for a block.
368 ///
369 /// This looks across all successors of a particular block and attempts to
370 /// select the "best" one to be the layout successor. It only considers direct
371 /// successors which also pass the block filter. It will attempt to avoid
372 /// breaking CFG structure, but cave and break such structures in the case of
373 /// very hot successor edges.
374 ///
375 /// \returns The best successor block found, or null if none are viable.
376 MachineBasicBlock *
377 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB,
378                                            BlockChain &Chain,
379                                            const BlockFilterSet *BlockFilter) {
380   const BranchProbability HotProb(4, 5); // 80%
381
382   MachineBasicBlock *BestSucc = nullptr;
383   auto BestProb = BranchProbability::getZero();
384
385   // Adjust edge probabilities by excluding edges pointing to blocks that is
386   // either not in BlockFilter or is already in the current chain. Consider the
387   // following CFG:
388   //
389   //     --->A
390   //     |  / \
391   //     | B   C
392   //     |  \ / \
393   //     ----D   E
394   //
395   // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
396   // A->C is chosen as a fall-through, D won't be selected as a successor of C
397   // due to CFG constraint (the probability of C->D is not greater than
398   // HotProb). If we exclude E that is not in BlockFilter when calculating the
399   // probability of C->D, D will be selected and we will get A C D B as the
400   // layout of this loop.
401   auto AdjustedSumProb = BranchProbability::getOne();
402   SmallVector<MachineBasicBlock *, 4> Successors;
403   for (MachineBasicBlock *Succ : BB->successors()) {
404     bool SkipSucc = false;
405     if (BlockFilter && !BlockFilter->count(Succ)) {
406       SkipSucc = true;
407     } else {
408       BlockChain *SuccChain = BlockToChain[Succ];
409       if (SuccChain == &Chain) {
410         DEBUG(dbgs() << "    " << getBlockName(Succ)
411                      << " -> Already merged!\n");
412         SkipSucc = true;
413       } else if (Succ != *SuccChain->begin()) {
414         DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> Mid chain!\n");
415         continue;
416       }
417     }
418     if (SkipSucc)
419       AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
420     else
421       Successors.push_back(Succ);
422   }
423
424   DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n");
425   for (MachineBasicBlock *Succ : Successors) {
426     BranchProbability SuccProb;
427     uint32_t SuccProbN = MBPI->getEdgeProbability(BB, Succ).getNumerator();
428     uint32_t SuccProbD = AdjustedSumProb.getNumerator();
429     if (SuccProbN >= SuccProbD)
430       SuccProb = BranchProbability::getOne();
431     else
432       SuccProb = BranchProbability(SuccProbN, SuccProbD);
433
434     // If we outline optional branches, look whether Succ is unavoidable, i.e.
435     // dominates all terminators of the MachineFunction. If it does, other
436     // successors must be optional. Don't do this for cold branches.
437     if (OutlineOptionalBranches && SuccProb > HotProb.getCompl() &&
438         UnavoidableBlocks.count(Succ) > 0) {
439       auto HasShortOptionalBranch = [&]() {
440         for (MachineBasicBlock *Pred : Succ->predecessors()) {
441           // Check whether there is an unplaced optional branch.
442           if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) ||
443               BlockToChain[Pred] == &Chain)
444             continue;
445           // Check whether the optional branch has exactly one BB.
446           if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB)
447             continue;
448           // Check whether the optional branch is small.
449           if (Pred->size() < OutlineOptionalThreshold)
450             return true;
451         }
452         return false;
453       };
454       if (!HasShortOptionalBranch())
455         return Succ;
456     }
457
458     // Only consider successors which are either "hot", or wouldn't violate
459     // any CFG constraints.
460     BlockChain &SuccChain = *BlockToChain[Succ];
461     if (SuccChain.LoopPredecessors != 0) {
462       if (SuccProb < HotProb) {
463         DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> " << SuccProb
464                      << " (prob) (CFG conflict)\n");
465         continue;
466       }
467
468       // Make sure that a hot successor doesn't have a globally more
469       // important predecessor.
470       auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
471       BlockFrequency CandidateEdgeFreq =
472           MBFI->getBlockFreq(BB) * RealSuccProb * HotProb.getCompl();
473       bool BadCFGConflict = false;
474       for (MachineBasicBlock *Pred : Succ->predecessors()) {
475         if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) ||
476             BlockToChain[Pred] == &Chain)
477           continue;
478         BlockFrequency PredEdgeFreq =
479             MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
480         if (PredEdgeFreq >= CandidateEdgeFreq) {
481           BadCFGConflict = true;
482           break;
483         }
484       }
485       if (BadCFGConflict) {
486         DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> " << SuccProb
487                      << " (prob) (non-cold CFG conflict)\n");
488         continue;
489       }
490     }
491
492     DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> " << SuccProb
493                  << " (prob)"
494                  << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "")
495                  << "\n");
496     if (BestSucc && BestProb >= SuccProb)
497       continue;
498     BestSucc = Succ;
499     BestProb = SuccProb;
500   }
501   return BestSucc;
502 }
503
504 /// \brief Select the best block from a worklist.
505 ///
506 /// This looks through the provided worklist as a list of candidate basic
507 /// blocks and select the most profitable one to place. The definition of
508 /// profitable only really makes sense in the context of a loop. This returns
509 /// the most frequently visited block in the worklist, which in the case of
510 /// a loop, is the one most desirable to be physically close to the rest of the
511 /// loop body in order to improve icache behavior.
512 ///
513 /// \returns The best block found, or null if none are viable.
514 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
515     BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList,
516     const BlockFilterSet *BlockFilter) {
517   // Once we need to walk the worklist looking for a candidate, cleanup the
518   // worklist of already placed entries.
519   // FIXME: If this shows up on profiles, it could be folded (at the cost of
520   // some code complexity) into the loop below.
521   WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(),
522                                 [&](MachineBasicBlock *BB) {
523                                   return BlockToChain.lookup(BB) == &Chain;
524                                 }),
525                  WorkList.end());
526
527   MachineBasicBlock *BestBlock = nullptr;
528   BlockFrequency BestFreq;
529   for (MachineBasicBlock *MBB : WorkList) {
530     BlockChain &SuccChain = *BlockToChain[MBB];
531     if (&SuccChain == &Chain) {
532       DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> Already merged!\n");
533       continue;
534     }
535     assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block");
536
537     BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
538     DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> ";
539           MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
540     if (BestBlock && BestFreq >= CandidateFreq)
541       continue;
542     BestBlock = MBB;
543     BestFreq = CandidateFreq;
544   }
545   return BestBlock;
546 }
547
548 /// \brief Retrieve the first unplaced basic block.
549 ///
550 /// This routine is called when we are unable to use the CFG to walk through
551 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
552 /// We walk through the function's blocks in order, starting from the
553 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
554 /// re-scanning the entire sequence on repeated calls to this routine.
555 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
556     MachineFunction &F, const BlockChain &PlacedChain,
557     MachineFunction::iterator &PrevUnplacedBlockIt,
558     const BlockFilterSet *BlockFilter) {
559   for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E;
560        ++I) {
561     if (BlockFilter && !BlockFilter->count(&*I))
562       continue;
563     if (BlockToChain[&*I] != &PlacedChain) {
564       PrevUnplacedBlockIt = I;
565       // Now select the head of the chain to which the unplaced block belongs
566       // as the block to place. This will force the entire chain to be placed,
567       // and satisfies the requirements of merging chains.
568       return *BlockToChain[&*I]->begin();
569     }
570   }
571   return nullptr;
572 }
573
574 void MachineBlockPlacement::buildChain(
575     MachineBasicBlock *BB, BlockChain &Chain,
576     SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
577     const BlockFilterSet *BlockFilter) {
578   assert(BB);
579   assert(BlockToChain[BB] == &Chain);
580   MachineFunction &F = *BB->getParent();
581   MachineFunction::iterator PrevUnplacedBlockIt = F.begin();
582
583   MachineBasicBlock *LoopHeaderBB = BB;
584   markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter);
585   BB = *std::prev(Chain.end());
586   for (;;) {
587     assert(BB);
588     assert(BlockToChain[BB] == &Chain);
589     assert(*std::prev(Chain.end()) == BB);
590
591     // Look for the best viable successor if there is one to place immediately
592     // after this block.
593     MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter);
594
595     // If an immediate successor isn't available, look for the best viable
596     // block among those we've identified as not violating the loop's CFG at
597     // this point. This won't be a fallthrough, but it will increase locality.
598     if (!BestSucc)
599       BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter);
600
601     if (!BestSucc) {
602       BestSucc =
603           getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, BlockFilter);
604       if (!BestSucc)
605         break;
606
607       DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
608                       "layout successor until the CFG reduces\n");
609     }
610
611     // Place this block, updating the datastructures to reflect its placement.
612     BlockChain &SuccChain = *BlockToChain[BestSucc];
613     // Zero out LoopPredecessors for the successor we're about to merge in case
614     // we selected a successor that didn't fit naturally into the CFG.
615     SuccChain.LoopPredecessors = 0;
616     DEBUG(dbgs() << "Merging from " << getBlockNum(BB) << " to "
617                  << getBlockNum(BestSucc) << "\n");
618     markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter);
619     Chain.merge(BestSucc, &SuccChain);
620     BB = *std::prev(Chain.end());
621   }
622
623   DEBUG(dbgs() << "Finished forming chain for header block "
624                << getBlockNum(*Chain.begin()) << "\n");
625 }
626
627 /// \brief Find the best loop top block for layout.
628 ///
629 /// Look for a block which is strictly better than the loop header for laying
630 /// out at the top of the loop. This looks for one and only one pattern:
631 /// a latch block with no conditional exit. This block will cause a conditional
632 /// jump around it or will be the bottom of the loop if we lay it out in place,
633 /// but if it it doesn't end up at the bottom of the loop for any reason,
634 /// rotation alone won't fix it. Because such a block will always result in an
635 /// unconditional jump (for the backedge) rotating it in front of the loop
636 /// header is always profitable.
637 MachineBasicBlock *
638 MachineBlockPlacement::findBestLoopTop(MachineLoop &L,
639                                        const BlockFilterSet &LoopBlockSet) {
640   // Check that the header hasn't been fused with a preheader block due to
641   // crazy branches. If it has, we need to start with the header at the top to
642   // prevent pulling the preheader into the loop body.
643   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
644   if (!LoopBlockSet.count(*HeaderChain.begin()))
645     return L.getHeader();
646
647   DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader())
648                << "\n");
649
650   BlockFrequency BestPredFreq;
651   MachineBasicBlock *BestPred = nullptr;
652   for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) {
653     if (!LoopBlockSet.count(Pred))
654       continue;
655     DEBUG(dbgs() << "    header pred: " << getBlockName(Pred) << ", "
656                  << Pred->succ_size() << " successors, ";
657           MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
658     if (Pred->succ_size() > 1)
659       continue;
660
661     BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
662     if (!BestPred || PredFreq > BestPredFreq ||
663         (!(PredFreq < BestPredFreq) &&
664          Pred->isLayoutSuccessor(L.getHeader()))) {
665       BestPred = Pred;
666       BestPredFreq = PredFreq;
667     }
668   }
669
670   // If no direct predecessor is fine, just use the loop header.
671   if (!BestPred)
672     return L.getHeader();
673
674   // Walk backwards through any straight line of predecessors.
675   while (BestPred->pred_size() == 1 &&
676          (*BestPred->pred_begin())->succ_size() == 1 &&
677          *BestPred->pred_begin() != L.getHeader())
678     BestPred = *BestPred->pred_begin();
679
680   DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
681   return BestPred;
682 }
683
684 /// \brief Find the best loop exiting block for layout.
685 ///
686 /// This routine implements the logic to analyze the loop looking for the best
687 /// block to layout at the top of the loop. Typically this is done to maximize
688 /// fallthrough opportunities.
689 MachineBasicBlock *
690 MachineBlockPlacement::findBestLoopExit(MachineFunction &F, MachineLoop &L,
691                                         const BlockFilterSet &LoopBlockSet) {
692   // We don't want to layout the loop linearly in all cases. If the loop header
693   // is just a normal basic block in the loop, we want to look for what block
694   // within the loop is the best one to layout at the top. However, if the loop
695   // header has be pre-merged into a chain due to predecessors not having
696   // analyzable branches, *and* the predecessor it is merged with is *not* part
697   // of the loop, rotating the header into the middle of the loop will create
698   // a non-contiguous range of blocks which is Very Bad. So start with the
699   // header and only rotate if safe.
700   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
701   if (!LoopBlockSet.count(*HeaderChain.begin()))
702     return nullptr;
703
704   BlockFrequency BestExitEdgeFreq;
705   unsigned BestExitLoopDepth = 0;
706   MachineBasicBlock *ExitingBB = nullptr;
707   // If there are exits to outer loops, loop rotation can severely limit
708   // fallthrough opportunites unless it selects such an exit. Keep a set of
709   // blocks where rotating to exit with that block will reach an outer loop.
710   SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
711
712   DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader())
713                << "\n");
714   for (MachineBasicBlock *MBB : L.getBlocks()) {
715     BlockChain &Chain = *BlockToChain[MBB];
716     // Ensure that this block is at the end of a chain; otherwise it could be
717     // mid-way through an inner loop or a successor of an unanalyzable branch.
718     if (MBB != *std::prev(Chain.end()))
719       continue;
720
721     // Now walk the successors. We need to establish whether this has a viable
722     // exiting successor and whether it has a viable non-exiting successor.
723     // We store the old exiting state and restore it if a viable looping
724     // successor isn't found.
725     MachineBasicBlock *OldExitingBB = ExitingBB;
726     BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
727     bool HasLoopingSucc = false;
728     for (MachineBasicBlock *Succ : MBB->successors()) {
729       if (Succ->isEHPad())
730         continue;
731       if (Succ == MBB)
732         continue;
733       BlockChain &SuccChain = *BlockToChain[Succ];
734       // Don't split chains, either this chain or the successor's chain.
735       if (&Chain == &SuccChain) {
736         DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
737                      << getBlockName(Succ) << " (chain conflict)\n");
738         continue;
739       }
740
741       auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
742       if (LoopBlockSet.count(Succ)) {
743         DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> "
744                      << getBlockName(Succ) << " (" << SuccProb << ")\n");
745         HasLoopingSucc = true;
746         continue;
747       }
748
749       unsigned SuccLoopDepth = 0;
750       if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
751         SuccLoopDepth = ExitLoop->getLoopDepth();
752         if (ExitLoop->contains(&L))
753           BlocksExitingToOuterLoop.insert(MBB);
754       }
755
756       BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
757       DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
758                    << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] (";
759             MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
760       // Note that we bias this toward an existing layout successor to retain
761       // incoming order in the absence of better information. The exit must have
762       // a frequency higher than the current exit before we consider breaking
763       // the layout.
764       BranchProbability Bias(100 - ExitBlockBias, 100);
765       if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
766           ExitEdgeFreq > BestExitEdgeFreq ||
767           (MBB->isLayoutSuccessor(Succ) &&
768            !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
769         BestExitEdgeFreq = ExitEdgeFreq;
770         ExitingBB = MBB;
771       }
772     }
773
774     if (!HasLoopingSucc) {
775       // Restore the old exiting state, no viable looping successor was found.
776       ExitingBB = OldExitingBB;
777       BestExitEdgeFreq = OldBestExitEdgeFreq;
778       continue;
779     }
780   }
781   // Without a candidate exiting block or with only a single block in the
782   // loop, just use the loop header to layout the loop.
783   if (!ExitingBB || L.getNumBlocks() == 1)
784     return nullptr;
785
786   // Also, if we have exit blocks which lead to outer loops but didn't select
787   // one of them as the exiting block we are rotating toward, disable loop
788   // rotation altogether.
789   if (!BlocksExitingToOuterLoop.empty() &&
790       !BlocksExitingToOuterLoop.count(ExitingBB))
791     return nullptr;
792
793   DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB) << "\n");
794   return ExitingBB;
795 }
796
797 /// \brief Attempt to rotate an exiting block to the bottom of the loop.
798 ///
799 /// Once we have built a chain, try to rotate it to line up the hot exit block
800 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
801 /// branches. For example, if the loop has fallthrough into its header and out
802 /// of its bottom already, don't rotate it.
803 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
804                                        MachineBasicBlock *ExitingBB,
805                                        const BlockFilterSet &LoopBlockSet) {
806   if (!ExitingBB)
807     return;
808
809   MachineBasicBlock *Top = *LoopChain.begin();
810   bool ViableTopFallthrough = false;
811   for (MachineBasicBlock *Pred : Top->predecessors()) {
812     BlockChain *PredChain = BlockToChain[Pred];
813     if (!LoopBlockSet.count(Pred) &&
814         (!PredChain || Pred == *std::prev(PredChain->end()))) {
815       ViableTopFallthrough = true;
816       break;
817     }
818   }
819
820   // If the header has viable fallthrough, check whether the current loop
821   // bottom is a viable exiting block. If so, bail out as rotating will
822   // introduce an unnecessary branch.
823   if (ViableTopFallthrough) {
824     MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
825     for (MachineBasicBlock *Succ : Bottom->successors()) {
826       BlockChain *SuccChain = BlockToChain[Succ];
827       if (!LoopBlockSet.count(Succ) &&
828           (!SuccChain || Succ == *SuccChain->begin()))
829         return;
830     }
831   }
832
833   BlockChain::iterator ExitIt =
834       std::find(LoopChain.begin(), LoopChain.end(), ExitingBB);
835   if (ExitIt == LoopChain.end())
836     return;
837
838   std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
839 }
840
841 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost.
842 ///
843 /// With profile data, we can determine the cost in terms of missed fall through
844 /// opportunities when rotating a loop chain and select the best rotation.
845 /// Basically, there are three kinds of cost to consider for each rotation:
846 ///    1. The possibly missed fall through edge (if it exists) from BB out of
847 ///    the loop to the loop header.
848 ///    2. The possibly missed fall through edges (if they exist) from the loop
849 ///    exits to BB out of the loop.
850 ///    3. The missed fall through edge (if it exists) from the last BB to the
851 ///    first BB in the loop chain.
852 ///  Therefore, the cost for a given rotation is the sum of costs listed above.
853 ///  We select the best rotation with the smallest cost.
854 void MachineBlockPlacement::rotateLoopWithProfile(
855     BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) {
856   auto HeaderBB = L.getHeader();
857   auto HeaderIter = std::find(LoopChain.begin(), LoopChain.end(), HeaderBB);
858   auto RotationPos = LoopChain.end();
859
860   BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
861
862   // A utility lambda that scales up a block frequency by dividing it by a
863   // branch probability which is the reciprocal of the scale.
864   auto ScaleBlockFrequency = [](BlockFrequency Freq,
865                                 unsigned Scale) -> BlockFrequency {
866     if (Scale == 0)
867       return 0;
868     // Use operator / between BlockFrequency and BranchProbability to implement
869     // saturating multiplication.
870     return Freq / BranchProbability(1, Scale);
871   };
872
873   // Compute the cost of the missed fall-through edge to the loop header if the
874   // chain head is not the loop header. As we only consider natural loops with
875   // single header, this computation can be done only once.
876   BlockFrequency HeaderFallThroughCost(0);
877   for (auto *Pred : HeaderBB->predecessors()) {
878     BlockChain *PredChain = BlockToChain[Pred];
879     if (!LoopBlockSet.count(Pred) &&
880         (!PredChain || Pred == *std::prev(PredChain->end()))) {
881       auto EdgeFreq =
882           MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB);
883       auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
884       // If the predecessor has only an unconditional jump to the header, we
885       // need to consider the cost of this jump.
886       if (Pred->succ_size() == 1)
887         FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
888       HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
889     }
890   }
891
892   // Here we collect all exit blocks in the loop, and for each exit we find out
893   // its hottest exit edge. For each loop rotation, we define the loop exit cost
894   // as the sum of frequencies of exit edges we collect here, excluding the exit
895   // edge from the tail of the loop chain.
896   SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
897   for (auto BB : LoopChain) {
898     auto LargestExitEdgeProb = BranchProbability::getZero();
899     for (auto *Succ : BB->successors()) {
900       BlockChain *SuccChain = BlockToChain[Succ];
901       if (!LoopBlockSet.count(Succ) &&
902           (!SuccChain || Succ == *SuccChain->begin())) {
903         auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
904         LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
905       }
906     }
907     if (LargestExitEdgeProb > BranchProbability::getZero()) {
908       auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
909       ExitsWithFreq.emplace_back(BB, ExitFreq);
910     }
911   }
912
913   // In this loop we iterate every block in the loop chain and calculate the
914   // cost assuming the block is the head of the loop chain. When the loop ends,
915   // we should have found the best candidate as the loop chain's head.
916   for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
917             EndIter = LoopChain.end();
918        Iter != EndIter; Iter++, TailIter++) {
919     // TailIter is used to track the tail of the loop chain if the block we are
920     // checking (pointed by Iter) is the head of the chain.
921     if (TailIter == LoopChain.end())
922       TailIter = LoopChain.begin();
923
924     auto TailBB = *TailIter;
925
926     // Calculate the cost by putting this BB to the top.
927     BlockFrequency Cost = 0;
928
929     // If the current BB is the loop header, we need to take into account the
930     // cost of the missed fall through edge from outside of the loop to the
931     // header.
932     if (Iter != HeaderIter)
933       Cost += HeaderFallThroughCost;
934
935     // Collect the loop exit cost by summing up frequencies of all exit edges
936     // except the one from the chain tail.
937     for (auto &ExitWithFreq : ExitsWithFreq)
938       if (TailBB != ExitWithFreq.first)
939         Cost += ExitWithFreq.second;
940
941     // The cost of breaking the once fall-through edge from the tail to the top
942     // of the loop chain. Here we need to consider three cases:
943     // 1. If the tail node has only one successor, then we will get an
944     //    additional jmp instruction. So the cost here is (MisfetchCost +
945     //    JumpInstCost) * tail node frequency.
946     // 2. If the tail node has two successors, then we may still get an
947     //    additional jmp instruction if the layout successor after the loop
948     //    chain is not its CFG successor. Note that the more frequently executed
949     //    jmp instruction will be put ahead of the other one. Assume the
950     //    frequency of those two branches are x and y, where x is the frequency
951     //    of the edge to the chain head, then the cost will be
952     //    (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
953     // 3. If the tail node has more than two successors (this rarely happens),
954     //    we won't consider any additional cost.
955     if (TailBB->isSuccessor(*Iter)) {
956       auto TailBBFreq = MBFI->getBlockFreq(TailBB);
957       if (TailBB->succ_size() == 1)
958         Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
959                                     MisfetchCost + JumpInstCost);
960       else if (TailBB->succ_size() == 2) {
961         auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
962         auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
963         auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
964                                   ? TailBBFreq * TailToHeadProb.getCompl()
965                                   : TailToHeadFreq;
966         Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
967                 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
968       }
969     }
970
971     DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockNum(*Iter)
972                  << " to the top: " << Cost.getFrequency() << "\n");
973
974     if (Cost < SmallestRotationCost) {
975       SmallestRotationCost = Cost;
976       RotationPos = Iter;
977     }
978   }
979
980   if (RotationPos != LoopChain.end()) {
981     DEBUG(dbgs() << "Rotate loop by making " << getBlockNum(*RotationPos)
982                  << " to the top\n");
983     std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
984   }
985 }
986
987 /// \brief Collect blocks in the given loop that are to be placed.
988 ///
989 /// When profile data is available, exclude cold blocks from the returned set;
990 /// otherwise, collect all blocks in the loop.
991 MachineBlockPlacement::BlockFilterSet
992 MachineBlockPlacement::collectLoopBlockSet(MachineFunction &F, MachineLoop &L) {
993   BlockFilterSet LoopBlockSet;
994
995   // Filter cold blocks off from LoopBlockSet when profile data is available.
996   // Collect the sum of frequencies of incoming edges to the loop header from
997   // outside. If we treat the loop as a super block, this is the frequency of
998   // the loop. Then for each block in the loop, we calculate the ratio between
999   // its frequency and the frequency of the loop block. When it is too small,
1000   // don't add it to the loop chain. If there are outer loops, then this block
1001   // will be merged into the first outer loop chain for which this block is not
1002   // cold anymore. This needs precise profile data and we only do this when
1003   // profile data is available.
1004   if (F.getFunction()->getEntryCount()) {
1005     BlockFrequency LoopFreq(0);
1006     for (auto LoopPred : L.getHeader()->predecessors())
1007       if (!L.contains(LoopPred))
1008         LoopFreq += MBFI->getBlockFreq(LoopPred) *
1009                     MBPI->getEdgeProbability(LoopPred, L.getHeader());
1010
1011     for (MachineBasicBlock *LoopBB : L.getBlocks()) {
1012       auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
1013       if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
1014         continue;
1015       LoopBlockSet.insert(LoopBB);
1016     }
1017   } else
1018     LoopBlockSet.insert(L.block_begin(), L.block_end());
1019
1020   return LoopBlockSet;
1021 }
1022
1023 /// \brief Forms basic block chains from the natural loop structures.
1024 ///
1025 /// These chains are designed to preserve the existing *structure* of the code
1026 /// as much as possible. We can then stitch the chains together in a way which
1027 /// both preserves the topological structure and minimizes taken conditional
1028 /// branches.
1029 void MachineBlockPlacement::buildLoopChains(MachineFunction &F,
1030                                             MachineLoop &L) {
1031   // First recurse through any nested loops, building chains for those inner
1032   // loops.
1033   for (MachineLoop *InnerLoop : L)
1034     buildLoopChains(F, *InnerLoop);
1035
1036   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
1037   BlockFilterSet LoopBlockSet = collectLoopBlockSet(F, L);
1038
1039   // Check if we have profile data for this function. If yes, we will rotate
1040   // this loop by modeling costs more precisely which requires the profile data
1041   // for better layout.
1042   bool RotateLoopWithProfile =
1043       PreciseRotationCost && F.getFunction()->getEntryCount();
1044
1045   // First check to see if there is an obviously preferable top block for the
1046   // loop. This will default to the header, but may end up as one of the
1047   // predecessors to the header if there is one which will result in strictly
1048   // fewer branches in the loop body.
1049   // When we use profile data to rotate the loop, this is unnecessary.
1050   MachineBasicBlock *LoopTop =
1051       RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet);
1052
1053   // If we selected just the header for the loop top, look for a potentially
1054   // profitable exit block in the event that rotating the loop can eliminate
1055   // branches by placing an exit edge at the bottom.
1056   MachineBasicBlock *ExitingBB = nullptr;
1057   if (!RotateLoopWithProfile && LoopTop == L.getHeader())
1058     ExitingBB = findBestLoopExit(F, L, LoopBlockSet);
1059
1060   BlockChain &LoopChain = *BlockToChain[LoopTop];
1061
1062   // FIXME: This is a really lame way of walking the chains in the loop: we
1063   // walk the blocks, and use a set to prevent visiting a particular chain
1064   // twice.
1065   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
1066   assert(LoopChain.LoopPredecessors == 0);
1067   UpdatedPreds.insert(&LoopChain);
1068
1069   for (MachineBasicBlock *LoopBB : LoopBlockSet) {
1070     BlockChain &Chain = *BlockToChain[LoopBB];
1071     if (!UpdatedPreds.insert(&Chain).second)
1072       continue;
1073
1074     assert(Chain.LoopPredecessors == 0);
1075     for (MachineBasicBlock *ChainBB : Chain) {
1076       assert(BlockToChain[ChainBB] == &Chain);
1077       for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
1078         if (BlockToChain[Pred] == &Chain || !LoopBlockSet.count(Pred))
1079           continue;
1080         ++Chain.LoopPredecessors;
1081       }
1082     }
1083
1084     if (Chain.LoopPredecessors == 0)
1085       BlockWorkList.push_back(*Chain.begin());
1086   }
1087
1088   buildChain(LoopTop, LoopChain, BlockWorkList, &LoopBlockSet);
1089
1090   if (RotateLoopWithProfile)
1091     rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
1092   else
1093     rotateLoop(LoopChain, ExitingBB, LoopBlockSet);
1094
1095   DEBUG({
1096     // Crash at the end so we get all of the debugging output first.
1097     bool BadLoop = false;
1098     if (LoopChain.LoopPredecessors) {
1099       BadLoop = true;
1100       dbgs() << "Loop chain contains a block without its preds placed!\n"
1101              << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1102              << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
1103     }
1104     for (MachineBasicBlock *ChainBB : LoopChain) {
1105       dbgs() << "          ... " << getBlockName(ChainBB) << "\n";
1106       if (!LoopBlockSet.erase(ChainBB)) {
1107         // We don't mark the loop as bad here because there are real situations
1108         // where this can occur. For example, with an unanalyzable fallthrough
1109         // from a loop block to a non-loop block or vice versa.
1110         dbgs() << "Loop chain contains a block not contained by the loop!\n"
1111                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1112                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
1113                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
1114       }
1115     }
1116
1117     if (!LoopBlockSet.empty()) {
1118       BadLoop = true;
1119       for (MachineBasicBlock *LoopBB : LoopBlockSet)
1120         dbgs() << "Loop contains blocks never placed into a chain!\n"
1121                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1122                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
1123                << "  Bad block:    " << getBlockName(LoopBB) << "\n";
1124     }
1125     assert(!BadLoop && "Detected problems with the placement of this loop.");
1126   });
1127 }
1128
1129 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) {
1130   // Ensure that every BB in the function has an associated chain to simplify
1131   // the assumptions of the remaining algorithm.
1132   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
1133   for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
1134     MachineBasicBlock *BB = &*FI;
1135     BlockChain *Chain =
1136         new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
1137     // Also, merge any blocks which we cannot reason about and must preserve
1138     // the exact fallthrough behavior for.
1139     for (;;) {
1140       Cond.clear();
1141       MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1142       if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
1143         break;
1144
1145       MachineFunction::iterator NextFI = std::next(FI);
1146       MachineBasicBlock *NextBB = &*NextFI;
1147       // Ensure that the layout successor is a viable block, as we know that
1148       // fallthrough is a possibility.
1149       assert(NextFI != FE && "Can't fallthrough past the last block.");
1150       DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
1151                    << getBlockName(BB) << " -> " << getBlockName(NextBB)
1152                    << "\n");
1153       Chain->merge(NextBB, nullptr);
1154       FI = NextFI;
1155       BB = NextBB;
1156     }
1157   }
1158
1159   if (OutlineOptionalBranches) {
1160     // Find the nearest common dominator of all of F's terminators.
1161     MachineBasicBlock *Terminator = nullptr;
1162     for (MachineBasicBlock &MBB : F) {
1163       if (MBB.succ_size() == 0) {
1164         if (Terminator == nullptr)
1165           Terminator = &MBB;
1166         else
1167           Terminator = MDT->findNearestCommonDominator(Terminator, &MBB);
1168       }
1169     }
1170
1171     // MBBs dominating this common dominator are unavoidable.
1172     UnavoidableBlocks.clear();
1173     for (MachineBasicBlock &MBB : F) {
1174       if (MDT->dominates(&MBB, Terminator)) {
1175         UnavoidableBlocks.insert(&MBB);
1176       }
1177     }
1178   }
1179
1180   // Build any loop-based chains.
1181   for (MachineLoop *L : *MLI)
1182     buildLoopChains(F, *L);
1183
1184   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
1185
1186   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
1187   for (MachineBasicBlock &MBB : F) {
1188     BlockChain &Chain = *BlockToChain[&MBB];
1189     if (!UpdatedPreds.insert(&Chain).second)
1190       continue;
1191
1192     assert(Chain.LoopPredecessors == 0);
1193     for (MachineBasicBlock *ChainBB : Chain) {
1194       assert(BlockToChain[ChainBB] == &Chain);
1195       for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
1196         if (BlockToChain[Pred] == &Chain)
1197           continue;
1198         ++Chain.LoopPredecessors;
1199       }
1200     }
1201
1202     if (Chain.LoopPredecessors == 0)
1203       BlockWorkList.push_back(*Chain.begin());
1204   }
1205
1206   BlockChain &FunctionChain = *BlockToChain[&F.front()];
1207   buildChain(&F.front(), FunctionChain, BlockWorkList);
1208
1209 #ifndef NDEBUG
1210   typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
1211 #endif
1212   DEBUG({
1213     // Crash at the end so we get all of the debugging output first.
1214     bool BadFunc = false;
1215     FunctionBlockSetType FunctionBlockSet;
1216     for (MachineBasicBlock &MBB : F)
1217       FunctionBlockSet.insert(&MBB);
1218
1219     for (MachineBasicBlock *ChainBB : FunctionChain)
1220       if (!FunctionBlockSet.erase(ChainBB)) {
1221         BadFunc = true;
1222         dbgs() << "Function chain contains a block not in the function!\n"
1223                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
1224       }
1225
1226     if (!FunctionBlockSet.empty()) {
1227       BadFunc = true;
1228       for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
1229         dbgs() << "Function contains blocks never placed into a chain!\n"
1230                << "  Bad block:    " << getBlockName(RemainingBB) << "\n";
1231     }
1232     assert(!BadFunc && "Detected problems with the block placement.");
1233   });
1234
1235   // Splice the blocks into place.
1236   MachineFunction::iterator InsertPos = F.begin();
1237   for (MachineBasicBlock *ChainBB : FunctionChain) {
1238     DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
1239                                                        : "          ... ")
1240                  << getBlockName(ChainBB) << "\n");
1241     if (InsertPos != MachineFunction::iterator(ChainBB))
1242       F.splice(InsertPos, ChainBB);
1243     else
1244       ++InsertPos;
1245
1246     // Update the terminator of the previous block.
1247     if (ChainBB == *FunctionChain.begin())
1248       continue;
1249     MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
1250
1251     // FIXME: It would be awesome of updateTerminator would just return rather
1252     // than assert when the branch cannot be analyzed in order to remove this
1253     // boiler plate.
1254     Cond.clear();
1255     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1256     if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
1257       // The "PrevBB" is not yet updated to reflect current code layout, so,
1258       //   o. it may fall-through to a block without explict "goto" instruction
1259       //      before layout, and no longer fall-through it after layout; or
1260       //   o. just opposite.
1261       //
1262       // AnalyzeBranch() may return erroneous value for FBB when these two
1263       // situations take place. For the first scenario FBB is mistakenly set
1264       // NULL; for the 2nd scenario, the FBB, which is expected to be NULL,
1265       // is mistakenly pointing to "*BI".
1266       //
1267       bool needUpdateBr = true;
1268       if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
1269         PrevBB->updateTerminator();
1270         needUpdateBr = false;
1271         Cond.clear();
1272         TBB = FBB = nullptr;
1273         if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
1274           // FIXME: This should never take place.
1275           TBB = FBB = nullptr;
1276         }
1277       }
1278
1279       // If PrevBB has a two-way branch, try to re-order the branches
1280       // such that we branch to the successor with higher probability first.
1281       if (TBB && !Cond.empty() && FBB &&
1282           MBPI->getEdgeProbability(PrevBB, FBB) >
1283               MBPI->getEdgeProbability(PrevBB, TBB) &&
1284           !TII->ReverseBranchCondition(Cond)) {
1285         DEBUG(dbgs() << "Reverse order of the two branches: "
1286                      << getBlockName(PrevBB) << "\n");
1287         DEBUG(dbgs() << "    Edge probability: "
1288                      << MBPI->getEdgeProbability(PrevBB, FBB) << " vs "
1289                      << MBPI->getEdgeProbability(PrevBB, TBB) << "\n");
1290         DebugLoc dl; // FIXME: this is nowhere
1291         TII->RemoveBranch(*PrevBB);
1292         TII->InsertBranch(*PrevBB, FBB, TBB, Cond, dl);
1293         needUpdateBr = true;
1294       }
1295       if (needUpdateBr)
1296         PrevBB->updateTerminator();
1297     }
1298   }
1299
1300   // Fixup the last block.
1301   Cond.clear();
1302   MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1303   if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond))
1304     F.back().updateTerminator();
1305
1306   // Walk through the backedges of the function now that we have fully laid out
1307   // the basic blocks and align the destination of each backedge. We don't rely
1308   // exclusively on the loop info here so that we can align backedges in
1309   // unnatural CFGs and backedges that were introduced purely because of the
1310   // loop rotations done during this layout pass.
1311   // FIXME: Use Function::optForSize().
1312   if (F.getFunction()->hasFnAttribute(Attribute::OptimizeForSize))
1313     return;
1314   if (FunctionChain.begin() == FunctionChain.end())
1315     return; // Empty chain.
1316
1317   const BranchProbability ColdProb(1, 5); // 20%
1318   BlockFrequency EntryFreq = MBFI->getBlockFreq(&F.front());
1319   BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
1320   for (MachineBasicBlock *ChainBB : FunctionChain) {
1321     if (ChainBB == *FunctionChain.begin())
1322       continue;
1323
1324     // Don't align non-looping basic blocks. These are unlikely to execute
1325     // enough times to matter in practice. Note that we'll still handle
1326     // unnatural CFGs inside of a natural outer loop (the common case) and
1327     // rotated loops.
1328     MachineLoop *L = MLI->getLoopFor(ChainBB);
1329     if (!L)
1330       continue;
1331
1332     unsigned Align = TLI->getPrefLoopAlignment(L);
1333     if (!Align)
1334       continue; // Don't care about loop alignment.
1335
1336     // If the block is cold relative to the function entry don't waste space
1337     // aligning it.
1338     BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
1339     if (Freq < WeightedEntryFreq)
1340       continue;
1341
1342     // If the block is cold relative to its loop header, don't align it
1343     // regardless of what edges into the block exist.
1344     MachineBasicBlock *LoopHeader = L->getHeader();
1345     BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
1346     if (Freq < (LoopHeaderFreq * ColdProb))
1347       continue;
1348
1349     // Check for the existence of a non-layout predecessor which would benefit
1350     // from aligning this block.
1351     MachineBasicBlock *LayoutPred =
1352         &*std::prev(MachineFunction::iterator(ChainBB));
1353
1354     // Force alignment if all the predecessors are jumps. We already checked
1355     // that the block isn't cold above.
1356     if (!LayoutPred->isSuccessor(ChainBB)) {
1357       ChainBB->setAlignment(Align);
1358       continue;
1359     }
1360
1361     // Align this block if the layout predecessor's edge into this block is
1362     // cold relative to the block. When this is true, other predecessors make up
1363     // all of the hot entries into the block and thus alignment is likely to be
1364     // important.
1365     BranchProbability LayoutProb =
1366         MBPI->getEdgeProbability(LayoutPred, ChainBB);
1367     BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
1368     if (LayoutEdgeFreq <= (Freq * ColdProb))
1369       ChainBB->setAlignment(Align);
1370   }
1371 }
1372
1373 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) {
1374   // Check for single-block functions and skip them.
1375   if (std::next(F.begin()) == F.end())
1376     return false;
1377
1378   if (skipOptnoneFunction(*F.getFunction()))
1379     return false;
1380
1381   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1382   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1383   MLI = &getAnalysis<MachineLoopInfo>();
1384   TII = F.getSubtarget().getInstrInfo();
1385   TLI = F.getSubtarget().getTargetLowering();
1386   MDT = &getAnalysis<MachineDominatorTree>();
1387   assert(BlockToChain.empty());
1388
1389   buildCFGChains(F);
1390
1391   BlockToChain.clear();
1392   ChainAllocator.DestroyAll();
1393
1394   if (AlignAllBlock)
1395     // Align all of the blocks in the function to a specific alignment.
1396     for (MachineBasicBlock &MBB : F)
1397       MBB.setAlignment(AlignAllBlock);
1398
1399   // We always return true as we have no way to track whether the final order
1400   // differs from the original order.
1401   return true;
1402 }
1403
1404 namespace {
1405 /// \brief A pass to compute block placement statistics.
1406 ///
1407 /// A separate pass to compute interesting statistics for evaluating block
1408 /// placement. This is separate from the actual placement pass so that they can
1409 /// be computed in the absence of any placement transformations or when using
1410 /// alternative placement strategies.
1411 class MachineBlockPlacementStats : public MachineFunctionPass {
1412   /// \brief A handle to the branch probability pass.
1413   const MachineBranchProbabilityInfo *MBPI;
1414
1415   /// \brief A handle to the function-wide block frequency pass.
1416   const MachineBlockFrequencyInfo *MBFI;
1417
1418 public:
1419   static char ID; // Pass identification, replacement for typeid
1420   MachineBlockPlacementStats() : MachineFunctionPass(ID) {
1421     initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
1422   }
1423
1424   bool runOnMachineFunction(MachineFunction &F) override;
1425
1426   void getAnalysisUsage(AnalysisUsage &AU) const override {
1427     AU.addRequired<MachineBranchProbabilityInfo>();
1428     AU.addRequired<MachineBlockFrequencyInfo>();
1429     AU.setPreservesAll();
1430     MachineFunctionPass::getAnalysisUsage(AU);
1431   }
1432 };
1433 }
1434
1435 char MachineBlockPlacementStats::ID = 0;
1436 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
1437 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
1438                       "Basic Block Placement Stats", false, false)
1439 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
1440 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
1441 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
1442                     "Basic Block Placement Stats", false, false)
1443
1444 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
1445   // Check for single-block functions and skip them.
1446   if (std::next(F.begin()) == F.end())
1447     return false;
1448
1449   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1450   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1451
1452   for (MachineBasicBlock &MBB : F) {
1453     BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
1454     Statistic &NumBranches =
1455         (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
1456     Statistic &BranchTakenFreq =
1457         (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
1458     for (MachineBasicBlock *Succ : MBB.successors()) {
1459       // Skip if this successor is a fallthrough.
1460       if (MBB.isLayoutSuccessor(Succ))
1461         continue;
1462
1463       BlockFrequency EdgeFreq =
1464           BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
1465       ++NumBranches;
1466       BranchTakenFreq += EdgeFreq.getFrequency();
1467     }
1468   }
1469
1470   return false;
1471 }