Rename LiveRange to LiveInterval::Segment
[oota-llvm.git] / lib / CodeGen / MachineBasicBlock.cpp
1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect the sequence of machine instructions for a basic block.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/MachineBasicBlock.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/Assembly/Writer.h"
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "llvm/CodeGen/LiveVariables.h"
20 #include "llvm/CodeGen/MachineDominators.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SlotIndexes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCContext.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/LeakDetector.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Target/TargetInstrInfo.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include "llvm/Target/TargetRegisterInfo.h"
36 #include <algorithm>
37 using namespace llvm;
38
39 MachineBasicBlock::MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb)
40   : BB(bb), Number(-1), xParent(&mf), Alignment(0), IsLandingPad(false),
41     AddressTaken(false), CachedMCSymbol(NULL) {
42   Insts.Parent = this;
43 }
44
45 MachineBasicBlock::~MachineBasicBlock() {
46   LeakDetector::removeGarbageObject(this);
47 }
48
49 /// getSymbol - Return the MCSymbol for this basic block.
50 ///
51 MCSymbol *MachineBasicBlock::getSymbol() const {
52   if (!CachedMCSymbol) {
53     const MachineFunction *MF = getParent();
54     MCContext &Ctx = MF->getContext();
55     const char *Prefix = Ctx.getAsmInfo()->getPrivateGlobalPrefix();
56     CachedMCSymbol = Ctx.GetOrCreateSymbol(Twine(Prefix) + "BB" +
57                                            Twine(MF->getFunctionNumber()) +
58                                            "_" + Twine(getNumber()));
59   }
60
61   return CachedMCSymbol;
62 }
63
64
65 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
66   MBB.print(OS);
67   return OS;
68 }
69
70 /// addNodeToList (MBB) - When an MBB is added to an MF, we need to update the
71 /// parent pointer of the MBB, the MBB numbering, and any instructions in the
72 /// MBB to be on the right operand list for registers.
73 ///
74 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
75 /// gets the next available unique MBB number. If it is removed from a
76 /// MachineFunction, it goes back to being #-1.
77 void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) {
78   MachineFunction &MF = *N->getParent();
79   N->Number = MF.addToMBBNumbering(N);
80
81   // Make sure the instructions have their operands in the reginfo lists.
82   MachineRegisterInfo &RegInfo = MF.getRegInfo();
83   for (MachineBasicBlock::instr_iterator
84          I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
85     I->AddRegOperandsToUseLists(RegInfo);
86
87   LeakDetector::removeGarbageObject(N);
88 }
89
90 void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) {
91   N->getParent()->removeFromMBBNumbering(N->Number);
92   N->Number = -1;
93   LeakDetector::addGarbageObject(N);
94 }
95
96
97 /// addNodeToList (MI) - When we add an instruction to a basic block
98 /// list, we update its parent pointer and add its operands from reg use/def
99 /// lists if appropriate.
100 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
101   assert(N->getParent() == 0 && "machine instruction already in a basic block");
102   N->setParent(Parent);
103
104   // Add the instruction's register operands to their corresponding
105   // use/def lists.
106   MachineFunction *MF = Parent->getParent();
107   N->AddRegOperandsToUseLists(MF->getRegInfo());
108
109   LeakDetector::removeGarbageObject(N);
110 }
111
112 /// removeNodeFromList (MI) - When we remove an instruction from a basic block
113 /// list, we update its parent pointer and remove its operands from reg use/def
114 /// lists if appropriate.
115 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
116   assert(N->getParent() != 0 && "machine instruction not in a basic block");
117
118   // Remove from the use/def lists.
119   if (MachineFunction *MF = N->getParent()->getParent())
120     N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
121
122   N->setParent(0);
123
124   LeakDetector::addGarbageObject(N);
125 }
126
127 /// transferNodesFromList (MI) - When moving a range of instructions from one
128 /// MBB list to another, we need to update the parent pointers and the use/def
129 /// lists.
130 void ilist_traits<MachineInstr>::
131 transferNodesFromList(ilist_traits<MachineInstr> &fromList,
132                       ilist_iterator<MachineInstr> first,
133                       ilist_iterator<MachineInstr> last) {
134   assert(Parent->getParent() == fromList.Parent->getParent() &&
135         "MachineInstr parent mismatch!");
136
137   // Splice within the same MBB -> no change.
138   if (Parent == fromList.Parent) return;
139
140   // If splicing between two blocks within the same function, just update the
141   // parent pointers.
142   for (; first != last; ++first)
143     first->setParent(Parent);
144 }
145
146 void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) {
147   assert(!MI->getParent() && "MI is still in a block!");
148   Parent->getParent()->DeleteMachineInstr(MI);
149 }
150
151 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
152   instr_iterator I = instr_begin(), E = instr_end();
153   while (I != E && I->isPHI())
154     ++I;
155   assert((I == E || !I->isInsideBundle()) &&
156          "First non-phi MI cannot be inside a bundle!");
157   return I;
158 }
159
160 MachineBasicBlock::iterator
161 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
162   iterator E = end();
163   while (I != E && (I->isPHI() || I->isLabel() || I->isDebugValue()))
164     ++I;
165   // FIXME: This needs to change if we wish to bundle labels / dbg_values
166   // inside the bundle.
167   assert((I == E || !I->isInsideBundle()) &&
168          "First non-phi / non-label instruction is inside a bundle!");
169   return I;
170 }
171
172 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
173   iterator B = begin(), E = end(), I = E;
174   while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
175     ; /*noop */
176   while (I != E && !I->isTerminator())
177     ++I;
178   return I;
179 }
180
181 MachineBasicBlock::const_iterator
182 MachineBasicBlock::getFirstTerminator() const {
183   const_iterator B = begin(), E = end(), I = E;
184   while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
185     ; /*noop */
186   while (I != E && !I->isTerminator())
187     ++I;
188   return I;
189 }
190
191 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
192   instr_iterator B = instr_begin(), E = instr_end(), I = E;
193   while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
194     ; /*noop */
195   while (I != E && !I->isTerminator())
196     ++I;
197   return I;
198 }
199
200 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
201   // Skip over end-of-block dbg_value instructions.
202   instr_iterator B = instr_begin(), I = instr_end();
203   while (I != B) {
204     --I;
205     // Return instruction that starts a bundle.
206     if (I->isDebugValue() || I->isInsideBundle())
207       continue;
208     return I;
209   }
210   // The block is all debug values.
211   return end();
212 }
213
214 MachineBasicBlock::const_iterator
215 MachineBasicBlock::getLastNonDebugInstr() const {
216   // Skip over end-of-block dbg_value instructions.
217   const_instr_iterator B = instr_begin(), I = instr_end();
218   while (I != B) {
219     --I;
220     // Return instruction that starts a bundle.
221     if (I->isDebugValue() || I->isInsideBundle())
222       continue;
223     return I;
224   }
225   // The block is all debug values.
226   return end();
227 }
228
229 const MachineBasicBlock *MachineBasicBlock::getLandingPadSuccessor() const {
230   // A block with a landing pad successor only has one other successor.
231   if (succ_size() > 2)
232     return 0;
233   for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
234     if ((*I)->isLandingPad())
235       return *I;
236   return 0;
237 }
238
239 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
240 void MachineBasicBlock::dump() const {
241   print(dbgs());
242 }
243 #endif
244
245 StringRef MachineBasicBlock::getName() const {
246   if (const BasicBlock *LBB = getBasicBlock())
247     return LBB->getName();
248   else
249     return "(null)";
250 }
251
252 /// Return a hopefully unique identifier for this block.
253 std::string MachineBasicBlock::getFullName() const {
254   std::string Name;
255   if (getParent())
256     Name = (getParent()->getName() + ":").str();
257   if (getBasicBlock())
258     Name += getBasicBlock()->getName();
259   else
260     Name += (Twine("BB") + Twine(getNumber())).str();
261   return Name;
262 }
263
264 void MachineBasicBlock::print(raw_ostream &OS, SlotIndexes *Indexes) const {
265   const MachineFunction *MF = getParent();
266   if (!MF) {
267     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
268        << " is null\n";
269     return;
270   }
271
272   if (Indexes)
273     OS << Indexes->getMBBStartIdx(this) << '\t';
274
275   OS << "BB#" << getNumber() << ": ";
276
277   const char *Comma = "";
278   if (const BasicBlock *LBB = getBasicBlock()) {
279     OS << Comma << "derived from LLVM BB ";
280     WriteAsOperand(OS, LBB, /*PrintType=*/false);
281     Comma = ", ";
282   }
283   if (isLandingPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; }
284   if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; }
285   if (Alignment)
286     OS << Comma << "Align " << Alignment << " (" << (1u << Alignment)
287        << " bytes)";
288
289   OS << '\n';
290
291   const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
292   if (!livein_empty()) {
293     if (Indexes) OS << '\t';
294     OS << "    Live Ins:";
295     for (livein_iterator I = livein_begin(),E = livein_end(); I != E; ++I)
296       OS << ' ' << PrintReg(*I, TRI);
297     OS << '\n';
298   }
299   // Print the preds of this block according to the CFG.
300   if (!pred_empty()) {
301     if (Indexes) OS << '\t';
302     OS << "    Predecessors according to CFG:";
303     for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI)
304       OS << " BB#" << (*PI)->getNumber();
305     OS << '\n';
306   }
307
308   for (const_instr_iterator I = instr_begin(); I != instr_end(); ++I) {
309     if (Indexes) {
310       if (Indexes->hasIndex(I))
311         OS << Indexes->getInstructionIndex(I);
312       OS << '\t';
313     }
314     OS << '\t';
315     if (I->isInsideBundle())
316       OS << "  * ";
317     I->print(OS, &getParent()->getTarget());
318   }
319
320   // Print the successors of this block according to the CFG.
321   if (!succ_empty()) {
322     if (Indexes) OS << '\t';
323     OS << "    Successors according to CFG:";
324     for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) {
325       OS << " BB#" << (*SI)->getNumber();
326       if (!Weights.empty())
327         OS << '(' << *getWeightIterator(SI) << ')';
328     }
329     OS << '\n';
330   }
331 }
332
333 void MachineBasicBlock::removeLiveIn(unsigned Reg) {
334   std::vector<unsigned>::iterator I =
335     std::find(LiveIns.begin(), LiveIns.end(), Reg);
336   if (I != LiveIns.end())
337     LiveIns.erase(I);
338 }
339
340 bool MachineBasicBlock::isLiveIn(unsigned Reg) const {
341   livein_iterator I = std::find(livein_begin(), livein_end(), Reg);
342   return I != livein_end();
343 }
344
345 unsigned
346 MachineBasicBlock::addLiveIn(unsigned PhysReg, const TargetRegisterClass *RC) {
347   assert(getParent() && "MBB must be inserted in function");
348   assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg");
349   assert(RC && "Register class is required");
350   assert((isLandingPad() || this == &getParent()->front()) &&
351          "Only the entry block and landing pads can have physreg live ins");
352
353   bool LiveIn = isLiveIn(PhysReg);
354   iterator I = SkipPHIsAndLabels(begin()), E = end();
355   MachineRegisterInfo &MRI = getParent()->getRegInfo();
356   const TargetInstrInfo &TII = *getParent()->getTarget().getInstrInfo();
357
358   // Look for an existing copy.
359   if (LiveIn)
360     for (;I != E && I->isCopy(); ++I)
361       if (I->getOperand(1).getReg() == PhysReg) {
362         unsigned VirtReg = I->getOperand(0).getReg();
363         if (!MRI.constrainRegClass(VirtReg, RC))
364           llvm_unreachable("Incompatible live-in register class.");
365         return VirtReg;
366       }
367
368   // No luck, create a virtual register.
369   unsigned VirtReg = MRI.createVirtualRegister(RC);
370   BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
371     .addReg(PhysReg, RegState::Kill);
372   if (!LiveIn)
373     addLiveIn(PhysReg);
374   return VirtReg;
375 }
376
377 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
378   getParent()->splice(NewAfter, this);
379 }
380
381 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
382   MachineFunction::iterator BBI = NewBefore;
383   getParent()->splice(++BBI, this);
384 }
385
386 void MachineBasicBlock::updateTerminator() {
387   const TargetInstrInfo *TII = getParent()->getTarget().getInstrInfo();
388   // A block with no successors has no concerns with fall-through edges.
389   if (this->succ_empty()) return;
390
391   MachineBasicBlock *TBB = 0, *FBB = 0;
392   SmallVector<MachineOperand, 4> Cond;
393   DebugLoc dl;  // FIXME: this is nowhere
394   bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond);
395   (void) B;
396   assert(!B && "UpdateTerminators requires analyzable predecessors!");
397   if (Cond.empty()) {
398     if (TBB) {
399       // The block has an unconditional branch. If its successor is now
400       // its layout successor, delete the branch.
401       if (isLayoutSuccessor(TBB))
402         TII->RemoveBranch(*this);
403     } else {
404       // The block has an unconditional fallthrough. If its successor is not
405       // its layout successor, insert a branch. First we have to locate the
406       // only non-landing-pad successor, as that is the fallthrough block.
407       for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
408         if ((*SI)->isLandingPad())
409           continue;
410         assert(!TBB && "Found more than one non-landing-pad successor!");
411         TBB = *SI;
412       }
413
414       // If there is no non-landing-pad successor, the block has no
415       // fall-through edges to be concerned with.
416       if (!TBB)
417         return;
418
419       // Finally update the unconditional successor to be reached via a branch
420       // if it would not be reached by fallthrough.
421       if (!isLayoutSuccessor(TBB))
422         TII->InsertBranch(*this, TBB, 0, Cond, dl);
423     }
424   } else {
425     if (FBB) {
426       // The block has a non-fallthrough conditional branch. If one of its
427       // successors is its layout successor, rewrite it to a fallthrough
428       // conditional branch.
429       if (isLayoutSuccessor(TBB)) {
430         if (TII->ReverseBranchCondition(Cond))
431           return;
432         TII->RemoveBranch(*this);
433         TII->InsertBranch(*this, FBB, 0, Cond, dl);
434       } else if (isLayoutSuccessor(FBB)) {
435         TII->RemoveBranch(*this);
436         TII->InsertBranch(*this, TBB, 0, Cond, dl);
437       }
438     } else {
439       // Walk through the successors and find the successor which is not
440       // a landing pad and is not the conditional branch destination (in TBB)
441       // as the fallthrough successor.
442       MachineBasicBlock *FallthroughBB = 0;
443       for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
444         if ((*SI)->isLandingPad() || *SI == TBB)
445           continue;
446         assert(!FallthroughBB && "Found more than one fallthrough successor.");
447         FallthroughBB = *SI;
448       }
449       if (!FallthroughBB && canFallThrough()) {
450         // We fallthrough to the same basic block as the conditional jump
451         // targets. Remove the conditional jump, leaving unconditional
452         // fallthrough.
453         // FIXME: This does not seem like a reasonable pattern to support, but it
454         // has been seen in the wild coming out of degenerate ARM test cases.
455         TII->RemoveBranch(*this);
456
457         // Finally update the unconditional successor to be reached via a branch
458         // if it would not be reached by fallthrough.
459         if (!isLayoutSuccessor(TBB))
460           TII->InsertBranch(*this, TBB, 0, Cond, dl);
461         return;
462       }
463
464       // The block has a fallthrough conditional branch.
465       if (isLayoutSuccessor(TBB)) {
466         if (TII->ReverseBranchCondition(Cond)) {
467           // We can't reverse the condition, add an unconditional branch.
468           Cond.clear();
469           TII->InsertBranch(*this, FallthroughBB, 0, Cond, dl);
470           return;
471         }
472         TII->RemoveBranch(*this);
473         TII->InsertBranch(*this, FallthroughBB, 0, Cond, dl);
474       } else if (!isLayoutSuccessor(FallthroughBB)) {
475         TII->RemoveBranch(*this);
476         TII->InsertBranch(*this, TBB, FallthroughBB, Cond, dl);
477       }
478     }
479   }
480 }
481
482 void MachineBasicBlock::addSuccessor(MachineBasicBlock *succ, uint32_t weight) {
483
484   // If we see non-zero value for the first time it means we actually use Weight
485   // list, so we fill all Weights with 0's.
486   if (weight != 0 && Weights.empty())
487     Weights.resize(Successors.size());
488
489   if (weight != 0 || !Weights.empty())
490     Weights.push_back(weight);
491
492    Successors.push_back(succ);
493    succ->addPredecessor(this);
494  }
495
496 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *succ) {
497   succ->removePredecessor(this);
498   succ_iterator I = std::find(Successors.begin(), Successors.end(), succ);
499   assert(I != Successors.end() && "Not a current successor!");
500
501   // If Weight list is empty it means we don't use it (disabled optimization).
502   if (!Weights.empty()) {
503     weight_iterator WI = getWeightIterator(I);
504     Weights.erase(WI);
505   }
506
507   Successors.erase(I);
508 }
509
510 MachineBasicBlock::succ_iterator
511 MachineBasicBlock::removeSuccessor(succ_iterator I) {
512   assert(I != Successors.end() && "Not a current successor!");
513
514   // If Weight list is empty it means we don't use it (disabled optimization).
515   if (!Weights.empty()) {
516     weight_iterator WI = getWeightIterator(I);
517     Weights.erase(WI);
518   }
519
520   (*I)->removePredecessor(this);
521   return Successors.erase(I);
522 }
523
524 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
525                                          MachineBasicBlock *New) {
526   if (Old == New)
527     return;
528
529   succ_iterator E = succ_end();
530   succ_iterator NewI = E;
531   succ_iterator OldI = E;
532   for (succ_iterator I = succ_begin(); I != E; ++I) {
533     if (*I == Old) {
534       OldI = I;
535       if (NewI != E)
536         break;
537     }
538     if (*I == New) {
539       NewI = I;
540       if (OldI != E)
541         break;
542     }
543   }
544   assert(OldI != E && "Old is not a successor of this block");
545   Old->removePredecessor(this);
546
547   // If New isn't already a successor, let it take Old's place.
548   if (NewI == E) {
549     New->addPredecessor(this);
550     *OldI = New;
551     return;
552   }
553
554   // New is already a successor.
555   // Update its weight instead of adding a duplicate edge.
556   if (!Weights.empty()) {
557     weight_iterator OldWI = getWeightIterator(OldI);
558     *getWeightIterator(NewI) += *OldWI;
559     Weights.erase(OldWI);
560   }
561   Successors.erase(OldI);
562 }
563
564 void MachineBasicBlock::addPredecessor(MachineBasicBlock *pred) {
565   Predecessors.push_back(pred);
566 }
567
568 void MachineBasicBlock::removePredecessor(MachineBasicBlock *pred) {
569   pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), pred);
570   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
571   Predecessors.erase(I);
572 }
573
574 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *fromMBB) {
575   if (this == fromMBB)
576     return;
577
578   while (!fromMBB->succ_empty()) {
579     MachineBasicBlock *Succ = *fromMBB->succ_begin();
580     uint32_t Weight = 0;
581
582     // If Weight list is empty it means we don't use it (disabled optimization).
583     if (!fromMBB->Weights.empty())
584       Weight = *fromMBB->Weights.begin();
585
586     addSuccessor(Succ, Weight);
587     fromMBB->removeSuccessor(Succ);
588   }
589 }
590
591 void
592 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB) {
593   if (this == fromMBB)
594     return;
595
596   while (!fromMBB->succ_empty()) {
597     MachineBasicBlock *Succ = *fromMBB->succ_begin();
598     uint32_t Weight = 0;
599     if (!fromMBB->Weights.empty())
600       Weight = *fromMBB->Weights.begin();
601     addSuccessor(Succ, Weight);
602     fromMBB->removeSuccessor(Succ);
603
604     // Fix up any PHI nodes in the successor.
605     for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(),
606            ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI)
607       for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
608         MachineOperand &MO = MI->getOperand(i);
609         if (MO.getMBB() == fromMBB)
610           MO.setMBB(this);
611       }
612   }
613 }
614
615 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
616   return std::find(pred_begin(), pred_end(), MBB) != pred_end();
617 }
618
619 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
620   return std::find(succ_begin(), succ_end(), MBB) != succ_end();
621 }
622
623 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
624   MachineFunction::const_iterator I(this);
625   return llvm::next(I) == MachineFunction::const_iterator(MBB);
626 }
627
628 bool MachineBasicBlock::canFallThrough() {
629   MachineFunction::iterator Fallthrough = this;
630   ++Fallthrough;
631   // If FallthroughBlock is off the end of the function, it can't fall through.
632   if (Fallthrough == getParent()->end())
633     return false;
634
635   // If FallthroughBlock isn't a successor, no fallthrough is possible.
636   if (!isSuccessor(Fallthrough))
637     return false;
638
639   // Analyze the branches, if any, at the end of the block.
640   MachineBasicBlock *TBB = 0, *FBB = 0;
641   SmallVector<MachineOperand, 4> Cond;
642   const TargetInstrInfo *TII = getParent()->getTarget().getInstrInfo();
643   if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) {
644     // If we couldn't analyze the branch, examine the last instruction.
645     // If the block doesn't end in a known control barrier, assume fallthrough
646     // is possible. The isPredicated check is needed because this code can be
647     // called during IfConversion, where an instruction which is normally a
648     // Barrier is predicated and thus no longer an actual control barrier.
649     return empty() || !back().isBarrier() || TII->isPredicated(&back());
650   }
651
652   // If there is no branch, control always falls through.
653   if (TBB == 0) return true;
654
655   // If there is some explicit branch to the fallthrough block, it can obviously
656   // reach, even though the branch should get folded to fall through implicitly.
657   if (MachineFunction::iterator(TBB) == Fallthrough ||
658       MachineFunction::iterator(FBB) == Fallthrough)
659     return true;
660
661   // If it's an unconditional branch to some block not the fall through, it
662   // doesn't fall through.
663   if (Cond.empty()) return false;
664
665   // Otherwise, if it is conditional and has no explicit false block, it falls
666   // through.
667   return FBB == 0;
668 }
669
670 MachineBasicBlock *
671 MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) {
672   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
673   // it in this generic function.
674   if (Succ->isLandingPad())
675     return NULL;
676
677   MachineFunction *MF = getParent();
678   DebugLoc dl;  // FIXME: this is nowhere
679
680   // We may need to update this's terminator, but we can't do that if
681   // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
682   const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
683   MachineBasicBlock *TBB = 0, *FBB = 0;
684   SmallVector<MachineOperand, 4> Cond;
685   if (TII->AnalyzeBranch(*this, TBB, FBB, Cond))
686     return NULL;
687
688   // Avoid bugpoint weirdness: A block may end with a conditional branch but
689   // jumps to the same MBB is either case. We have duplicate CFG edges in that
690   // case that we can't handle. Since this never happens in properly optimized
691   // code, just skip those edges.
692   if (TBB && TBB == FBB) {
693     DEBUG(dbgs() << "Won't split critical edge after degenerate BB#"
694                  << getNumber() << '\n');
695     return NULL;
696   }
697
698   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
699   MF->insert(llvm::next(MachineFunction::iterator(this)), NMBB);
700   DEBUG(dbgs() << "Splitting critical edge:"
701         " BB#" << getNumber()
702         << " -- BB#" << NMBB->getNumber()
703         << " -- BB#" << Succ->getNumber() << '\n');
704
705   LiveIntervals *LIS = P->getAnalysisIfAvailable<LiveIntervals>();
706   SlotIndexes *Indexes = P->getAnalysisIfAvailable<SlotIndexes>();
707   if (LIS)
708     LIS->insertMBBInMaps(NMBB);
709   else if (Indexes)
710     Indexes->insertMBBInMaps(NMBB);
711
712   // On some targets like Mips, branches may kill virtual registers. Make sure
713   // that LiveVariables is properly updated after updateTerminator replaces the
714   // terminators.
715   LiveVariables *LV = P->getAnalysisIfAvailable<LiveVariables>();
716
717   // Collect a list of virtual registers killed by the terminators.
718   SmallVector<unsigned, 4> KilledRegs;
719   if (LV)
720     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
721          I != E; ++I) {
722       MachineInstr *MI = I;
723       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
724            OE = MI->operands_end(); OI != OE; ++OI) {
725         if (!OI->isReg() || OI->getReg() == 0 ||
726             !OI->isUse() || !OI->isKill() || OI->isUndef())
727           continue;
728         unsigned Reg = OI->getReg();
729         if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
730             LV->getVarInfo(Reg).removeKill(MI)) {
731           KilledRegs.push_back(Reg);
732           DEBUG(dbgs() << "Removing terminator kill: " << *MI);
733           OI->setIsKill(false);
734         }
735       }
736     }
737
738   SmallVector<unsigned, 4> UsedRegs;
739   if (LIS) {
740     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
741          I != E; ++I) {
742       MachineInstr *MI = I;
743
744       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
745            OE = MI->operands_end(); OI != OE; ++OI) {
746         if (!OI->isReg() || OI->getReg() == 0)
747           continue;
748
749         unsigned Reg = OI->getReg();
750         if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end())
751           UsedRegs.push_back(Reg);
752       }
753     }
754   }
755
756   ReplaceUsesOfBlockWith(Succ, NMBB);
757
758   // If updateTerminator() removes instructions, we need to remove them from
759   // SlotIndexes.
760   SmallVector<MachineInstr*, 4> Terminators;
761   if (Indexes) {
762     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
763          I != E; ++I)
764       Terminators.push_back(I);
765   }
766
767   updateTerminator();
768
769   if (Indexes) {
770     SmallVector<MachineInstr*, 4> NewTerminators;
771     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
772          I != E; ++I)
773       NewTerminators.push_back(I);
774
775     for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
776         E = Terminators.end(); I != E; ++I) {
777       if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) ==
778           NewTerminators.end())
779        Indexes->removeMachineInstrFromMaps(*I);
780     }
781   }
782
783   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
784   NMBB->addSuccessor(Succ);
785   if (!NMBB->isLayoutSuccessor(Succ)) {
786     Cond.clear();
787     MF->getTarget().getInstrInfo()->InsertBranch(*NMBB, Succ, NULL, Cond, dl);
788
789     if (Indexes) {
790       for (instr_iterator I = NMBB->instr_begin(), E = NMBB->instr_end();
791            I != E; ++I) {
792         // Some instructions may have been moved to NMBB by updateTerminator(),
793         // so we first remove any instruction that already has an index.
794         if (Indexes->hasIndex(I))
795           Indexes->removeMachineInstrFromMaps(I);
796         Indexes->insertMachineInstrInMaps(I);
797       }
798     }
799   }
800
801   // Fix PHI nodes in Succ so they refer to NMBB instead of this
802   for (MachineBasicBlock::instr_iterator
803          i = Succ->instr_begin(),e = Succ->instr_end();
804        i != e && i->isPHI(); ++i)
805     for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
806       if (i->getOperand(ni+1).getMBB() == this)
807         i->getOperand(ni+1).setMBB(NMBB);
808
809   // Inherit live-ins from the successor
810   for (MachineBasicBlock::livein_iterator I = Succ->livein_begin(),
811          E = Succ->livein_end(); I != E; ++I)
812     NMBB->addLiveIn(*I);
813
814   // Update LiveVariables.
815   const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
816   if (LV) {
817     // Restore kills of virtual registers that were killed by the terminators.
818     while (!KilledRegs.empty()) {
819       unsigned Reg = KilledRegs.pop_back_val();
820       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
821         if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
822           continue;
823         if (TargetRegisterInfo::isVirtualRegister(Reg))
824           LV->getVarInfo(Reg).Kills.push_back(I);
825         DEBUG(dbgs() << "Restored terminator kill: " << *I);
826         break;
827       }
828     }
829     // Update relevant live-through information.
830     LV->addNewBlock(NMBB, this, Succ);
831   }
832
833   if (LIS) {
834     // After splitting the edge and updating SlotIndexes, live intervals may be
835     // in one of two situations, depending on whether this block was the last in
836     // the function. If the original block was the last in the function, all live
837     // intervals will end prior to the beginning of the new split block. If the
838     // original block was not at the end of the function, all live intervals will
839     // extend to the end of the new split block.
840
841     bool isLastMBB =
842       llvm::next(MachineFunction::iterator(NMBB)) == getParent()->end();
843
844     SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
845     SlotIndex PrevIndex = StartIndex.getPrevSlot();
846     SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
847
848     // Find the registers used from NMBB in PHIs in Succ.
849     SmallSet<unsigned, 8> PHISrcRegs;
850     for (MachineBasicBlock::instr_iterator
851          I = Succ->instr_begin(), E = Succ->instr_end();
852          I != E && I->isPHI(); ++I) {
853       for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
854         if (I->getOperand(ni+1).getMBB() == NMBB) {
855           MachineOperand &MO = I->getOperand(ni);
856           unsigned Reg = MO.getReg();
857           PHISrcRegs.insert(Reg);
858           if (MO.isUndef())
859             continue;
860
861           LiveInterval &LI = LIS->getInterval(Reg);
862           VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
863           assert(VNI && "PHI sources should be live out of their predecessors.");
864           LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
865         }
866       }
867     }
868
869     MachineRegisterInfo *MRI = &getParent()->getRegInfo();
870     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
871       unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
872       if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
873         continue;
874
875       LiveInterval &LI = LIS->getInterval(Reg);
876       if (!LI.liveAt(PrevIndex))
877         continue;
878
879       bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
880       if (isLiveOut && isLastMBB) {
881         VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
882         assert(VNI && "LiveInterval should have VNInfo where it is live.");
883         LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
884       } else if (!isLiveOut && !isLastMBB) {
885         LI.removeSegment(StartIndex, EndIndex);
886       }
887     }
888
889     // Update all intervals for registers whose uses may have been modified by
890     // updateTerminator().
891     LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
892   }
893
894   if (MachineDominatorTree *MDT =
895       P->getAnalysisIfAvailable<MachineDominatorTree>()) {
896     // Update dominator information.
897     MachineDomTreeNode *SucccDTNode = MDT->getNode(Succ);
898
899     bool IsNewIDom = true;
900     for (const_pred_iterator PI = Succ->pred_begin(), E = Succ->pred_end();
901          PI != E; ++PI) {
902       MachineBasicBlock *PredBB = *PI;
903       if (PredBB == NMBB)
904         continue;
905       if (!MDT->dominates(SucccDTNode, MDT->getNode(PredBB))) {
906         IsNewIDom = false;
907         break;
908       }
909     }
910
911     // We know "this" dominates the newly created basic block.
912     MachineDomTreeNode *NewDTNode = MDT->addNewBlock(NMBB, this);
913
914     // If all the other predecessors of "Succ" are dominated by "Succ" itself
915     // then the new block is the new immediate dominator of "Succ". Otherwise,
916     // the new block doesn't dominate anything.
917     if (IsNewIDom)
918       MDT->changeImmediateDominator(SucccDTNode, NewDTNode);
919   }
920
921   if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>())
922     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
923       // If one or the other blocks were not in a loop, the new block is not
924       // either, and thus LI doesn't need to be updated.
925       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
926         if (TIL == DestLoop) {
927           // Both in the same loop, the NMBB joins loop.
928           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
929         } else if (TIL->contains(DestLoop)) {
930           // Edge from an outer loop to an inner loop.  Add to the outer loop.
931           TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
932         } else if (DestLoop->contains(TIL)) {
933           // Edge from an inner loop to an outer loop.  Add to the outer loop.
934           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
935         } else {
936           // Edge from two loops with no containment relation.  Because these
937           // are natural loops, we know that the destination block must be the
938           // header of its loop (adding a branch into a loop elsewhere would
939           // create an irreducible loop).
940           assert(DestLoop->getHeader() == Succ &&
941                  "Should not create irreducible loops!");
942           if (MachineLoop *P = DestLoop->getParentLoop())
943             P->addBasicBlockToLoop(NMBB, MLI->getBase());
944         }
945       }
946     }
947
948   return NMBB;
949 }
950
951 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
952 /// neighboring instructions so the bundle won't be broken by removing MI.
953 static void unbundleSingleMI(MachineInstr *MI) {
954   // Removing the first instruction in a bundle.
955   if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
956     MI->unbundleFromSucc();
957   // Removing the last instruction in a bundle.
958   if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
959     MI->unbundleFromPred();
960   // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
961   // are already fine.
962 }
963
964 MachineBasicBlock::instr_iterator
965 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
966   unbundleSingleMI(I);
967   return Insts.erase(I);
968 }
969
970 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
971   unbundleSingleMI(MI);
972   MI->clearFlag(MachineInstr::BundledPred);
973   MI->clearFlag(MachineInstr::BundledSucc);
974   return Insts.remove(MI);
975 }
976
977 MachineBasicBlock::instr_iterator
978 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
979   assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
980          "Cannot insert instruction with bundle flags");
981   // Set the bundle flags when inserting inside a bundle.
982   if (I != instr_end() && I->isBundledWithPred()) {
983     MI->setFlag(MachineInstr::BundledPred);
984     MI->setFlag(MachineInstr::BundledSucc);
985   }
986   return Insts.insert(I, MI);
987 }
988
989 /// removeFromParent - This method unlinks 'this' from the containing function,
990 /// and returns it, but does not delete it.
991 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
992   assert(getParent() && "Not embedded in a function!");
993   getParent()->remove(this);
994   return this;
995 }
996
997
998 /// eraseFromParent - This method unlinks 'this' from the containing function,
999 /// and deletes it.
1000 void MachineBasicBlock::eraseFromParent() {
1001   assert(getParent() && "Not embedded in a function!");
1002   getParent()->erase(this);
1003 }
1004
1005
1006 /// ReplaceUsesOfBlockWith - Given a machine basic block that branched to
1007 /// 'Old', change the code and CFG so that it branches to 'New' instead.
1008 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1009                                                MachineBasicBlock *New) {
1010   assert(Old != New && "Cannot replace self with self!");
1011
1012   MachineBasicBlock::instr_iterator I = instr_end();
1013   while (I != instr_begin()) {
1014     --I;
1015     if (!I->isTerminator()) break;
1016
1017     // Scan the operands of this machine instruction, replacing any uses of Old
1018     // with New.
1019     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1020       if (I->getOperand(i).isMBB() &&
1021           I->getOperand(i).getMBB() == Old)
1022         I->getOperand(i).setMBB(New);
1023   }
1024
1025   // Update the successor information.
1026   replaceSuccessor(Old, New);
1027 }
1028
1029 /// CorrectExtraCFGEdges - Various pieces of code can cause excess edges in the
1030 /// CFG to be inserted.  If we have proven that MBB can only branch to DestA and
1031 /// DestB, remove any other MBB successors from the CFG.  DestA and DestB can be
1032 /// null.
1033 ///
1034 /// Besides DestA and DestB, retain other edges leading to LandingPads
1035 /// (currently there can be only one; we don't check or require that here).
1036 /// Note it is possible that DestA and/or DestB are LandingPads.
1037 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
1038                                              MachineBasicBlock *DestB,
1039                                              bool isCond) {
1040   // The values of DestA and DestB frequently come from a call to the
1041   // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
1042   // values from there.
1043   //
1044   // 1. If both DestA and DestB are null, then the block ends with no branches
1045   //    (it falls through to its successor).
1046   // 2. If DestA is set, DestB is null, and isCond is false, then the block ends
1047   //    with only an unconditional branch.
1048   // 3. If DestA is set, DestB is null, and isCond is true, then the block ends
1049   //    with a conditional branch that falls through to a successor (DestB).
1050   // 4. If DestA and DestB is set and isCond is true, then the block ends with a
1051   //    conditional branch followed by an unconditional branch. DestA is the
1052   //    'true' destination and DestB is the 'false' destination.
1053
1054   bool Changed = false;
1055
1056   MachineFunction::iterator FallThru =
1057     llvm::next(MachineFunction::iterator(this));
1058
1059   if (DestA == 0 && DestB == 0) {
1060     // Block falls through to successor.
1061     DestA = FallThru;
1062     DestB = FallThru;
1063   } else if (DestA != 0 && DestB == 0) {
1064     if (isCond)
1065       // Block ends in conditional jump that falls through to successor.
1066       DestB = FallThru;
1067   } else {
1068     assert(DestA && DestB && isCond &&
1069            "CFG in a bad state. Cannot correct CFG edges");
1070   }
1071
1072   // Remove superfluous edges. I.e., those which aren't destinations of this
1073   // basic block, duplicate edges, or landing pads.
1074   SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
1075   MachineBasicBlock::succ_iterator SI = succ_begin();
1076   while (SI != succ_end()) {
1077     const MachineBasicBlock *MBB = *SI;
1078     if (!SeenMBBs.insert(MBB) ||
1079         (MBB != DestA && MBB != DestB && !MBB->isLandingPad())) {
1080       // This is a superfluous edge, remove it.
1081       SI = removeSuccessor(SI);
1082       Changed = true;
1083     } else {
1084       ++SI;
1085     }
1086   }
1087
1088   return Changed;
1089 }
1090
1091 /// findDebugLoc - find the next valid DebugLoc starting at MBBI, skipping
1092 /// any DBG_VALUE instructions.  Return UnknownLoc if there is none.
1093 DebugLoc
1094 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1095   DebugLoc DL;
1096   instr_iterator E = instr_end();
1097   if (MBBI == E)
1098     return DL;
1099
1100   // Skip debug declarations, we don't want a DebugLoc from them.
1101   while (MBBI != E && MBBI->isDebugValue())
1102     MBBI++;
1103   if (MBBI != E)
1104     DL = MBBI->getDebugLoc();
1105   return DL;
1106 }
1107
1108 /// getSuccWeight - Return weight of the edge from this block to MBB.
1109 ///
1110 uint32_t MachineBasicBlock::getSuccWeight(const_succ_iterator Succ) const {
1111   if (Weights.empty())
1112     return 0;
1113
1114   return *getWeightIterator(Succ);
1115 }
1116
1117 /// getWeightIterator - Return wight iterator corresonding to the I successor
1118 /// iterator
1119 MachineBasicBlock::weight_iterator MachineBasicBlock::
1120 getWeightIterator(MachineBasicBlock::succ_iterator I) {
1121   assert(Weights.size() == Successors.size() && "Async weight list!");
1122   size_t index = std::distance(Successors.begin(), I);
1123   assert(index < Weights.size() && "Not a current successor!");
1124   return Weights.begin() + index;
1125 }
1126
1127 /// getWeightIterator - Return wight iterator corresonding to the I successor
1128 /// iterator
1129 MachineBasicBlock::const_weight_iterator MachineBasicBlock::
1130 getWeightIterator(MachineBasicBlock::const_succ_iterator I) const {
1131   assert(Weights.size() == Successors.size() && "Async weight list!");
1132   const size_t index = std::distance(Successors.begin(), I);
1133   assert(index < Weights.size() && "Not a current successor!");
1134   return Weights.begin() + index;
1135 }
1136
1137 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1138 /// as of just before "MI".
1139 /// 
1140 /// Search is localised to a neighborhood of
1141 /// Neighborhood instructions before (searching for defs or kills) and N
1142 /// instructions after (searching just for defs) MI.
1143 MachineBasicBlock::LivenessQueryResult
1144 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1145                                            unsigned Reg, MachineInstr *MI,
1146                                            unsigned Neighborhood) {
1147   unsigned N = Neighborhood;
1148   MachineBasicBlock *MBB = MI->getParent();
1149
1150   // Start by searching backwards from MI, looking for kills, reads or defs.
1151
1152   MachineBasicBlock::iterator I(MI);
1153   // If this is the first insn in the block, don't search backwards.
1154   if (I != MBB->begin()) {
1155     do {
1156       --I;
1157
1158       MachineOperandIteratorBase::PhysRegInfo Analysis =
1159         MIOperands(I).analyzePhysReg(Reg, TRI);
1160
1161       if (Analysis.Defines)
1162         // Outputs happen after inputs so they take precedence if both are
1163         // present.
1164         return Analysis.DefinesDead ? LQR_Dead : LQR_Live;
1165
1166       if (Analysis.Kills || Analysis.Clobbers)
1167         // Register killed, so isn't live.
1168         return LQR_Dead;
1169
1170       else if (Analysis.ReadsOverlap)
1171         // Defined or read without a previous kill - live.
1172         return Analysis.Reads ? LQR_Live : LQR_OverlappingLive;
1173
1174     } while (I != MBB->begin() && --N > 0);
1175   }
1176
1177   // Did we get to the start of the block?
1178   if (I == MBB->begin()) {
1179     // If so, the register's state is definitely defined by the live-in state.
1180     for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true);
1181          RAI.isValid(); ++RAI) {
1182       if (MBB->isLiveIn(*RAI))
1183         return (*RAI == Reg) ? LQR_Live : LQR_OverlappingLive;
1184     }
1185
1186     return LQR_Dead;
1187   }
1188
1189   N = Neighborhood;
1190
1191   // Try searching forwards from MI, looking for reads or defs.
1192   I = MachineBasicBlock::iterator(MI);
1193   // If this is the last insn in the block, don't search forwards.
1194   if (I != MBB->end()) {
1195     for (++I; I != MBB->end() && N > 0; ++I, --N) {
1196       MachineOperandIteratorBase::PhysRegInfo Analysis =
1197         MIOperands(I).analyzePhysReg(Reg, TRI);
1198
1199       if (Analysis.ReadsOverlap)
1200         // Used, therefore must have been live.
1201         return (Analysis.Reads) ?
1202           LQR_Live : LQR_OverlappingLive;
1203
1204       else if (Analysis.Clobbers || Analysis.Defines)
1205         // Defined (but not read) therefore cannot have been live.
1206         return LQR_Dead;
1207     }
1208   }
1209
1210   // At this point we have no idea of the liveness of the register.
1211   return LQR_Unknown;
1212 }
1213
1214 void llvm::WriteAsOperand(raw_ostream &OS, const MachineBasicBlock *MBB,
1215                           bool t) {
1216   OS << "BB#" << MBB->getNumber();
1217 }
1218