Taints the non-acquire RMW's store address with the load part
[oota-llvm.git] / lib / CodeGen / LiveRangeCalc.cpp
1 //===---- LiveRangeCalc.cpp - Calculate live ranges -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the LiveRangeCalc class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "LiveRangeCalc.h"
15 #include "llvm/CodeGen/MachineDominators.h"
16 #include "llvm/CodeGen/MachineRegisterInfo.h"
17
18 using namespace llvm;
19
20 #define DEBUG_TYPE "regalloc"
21
22 void LiveRangeCalc::resetLiveOutMap() {
23   unsigned NumBlocks = MF->getNumBlockIDs();
24   Seen.clear();
25   Seen.resize(NumBlocks);
26   Map.resize(NumBlocks);
27 }
28
29 void LiveRangeCalc::reset(const MachineFunction *mf,
30                           SlotIndexes *SI,
31                           MachineDominatorTree *MDT,
32                           VNInfo::Allocator *VNIA) {
33   MF = mf;
34   MRI = &MF->getRegInfo();
35   Indexes = SI;
36   DomTree = MDT;
37   Alloc = VNIA;
38   resetLiveOutMap();
39   LiveIn.clear();
40 }
41
42
43 static void createDeadDef(SlotIndexes &Indexes, VNInfo::Allocator &Alloc,
44                           LiveRange &LR, const MachineOperand &MO) {
45     const MachineInstr *MI = MO.getParent();
46     SlotIndex DefIdx =
47         Indexes.getInstructionIndex(MI).getRegSlot(MO.isEarlyClobber());
48
49     // Create the def in LR. This may find an existing def.
50     LR.createDeadDef(DefIdx, Alloc);
51 }
52
53 void LiveRangeCalc::calculate(LiveInterval &LI, bool TrackSubRegs) {
54   assert(MRI && Indexes && "call reset() first");
55
56   // Step 1: Create minimal live segments for every definition of Reg.
57   // Visit all def operands. If the same instruction has multiple defs of Reg,
58   // createDeadDef() will deduplicate.
59   const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
60   unsigned Reg = LI.reg;
61   for (const MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
62     if (!MO.isDef() && !MO.readsReg())
63       continue;
64
65     unsigned SubReg = MO.getSubReg();
66     if (LI.hasSubRanges() || (SubReg != 0 && TrackSubRegs)) {
67       LaneBitmask Mask = SubReg != 0 ? TRI.getSubRegIndexLaneMask(SubReg)
68                                      : MRI->getMaxLaneMaskForVReg(Reg);
69
70       // If this is the first time we see a subregister def, initialize
71       // subranges by creating a copy of the main range.
72       if (!LI.hasSubRanges() && !LI.empty()) {
73         LaneBitmask ClassMask = MRI->getMaxLaneMaskForVReg(Reg);
74         LI.createSubRangeFrom(*Alloc, ClassMask, LI);
75       }
76
77       for (LiveInterval::SubRange &S : LI.subranges()) {
78         // A Mask for subregs common to the existing subrange and current def.
79         LaneBitmask Common = S.LaneMask & Mask;
80         if (Common == 0)
81           continue;
82         // A Mask for subregs covered by the subrange but not the current def.
83         LaneBitmask LRest = S.LaneMask & ~Mask;
84         LiveInterval::SubRange *CommonRange;
85         if (LRest != 0) {
86           // Split current subrange into Common and LRest ranges.
87           S.LaneMask = LRest;
88           CommonRange = LI.createSubRangeFrom(*Alloc, Common, S);
89         } else {
90           assert(Common == S.LaneMask);
91           CommonRange = &S;
92         }
93         if (MO.isDef())
94           createDeadDef(*Indexes, *Alloc, *CommonRange, MO);
95         Mask &= ~Common;
96       }
97       // Create a new SubRange for subregs we did not cover yet.
98       if (Mask != 0) {
99         LiveInterval::SubRange *NewRange = LI.createSubRange(*Alloc, Mask);
100         if (MO.isDef())
101           createDeadDef(*Indexes, *Alloc, *NewRange, MO);
102       }
103     }
104
105     // Create the def in the main liverange. We do not have to do this if
106     // subranges are tracked as we recreate the main range later in this case.
107     if (MO.isDef() && !LI.hasSubRanges())
108       createDeadDef(*Indexes, *Alloc, LI, MO);
109   }
110
111   // We may have created empty live ranges for partially undefined uses, we
112   // can't keep them because we won't find defs in them later.
113   LI.removeEmptySubRanges();
114
115   // Step 2: Extend live segments to all uses, constructing SSA form as
116   // necessary.
117   if (LI.hasSubRanges()) {
118     for (LiveInterval::SubRange &S : LI.subranges()) {
119       resetLiveOutMap();
120       extendToUses(S, Reg, S.LaneMask);
121     }
122     LI.clear();
123     LI.constructMainRangeFromSubranges(*Indexes, *Alloc);
124   } else {
125     resetLiveOutMap();
126     extendToUses(LI, Reg, ~0u);
127   }
128 }
129
130
131 void LiveRangeCalc::createDeadDefs(LiveRange &LR, unsigned Reg) {
132   assert(MRI && Indexes && "call reset() first");
133
134   // Visit all def operands. If the same instruction has multiple defs of Reg,
135   // LR.createDeadDef() will deduplicate.
136   for (MachineOperand &MO : MRI->def_operands(Reg))
137     createDeadDef(*Indexes, *Alloc, LR, MO);
138 }
139
140
141 void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg,
142                                  LaneBitmask Mask) {
143   // Visit all operands that read Reg. This may include partial defs.
144   const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
145   for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
146     // Clear all kill flags. They will be reinserted after register allocation
147     // by LiveIntervalAnalysis::addKillFlags().
148     if (MO.isUse())
149       MO.setIsKill(false);
150     else {
151       // We only care about uses, but on the main range (mask ~0u) this includes
152       // the "virtual" reads happening for subregister defs.
153       if (Mask != ~0u)
154         continue;
155     }
156
157     if (!MO.readsReg())
158       continue;
159     unsigned SubReg = MO.getSubReg();
160     if (SubReg != 0) {
161       LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(SubReg);
162       // Ignore uses not covering the current subrange.
163       if ((SubRegMask & Mask) == 0)
164         continue;
165     }
166
167     // Determine the actual place of the use.
168     const MachineInstr *MI = MO.getParent();
169     unsigned OpNo = (&MO - &MI->getOperand(0));
170     SlotIndex UseIdx;
171     if (MI->isPHI()) {
172       assert(!MO.isDef() && "Cannot handle PHI def of partial register.");
173       // The actual place where a phi operand is used is the end of the pred
174       // MBB. PHI operands are paired: (Reg, PredMBB).
175       UseIdx = Indexes->getMBBEndIdx(MI->getOperand(OpNo+1).getMBB());
176     } else {
177       // Check for early-clobber redefs.
178       bool isEarlyClobber = false;
179       unsigned DefIdx;
180       if (MO.isDef())
181         isEarlyClobber = MO.isEarlyClobber();
182       else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) {
183         // FIXME: This would be a lot easier if tied early-clobber uses also
184         // had an early-clobber flag.
185         isEarlyClobber = MI->getOperand(DefIdx).isEarlyClobber();
186       }
187       UseIdx = Indexes->getInstructionIndex(MI).getRegSlot(isEarlyClobber);
188     }
189
190     // MI is reading Reg. We may have visited MI before if it happens to be
191     // reading Reg multiple times. That is OK, extend() is idempotent.
192     extend(LR, UseIdx, Reg);
193   }
194 }
195
196
197 void LiveRangeCalc::updateFromLiveIns() {
198   LiveRangeUpdater Updater;
199   for (const LiveInBlock &I : LiveIn) {
200     if (!I.DomNode)
201       continue;
202     MachineBasicBlock *MBB = I.DomNode->getBlock();
203     assert(I.Value && "No live-in value found");
204     SlotIndex Start, End;
205     std::tie(Start, End) = Indexes->getMBBRange(MBB);
206
207     if (I.Kill.isValid())
208       // Value is killed inside this block.
209       End = I.Kill;
210     else {
211       // The value is live-through, update LiveOut as well.
212       // Defer the Domtree lookup until it is needed.
213       assert(Seen.test(MBB->getNumber()));
214       Map[MBB] = LiveOutPair(I.Value, nullptr);
215     }
216     Updater.setDest(&I.LR);
217     Updater.add(Start, End, I.Value);
218   }
219   LiveIn.clear();
220 }
221
222
223 void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Use, unsigned PhysReg) {
224   assert(Use.isValid() && "Invalid SlotIndex");
225   assert(Indexes && "Missing SlotIndexes");
226   assert(DomTree && "Missing dominator tree");
227
228   MachineBasicBlock *UseMBB = Indexes->getMBBFromIndex(Use.getPrevSlot());
229   assert(UseMBB && "No MBB at Use");
230
231   // Is there a def in the same MBB we can extend?
232   if (LR.extendInBlock(Indexes->getMBBStartIdx(UseMBB), Use))
233     return;
234
235   // Find the single reaching def, or determine if Use is jointly dominated by
236   // multiple values, and we may need to create even more phi-defs to preserve
237   // VNInfo SSA form.  Perform a search for all predecessor blocks where we
238   // know the dominating VNInfo.
239   if (findReachingDefs(LR, *UseMBB, Use, PhysReg))
240     return;
241
242   // When there were multiple different values, we may need new PHIs.
243   calculateValues();
244 }
245
246
247 // This function is called by a client after using the low-level API to add
248 // live-out and live-in blocks.  The unique value optimization is not
249 // available, SplitEditor::transferValues handles that case directly anyway.
250 void LiveRangeCalc::calculateValues() {
251   assert(Indexes && "Missing SlotIndexes");
252   assert(DomTree && "Missing dominator tree");
253   updateSSA();
254   updateFromLiveIns();
255 }
256
257
258 bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &UseMBB,
259                                      SlotIndex Use, unsigned PhysReg) {
260   unsigned UseMBBNum = UseMBB.getNumber();
261
262   // Block numbers where LR should be live-in.
263   SmallVector<unsigned, 16> WorkList(1, UseMBBNum);
264
265   // Remember if we have seen more than one value.
266   bool UniqueVNI = true;
267   VNInfo *TheVNI = nullptr;
268
269   // Using Seen as a visited set, perform a BFS for all reaching defs.
270   for (unsigned i = 0; i != WorkList.size(); ++i) {
271     MachineBasicBlock *MBB = MF->getBlockNumbered(WorkList[i]);
272
273 #ifndef NDEBUG
274     if (MBB->pred_empty()) {
275       MBB->getParent()->verify();
276       errs() << "Use of " << PrintReg(PhysReg)
277              << " does not have a corresponding definition on every path:\n";
278       const MachineInstr *MI = Indexes->getInstructionFromIndex(Use);
279       if (MI != nullptr)
280         errs() << Use << " " << *MI;
281       llvm_unreachable("Use not jointly dominated by defs.");
282     }
283
284     if (TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
285         !MBB->isLiveIn(PhysReg)) {
286       MBB->getParent()->verify();
287       errs() << "The register " << PrintReg(PhysReg)
288              << " needs to be live in to BB#" << MBB->getNumber()
289              << ", but is missing from the live-in list.\n";
290       llvm_unreachable("Invalid global physical register");
291     }
292 #endif
293
294     for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
295          PE = MBB->pred_end(); PI != PE; ++PI) {
296        MachineBasicBlock *Pred = *PI;
297
298        // Is this a known live-out block?
299        if (Seen.test(Pred->getNumber())) {
300          if (VNInfo *VNI = Map[Pred].first) {
301            if (TheVNI && TheVNI != VNI)
302              UniqueVNI = false;
303            TheVNI = VNI;
304          }
305          continue;
306        }
307
308        SlotIndex Start, End;
309        std::tie(Start, End) = Indexes->getMBBRange(Pred);
310
311        // First time we see Pred.  Try to determine the live-out value, but set
312        // it as null if Pred is live-through with an unknown value.
313        VNInfo *VNI = LR.extendInBlock(Start, End);
314        setLiveOutValue(Pred, VNI);
315        if (VNI) {
316          if (TheVNI && TheVNI != VNI)
317            UniqueVNI = false;
318          TheVNI = VNI;
319          continue;
320        }
321
322        // No, we need a live-in value for Pred as well
323        if (Pred != &UseMBB)
324           WorkList.push_back(Pred->getNumber());
325        else
326           // Loopback to UseMBB, so value is really live through.
327          Use = SlotIndex();
328     }
329   }
330
331   LiveIn.clear();
332
333   // Both updateSSA() and LiveRangeUpdater benefit from ordered blocks, but
334   // neither require it. Skip the sorting overhead for small updates.
335   if (WorkList.size() > 4)
336     array_pod_sort(WorkList.begin(), WorkList.end());
337
338   // If a unique reaching def was found, blit in the live ranges immediately.
339   if (UniqueVNI) {
340     LiveRangeUpdater Updater(&LR);
341     for (SmallVectorImpl<unsigned>::const_iterator I = WorkList.begin(),
342          E = WorkList.end(); I != E; ++I) {
343        SlotIndex Start, End;
344        std::tie(Start, End) = Indexes->getMBBRange(*I);
345        // Trim the live range in UseMBB.
346        if (*I == UseMBBNum && Use.isValid())
347          End = Use;
348        else
349          Map[MF->getBlockNumbered(*I)] = LiveOutPair(TheVNI, nullptr);
350        Updater.add(Start, End, TheVNI);
351     }
352     return true;
353   }
354
355   // Multiple values were found, so transfer the work list to the LiveIn array
356   // where UpdateSSA will use it as a work list.
357   LiveIn.reserve(WorkList.size());
358   for (SmallVectorImpl<unsigned>::const_iterator
359        I = WorkList.begin(), E = WorkList.end(); I != E; ++I) {
360     MachineBasicBlock *MBB = MF->getBlockNumbered(*I);
361     addLiveInBlock(LR, DomTree->getNode(MBB));
362     if (MBB == &UseMBB)
363       LiveIn.back().Kill = Use;
364   }
365
366   return false;
367 }
368
369
370 // This is essentially the same iterative algorithm that SSAUpdater uses,
371 // except we already have a dominator tree, so we don't have to recompute it.
372 void LiveRangeCalc::updateSSA() {
373   assert(Indexes && "Missing SlotIndexes");
374   assert(DomTree && "Missing dominator tree");
375
376   // Interate until convergence.
377   unsigned Changes;
378   do {
379     Changes = 0;
380     // Propagate live-out values down the dominator tree, inserting phi-defs
381     // when necessary.
382     for (LiveInBlock &I : LiveIn) {
383       MachineDomTreeNode *Node = I.DomNode;
384       // Skip block if the live-in value has already been determined.
385       if (!Node)
386         continue;
387       MachineBasicBlock *MBB = Node->getBlock();
388       MachineDomTreeNode *IDom = Node->getIDom();
389       LiveOutPair IDomValue;
390
391       // We need a live-in value to a block with no immediate dominator?
392       // This is probably an unreachable block that has survived somehow.
393       bool needPHI = !IDom || !Seen.test(IDom->getBlock()->getNumber());
394
395       // IDom dominates all of our predecessors, but it may not be their
396       // immediate dominator. Check if any of them have live-out values that are
397       // properly dominated by IDom. If so, we need a phi-def here.
398       if (!needPHI) {
399         IDomValue = Map[IDom->getBlock()];
400
401         // Cache the DomTree node that defined the value.
402         if (IDomValue.first && !IDomValue.second)
403           Map[IDom->getBlock()].second = IDomValue.second =
404             DomTree->getNode(Indexes->getMBBFromIndex(IDomValue.first->def));
405
406         for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
407                PE = MBB->pred_end(); PI != PE; ++PI) {
408           LiveOutPair &Value = Map[*PI];
409           if (!Value.first || Value.first == IDomValue.first)
410             continue;
411
412           // Cache the DomTree node that defined the value.
413           if (!Value.second)
414             Value.second =
415               DomTree->getNode(Indexes->getMBBFromIndex(Value.first->def));
416
417           // This predecessor is carrying something other than IDomValue.
418           // It could be because IDomValue hasn't propagated yet, or it could be
419           // because MBB is in the dominance frontier of that value.
420           if (DomTree->dominates(IDom, Value.second)) {
421             needPHI = true;
422             break;
423           }
424         }
425       }
426
427       // The value may be live-through even if Kill is set, as can happen when
428       // we are called from extendRange. In that case LiveOutSeen is true, and
429       // LiveOut indicates a foreign or missing value.
430       LiveOutPair &LOP = Map[MBB];
431
432       // Create a phi-def if required.
433       if (needPHI) {
434         ++Changes;
435         assert(Alloc && "Need VNInfo allocator to create PHI-defs");
436         SlotIndex Start, End;
437         std::tie(Start, End) = Indexes->getMBBRange(MBB);
438         LiveRange &LR = I.LR;
439         VNInfo *VNI = LR.getNextValue(Start, *Alloc);
440         I.Value = VNI;
441         // This block is done, we know the final value.
442         I.DomNode = nullptr;
443
444         // Add liveness since updateFromLiveIns now skips this node.
445         if (I.Kill.isValid())
446           LR.addSegment(LiveInterval::Segment(Start, I.Kill, VNI));
447         else {
448           LR.addSegment(LiveInterval::Segment(Start, End, VNI));
449           LOP = LiveOutPair(VNI, Node);
450         }
451       } else if (IDomValue.first) {
452         // No phi-def here. Remember incoming value.
453         I.Value = IDomValue.first;
454
455         // If the IDomValue is killed in the block, don't propagate through.
456         if (I.Kill.isValid())
457           continue;
458
459         // Propagate IDomValue if it isn't killed:
460         // MBB is live-out and doesn't define its own value.
461         if (LOP.first == IDomValue.first)
462           continue;
463         ++Changes;
464         LOP = IDomValue;
465       }
466     }
467   } while (Changes);
468 }