[LiveIntervalAnalysis] Speed up creation of live ranges for physical registers
[oota-llvm.git] / lib / CodeGen / LiveIntervalAnalysis.cpp
1 //===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveInterval analysis pass which is used
11 // by the Linear Scan Register allocator. This pass linearizes the
12 // basic blocks of the function in DFS order and uses the
13 // LiveVariables pass to conservatively compute live intervals for
14 // each virtual and physical register.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "LiveRangeCalc.h"
20 #include "llvm/ADT/DenseSet.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/LiveVariables.h"
24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/CodeGen/VirtRegMap.h"
30 #include "llvm/IR/Value.h"
31 #include "llvm/Support/BlockFrequency.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/Format.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Target/TargetInstrInfo.h"
38 #include "llvm/Target/TargetRegisterInfo.h"
39 #include "llvm/Target/TargetSubtargetInfo.h"
40 #include <algorithm>
41 #include <cmath>
42 #include <limits>
43 using namespace llvm;
44
45 #define DEBUG_TYPE "regalloc"
46
47 char LiveIntervals::ID = 0;
48 char &llvm::LiveIntervalsID = LiveIntervals::ID;
49 INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
50                 "Live Interval Analysis", false, false)
51 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
52 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
53 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
54 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
55 INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
56                 "Live Interval Analysis", false, false)
57
58 #ifndef NDEBUG
59 static cl::opt<bool> EnablePrecomputePhysRegs(
60   "precompute-phys-liveness", cl::Hidden,
61   cl::desc("Eagerly compute live intervals for all physreg units."));
62 #else
63 static bool EnablePrecomputePhysRegs = false;
64 #endif // NDEBUG
65
66 static cl::opt<bool> EnableSubRegLiveness(
67   "enable-subreg-liveness", cl::Hidden, cl::init(true),
68   cl::desc("Enable subregister liveness tracking."));
69
70 namespace llvm {
71 cl::opt<bool> UseSegmentSetForPhysRegs(
72     "use-segment-set-for-physregs", cl::Hidden, cl::init(true),
73     cl::desc(
74         "Use segment set for the computation of the live ranges of physregs."));
75 }
76
77 void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
78   AU.setPreservesCFG();
79   AU.addRequired<AliasAnalysis>();
80   AU.addPreserved<AliasAnalysis>();
81   // LiveVariables isn't really required by this analysis, it is only required
82   // here to make sure it is live during TwoAddressInstructionPass and
83   // PHIElimination. This is temporary.
84   AU.addRequired<LiveVariables>();
85   AU.addPreserved<LiveVariables>();
86   AU.addPreservedID(MachineLoopInfoID);
87   AU.addRequiredTransitiveID(MachineDominatorsID);
88   AU.addPreservedID(MachineDominatorsID);
89   AU.addPreserved<SlotIndexes>();
90   AU.addRequiredTransitive<SlotIndexes>();
91   MachineFunctionPass::getAnalysisUsage(AU);
92 }
93
94 LiveIntervals::LiveIntervals() : MachineFunctionPass(ID),
95   DomTree(nullptr), LRCalc(nullptr) {
96   initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
97 }
98
99 LiveIntervals::~LiveIntervals() {
100   delete LRCalc;
101 }
102
103 void LiveIntervals::releaseMemory() {
104   // Free the live intervals themselves.
105   for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
106     delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)];
107   VirtRegIntervals.clear();
108   RegMaskSlots.clear();
109   RegMaskBits.clear();
110   RegMaskBlocks.clear();
111
112   for (unsigned i = 0, e = RegUnitRanges.size(); i != e; ++i)
113     delete RegUnitRanges[i];
114   RegUnitRanges.clear();
115
116   // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
117   VNInfoAllocator.Reset();
118 }
119
120 /// runOnMachineFunction - calculates LiveIntervals
121 ///
122 bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
123   MF = &fn;
124   MRI = &MF->getRegInfo();
125   TRI = MF->getSubtarget().getRegisterInfo();
126   TII = MF->getSubtarget().getInstrInfo();
127   AA = &getAnalysis<AliasAnalysis>();
128   Indexes = &getAnalysis<SlotIndexes>();
129   DomTree = &getAnalysis<MachineDominatorTree>();
130
131   if (EnableSubRegLiveness && MF->getSubtarget().enableSubRegLiveness())
132     MRI->enableSubRegLiveness(true);
133
134   if (!LRCalc)
135     LRCalc = new LiveRangeCalc();
136
137   // Allocate space for all virtual registers.
138   VirtRegIntervals.resize(MRI->getNumVirtRegs());
139
140   computeVirtRegs();
141   computeRegMasks();
142   computeLiveInRegUnits();
143
144   if (EnablePrecomputePhysRegs) {
145     // For stress testing, precompute live ranges of all physical register
146     // units, including reserved registers.
147     for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
148       getRegUnit(i);
149   }
150   DEBUG(dump());
151   return true;
152 }
153
154 /// print - Implement the dump method.
155 void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
156   OS << "********** INTERVALS **********\n";
157
158   // Dump the regunits.
159   for (unsigned i = 0, e = RegUnitRanges.size(); i != e; ++i)
160     if (LiveRange *LR = RegUnitRanges[i])
161       OS << PrintRegUnit(i, TRI) << ' ' << *LR << '\n';
162
163   // Dump the virtregs.
164   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
165     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
166     if (hasInterval(Reg))
167       OS << getInterval(Reg) << '\n';
168   }
169
170   OS << "RegMasks:";
171   for (unsigned i = 0, e = RegMaskSlots.size(); i != e; ++i)
172     OS << ' ' << RegMaskSlots[i];
173   OS << '\n';
174
175   printInstrs(OS);
176 }
177
178 void LiveIntervals::printInstrs(raw_ostream &OS) const {
179   OS << "********** MACHINEINSTRS **********\n";
180   MF->print(OS, Indexes);
181 }
182
183 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
184 void LiveIntervals::dumpInstrs() const {
185   printInstrs(dbgs());
186 }
187 #endif
188
189 LiveInterval* LiveIntervals::createInterval(unsigned reg) {
190   float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ?
191                   llvm::huge_valf : 0.0F;
192   return new LiveInterval(reg, Weight);
193 }
194
195
196 /// computeVirtRegInterval - Compute the live interval of a virtual register,
197 /// based on defs and uses.
198 void LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
199   assert(LRCalc && "LRCalc not initialized.");
200   assert(LI.empty() && "Should only compute empty intervals.");
201   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
202   LRCalc->calculate(LI);
203   computeDeadValues(LI, nullptr);
204 }
205
206 void LiveIntervals::computeVirtRegs() {
207   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
208     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
209     if (MRI->reg_nodbg_empty(Reg))
210       continue;
211     createAndComputeVirtRegInterval(Reg);
212   }
213 }
214
215 void LiveIntervals::computeRegMasks() {
216   RegMaskBlocks.resize(MF->getNumBlockIDs());
217
218   // Find all instructions with regmask operands.
219   for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
220        MBBI != E; ++MBBI) {
221     MachineBasicBlock *MBB = MBBI;
222     std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()];
223     RMB.first = RegMaskSlots.size();
224     for (MachineBasicBlock::iterator MI = MBB->begin(), ME = MBB->end();
225          MI != ME; ++MI)
226       for (MIOperands MO(MI); MO.isValid(); ++MO) {
227         if (!MO->isRegMask())
228           continue;
229           RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
230           RegMaskBits.push_back(MO->getRegMask());
231       }
232     // Compute the number of register mask instructions in this block.
233     RMB.second = RegMaskSlots.size() - RMB.first;
234   }
235 }
236
237 //===----------------------------------------------------------------------===//
238 //                           Register Unit Liveness
239 //===----------------------------------------------------------------------===//
240 //
241 // Fixed interference typically comes from ABI boundaries: Function arguments
242 // and return values are passed in fixed registers, and so are exception
243 // pointers entering landing pads. Certain instructions require values to be
244 // present in specific registers. That is also represented through fixed
245 // interference.
246 //
247
248 /// computeRegUnitInterval - Compute the live range of a register unit, based
249 /// on the uses and defs of aliasing registers.  The range should be empty,
250 /// or contain only dead phi-defs from ABI blocks.
251 void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
252   assert(LRCalc && "LRCalc not initialized.");
253   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
254
255   // The physregs aliasing Unit are the roots and their super-registers.
256   // Create all values as dead defs before extending to uses. Note that roots
257   // may share super-registers. That's OK because createDeadDefs() is
258   // idempotent. It is very rare for a register unit to have multiple roots, so
259   // uniquing super-registers is probably not worthwhile.
260   for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
261     for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true);
262          Supers.isValid(); ++Supers) {
263       if (!MRI->reg_empty(*Supers))
264         LRCalc->createDeadDefs(LR, *Supers);
265     }
266   }
267
268   // Now extend LR to reach all uses.
269   // Ignore uses of reserved registers. We only track defs of those.
270   for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
271     for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true);
272          Supers.isValid(); ++Supers) {
273       unsigned Reg = *Supers;
274       if (!MRI->isReserved(Reg) && !MRI->reg_empty(Reg))
275         LRCalc->extendToUses(LR, Reg);
276     }
277   }
278
279   // Flush the segment set to the segment vector.
280   if (UseSegmentSetForPhysRegs)
281     LR.flushSegmentSet();
282 }
283
284
285 /// computeLiveInRegUnits - Precompute the live ranges of any register units
286 /// that are live-in to an ABI block somewhere. Register values can appear
287 /// without a corresponding def when entering the entry block or a landing pad.
288 ///
289 void LiveIntervals::computeLiveInRegUnits() {
290   RegUnitRanges.resize(TRI->getNumRegUnits());
291   DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
292
293   // Keep track of the live range sets allocated.
294   SmallVector<unsigned, 8> NewRanges;
295
296   // Check all basic blocks for live-ins.
297   for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
298        MFI != MFE; ++MFI) {
299     const MachineBasicBlock *MBB = MFI;
300
301     // We only care about ABI blocks: Entry + landing pads.
302     if ((MFI != MF->begin() && !MBB->isLandingPad()) || MBB->livein_empty())
303       continue;
304
305     // Create phi-defs at Begin for all live-in registers.
306     SlotIndex Begin = Indexes->getMBBStartIdx(MBB);
307     DEBUG(dbgs() << Begin << "\tBB#" << MBB->getNumber());
308     for (MachineBasicBlock::livein_iterator LII = MBB->livein_begin(),
309          LIE = MBB->livein_end(); LII != LIE; ++LII) {
310       for (MCRegUnitIterator Units(*LII, TRI); Units.isValid(); ++Units) {
311         unsigned Unit = *Units;
312         LiveRange *LR = RegUnitRanges[Unit];
313         if (!LR) {
314           // Use segment set to speed-up initial computation of the live range.
315           LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs);
316           NewRanges.push_back(Unit);
317         }
318         VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator());
319         (void)VNI;
320         DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << '#' << VNI->id);
321       }
322     }
323     DEBUG(dbgs() << '\n');
324   }
325   DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n");
326
327   // Compute the 'normal' part of the ranges.
328   for (unsigned i = 0, e = NewRanges.size(); i != e; ++i) {
329     unsigned Unit = NewRanges[i];
330     computeRegUnitRange(*RegUnitRanges[Unit], Unit);
331   }
332 }
333
334
335 static void createSegmentsForValues(LiveRange &LR,
336       iterator_range<LiveInterval::vni_iterator> VNIs) {
337   for (auto VNI : VNIs) {
338     if (VNI->isUnused())
339       continue;
340     SlotIndex Def = VNI->def;
341     LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI));
342   }
343 }
344
345 typedef SmallVector<std::pair<SlotIndex, VNInfo*>, 16> ShrinkToUsesWorkList;
346
347 static void extendSegmentsToUses(LiveRange &LR, const SlotIndexes &Indexes,
348                                  ShrinkToUsesWorkList &WorkList,
349                                  const LiveRange &OldRange) {
350   // Keep track of the PHIs that are in use.
351   SmallPtrSet<VNInfo*, 8> UsedPHIs;
352   // Blocks that have already been added to WorkList as live-out.
353   SmallPtrSet<MachineBasicBlock*, 16> LiveOut;
354
355   // Extend intervals to reach all uses in WorkList.
356   while (!WorkList.empty()) {
357     SlotIndex Idx = WorkList.back().first;
358     VNInfo *VNI = WorkList.back().second;
359     WorkList.pop_back();
360     const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(Idx.getPrevSlot());
361     SlotIndex BlockStart = Indexes.getMBBStartIdx(MBB);
362
363     // Extend the live range for VNI to be live at Idx.
364     if (VNInfo *ExtVNI = LR.extendInBlock(BlockStart, Idx)) {
365       assert(ExtVNI == VNI && "Unexpected existing value number");
366       (void)ExtVNI;
367       // Is this a PHIDef we haven't seen before?
368       if (!VNI->isPHIDef() || VNI->def != BlockStart ||
369           !UsedPHIs.insert(VNI).second)
370         continue;
371       // The PHI is live, make sure the predecessors are live-out.
372       for (auto &Pred : MBB->predecessors()) {
373         if (!LiveOut.insert(Pred).second)
374           continue;
375         SlotIndex Stop = Indexes.getMBBEndIdx(Pred);
376         // A predecessor is not required to have a live-out value for a PHI.
377         if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop))
378           WorkList.push_back(std::make_pair(Stop, PVNI));
379       }
380       continue;
381     }
382
383     // VNI is live-in to MBB.
384     DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
385     LR.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));
386
387     // Make sure VNI is live-out from the predecessors.
388     for (auto &Pred : MBB->predecessors()) {
389       if (!LiveOut.insert(Pred).second)
390         continue;
391       SlotIndex Stop = Indexes.getMBBEndIdx(Pred);
392       assert(OldRange.getVNInfoBefore(Stop) == VNI &&
393              "Wrong value out of predecessor");
394       WorkList.push_back(std::make_pair(Stop, VNI));
395     }
396   }
397 }
398
399 /// shrinkToUses - After removing some uses of a register, shrink its live
400 /// range to just the remaining uses. This method does not compute reaching
401 /// defs for new uses, and it doesn't remove dead defs.
402 bool LiveIntervals::shrinkToUses(LiveInterval *li,
403                                  SmallVectorImpl<MachineInstr*> *dead) {
404   DEBUG(dbgs() << "Shrink: " << *li << '\n');
405   assert(TargetRegisterInfo::isVirtualRegister(li->reg)
406          && "Can only shrink virtual registers");
407
408   // Shrink subregister live ranges.
409   for (LiveInterval::SubRange &S : li->subranges()) {
410     shrinkToUses(S, li->reg);
411   }
412
413   // Find all the values used, including PHI kills.
414   ShrinkToUsesWorkList WorkList;
415
416   // Visit all instructions reading li->reg.
417   for (MachineRegisterInfo::reg_instr_iterator
418        I = MRI->reg_instr_begin(li->reg), E = MRI->reg_instr_end();
419        I != E; ) {
420     MachineInstr *UseMI = &*(I++);
421     if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg))
422       continue;
423     SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
424     LiveQueryResult LRQ = li->Query(Idx);
425     VNInfo *VNI = LRQ.valueIn();
426     if (!VNI) {
427       // This shouldn't happen: readsVirtualRegister returns true, but there is
428       // no live value. It is likely caused by a target getting <undef> flags
429       // wrong.
430       DEBUG(dbgs() << Idx << '\t' << *UseMI
431                    << "Warning: Instr claims to read non-existent value in "
432                     << *li << '\n');
433       continue;
434     }
435     // Special case: An early-clobber tied operand reads and writes the
436     // register one slot early.
437     if (VNInfo *DefVNI = LRQ.valueDefined())
438       Idx = DefVNI->def;
439
440     WorkList.push_back(std::make_pair(Idx, VNI));
441   }
442
443   // Create new live ranges with only minimal live segments per def.
444   LiveRange NewLR;
445   createSegmentsForValues(NewLR, make_range(li->vni_begin(), li->vni_end()));
446   extendSegmentsToUses(NewLR, *Indexes, WorkList, *li);
447
448   // Move the trimmed segments back.
449   li->segments.swap(NewLR.segments);
450
451   // Handle dead values.
452   bool CanSeparate = computeDeadValues(*li, dead);
453   DEBUG(dbgs() << "Shrunk: " << *li << '\n');
454   return CanSeparate;
455 }
456
457 bool LiveIntervals::computeDeadValues(LiveInterval &LI,
458                                       SmallVectorImpl<MachineInstr*> *dead) {
459   bool PHIRemoved = false;
460   for (auto VNI : LI.valnos) {
461     if (VNI->isUnused())
462       continue;
463     SlotIndex Def = VNI->def;
464     LiveRange::iterator I = LI.FindSegmentContaining(Def);
465     assert(I != LI.end() && "Missing segment for VNI");
466
467     // Is the register live before? Otherwise we may have to add a read-undef
468     // flag for subregister defs.
469     if (MRI->tracksSubRegLiveness()) {
470       if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) {
471         MachineInstr *MI = getInstructionFromIndex(Def);
472         MI->addRegisterDefReadUndef(LI.reg);
473       }
474     }
475
476     if (I->end != Def.getDeadSlot())
477       continue;
478     if (VNI->isPHIDef()) {
479       // This is a dead PHI. Remove it.
480       VNI->markUnused();
481       LI.removeSegment(I);
482       DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n");
483       PHIRemoved = true;
484     } else {
485       // This is a dead def. Make sure the instruction knows.
486       MachineInstr *MI = getInstructionFromIndex(Def);
487       assert(MI && "No instruction defining live value");
488       MI->addRegisterDead(LI.reg, TRI);
489       if (dead && MI->allDefsAreDead()) {
490         DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI);
491         dead->push_back(MI);
492       }
493     }
494   }
495   return PHIRemoved;
496 }
497
498 void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg)
499 {
500   DEBUG(dbgs() << "Shrink: " << SR << '\n');
501   assert(TargetRegisterInfo::isVirtualRegister(Reg)
502          && "Can only shrink virtual registers");
503   // Find all the values used, including PHI kills.
504   ShrinkToUsesWorkList WorkList;
505
506   // Visit all instructions reading Reg.
507   SlotIndex LastIdx;
508   for (MachineOperand &MO : MRI->reg_operands(Reg)) {
509     MachineInstr *UseMI = MO.getParent();
510     if (UseMI->isDebugValue())
511       continue;
512     // Maybe the operand is for a subregister we don't care about.
513     unsigned SubReg = MO.getSubReg();
514     if (SubReg != 0) {
515       unsigned SubRegMask = TRI->getSubRegIndexLaneMask(SubReg);
516       if ((SubRegMask & SR.LaneMask) == 0)
517         continue;
518     }
519     // We only need to visit each instruction once.
520     SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
521     if (Idx == LastIdx)
522       continue;
523     LastIdx = Idx;
524
525     LiveQueryResult LRQ = SR.Query(Idx);
526     VNInfo *VNI = LRQ.valueIn();
527     // For Subranges it is possible that only undef values are left in that
528     // part of the subregister, so there is no real liverange at the use
529     if (!VNI)
530       continue;
531
532     // Special case: An early-clobber tied operand reads and writes the
533     // register one slot early.
534     if (VNInfo *DefVNI = LRQ.valueDefined())
535       Idx = DefVNI->def;
536
537     WorkList.push_back(std::make_pair(Idx, VNI));
538   }
539
540   // Create a new live ranges with only minimal live segments per def.
541   LiveRange NewLR;
542   createSegmentsForValues(NewLR, make_range(SR.vni_begin(), SR.vni_end()));
543   extendSegmentsToUses(NewLR, *Indexes, WorkList, SR);
544
545   // Move the trimmed ranges back.
546   SR.segments.swap(NewLR.segments);
547
548   // Remove dead PHI value numbers
549   for (auto VNI : SR.valnos) {
550     if (VNI->isUnused())
551       continue;
552     const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def);
553     assert(Segment != nullptr && "Missing segment for VNI");
554     if (Segment->end != VNI->def.getDeadSlot())
555       continue;
556     if (VNI->isPHIDef()) {
557       // This is a dead PHI. Remove it.
558       VNI->markUnused();
559       SR.removeSegment(*Segment);
560       DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
561     }
562   }
563
564   DEBUG(dbgs() << "Shrunk: " << SR << '\n');
565 }
566
567 void LiveIntervals::extendToIndices(LiveRange &LR,
568                                     ArrayRef<SlotIndex> Indices) {
569   assert(LRCalc && "LRCalc not initialized.");
570   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
571   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
572     LRCalc->extend(LR, Indices[i]);
573 }
574
575 void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill,
576                                SmallVectorImpl<SlotIndex> *EndPoints) {
577   LiveQueryResult LRQ = LR.Query(Kill);
578   VNInfo *VNI = LRQ.valueOutOrDead();
579   if (!VNI)
580     return;
581
582   MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
583   SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB);
584
585   // If VNI isn't live out from KillMBB, the value is trivially pruned.
586   if (LRQ.endPoint() < MBBEnd) {
587     LR.removeSegment(Kill, LRQ.endPoint());
588     if (EndPoints) EndPoints->push_back(LRQ.endPoint());
589     return;
590   }
591
592   // VNI is live out of KillMBB.
593   LR.removeSegment(Kill, MBBEnd);
594   if (EndPoints) EndPoints->push_back(MBBEnd);
595
596   // Find all blocks that are reachable from KillMBB without leaving VNI's live
597   // range. It is possible that KillMBB itself is reachable, so start a DFS
598   // from each successor.
599   typedef SmallPtrSet<MachineBasicBlock*, 9> VisitedTy;
600   VisitedTy Visited;
601   for (MachineBasicBlock::succ_iterator
602        SuccI = KillMBB->succ_begin(), SuccE = KillMBB->succ_end();
603        SuccI != SuccE; ++SuccI) {
604     for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
605          I = df_ext_begin(*SuccI, Visited), E = df_ext_end(*SuccI, Visited);
606          I != E;) {
607       MachineBasicBlock *MBB = *I;
608
609       // Check if VNI is live in to MBB.
610       SlotIndex MBBStart, MBBEnd;
611       std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
612       LiveQueryResult LRQ = LR.Query(MBBStart);
613       if (LRQ.valueIn() != VNI) {
614         // This block isn't part of the VNI segment. Prune the search.
615         I.skipChildren();
616         continue;
617       }
618
619       // Prune the search if VNI is killed in MBB.
620       if (LRQ.endPoint() < MBBEnd) {
621         LR.removeSegment(MBBStart, LRQ.endPoint());
622         if (EndPoints) EndPoints->push_back(LRQ.endPoint());
623         I.skipChildren();
624         continue;
625       }
626
627       // VNI is live through MBB.
628       LR.removeSegment(MBBStart, MBBEnd);
629       if (EndPoints) EndPoints->push_back(MBBEnd);
630       ++I;
631     }
632   }
633 }
634
635 //===----------------------------------------------------------------------===//
636 // Register allocator hooks.
637 //
638
639 void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
640   // Keep track of regunit ranges.
641   SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU;
642   // Keep track of subregister ranges.
643   SmallVector<std::pair<const LiveInterval::SubRange*,
644                         LiveRange::const_iterator>, 4> SRs;
645
646   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
647     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
648     if (MRI->reg_nodbg_empty(Reg))
649       continue;
650     const LiveInterval &LI = getInterval(Reg);
651     if (LI.empty())
652       continue;
653
654     // Find the regunit intervals for the assigned register. They may overlap
655     // the virtual register live range, cancelling any kills.
656     RU.clear();
657     for (MCRegUnitIterator Units(VRM->getPhys(Reg), TRI); Units.isValid();
658          ++Units) {
659       const LiveRange &RURange = getRegUnit(*Units);
660       if (RURange.empty())
661         continue;
662       RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end)));
663     }
664
665     if (MRI->tracksSubRegLiveness()) {
666       SRs.clear();
667       for (const LiveInterval::SubRange &SR : LI.subranges()) {
668         SRs.push_back(std::make_pair(&SR, SR.find(LI.begin()->end)));
669       }
670     }
671
672     // Every instruction that kills Reg corresponds to a segment range end
673     // point.
674     for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE;
675          ++RI) {
676       // A block index indicates an MBB edge.
677       if (RI->end.isBlock())
678         continue;
679       MachineInstr *MI = getInstructionFromIndex(RI->end);
680       if (!MI)
681         continue;
682
683       // Check if any of the regunits are live beyond the end of RI. That could
684       // happen when a physreg is defined as a copy of a virtreg:
685       //
686       //   %EAX = COPY %vreg5
687       //   FOO %vreg5         <--- MI, cancel kill because %EAX is live.
688       //   BAR %EAX<kill>
689       //
690       // There should be no kill flag on FOO when %vreg5 is rewritten as %EAX.
691       for (auto &RUP : RU) {
692         const LiveRange &RURange = *RUP.first;
693         LiveRange::const_iterator &I = RUP.second;
694         if (I == RURange.end())
695           continue;
696         I = RURange.advanceTo(I, RI->end);
697         if (I == RURange.end() || I->start >= RI->end)
698           continue;
699         // I is overlapping RI.
700         goto CancelKill;
701       }
702
703       if (MRI->tracksSubRegLiveness()) {
704         // When reading a partial undefined value we must not add a kill flag.
705         // The regalloc might have used the undef lane for something else.
706         // Example:
707         //     %vreg1 = ...              ; R32: %vreg1
708         //     %vreg2:high16 = ...       ; R64: %vreg2
709         //        = read %vreg2<kill>    ; R64: %vreg2
710         //        = read %vreg1          ; R32: %vreg1
711         // The <kill> flag is correct for %vreg2, but the register allocator may
712         // assign R0L to %vreg1, and R0 to %vreg2 because the low 32bits of R0
713         // are actually never written by %vreg2. After assignment the <kill>
714         // flag at the read instruction is invalid.
715         unsigned DefinedLanesMask;
716         if (!SRs.empty()) {
717           // Compute a mask of lanes that are defined.
718           DefinedLanesMask = 0;
719           for (auto &SRP : SRs) {
720             const LiveInterval::SubRange &SR = *SRP.first;
721             LiveRange::const_iterator &I = SRP.second;
722             if (I == SR.end())
723               continue;
724             I = SR.advanceTo(I, RI->end);
725             if (I == SR.end() || I->start >= RI->end)
726               continue;
727             // I is overlapping RI
728             DefinedLanesMask |= SR.LaneMask;
729           }
730         } else
731           DefinedLanesMask = ~0u;
732
733         bool IsFullWrite = false;
734         for (const MachineOperand &MO : MI->operands()) {
735           if (!MO.isReg() || MO.getReg() != Reg)
736             continue;
737           if (MO.isUse()) {
738             // Reading any undefined lanes?
739             unsigned UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
740             if ((UseMask & ~DefinedLanesMask) != 0)
741               goto CancelKill;
742           } else if (MO.getSubReg() == 0) {
743             // Writing to the full register?
744             assert(MO.isDef());
745             IsFullWrite = true;
746           }
747         }
748
749         // If an instruction writes to a subregister, a new segment starts in
750         // the LiveInterval. But as this is only overriding part of the register
751         // adding kill-flags is not correct here after registers have been
752         // assigned.
753         if (!IsFullWrite) {
754           // Next segment has to be adjacent in the subregister write case.
755           LiveRange::const_iterator N = std::next(RI);
756           if (N != LI.end() && N->start == RI->end)
757             goto CancelKill;
758         }
759       }
760
761       MI->addRegisterKilled(Reg, nullptr);
762       continue;
763 CancelKill:
764       MI->clearRegisterKills(Reg, nullptr);
765     }
766   }
767 }
768
769 MachineBasicBlock*
770 LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
771   // A local live range must be fully contained inside the block, meaning it is
772   // defined and killed at instructions, not at block boundaries. It is not
773   // live in or or out of any block.
774   //
775   // It is technically possible to have a PHI-defined live range identical to a
776   // single block, but we are going to return false in that case.
777
778   SlotIndex Start = LI.beginIndex();
779   if (Start.isBlock())
780     return nullptr;
781
782   SlotIndex Stop = LI.endIndex();
783   if (Stop.isBlock())
784     return nullptr;
785
786   // getMBBFromIndex doesn't need to search the MBB table when both indexes
787   // belong to proper instructions.
788   MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
789   MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
790   return MBB1 == MBB2 ? MBB1 : nullptr;
791 }
792
793 bool
794 LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
795   for (const VNInfo *PHI : LI.valnos) {
796     if (PHI->isUnused() || !PHI->isPHIDef())
797       continue;
798     const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
799     // Conservatively return true instead of scanning huge predecessor lists.
800     if (PHIMBB->pred_size() > 100)
801       return true;
802     for (MachineBasicBlock::const_pred_iterator
803          PI = PHIMBB->pred_begin(), PE = PHIMBB->pred_end(); PI != PE; ++PI)
804       if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(*PI)))
805         return true;
806   }
807   return false;
808 }
809
810 float
811 LiveIntervals::getSpillWeight(bool isDef, bool isUse,
812                               const MachineBlockFrequencyInfo *MBFI,
813                               const MachineInstr *MI) {
814   BlockFrequency Freq = MBFI->getBlockFreq(MI->getParent());
815   const float Scale = 1.0f / MBFI->getEntryFreq();
816   return (isDef + isUse) * (Freq.getFrequency() * Scale);
817 }
818
819 LiveRange::Segment
820 LiveIntervals::addSegmentToEndOfBlock(unsigned reg, MachineInstr* startInst) {
821   LiveInterval& Interval = createEmptyInterval(reg);
822   VNInfo* VN = Interval.getNextValue(
823     SlotIndex(getInstructionIndex(startInst).getRegSlot()),
824     getVNInfoAllocator());
825   LiveRange::Segment S(
826      SlotIndex(getInstructionIndex(startInst).getRegSlot()),
827      getMBBEndIdx(startInst->getParent()), VN);
828   Interval.addSegment(S);
829
830   return S;
831 }
832
833
834 //===----------------------------------------------------------------------===//
835 //                          Register mask functions
836 //===----------------------------------------------------------------------===//
837
838 bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
839                                              BitVector &UsableRegs) {
840   if (LI.empty())
841     return false;
842   LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
843
844   // Use a smaller arrays for local live ranges.
845   ArrayRef<SlotIndex> Slots;
846   ArrayRef<const uint32_t*> Bits;
847   if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
848     Slots = getRegMaskSlotsInBlock(MBB->getNumber());
849     Bits = getRegMaskBitsInBlock(MBB->getNumber());
850   } else {
851     Slots = getRegMaskSlots();
852     Bits = getRegMaskBits();
853   }
854
855   // We are going to enumerate all the register mask slots contained in LI.
856   // Start with a binary search of RegMaskSlots to find a starting point.
857   ArrayRef<SlotIndex>::iterator SlotI =
858     std::lower_bound(Slots.begin(), Slots.end(), LiveI->start);
859   ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
860
861   // No slots in range, LI begins after the last call.
862   if (SlotI == SlotE)
863     return false;
864
865   bool Found = false;
866   for (;;) {
867     assert(*SlotI >= LiveI->start);
868     // Loop over all slots overlapping this segment.
869     while (*SlotI < LiveI->end) {
870       // *SlotI overlaps LI. Collect mask bits.
871       if (!Found) {
872         // This is the first overlap. Initialize UsableRegs to all ones.
873         UsableRegs.clear();
874         UsableRegs.resize(TRI->getNumRegs(), true);
875         Found = true;
876       }
877       // Remove usable registers clobbered by this mask.
878       UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
879       if (++SlotI == SlotE)
880         return Found;
881     }
882     // *SlotI is beyond the current LI segment.
883     LiveI = LI.advanceTo(LiveI, *SlotI);
884     if (LiveI == LiveE)
885       return Found;
886     // Advance SlotI until it overlaps.
887     while (*SlotI < LiveI->start)
888       if (++SlotI == SlotE)
889         return Found;
890   }
891 }
892
893 //===----------------------------------------------------------------------===//
894 //                         IntervalUpdate class.
895 //===----------------------------------------------------------------------===//
896
897 // HMEditor is a toolkit used by handleMove to trim or extend live intervals.
898 class LiveIntervals::HMEditor {
899 private:
900   LiveIntervals& LIS;
901   const MachineRegisterInfo& MRI;
902   const TargetRegisterInfo& TRI;
903   SlotIndex OldIdx;
904   SlotIndex NewIdx;
905   SmallPtrSet<LiveRange*, 8> Updated;
906   bool UpdateFlags;
907
908 public:
909   HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
910            const TargetRegisterInfo& TRI,
911            SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
912     : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
913       UpdateFlags(UpdateFlags) {}
914
915   // FIXME: UpdateFlags is a workaround that creates live intervals for all
916   // physregs, even those that aren't needed for regalloc, in order to update
917   // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
918   // flags, and postRA passes will use a live register utility instead.
919   LiveRange *getRegUnitLI(unsigned Unit) {
920     if (UpdateFlags)
921       return &LIS.getRegUnit(Unit);
922     return LIS.getCachedRegUnit(Unit);
923   }
924
925   /// Update all live ranges touched by MI, assuming a move from OldIdx to
926   /// NewIdx.
927   void updateAllRanges(MachineInstr *MI) {
928     DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " << *MI);
929     bool hasRegMask = false;
930     for (MIOperands MO(MI); MO.isValid(); ++MO) {
931       if (MO->isRegMask())
932         hasRegMask = true;
933       if (!MO->isReg())
934         continue;
935       // Aggressively clear all kill flags.
936       // They are reinserted by VirtRegRewriter.
937       if (MO->isUse())
938         MO->setIsKill(false);
939
940       unsigned Reg = MO->getReg();
941       if (!Reg)
942         continue;
943       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
944         LiveInterval &LI = LIS.getInterval(Reg);
945         if (LI.hasSubRanges()) {
946           unsigned SubReg = MO->getSubReg();
947           unsigned LaneMask = TRI.getSubRegIndexLaneMask(SubReg);
948           for (LiveInterval::SubRange &S : LI.subranges()) {
949             if ((S.LaneMask & LaneMask) == 0)
950               continue;
951             updateRange(S, Reg, S.LaneMask);
952           }
953         }
954         updateRange(LI, Reg, 0);
955         continue;
956       }
957
958       // For physregs, only update the regunits that actually have a
959       // precomputed live range.
960       for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
961         if (LiveRange *LR = getRegUnitLI(*Units))
962           updateRange(*LR, *Units, 0);
963     }
964     if (hasRegMask)
965       updateRegMaskSlots();
966   }
967
968 private:
969   /// Update a single live range, assuming an instruction has been moved from
970   /// OldIdx to NewIdx.
971   void updateRange(LiveRange &LR, unsigned Reg, unsigned LaneMask) {
972     if (!Updated.insert(&LR).second)
973       return;
974     DEBUG({
975       dbgs() << "     ";
976       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
977         dbgs() << PrintReg(Reg);
978         if (LaneMask != 0)
979           dbgs() << format(" L%04X", LaneMask);
980       } else {
981         dbgs() << PrintRegUnit(Reg, &TRI);
982       }
983       dbgs() << ":\t" << LR << '\n';
984     });
985     if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
986       handleMoveDown(LR);
987     else
988       handleMoveUp(LR, Reg, LaneMask);
989     DEBUG(dbgs() << "        -->\t" << LR << '\n');
990     LR.verify();
991   }
992
993   /// Update LR to reflect an instruction has been moved downwards from OldIdx
994   /// to NewIdx.
995   ///
996   /// 1. Live def at OldIdx:
997   ///    Move def to NewIdx, assert endpoint after NewIdx.
998   ///
999   /// 2. Live def at OldIdx, killed at NewIdx:
1000   ///    Change to dead def at NewIdx.
1001   ///    (Happens when bundling def+kill together).
1002   ///
1003   /// 3. Dead def at OldIdx:
1004   ///    Move def to NewIdx, possibly across another live value.
1005   ///
1006   /// 4. Def at OldIdx AND at NewIdx:
1007   ///    Remove segment [OldIdx;NewIdx) and value defined at OldIdx.
1008   ///    (Happens when bundling multiple defs together).
1009   ///
1010   /// 5. Value read at OldIdx, killed before NewIdx:
1011   ///    Extend kill to NewIdx.
1012   ///
1013   void handleMoveDown(LiveRange &LR) {
1014     // First look for a kill at OldIdx.
1015     LiveRange::iterator I = LR.find(OldIdx.getBaseIndex());
1016     LiveRange::iterator E = LR.end();
1017     // Is LR even live at OldIdx?
1018     if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
1019       return;
1020
1021     // Handle a live-in value.
1022     if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
1023       bool isKill = SlotIndex::isSameInstr(OldIdx, I->end);
1024       // If the live-in value already extends to NewIdx, there is nothing to do.
1025       if (!SlotIndex::isEarlierInstr(I->end, NewIdx))
1026         return;
1027       // Aggressively remove all kill flags from the old kill point.
1028       // Kill flags shouldn't be used while live intervals exist, they will be
1029       // reinserted by VirtRegRewriter.
1030       if (MachineInstr *KillMI = LIS.getInstructionFromIndex(I->end))
1031         for (MIBundleOperands MO(KillMI); MO.isValid(); ++MO)
1032           if (MO->isReg() && MO->isUse())
1033             MO->setIsKill(false);
1034       // Adjust I->end to reach NewIdx. This may temporarily make LR invalid by
1035       // overlapping ranges. Case 5 above.
1036       I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
1037       // If this was a kill, there may also be a def. Otherwise we're done.
1038       if (!isKill)
1039         return;
1040       ++I;
1041     }
1042
1043     // Check for a def at OldIdx.
1044     if (I == E || !SlotIndex::isSameInstr(OldIdx, I->start))
1045       return;
1046     // We have a def at OldIdx.
1047     VNInfo *DefVNI = I->valno;
1048     assert(DefVNI->def == I->start && "Inconsistent def");
1049     DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
1050     // If the defined value extends beyond NewIdx, just move the def down.
1051     // This is case 1 above.
1052     if (SlotIndex::isEarlierInstr(NewIdx, I->end)) {
1053       I->start = DefVNI->def;
1054       return;
1055     }
1056     // The remaining possibilities are now:
1057     // 2. Live def at OldIdx, killed at NewIdx: isSameInstr(I->end, NewIdx).
1058     // 3. Dead def at OldIdx: I->end = OldIdx.getDeadSlot().
1059     // In either case, it is possible that there is an existing def at NewIdx.
1060     assert((I->end == OldIdx.getDeadSlot() ||
1061             SlotIndex::isSameInstr(I->end, NewIdx)) &&
1062             "Cannot move def below kill");
1063     LiveRange::iterator NewI = LR.advanceTo(I, NewIdx.getRegSlot());
1064     if (NewI != E && SlotIndex::isSameInstr(NewI->start, NewIdx)) {
1065       // There is an existing def at NewIdx, case 4 above. The def at OldIdx is
1066       // coalesced into that value.
1067       assert(NewI->valno != DefVNI && "Multiple defs of value?");
1068       LR.removeValNo(DefVNI);
1069       return;
1070     }
1071     // There was no existing def at NewIdx. Turn *I into a dead def at NewIdx.
1072     // If the def at OldIdx was dead, we allow it to be moved across other LR
1073     // values. The new range should be placed immediately before NewI, move any
1074     // intermediate ranges up.
1075     assert(NewI != I && "Inconsistent iterators");
1076     std::copy(std::next(I), NewI, I);
1077     *std::prev(NewI)
1078       = LiveRange::Segment(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
1079   }
1080
1081   /// Update LR to reflect an instruction has been moved upwards from OldIdx
1082   /// to NewIdx.
1083   ///
1084   /// 1. Live def at OldIdx:
1085   ///    Hoist def to NewIdx.
1086   ///
1087   /// 2. Dead def at OldIdx:
1088   ///    Hoist def+end to NewIdx, possibly move across other values.
1089   ///
1090   /// 3. Dead def at OldIdx AND existing def at NewIdx:
1091   ///    Remove value defined at OldIdx, coalescing it with existing value.
1092   ///
1093   /// 4. Live def at OldIdx AND existing def at NewIdx:
1094   ///    Remove value defined at NewIdx, hoist OldIdx def to NewIdx.
1095   ///    (Happens when bundling multiple defs together).
1096   ///
1097   /// 5. Value killed at OldIdx:
1098   ///    Hoist kill to NewIdx, then scan for last kill between NewIdx and
1099   ///    OldIdx.
1100   ///
1101   void handleMoveUp(LiveRange &LR, unsigned Reg, unsigned LaneMask) {
1102     // First look for a kill at OldIdx.
1103     LiveRange::iterator I = LR.find(OldIdx.getBaseIndex());
1104     LiveRange::iterator E = LR.end();
1105     // Is LR even live at OldIdx?
1106     if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
1107       return;
1108
1109     // Handle a live-in value.
1110     if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
1111       // If the live-in value isn't killed here, there is nothing to do.
1112       if (!SlotIndex::isSameInstr(OldIdx, I->end))
1113         return;
1114       // Adjust I->end to end at NewIdx. If we are hoisting a kill above
1115       // another use, we need to search for that use. Case 5 above.
1116       I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
1117       ++I;
1118       // If OldIdx also defines a value, there couldn't have been another use.
1119       if (I == E || !SlotIndex::isSameInstr(I->start, OldIdx)) {
1120         // No def, search for the new kill.
1121         // This can never be an early clobber kill since there is no def.
1122         std::prev(I)->end = findLastUseBefore(Reg, LaneMask).getRegSlot();
1123         return;
1124       }
1125     }
1126
1127     // Now deal with the def at OldIdx.
1128     assert(I != E && SlotIndex::isSameInstr(I->start, OldIdx) && "No def?");
1129     VNInfo *DefVNI = I->valno;
1130     assert(DefVNI->def == I->start && "Inconsistent def");
1131     DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
1132
1133     // Check for an existing def at NewIdx.
1134     LiveRange::iterator NewI = LR.find(NewIdx.getRegSlot());
1135     if (SlotIndex::isSameInstr(NewI->start, NewIdx)) {
1136       assert(NewI->valno != DefVNI && "Same value defined more than once?");
1137       // There is an existing def at NewIdx.
1138       if (I->end.isDead()) {
1139         // Case 3: Remove the dead def at OldIdx.
1140         LR.removeValNo(DefVNI);
1141         return;
1142       }
1143       // Case 4: Replace def at NewIdx with live def at OldIdx.
1144       I->start = DefVNI->def;
1145       LR.removeValNo(NewI->valno);
1146       return;
1147     }
1148
1149     // There is no existing def at NewIdx. Hoist DefVNI.
1150     if (!I->end.isDead()) {
1151       // Leave the end point of a live def.
1152       I->start = DefVNI->def;
1153       return;
1154     }
1155
1156     // DefVNI is a dead def. It may have been moved across other values in LR,
1157     // so move I up to NewI. Slide [NewI;I) down one position.
1158     std::copy_backward(NewI, I, std::next(I));
1159     *NewI = LiveRange::Segment(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
1160   }
1161
1162   void updateRegMaskSlots() {
1163     SmallVectorImpl<SlotIndex>::iterator RI =
1164       std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(),
1165                        OldIdx);
1166     assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
1167            "No RegMask at OldIdx.");
1168     *RI = NewIdx.getRegSlot();
1169     assert((RI == LIS.RegMaskSlots.begin() ||
1170             SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) &&
1171            "Cannot move regmask instruction above another call");
1172     assert((std::next(RI) == LIS.RegMaskSlots.end() ||
1173             SlotIndex::isEarlierInstr(*RI, *std::next(RI))) &&
1174            "Cannot move regmask instruction below another call");
1175   }
1176
1177   // Return the last use of reg between NewIdx and OldIdx.
1178   SlotIndex findLastUseBefore(unsigned Reg, unsigned LaneMask) {
1179
1180     if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1181       SlotIndex LastUse = NewIdx;
1182       for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) {
1183         unsigned SubReg = MO.getSubReg();
1184         if (SubReg != 0 && LaneMask != 0
1185             && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask) == 0)
1186           continue;
1187
1188         const MachineInstr *MI = MO.getParent();
1189         SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
1190         if (InstSlot > LastUse && InstSlot < OldIdx)
1191           LastUse = InstSlot;
1192       }
1193       return LastUse;
1194     }
1195
1196     // This is a regunit interval, so scanning the use list could be very
1197     // expensive. Scan upwards from OldIdx instead.
1198     assert(NewIdx < OldIdx && "Expected upwards move");
1199     SlotIndexes *Indexes = LIS.getSlotIndexes();
1200     MachineBasicBlock *MBB = Indexes->getMBBFromIndex(NewIdx);
1201
1202     // OldIdx may not correspond to an instruction any longer, so set MII to
1203     // point to the next instruction after OldIdx, or MBB->end().
1204     MachineBasicBlock::iterator MII = MBB->end();
1205     if (MachineInstr *MI = Indexes->getInstructionFromIndex(
1206                            Indexes->getNextNonNullIndex(OldIdx)))
1207       if (MI->getParent() == MBB)
1208         MII = MI;
1209
1210     MachineBasicBlock::iterator Begin = MBB->begin();
1211     while (MII != Begin) {
1212       if ((--MII)->isDebugValue())
1213         continue;
1214       SlotIndex Idx = Indexes->getInstructionIndex(MII);
1215
1216       // Stop searching when NewIdx is reached.
1217       if (!SlotIndex::isEarlierInstr(NewIdx, Idx))
1218         return NewIdx;
1219
1220       // Check if MII uses Reg.
1221       for (MIBundleOperands MO(MII); MO.isValid(); ++MO)
1222         if (MO->isReg() &&
1223             TargetRegisterInfo::isPhysicalRegister(MO->getReg()) &&
1224             TRI.hasRegUnit(MO->getReg(), Reg))
1225           return Idx;
1226     }
1227     // Didn't reach NewIdx. It must be the first instruction in the block.
1228     return NewIdx;
1229   }
1230 };
1231
1232 void LiveIntervals::handleMove(MachineInstr* MI, bool UpdateFlags) {
1233   assert(!MI->isBundled() && "Can't handle bundled instructions yet.");
1234   SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1235   Indexes->removeMachineInstrFromMaps(MI);
1236   SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
1237   assert(getMBBStartIdx(MI->getParent()) <= OldIndex &&
1238          OldIndex < getMBBEndIdx(MI->getParent()) &&
1239          "Cannot handle moves across basic block boundaries.");
1240
1241   HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1242   HME.updateAllRanges(MI);
1243 }
1244
1245 void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI,
1246                                          MachineInstr* BundleStart,
1247                                          bool UpdateFlags) {
1248   SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1249   SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart);
1250   HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1251   HME.updateAllRanges(MI);
1252 }
1253
1254 void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin,
1255                                         const MachineBasicBlock::iterator End,
1256                                         const SlotIndex endIdx,
1257                                         LiveRange &LR, const unsigned Reg,
1258                                         const unsigned LaneMask) {
1259   LiveInterval::iterator LII = LR.find(endIdx);
1260   SlotIndex lastUseIdx;
1261   if (LII != LR.end() && LII->start < endIdx)
1262     lastUseIdx = LII->end;
1263   else
1264     --LII;
1265
1266   for (MachineBasicBlock::iterator I = End; I != Begin;) {
1267     --I;
1268     MachineInstr *MI = I;
1269     if (MI->isDebugValue())
1270       continue;
1271
1272     SlotIndex instrIdx = getInstructionIndex(MI);
1273     bool isStartValid = getInstructionFromIndex(LII->start);
1274     bool isEndValid = getInstructionFromIndex(LII->end);
1275
1276     // FIXME: This doesn't currently handle early-clobber or multiple removed
1277     // defs inside of the region to repair.
1278     for (MachineInstr::mop_iterator OI = MI->operands_begin(),
1279          OE = MI->operands_end(); OI != OE; ++OI) {
1280       const MachineOperand &MO = *OI;
1281       if (!MO.isReg() || MO.getReg() != Reg)
1282         continue;
1283
1284       unsigned SubReg = MO.getSubReg();
1285       unsigned Mask = TRI->getSubRegIndexLaneMask(SubReg);
1286       if ((Mask & LaneMask) == 0)
1287         continue;
1288
1289       if (MO.isDef()) {
1290         if (!isStartValid) {
1291           if (LII->end.isDead()) {
1292             SlotIndex prevStart;
1293             if (LII != LR.begin())
1294               prevStart = std::prev(LII)->start;
1295
1296             // FIXME: This could be more efficient if there was a
1297             // removeSegment method that returned an iterator.
1298             LR.removeSegment(*LII, true);
1299             if (prevStart.isValid())
1300               LII = LR.find(prevStart);
1301             else
1302               LII = LR.begin();
1303           } else {
1304             LII->start = instrIdx.getRegSlot();
1305             LII->valno->def = instrIdx.getRegSlot();
1306             if (MO.getSubReg() && !MO.isUndef())
1307               lastUseIdx = instrIdx.getRegSlot();
1308             else
1309               lastUseIdx = SlotIndex();
1310             continue;
1311           }
1312         }
1313
1314         if (!lastUseIdx.isValid()) {
1315           VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1316           LiveRange::Segment S(instrIdx.getRegSlot(),
1317                                instrIdx.getDeadSlot(), VNI);
1318           LII = LR.addSegment(S);
1319         } else if (LII->start != instrIdx.getRegSlot()) {
1320           VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1321           LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
1322           LII = LR.addSegment(S);
1323         }
1324
1325         if (MO.getSubReg() && !MO.isUndef())
1326           lastUseIdx = instrIdx.getRegSlot();
1327         else
1328           lastUseIdx = SlotIndex();
1329       } else if (MO.isUse()) {
1330         // FIXME: This should probably be handled outside of this branch,
1331         // either as part of the def case (for defs inside of the region) or
1332         // after the loop over the region.
1333         if (!isEndValid && !LII->end.isBlock())
1334           LII->end = instrIdx.getRegSlot();
1335         if (!lastUseIdx.isValid())
1336           lastUseIdx = instrIdx.getRegSlot();
1337       }
1338     }
1339   }
1340 }
1341
1342 void
1343 LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
1344                                       MachineBasicBlock::iterator Begin,
1345                                       MachineBasicBlock::iterator End,
1346                                       ArrayRef<unsigned> OrigRegs) {
1347   // Find anchor points, which are at the beginning/end of blocks or at
1348   // instructions that already have indexes.
1349   while (Begin != MBB->begin() && !Indexes->hasIndex(Begin))
1350     --Begin;
1351   while (End != MBB->end() && !Indexes->hasIndex(End))
1352     ++End;
1353
1354   SlotIndex endIdx;
1355   if (End == MBB->end())
1356     endIdx = getMBBEndIdx(MBB).getPrevSlot();
1357   else
1358     endIdx = getInstructionIndex(End);
1359
1360   Indexes->repairIndexesInRange(MBB, Begin, End);
1361
1362   for (MachineBasicBlock::iterator I = End; I != Begin;) {
1363     --I;
1364     MachineInstr *MI = I;
1365     if (MI->isDebugValue())
1366       continue;
1367     for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(),
1368          MOE = MI->operands_end(); MOI != MOE; ++MOI) {
1369       if (MOI->isReg() &&
1370           TargetRegisterInfo::isVirtualRegister(MOI->getReg()) &&
1371           !hasInterval(MOI->getReg())) {
1372         createAndComputeVirtRegInterval(MOI->getReg());
1373       }
1374     }
1375   }
1376
1377   for (unsigned i = 0, e = OrigRegs.size(); i != e; ++i) {
1378     unsigned Reg = OrigRegs[i];
1379     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1380       continue;
1381
1382     LiveInterval &LI = getInterval(Reg);
1383     // FIXME: Should we support undefs that gain defs?
1384     if (!LI.hasAtLeastOneValue())
1385       continue;
1386
1387     for (LiveInterval::SubRange &S : LI.subranges()) {
1388       repairOldRegInRange(Begin, End, endIdx, S, Reg, S.LaneMask);
1389     }
1390     repairOldRegInRange(Begin, End, endIdx, LI, Reg);
1391   }
1392 }
1393
1394 void LiveIntervals::removePhysRegDefAt(unsigned Reg, SlotIndex Pos) {
1395   for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1396     if (LiveRange *LR = getCachedRegUnit(*Units))
1397       if (VNInfo *VNI = LR->getVNInfoAt(Pos))
1398         LR->removeValNo(VNI);
1399   }
1400 }
1401
1402 void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) {
1403   VNInfo *VNI = LI.getVNInfoAt(Pos);
1404   if (VNI == nullptr)
1405     return;
1406   LI.removeValNo(VNI);
1407
1408   // Also remove the value in subranges.
1409   for (LiveInterval::SubRange &S : LI.subranges()) {
1410     if (VNInfo *SVNI = S.getVNInfoAt(Pos))
1411       S.removeValNo(SVNI);
1412   }
1413   LI.removeEmptySubRanges();
1414 }